xxxxxxxxxxxxxcwj | | | 87.30 4 | 88.71 4 | 85.64 1 | 94.57 1 | 94.55 2 | 91.01 1 | 79.94 1 | 89.15 10 | 79.85 5 | 92.37 3 | 83.29 8 | 79.75 6 | 83.52 24 | 82.72 30 | 88.75 19 | 95.37 23 |
|
SF-MVS | | | 87.30 4 | 88.71 4 | 85.64 1 | 94.57 1 | 94.55 2 | 91.01 1 | 79.94 1 | 89.15 10 | 79.85 5 | 92.37 3 | 83.29 8 | 79.75 6 | 83.52 24 | 82.72 30 | 88.75 19 | 95.37 23 |
|
MCST-MVS | | | 85.75 8 | 86.99 12 | 84.31 5 | 94.07 3 | 92.80 6 | 88.15 7 | 79.10 3 | 85.66 22 | 70.72 29 | 76.50 31 | 80.45 20 | 82.17 2 | 88.35 2 | 87.49 3 | 91.63 2 | 97.65 3 |
|
HPM-MVS++ | | | 85.64 9 | 88.43 6 | 82.39 11 | 92.65 4 | 90.24 25 | 85.83 15 | 74.21 10 | 90.68 7 | 75.63 17 | 86.77 12 | 84.15 6 | 78.68 14 | 86.33 7 | 85.26 9 | 87.32 52 | 95.60 18 |
|
CNVR-MVS | | | 85.96 7 | 87.58 10 | 84.06 7 | 92.58 5 | 92.40 9 | 87.62 9 | 77.77 5 | 88.44 13 | 75.93 16 | 79.49 24 | 81.97 16 | 81.65 3 | 87.04 6 | 86.58 4 | 88.79 17 | 97.18 7 |
|
NCCC | | | 84.16 15 | 85.46 20 | 82.64 10 | 92.34 6 | 90.57 22 | 86.57 12 | 76.51 7 | 86.85 19 | 72.91 22 | 77.20 30 | 78.69 26 | 79.09 13 | 84.64 18 | 84.88 14 | 88.44 28 | 95.41 21 |
|
DPE-MVS | | | 87.60 3 | 90.44 3 | 84.29 6 | 92.09 7 | 93.44 4 | 88.69 4 | 75.11 8 | 93.06 4 | 80.80 4 | 94.23 2 | 86.70 2 | 81.44 4 | 84.84 16 | 83.52 25 | 87.64 45 | 97.28 5 |
|
MSP-MVS | | | 88.07 1 | 90.73 1 | 84.97 3 | 91.98 8 | 95.01 1 | 87.86 8 | 76.88 6 | 93.90 1 | 85.15 1 | 90.11 7 | 86.90 1 | 79.46 10 | 86.26 9 | 84.67 16 | 88.50 27 | 98.25 2 |
|
CSCG | | | 82.90 19 | 84.52 22 | 81.02 17 | 91.85 9 | 93.43 5 | 87.14 10 | 74.01 13 | 81.96 32 | 76.14 14 | 70.84 37 | 82.49 12 | 69.71 60 | 82.32 40 | 85.18 11 | 87.26 55 | 95.40 22 |
|
SMA-MVS | | | 85.24 11 | 88.27 8 | 81.72 14 | 91.74 10 | 90.71 19 | 86.71 11 | 73.16 18 | 90.56 8 | 74.33 18 | 83.07 17 | 85.88 3 | 77.16 18 | 86.28 8 | 85.58 6 | 87.23 56 | 95.77 14 |
|
DPM-MVS | | | 85.41 10 | 86.72 15 | 83.89 9 | 91.66 11 | 91.92 13 | 90.49 3 | 78.09 4 | 86.90 17 | 73.95 19 | 74.52 33 | 82.01 15 | 79.29 11 | 90.24 1 | 90.65 1 | 89.86 6 | 90.78 70 |
|
QAPM | | | 77.50 44 | 77.43 49 | 77.59 35 | 91.52 12 | 92.00 12 | 81.41 39 | 70.63 26 | 66.22 72 | 58.05 68 | 54.70 78 | 71.79 44 | 74.49 31 | 82.46 36 | 82.04 35 | 89.46 10 | 92.79 52 |
|
APDe-MVS | | | 86.37 6 | 88.41 7 | 84.00 8 | 91.43 13 | 91.83 14 | 88.34 5 | 74.67 9 | 91.19 5 | 81.76 3 | 91.13 5 | 81.94 17 | 80.07 5 | 83.38 26 | 82.58 33 | 87.69 43 | 96.78 10 |
|
3Dnovator | | 70.49 5 | 78.42 38 | 76.77 55 | 80.35 19 | 91.43 13 | 90.27 24 | 81.84 35 | 70.79 25 | 72.10 56 | 71.95 23 | 50.02 96 | 67.86 56 | 77.47 17 | 82.89 30 | 84.24 18 | 88.61 23 | 89.99 79 |
|
DeepC-MVS_fast | | 75.41 2 | 81.69 23 | 82.10 32 | 81.20 16 | 91.04 15 | 87.81 50 | 83.42 26 | 74.04 12 | 83.77 26 | 71.09 27 | 66.88 46 | 72.44 38 | 79.48 9 | 85.08 13 | 84.97 13 | 88.12 38 | 93.78 41 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
SteuartSystems-ACMMP | | | 82.51 20 | 85.35 21 | 79.20 25 | 90.25 16 | 89.39 32 | 84.79 20 | 70.95 24 | 82.86 28 | 68.32 37 | 86.44 13 | 77.19 27 | 73.07 38 | 83.63 23 | 83.64 22 | 87.82 39 | 94.34 33 |
Skip Steuart: Steuart Systems R&D Blog. |
HFP-MVS | | | 82.48 21 | 84.12 23 | 80.56 18 | 90.15 17 | 87.55 53 | 84.28 22 | 69.67 33 | 85.22 23 | 77.95 12 | 84.69 15 | 75.94 30 | 75.04 26 | 81.85 46 | 81.17 51 | 86.30 73 | 92.40 54 |
|
DeepPCF-MVS | | 76.94 1 | 83.08 18 | 87.77 9 | 77.60 34 | 90.11 18 | 90.96 18 | 78.48 53 | 72.63 21 | 93.10 3 | 65.84 41 | 80.67 22 | 81.55 18 | 74.80 28 | 85.94 11 | 85.39 8 | 83.75 136 | 96.77 11 |
|
OpenMVS | | 67.62 8 | 74.92 58 | 73.91 68 | 76.09 43 | 90.10 19 | 90.38 23 | 78.01 57 | 66.35 53 | 66.09 74 | 62.80 48 | 46.33 119 | 64.55 66 | 71.77 48 | 79.92 62 | 80.88 58 | 87.52 48 | 89.20 88 |
|
MAR-MVS | | | 77.19 47 | 78.37 47 | 75.81 45 | 89.87 20 | 90.58 21 | 79.33 52 | 65.56 59 | 77.62 48 | 58.33 67 | 59.24 69 | 67.98 54 | 74.83 27 | 82.37 39 | 83.12 27 | 86.95 62 | 87.67 104 |
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
TSAR-MVS + ACMM | | | 81.59 25 | 85.84 19 | 76.63 38 | 89.82 21 | 86.53 62 | 86.32 14 | 66.72 51 | 85.96 21 | 65.43 42 | 88.98 10 | 82.29 13 | 67.57 77 | 82.06 44 | 81.33 47 | 83.93 134 | 93.75 42 |
|
train_agg | | | 83.35 17 | 86.93 14 | 79.17 26 | 89.70 22 | 88.41 40 | 85.60 18 | 72.89 20 | 86.31 20 | 66.58 40 | 90.48 6 | 82.24 14 | 73.06 39 | 83.10 29 | 82.64 32 | 87.21 60 | 95.30 25 |
|
abl_6 | | | | | 79.06 28 | 89.68 23 | 92.14 11 | 77.70 60 | 69.68 32 | 86.87 18 | 71.88 24 | 74.29 34 | 80.06 22 | 76.56 21 | | | 88.84 16 | 95.82 13 |
|
APD-MVS | | | 84.83 12 | 87.00 11 | 82.30 12 | 89.61 24 | 89.21 33 | 86.51 13 | 73.64 15 | 90.98 6 | 77.99 11 | 89.89 8 | 80.04 23 | 79.18 12 | 82.00 45 | 81.37 46 | 86.88 64 | 95.49 20 |
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
ACMMP_NAP | | | 83.54 16 | 86.37 17 | 80.25 20 | 89.57 25 | 90.10 27 | 85.27 19 | 71.66 22 | 87.38 14 | 73.08 21 | 84.23 16 | 80.16 21 | 75.31 24 | 84.85 15 | 83.64 22 | 86.57 68 | 94.21 37 |
|
DVP-MVS | | | 87.87 2 | 90.57 2 | 84.73 4 | 89.38 26 | 91.60 16 | 88.24 6 | 74.15 11 | 93.55 2 | 82.28 2 | 94.99 1 | 83.21 10 | 85.96 1 | 87.67 4 | 84.67 16 | 88.32 30 | 98.29 1 |
|
AdaColmap | | | 76.23 52 | 73.55 70 | 79.35 24 | 89.38 26 | 85.00 74 | 79.99 49 | 73.04 19 | 76.60 51 | 71.17 26 | 55.18 77 | 57.99 98 | 77.87 15 | 76.82 86 | 76.82 87 | 84.67 121 | 86.45 111 |
|
3Dnovator+ | | 70.16 6 | 77.87 41 | 77.29 51 | 78.55 29 | 89.25 28 | 88.32 42 | 80.09 47 | 67.95 43 | 74.89 55 | 71.83 25 | 52.05 90 | 70.68 48 | 76.27 23 | 82.27 41 | 82.04 35 | 85.92 82 | 90.77 71 |
|
CDPH-MVS | | | 79.39 35 | 82.13 31 | 76.19 42 | 89.22 29 | 88.34 41 | 84.20 23 | 71.00 23 | 79.67 42 | 56.97 73 | 77.77 27 | 72.24 42 | 68.50 72 | 81.33 50 | 82.74 28 | 87.23 56 | 92.84 50 |
|
SD-MVS | | | 84.31 14 | 86.96 13 | 81.22 15 | 88.98 30 | 88.68 37 | 85.65 16 | 73.85 14 | 89.09 12 | 79.63 7 | 87.34 11 | 84.84 4 | 73.71 33 | 82.66 33 | 81.60 43 | 85.48 99 | 94.51 31 |
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
MP-MVS | | | 80.94 26 | 83.49 25 | 77.96 31 | 88.48 31 | 88.16 44 | 82.82 31 | 69.34 35 | 80.79 38 | 69.67 33 | 82.35 19 | 77.13 28 | 71.60 50 | 80.97 56 | 80.96 56 | 85.87 85 | 94.06 38 |
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
ACMMPR | | | 80.62 28 | 82.98 27 | 77.87 33 | 88.41 32 | 87.05 58 | 83.02 28 | 69.18 36 | 83.91 25 | 68.35 36 | 82.89 18 | 73.64 35 | 72.16 45 | 80.78 57 | 81.13 53 | 86.10 78 | 91.43 61 |
|
MSLP-MVS++ | | | 78.57 37 | 77.33 50 | 80.02 21 | 88.39 33 | 84.79 75 | 84.62 21 | 66.17 55 | 75.96 52 | 78.40 9 | 61.59 59 | 71.47 45 | 73.54 36 | 78.43 73 | 78.88 70 | 88.97 14 | 90.18 78 |
|
PGM-MVS | | | 79.42 34 | 81.84 33 | 76.60 39 | 88.38 34 | 86.69 60 | 82.97 30 | 65.75 57 | 80.39 39 | 64.94 43 | 81.95 21 | 72.11 43 | 71.41 51 | 80.45 58 | 80.55 61 | 86.18 75 | 90.76 72 |
|
EPNet | | | 79.28 36 | 82.25 29 | 75.83 44 | 88.31 35 | 90.14 26 | 79.43 51 | 68.07 42 | 81.76 34 | 61.26 56 | 77.26 29 | 70.08 50 | 70.06 58 | 82.43 38 | 82.00 37 | 87.82 39 | 92.09 56 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
DELS-MVS | | | 79.49 30 | 79.84 40 | 79.08 27 | 88.26 36 | 92.49 7 | 84.12 24 | 70.63 26 | 65.27 79 | 69.60 35 | 61.29 61 | 66.50 60 | 72.75 41 | 88.07 3 | 88.03 2 | 89.13 12 | 97.22 6 |
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
zzz-MVS | | | 81.65 24 | 83.10 26 | 79.97 22 | 88.14 37 | 87.62 52 | 83.96 25 | 69.90 30 | 86.92 16 | 77.67 13 | 72.47 35 | 78.74 25 | 74.13 32 | 81.59 49 | 81.15 52 | 86.01 81 | 93.19 47 |
|
TSAR-MVS + MP. | | | 84.39 13 | 86.58 16 | 81.83 13 | 88.09 38 | 86.47 63 | 85.63 17 | 73.62 16 | 90.13 9 | 79.24 8 | 89.67 9 | 82.99 11 | 77.72 16 | 81.22 51 | 80.92 57 | 86.68 67 | 94.66 30 |
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
X-MVS | | | 78.16 40 | 80.55 37 | 75.38 47 | 87.99 39 | 86.27 65 | 81.05 43 | 68.98 37 | 78.33 44 | 61.07 58 | 75.25 32 | 72.27 39 | 67.52 78 | 80.03 61 | 80.52 62 | 85.66 96 | 91.20 65 |
|
DeepC-MVS | | 74.46 3 | 80.30 29 | 81.05 35 | 79.42 23 | 87.42 40 | 88.50 39 | 83.23 27 | 73.27 17 | 82.78 29 | 71.01 28 | 62.86 56 | 69.93 51 | 74.80 28 | 84.30 19 | 84.20 19 | 86.79 66 | 94.77 27 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
mPP-MVS | | | | | | 86.96 41 | | | | | | | 70.61 49 | | | | | |
|
CP-MVS | | | 79.44 31 | 81.51 34 | 77.02 37 | 86.95 42 | 85.96 69 | 82.00 33 | 68.44 41 | 81.82 33 | 67.39 38 | 77.43 28 | 73.68 34 | 71.62 49 | 79.56 65 | 79.58 64 | 85.73 89 | 92.51 53 |
|
MVS_111021_HR | | | 77.42 45 | 78.40 46 | 76.28 40 | 86.95 42 | 90.68 20 | 77.41 62 | 70.56 29 | 66.21 73 | 62.48 51 | 66.17 49 | 63.98 67 | 72.08 46 | 82.87 31 | 83.15 26 | 88.24 33 | 95.71 16 |
|
CANet | | | 80.90 27 | 82.93 28 | 78.53 30 | 86.83 44 | 92.26 10 | 81.19 41 | 66.95 48 | 81.60 35 | 69.90 32 | 66.93 45 | 74.80 32 | 76.79 19 | 84.68 17 | 84.77 15 | 89.50 9 | 95.50 19 |
|
CHOSEN 1792x2688 | | | 72.55 68 | 71.98 77 | 73.22 59 | 86.57 45 | 92.41 8 | 75.63 69 | 66.77 50 | 62.08 85 | 52.32 85 | 30.27 184 | 50.74 127 | 66.14 81 | 86.22 10 | 85.41 7 | 91.90 1 | 96.75 12 |
|
SR-MVS | | | | | | 86.33 46 | | | 67.54 45 | | | | 80.78 19 | | | | | |
|
PHI-MVS | | | 79.43 32 | 84.06 24 | 74.04 55 | 86.15 47 | 91.57 17 | 80.85 45 | 68.90 39 | 82.22 31 | 51.81 88 | 78.10 26 | 74.28 33 | 70.39 57 | 84.01 22 | 84.00 20 | 86.14 77 | 94.24 35 |
|
ACMMP | | | 77.61 43 | 79.59 41 | 75.30 48 | 85.87 48 | 85.58 70 | 81.42 38 | 67.38 47 | 79.38 43 | 62.61 49 | 78.53 25 | 65.79 62 | 68.80 71 | 78.56 72 | 78.50 74 | 85.75 86 | 90.80 69 |
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
HQP-MVS | | | 78.26 39 | 80.91 36 | 75.17 49 | 85.67 49 | 84.33 81 | 83.01 29 | 69.38 34 | 79.88 41 | 55.83 74 | 79.85 23 | 64.90 65 | 70.81 53 | 82.46 36 | 81.78 39 | 86.30 73 | 93.18 48 |
|
OPM-MVS | | | 72.74 67 | 70.93 86 | 74.85 52 | 85.30 50 | 84.34 80 | 82.82 31 | 69.79 31 | 49.96 131 | 55.39 80 | 54.09 85 | 60.14 86 | 70.04 59 | 80.38 60 | 79.43 65 | 85.74 88 | 88.20 100 |
|
MS-PatchMatch | | | 70.34 82 | 69.00 95 | 71.91 67 | 85.20 51 | 85.35 71 | 77.84 59 | 61.77 91 | 58.01 99 | 55.40 79 | 41.26 137 | 58.34 95 | 61.69 103 | 81.70 48 | 78.29 75 | 89.56 8 | 80.02 154 |
|
MVS_0304 | | | 79.43 32 | 82.20 30 | 76.20 41 | 84.22 52 | 91.79 15 | 81.82 36 | 63.81 69 | 76.83 50 | 61.71 54 | 66.37 48 | 75.52 31 | 76.38 22 | 85.54 12 | 85.03 12 | 89.28 11 | 94.32 34 |
|
PCF-MVS | | 70.85 4 | 75.73 53 | 76.55 58 | 74.78 53 | 83.67 53 | 88.04 48 | 81.47 37 | 70.62 28 | 69.24 67 | 57.52 71 | 60.59 65 | 69.18 52 | 70.65 55 | 77.11 83 | 77.65 81 | 84.75 119 | 94.01 39 |
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
ACMM | | 66.70 10 | 70.42 78 | 68.49 99 | 72.67 62 | 82.85 54 | 77.76 136 | 77.70 60 | 64.76 64 | 64.61 80 | 60.74 62 | 49.29 97 | 53.97 117 | 65.86 82 | 74.97 102 | 75.57 103 | 84.13 133 | 83.29 136 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
XVS | | | | | | 82.43 55 | 86.27 65 | 75.70 67 | | | 61.07 58 | | 72.27 39 | | | | 85.67 93 | |
|
X-MVStestdata | | | | | | 82.43 55 | 86.27 65 | 75.70 67 | | | 61.07 58 | | 72.27 39 | | | | 85.67 93 | |
|
PVSNet_BlendedMVS | | | 76.84 49 | 78.47 44 | 74.95 50 | 82.37 57 | 89.90 29 | 75.45 73 | 65.45 60 | 74.99 53 | 70.66 30 | 63.07 54 | 58.27 96 | 67.60 75 | 84.24 20 | 81.70 41 | 88.18 34 | 97.10 8 |
|
PVSNet_Blended | | | 76.84 49 | 78.47 44 | 74.95 50 | 82.37 57 | 89.90 29 | 75.45 73 | 65.45 60 | 74.99 53 | 70.66 30 | 63.07 54 | 58.27 96 | 67.60 75 | 84.24 20 | 81.70 41 | 88.18 34 | 97.10 8 |
|
CLD-MVS | | | 77.36 46 | 77.29 51 | 77.45 36 | 82.21 59 | 88.11 45 | 81.92 34 | 68.96 38 | 77.97 46 | 69.62 34 | 62.08 57 | 59.44 89 | 73.57 35 | 81.75 47 | 81.27 49 | 88.41 29 | 90.39 75 |
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
LGP-MVS_train | | | 72.02 71 | 73.18 73 | 70.67 74 | 82.13 60 | 80.26 114 | 79.58 50 | 63.04 76 | 70.09 61 | 51.98 86 | 65.06 50 | 55.62 109 | 62.49 100 | 75.97 94 | 76.32 94 | 84.80 118 | 88.93 91 |
|
MSDG | | | 65.57 108 | 61.57 145 | 70.24 76 | 82.02 61 | 76.47 145 | 74.46 86 | 68.73 40 | 56.52 104 | 50.33 96 | 38.47 150 | 41.10 149 | 62.42 101 | 72.12 135 | 72.94 136 | 83.47 139 | 73.37 176 |
|
IB-MVS | | 64.48 11 | 69.02 86 | 68.97 96 | 69.09 84 | 81.75 62 | 89.01 35 | 64.50 143 | 64.91 63 | 56.65 103 | 62.59 50 | 47.89 103 | 45.23 138 | 51.99 147 | 69.18 162 | 81.88 38 | 88.77 18 | 92.93 49 |
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
canonicalmvs | | | 77.65 42 | 79.59 41 | 75.39 46 | 81.52 63 | 89.83 31 | 81.32 40 | 60.74 102 | 80.05 40 | 66.72 39 | 68.43 41 | 65.09 63 | 74.72 30 | 78.87 69 | 82.73 29 | 87.32 52 | 92.16 55 |
|
CPTT-MVS | | | 75.43 54 | 77.13 53 | 73.44 57 | 81.43 64 | 82.55 92 | 80.96 44 | 64.35 65 | 77.95 47 | 61.39 55 | 69.20 40 | 70.94 47 | 69.38 67 | 73.89 115 | 73.32 129 | 83.14 146 | 92.06 57 |
|
EPNet_dtu | | | 66.17 104 | 70.13 91 | 61.54 135 | 81.04 65 | 77.39 140 | 68.87 121 | 62.50 84 | 69.78 62 | 33.51 170 | 63.77 53 | 56.22 104 | 37.65 183 | 72.20 134 | 72.18 144 | 85.69 92 | 79.38 156 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
ACMP | | 68.86 7 | 72.15 70 | 72.25 75 | 72.03 65 | 80.96 66 | 80.87 108 | 77.93 58 | 64.13 67 | 69.29 65 | 60.79 61 | 64.04 52 | 53.54 119 | 63.91 90 | 73.74 118 | 75.27 105 | 84.45 126 | 88.98 90 |
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
HyFIR lowres test | | | 68.39 90 | 68.28 101 | 68.52 87 | 80.85 67 | 88.11 45 | 71.08 107 | 58.09 115 | 54.87 118 | 47.80 106 | 27.55 190 | 55.80 107 | 64.97 85 | 79.11 67 | 79.14 68 | 88.31 31 | 93.35 44 |
|
LS3D | | | 64.54 117 | 62.14 141 | 67.34 96 | 80.85 67 | 75.79 151 | 69.99 113 | 65.87 56 | 60.77 89 | 44.35 118 | 42.43 131 | 45.95 137 | 65.01 84 | 69.88 157 | 68.69 167 | 77.97 183 | 71.43 183 |
|
CNLPA | | | 71.37 76 | 70.27 90 | 72.66 63 | 80.79 69 | 81.33 102 | 71.07 108 | 65.75 57 | 82.36 30 | 64.80 44 | 42.46 130 | 56.49 103 | 72.70 42 | 73.00 126 | 70.52 160 | 80.84 168 | 85.76 119 |
|
TSAR-MVS + GP. | | | 82.27 22 | 85.98 18 | 77.94 32 | 80.72 70 | 88.25 43 | 81.12 42 | 67.71 44 | 87.10 15 | 73.31 20 | 85.23 14 | 83.68 7 | 76.64 20 | 80.43 59 | 81.47 45 | 88.15 36 | 95.66 17 |
|
baseline1 | | | 71.47 73 | 72.02 76 | 70.82 72 | 80.56 71 | 84.51 77 | 76.61 66 | 66.93 49 | 56.22 107 | 48.66 101 | 55.40 76 | 60.43 83 | 62.55 99 | 83.35 27 | 80.99 54 | 89.60 7 | 83.28 137 |
|
PLC | | 64.00 12 | 68.54 88 | 66.66 110 | 70.74 73 | 80.28 72 | 74.88 157 | 72.64 92 | 63.70 71 | 69.26 66 | 55.71 76 | 47.24 110 | 55.31 111 | 70.42 56 | 72.05 137 | 70.67 158 | 81.66 162 | 77.19 162 |
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
OMC-MVS | | | 74.03 61 | 75.82 61 | 71.95 66 | 79.56 73 | 80.98 106 | 75.35 75 | 63.21 74 | 84.48 24 | 61.83 53 | 61.54 60 | 66.89 57 | 69.41 66 | 76.60 87 | 74.07 119 | 82.34 156 | 86.15 114 |
|
CostFormer | | | 72.18 69 | 73.90 69 | 70.18 77 | 79.47 74 | 86.19 68 | 76.94 65 | 48.62 172 | 66.07 75 | 60.40 63 | 54.14 84 | 65.82 61 | 67.98 73 | 75.84 95 | 76.41 92 | 87.67 44 | 92.83 51 |
|
MVS_111021_LR | | | 74.26 60 | 75.95 60 | 72.27 64 | 79.43 75 | 85.04 73 | 72.71 91 | 65.27 62 | 70.92 59 | 63.58 47 | 69.32 39 | 60.31 85 | 69.43 65 | 77.01 84 | 77.15 84 | 83.22 143 | 91.93 59 |
|
MVS_Test | | | 75.22 55 | 76.69 56 | 73.51 56 | 79.30 76 | 88.82 36 | 80.06 48 | 58.74 110 | 69.77 63 | 57.50 72 | 59.78 68 | 61.35 78 | 75.31 24 | 82.07 43 | 83.60 24 | 90.13 5 | 91.41 63 |
|
casdiffmvs | | | 75.20 56 | 75.69 62 | 74.63 54 | 79.26 77 | 89.07 34 | 78.47 54 | 63.59 72 | 67.05 70 | 63.79 46 | 55.72 75 | 60.32 84 | 73.58 34 | 82.16 42 | 81.78 39 | 89.08 13 | 93.72 43 |
|
PVSNet_Blended_VisFu | | | 71.76 72 | 73.54 71 | 69.69 78 | 79.01 78 | 87.16 57 | 72.05 93 | 61.80 90 | 56.46 105 | 59.66 64 | 53.88 86 | 62.48 70 | 59.08 122 | 81.17 52 | 78.90 69 | 86.53 70 | 94.74 28 |
|
ACMH | | 59.42 14 | 61.59 142 | 59.22 161 | 64.36 112 | 78.92 79 | 78.26 130 | 67.65 127 | 67.48 46 | 39.81 171 | 30.98 176 | 38.25 152 | 34.59 181 | 61.37 107 | 70.55 151 | 73.47 125 | 79.74 175 | 79.59 155 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
FC-MVSNet-train | | | 68.83 87 | 68.29 100 | 69.47 79 | 78.35 80 | 79.94 115 | 64.72 142 | 66.38 52 | 54.96 115 | 54.51 82 | 56.75 72 | 47.91 133 | 66.91 79 | 75.57 99 | 75.75 99 | 85.92 82 | 87.12 106 |
|
ETV-MVS | | | 76.25 51 | 80.22 38 | 71.63 68 | 78.23 81 | 87.95 49 | 72.75 90 | 60.27 106 | 77.50 49 | 57.73 69 | 71.53 36 | 66.60 59 | 73.16 37 | 80.99 55 | 81.23 50 | 87.63 46 | 95.73 15 |
|
EIA-MVS | | | 73.48 63 | 76.05 59 | 70.47 75 | 78.12 82 | 87.21 56 | 71.78 96 | 60.63 103 | 69.66 64 | 55.56 78 | 64.86 51 | 60.69 81 | 69.53 63 | 77.35 82 | 78.59 71 | 87.22 58 | 94.01 39 |
|
Effi-MVS+ | | | 70.42 78 | 71.23 83 | 69.47 79 | 78.04 83 | 85.24 72 | 75.57 71 | 58.88 108 | 59.56 93 | 48.47 102 | 52.73 89 | 54.94 112 | 69.69 61 | 78.34 75 | 77.06 85 | 86.18 75 | 90.73 73 |
|
Anonymous202405211 | | | | 66.35 114 | | 78.00 84 | 84.41 79 | 74.85 77 | 63.18 75 | 51.00 127 | | 31.37 181 | 53.73 118 | 69.67 62 | 76.28 89 | 76.84 86 | 83.21 145 | 90.85 68 |
|
CS-MVS | | | 75.18 57 | 78.59 43 | 71.20 69 | 77.74 85 | 87.69 51 | 73.93 87 | 58.81 109 | 69.17 68 | 55.73 75 | 67.86 42 | 66.89 57 | 72.87 40 | 82.50 34 | 81.29 48 | 88.15 36 | 94.71 29 |
|
thres100view900 | | | 67.14 102 | 66.09 116 | 68.38 89 | 77.70 86 | 83.84 85 | 74.52 83 | 66.33 54 | 49.16 135 | 43.40 123 | 43.24 122 | 41.34 145 | 62.59 98 | 79.31 66 | 75.92 98 | 85.73 89 | 89.81 80 |
|
tfpn200view9 | | | 65.90 106 | 64.96 120 | 67.00 97 | 77.70 86 | 81.58 98 | 71.71 98 | 62.94 80 | 49.16 135 | 43.40 123 | 43.24 122 | 41.34 145 | 61.42 105 | 76.24 90 | 74.63 111 | 84.84 114 | 88.52 97 |
|
DCV-MVSNet | | | 69.13 85 | 69.07 94 | 69.21 81 | 77.65 88 | 77.52 138 | 74.68 78 | 57.85 120 | 54.92 116 | 55.34 81 | 55.74 74 | 55.56 110 | 66.35 80 | 75.05 101 | 76.56 90 | 83.35 140 | 88.13 101 |
|
Anonymous20231211 | | | 68.44 89 | 66.37 113 | 70.86 71 | 77.58 89 | 83.49 86 | 75.15 76 | 61.89 88 | 52.54 124 | 58.50 66 | 28.89 186 | 56.78 102 | 69.29 68 | 74.96 104 | 76.61 88 | 82.73 149 | 91.36 64 |
|
UA-Net | | | 64.62 114 | 68.23 102 | 60.42 140 | 77.53 90 | 81.38 101 | 60.08 167 | 57.47 126 | 47.01 142 | 44.75 116 | 60.68 63 | 71.32 46 | 41.84 178 | 73.27 121 | 72.25 143 | 80.83 169 | 71.68 181 |
|
thres200 | | | 65.58 107 | 64.74 122 | 66.56 98 | 77.52 91 | 81.61 96 | 73.44 89 | 62.95 78 | 46.23 147 | 42.45 130 | 42.76 124 | 41.18 147 | 58.12 126 | 76.24 90 | 75.59 102 | 84.89 112 | 89.58 83 |
|
ACMH+ | | 60.36 13 | 61.16 143 | 58.38 163 | 64.42 111 | 77.37 92 | 74.35 162 | 68.45 122 | 62.81 82 | 45.86 149 | 38.48 147 | 35.71 168 | 37.35 165 | 59.81 115 | 67.24 167 | 69.80 164 | 79.58 176 | 78.32 160 |
|
TAPA-MVS | | 67.10 9 | 71.45 74 | 73.47 72 | 69.10 83 | 77.04 93 | 80.78 109 | 73.81 88 | 62.10 85 | 80.80 37 | 51.28 89 | 60.91 62 | 63.80 69 | 67.98 73 | 74.59 106 | 72.42 141 | 82.37 155 | 80.97 151 |
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
IS_MVSNet | | | 67.29 100 | 71.98 77 | 61.82 133 | 76.92 94 | 84.32 82 | 65.90 141 | 58.22 113 | 55.75 111 | 39.22 143 | 54.51 81 | 62.47 71 | 45.99 168 | 78.83 70 | 78.52 73 | 84.70 120 | 89.47 85 |
|
CANet_DTU | | | 72.84 66 | 76.63 57 | 68.43 88 | 76.81 95 | 86.62 61 | 75.54 72 | 54.71 154 | 72.06 57 | 43.54 121 | 67.11 44 | 58.46 93 | 72.40 43 | 81.13 54 | 80.82 59 | 87.57 47 | 90.21 77 |
|
tpm cat1 | | | 67.47 98 | 67.05 108 | 67.98 90 | 76.63 96 | 81.51 100 | 74.49 85 | 47.65 177 | 61.18 87 | 61.12 57 | 42.51 129 | 53.02 122 | 64.74 88 | 70.11 156 | 71.50 147 | 83.22 143 | 89.49 84 |
|
DI_MVS_plusplus_trai | | | 73.94 62 | 74.85 65 | 72.88 61 | 76.57 97 | 86.80 59 | 80.41 46 | 61.47 93 | 62.35 84 | 59.44 65 | 47.91 102 | 68.12 53 | 72.24 44 | 82.84 32 | 81.50 44 | 87.15 61 | 94.42 32 |
|
thres400 | | | 65.18 112 | 64.44 124 | 66.04 99 | 76.40 98 | 82.63 90 | 71.52 100 | 64.27 66 | 44.93 153 | 40.69 138 | 41.86 134 | 40.79 151 | 58.12 126 | 77.67 77 | 74.64 110 | 85.26 102 | 88.56 96 |
|
tpmrst | | | 67.15 101 | 68.12 103 | 66.03 100 | 76.21 99 | 80.98 106 | 71.27 102 | 45.05 183 | 60.69 90 | 50.63 94 | 46.95 115 | 54.15 116 | 65.30 83 | 71.80 139 | 71.77 145 | 87.72 42 | 90.48 74 |
|
gg-mvs-nofinetune | | | 62.34 131 | 66.19 115 | 57.86 156 | 76.15 100 | 88.61 38 | 71.18 105 | 41.24 200 | 25.74 202 | 13.16 203 | 22.91 197 | 63.97 68 | 54.52 142 | 85.06 14 | 85.25 10 | 90.92 3 | 91.78 60 |
|
baseline | | | 72.89 65 | 74.46 67 | 71.07 70 | 75.99 101 | 87.50 54 | 74.57 79 | 60.49 104 | 70.72 60 | 57.60 70 | 60.63 64 | 60.97 80 | 70.79 54 | 75.27 100 | 76.33 93 | 86.94 63 | 89.79 82 |
|
EPMVS | | | 66.21 103 | 67.49 106 | 64.73 107 | 75.81 102 | 84.20 83 | 68.94 120 | 44.37 187 | 61.55 86 | 48.07 105 | 49.21 99 | 54.87 113 | 62.88 96 | 71.82 138 | 71.40 151 | 88.28 32 | 79.37 157 |
|
baseline2 | | | 71.22 77 | 73.01 74 | 69.13 82 | 75.76 103 | 86.34 64 | 71.23 103 | 62.78 83 | 62.62 82 | 52.85 84 | 57.32 71 | 54.31 114 | 63.27 95 | 79.74 63 | 79.31 66 | 88.89 15 | 91.43 61 |
|
EPP-MVSNet | | | 67.58 96 | 71.10 84 | 63.48 119 | 75.71 104 | 83.35 87 | 66.85 134 | 57.83 121 | 53.02 123 | 41.15 135 | 55.82 73 | 67.89 55 | 56.01 137 | 74.40 108 | 72.92 137 | 83.33 141 | 90.30 76 |
|
diffmvs | | | 74.32 59 | 75.42 63 | 73.04 60 | 75.60 105 | 87.27 55 | 78.20 55 | 62.96 77 | 68.66 69 | 61.89 52 | 59.79 67 | 59.84 87 | 71.80 47 | 78.30 76 | 79.87 63 | 87.80 41 | 94.23 36 |
|
thres600view7 | | | 63.77 122 | 63.14 130 | 64.51 109 | 75.49 106 | 81.61 96 | 69.59 116 | 62.95 78 | 43.96 156 | 38.90 145 | 41.09 138 | 40.24 156 | 55.25 140 | 76.24 90 | 71.54 146 | 84.89 112 | 87.30 105 |
|
dps | | | 64.08 119 | 63.22 129 | 65.08 104 | 75.27 107 | 79.65 118 | 66.68 136 | 46.63 181 | 56.94 101 | 55.67 77 | 43.96 121 | 43.63 142 | 64.00 89 | 69.50 161 | 69.82 162 | 82.25 157 | 79.02 158 |
|
MVSTER | | | 76.92 48 | 79.92 39 | 73.42 58 | 74.98 108 | 82.97 88 | 78.15 56 | 63.41 73 | 78.02 45 | 64.41 45 | 67.54 43 | 72.80 37 | 71.05 52 | 83.29 28 | 83.73 21 | 88.53 26 | 91.12 66 |
|
TSAR-MVS + COLMAP | | | 73.09 64 | 76.86 54 | 68.71 85 | 74.97 109 | 82.49 93 | 74.51 84 | 61.83 89 | 83.16 27 | 49.31 100 | 82.22 20 | 51.62 124 | 68.94 70 | 78.76 71 | 75.52 104 | 82.67 151 | 84.23 129 |
|
tpm | | | 64.85 113 | 66.02 117 | 63.48 119 | 74.52 110 | 78.38 129 | 70.98 109 | 44.99 185 | 51.61 126 | 43.28 125 | 47.66 105 | 53.18 120 | 60.57 109 | 70.58 150 | 71.30 154 | 86.54 69 | 89.45 86 |
|
SCA | | | 63.90 121 | 66.67 109 | 60.66 138 | 73.75 111 | 71.78 172 | 59.87 168 | 43.66 188 | 61.13 88 | 45.03 114 | 51.64 91 | 59.45 88 | 57.92 128 | 70.96 145 | 70.80 156 | 83.71 137 | 80.92 152 |
|
Vis-MVSNet (Re-imp) | | | 62.25 134 | 68.74 97 | 54.68 171 | 73.70 112 | 78.74 125 | 56.51 176 | 57.49 125 | 55.22 113 | 26.86 182 | 54.56 80 | 61.35 78 | 31.06 185 | 73.10 123 | 74.90 107 | 82.49 153 | 83.31 135 |
|
Fast-Effi-MVS+ | | | 67.59 95 | 67.56 105 | 67.62 93 | 73.67 113 | 81.14 105 | 71.12 106 | 54.79 153 | 58.88 95 | 50.61 95 | 46.70 117 | 47.05 134 | 69.12 69 | 76.06 93 | 76.44 91 | 86.43 71 | 86.65 109 |
|
IterMVS-LS | | | 66.08 105 | 66.56 112 | 65.51 101 | 73.67 113 | 74.88 157 | 70.89 110 | 53.55 159 | 50.42 129 | 48.32 104 | 50.59 94 | 55.66 108 | 61.83 102 | 73.93 114 | 74.42 115 | 84.82 117 | 86.01 116 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
PatchmatchNet | | | 65.43 110 | 67.71 104 | 62.78 125 | 73.49 115 | 82.83 89 | 66.42 139 | 45.40 182 | 60.40 91 | 45.27 112 | 49.22 98 | 57.60 100 | 60.01 114 | 70.61 148 | 71.38 152 | 86.08 79 | 81.91 148 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
COLMAP_ROB | | 51.17 15 | 55.13 169 | 52.90 181 | 57.73 158 | 73.47 116 | 67.21 184 | 62.13 159 | 55.82 138 | 47.83 139 | 34.39 166 | 31.60 180 | 34.24 182 | 44.90 172 | 63.88 181 | 62.52 188 | 75.67 188 | 63.02 197 |
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
Effi-MVS+-dtu | | | 64.58 115 | 64.08 125 | 65.16 103 | 73.04 117 | 75.17 156 | 70.68 112 | 56.23 135 | 54.12 121 | 44.71 117 | 47.42 106 | 51.10 125 | 63.82 91 | 68.08 165 | 66.32 176 | 82.47 154 | 86.38 112 |
|
thisisatest0530 | | | 68.38 91 | 70.98 85 | 65.35 102 | 72.61 118 | 84.42 78 | 68.21 124 | 57.98 116 | 59.77 92 | 50.80 93 | 54.63 79 | 58.48 92 | 57.92 128 | 76.99 85 | 77.47 82 | 84.60 122 | 85.07 122 |
|
EG-PatchMatch MVS | | | 58.73 159 | 58.03 166 | 59.55 145 | 72.32 119 | 80.49 111 | 63.44 154 | 55.55 143 | 32.49 191 | 38.31 148 | 28.87 187 | 37.22 166 | 42.84 176 | 74.30 112 | 75.70 100 | 84.84 114 | 77.14 163 |
|
TransMVSNet (Re) | | | 57.83 162 | 56.90 169 | 58.91 151 | 72.26 120 | 74.69 160 | 63.57 153 | 61.42 94 | 32.30 192 | 32.65 171 | 33.97 174 | 35.96 175 | 39.17 181 | 73.84 117 | 72.84 138 | 84.37 127 | 74.69 169 |
|
CMPMVS | | 43.63 17 | 57.67 165 | 55.43 173 | 60.28 141 | 72.01 121 | 79.00 123 | 62.77 158 | 53.23 161 | 41.77 163 | 45.42 111 | 30.74 183 | 39.03 158 | 53.01 145 | 64.81 176 | 64.65 182 | 75.26 190 | 68.03 188 |
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
NR-MVSNet | | | 61.08 145 | 62.09 142 | 59.90 142 | 71.96 122 | 75.87 149 | 63.60 152 | 61.96 86 | 49.31 133 | 27.95 179 | 42.76 124 | 33.85 185 | 48.82 157 | 74.35 110 | 74.05 120 | 85.13 104 | 84.45 126 |
|
tttt0517 | | | 67.99 94 | 70.61 87 | 64.94 105 | 71.94 123 | 83.96 84 | 67.62 128 | 57.98 116 | 59.30 94 | 49.90 98 | 54.50 82 | 57.98 99 | 57.92 128 | 76.48 88 | 77.47 82 | 84.24 129 | 84.58 125 |
|
PMMVS | | | 70.37 81 | 75.06 64 | 64.90 106 | 71.46 124 | 81.88 94 | 64.10 145 | 55.64 141 | 71.31 58 | 46.69 107 | 70.69 38 | 58.56 90 | 69.53 63 | 79.03 68 | 75.63 101 | 81.96 159 | 88.32 99 |
|
test-LLR | | | 68.23 92 | 71.61 81 | 64.28 113 | 71.37 125 | 81.32 103 | 63.98 148 | 61.03 96 | 58.62 96 | 42.96 126 | 52.74 87 | 61.65 76 | 57.74 131 | 75.64 97 | 78.09 79 | 88.61 23 | 93.21 45 |
|
test0.0.03 1 | | | 57.35 166 | 59.89 158 | 54.38 173 | 71.37 125 | 73.45 165 | 52.71 181 | 61.03 96 | 46.11 148 | 26.33 183 | 41.73 135 | 44.08 140 | 29.72 187 | 71.43 143 | 70.90 155 | 85.10 105 | 71.56 182 |
|
tfpnnormal | | | 58.97 156 | 56.48 171 | 61.89 132 | 71.27 127 | 76.21 148 | 66.65 137 | 61.76 92 | 32.90 190 | 36.41 158 | 27.83 189 | 29.14 196 | 50.64 154 | 73.06 124 | 73.05 135 | 84.58 124 | 83.15 140 |
|
Fast-Effi-MVS+-dtu | | | 63.05 127 | 64.72 123 | 61.11 136 | 71.21 128 | 76.81 144 | 70.72 111 | 43.13 192 | 52.51 125 | 35.34 164 | 46.55 118 | 46.36 135 | 61.40 106 | 71.57 142 | 71.44 149 | 84.84 114 | 87.79 103 |
|
MDTV_nov1_ep13 | | | 65.21 111 | 67.28 107 | 62.79 124 | 70.91 129 | 81.72 95 | 69.28 119 | 49.50 171 | 58.08 98 | 43.94 120 | 50.50 95 | 56.02 105 | 58.86 123 | 70.72 147 | 73.37 127 | 84.24 129 | 80.52 153 |
|
FMVSNet3 | | | 70.41 80 | 71.89 79 | 68.68 86 | 70.89 130 | 79.42 121 | 75.63 69 | 60.97 98 | 65.32 76 | 51.06 90 | 47.37 107 | 62.05 72 | 64.90 86 | 82.49 35 | 82.27 34 | 88.64 22 | 84.34 128 |
|
Vis-MVSNet | | | 65.53 109 | 69.83 92 | 60.52 139 | 70.80 131 | 84.59 76 | 66.37 140 | 55.47 145 | 48.40 138 | 40.62 139 | 57.67 70 | 58.43 94 | 45.37 171 | 77.49 78 | 76.24 95 | 84.47 125 | 85.99 117 |
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
CDS-MVSNet | | | 64.22 118 | 65.89 118 | 62.28 131 | 70.05 132 | 80.59 110 | 69.91 115 | 57.98 116 | 43.53 157 | 46.58 108 | 48.22 101 | 50.76 126 | 46.45 165 | 75.68 96 | 76.08 96 | 82.70 150 | 86.34 113 |
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
UGNet | | | 67.57 97 | 71.69 80 | 62.76 126 | 69.88 133 | 82.58 91 | 66.43 138 | 58.64 111 | 54.71 119 | 51.87 87 | 61.74 58 | 62.01 75 | 45.46 170 | 74.78 105 | 74.99 106 | 84.24 129 | 91.02 67 |
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
GA-MVS | | | 64.55 116 | 65.76 119 | 63.12 121 | 69.68 134 | 81.56 99 | 69.59 116 | 58.16 114 | 45.23 152 | 35.58 163 | 47.01 114 | 41.82 144 | 59.41 118 | 79.62 64 | 78.54 72 | 86.32 72 | 86.56 110 |
|
GBi-Net | | | 69.21 83 | 70.40 88 | 67.81 91 | 69.49 135 | 78.65 126 | 74.54 80 | 60.97 98 | 65.32 76 | 51.06 90 | 47.37 107 | 62.05 72 | 63.43 92 | 77.49 78 | 78.22 76 | 87.37 49 | 83.73 131 |
|
test1 | | | 69.21 83 | 70.40 88 | 67.81 91 | 69.49 135 | 78.65 126 | 74.54 80 | 60.97 98 | 65.32 76 | 51.06 90 | 47.37 107 | 62.05 72 | 63.43 92 | 77.49 78 | 78.22 76 | 87.37 49 | 83.73 131 |
|
FMVSNet2 | | | 68.06 93 | 68.57 98 | 67.45 95 | 69.49 135 | 78.65 126 | 74.54 80 | 60.23 107 | 56.29 106 | 49.64 99 | 42.13 133 | 57.08 101 | 63.43 92 | 81.15 53 | 80.99 54 | 87.37 49 | 83.73 131 |
|
UniMVSNet_NR-MVSNet | | | 62.30 133 | 63.51 128 | 60.89 137 | 69.48 138 | 77.83 134 | 64.07 146 | 63.94 68 | 50.03 130 | 31.17 174 | 44.82 120 | 41.12 148 | 51.37 150 | 71.02 144 | 74.81 109 | 85.30 101 | 84.95 123 |
|
gm-plane-assit | | | 54.99 171 | 57.99 167 | 51.49 179 | 69.27 139 | 54.42 203 | 32.32 206 | 42.59 193 | 21.18 206 | 13.71 201 | 23.61 194 | 43.84 141 | 60.21 113 | 87.09 5 | 86.55 5 | 90.81 4 | 89.28 87 |
|
PatchMatch-RL | | | 62.22 137 | 60.69 151 | 64.01 114 | 68.74 140 | 75.75 152 | 59.27 169 | 60.35 105 | 56.09 108 | 53.80 83 | 47.06 113 | 36.45 170 | 64.80 87 | 68.22 164 | 67.22 171 | 77.10 185 | 74.02 171 |
|
CR-MVSNet | | | 62.31 132 | 64.75 121 | 59.47 146 | 68.63 141 | 71.29 174 | 67.53 129 | 43.18 190 | 55.83 109 | 41.40 132 | 41.04 139 | 55.85 106 | 57.29 134 | 72.76 129 | 73.27 131 | 78.77 180 | 83.23 138 |
|
TranMVSNet+NR-MVSNet | | | 60.38 149 | 61.30 147 | 59.30 148 | 68.34 142 | 75.57 155 | 63.38 155 | 63.78 70 | 46.74 144 | 27.73 180 | 42.56 128 | 36.84 168 | 47.66 160 | 70.36 153 | 74.59 112 | 84.91 111 | 82.46 143 |
|
v8 | | | 63.44 125 | 62.58 137 | 64.43 110 | 68.28 143 | 78.07 131 | 71.82 95 | 54.85 151 | 46.70 145 | 45.20 113 | 39.40 147 | 40.91 150 | 60.54 110 | 72.85 128 | 74.39 116 | 85.92 82 | 85.76 119 |
|
v2v482 | | | 63.68 123 | 62.85 135 | 64.65 108 | 68.01 144 | 80.46 112 | 71.90 94 | 57.60 123 | 44.26 154 | 42.82 128 | 39.80 146 | 38.62 161 | 61.56 104 | 73.06 124 | 74.86 108 | 86.03 80 | 88.90 93 |
|
pm-mvs1 | | | 59.21 155 | 59.58 160 | 58.77 152 | 67.97 145 | 77.07 143 | 64.12 144 | 57.20 128 | 34.73 187 | 36.86 154 | 35.34 170 | 40.54 155 | 43.34 175 | 74.32 111 | 73.30 130 | 83.13 147 | 81.77 149 |
|
v10 | | | 63.00 128 | 62.22 140 | 63.90 117 | 67.88 146 | 77.78 135 | 71.59 99 | 54.34 155 | 45.37 151 | 42.76 129 | 38.53 149 | 38.93 159 | 61.05 108 | 74.39 109 | 74.52 114 | 85.75 86 | 86.04 115 |
|
v1144 | | | 63.00 128 | 62.39 139 | 63.70 118 | 67.72 147 | 80.27 113 | 71.23 103 | 56.40 132 | 42.51 159 | 40.81 137 | 38.12 154 | 37.73 162 | 60.42 112 | 74.46 107 | 74.55 113 | 85.64 97 | 89.12 89 |
|
UniMVSNet (Re) | | | 60.62 147 | 62.93 134 | 57.92 155 | 67.64 148 | 77.90 133 | 61.75 161 | 61.24 95 | 49.83 132 | 29.80 178 | 42.57 127 | 40.62 154 | 43.36 174 | 70.49 152 | 73.27 131 | 83.76 135 | 85.81 118 |
|
RPMNet | | | 58.63 160 | 62.80 136 | 53.76 175 | 67.59 149 | 71.29 174 | 54.60 179 | 38.13 202 | 55.83 109 | 35.70 162 | 41.58 136 | 53.04 121 | 47.89 159 | 66.10 169 | 67.38 169 | 78.65 182 | 84.40 127 |
|
v148 | | | 62.00 139 | 61.19 148 | 62.96 122 | 67.46 150 | 79.49 120 | 67.87 125 | 57.66 122 | 42.30 160 | 45.02 115 | 38.20 153 | 38.89 160 | 54.77 141 | 69.83 158 | 72.60 140 | 84.96 108 | 87.01 107 |
|
IterMVS | | | 61.87 140 | 63.55 127 | 59.90 142 | 67.29 151 | 72.20 169 | 67.34 132 | 48.56 173 | 47.48 141 | 37.86 152 | 47.07 112 | 48.27 130 | 54.08 143 | 72.12 135 | 73.71 122 | 84.30 128 | 83.99 130 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
v1192 | | | 62.25 134 | 61.64 144 | 62.96 122 | 66.88 152 | 79.72 117 | 69.96 114 | 55.77 139 | 41.58 164 | 39.42 141 | 37.05 159 | 35.96 175 | 60.50 111 | 74.30 112 | 74.09 118 | 85.24 103 | 88.76 94 |
|
DU-MVS | | | 60.87 146 | 61.82 143 | 59.76 144 | 66.69 153 | 75.87 149 | 64.07 146 | 61.96 86 | 49.31 133 | 31.17 174 | 42.76 124 | 36.95 167 | 51.37 150 | 69.67 159 | 73.20 134 | 83.30 142 | 84.95 123 |
|
Baseline_NR-MVSNet | | | 59.47 153 | 60.28 154 | 58.54 153 | 66.69 153 | 73.90 163 | 61.63 162 | 62.90 81 | 49.15 137 | 26.87 181 | 35.18 172 | 37.62 163 | 48.20 158 | 69.67 159 | 73.61 123 | 84.92 109 | 82.82 141 |
|
IterMVS-SCA-FT | | | 60.21 150 | 62.97 132 | 57.00 163 | 66.64 155 | 71.84 170 | 67.53 129 | 46.93 180 | 47.56 140 | 36.77 157 | 46.85 116 | 48.21 131 | 52.51 146 | 70.36 153 | 72.40 142 | 71.63 198 | 83.53 134 |
|
v144192 | | | 62.05 138 | 61.46 146 | 62.73 128 | 66.59 156 | 79.87 116 | 69.30 118 | 55.88 137 | 41.50 166 | 39.41 142 | 37.23 157 | 36.45 170 | 59.62 116 | 72.69 131 | 73.51 124 | 85.61 98 | 88.93 91 |
|
v1921920 | | | 61.66 141 | 61.10 149 | 62.31 130 | 66.32 157 | 79.57 119 | 68.41 123 | 55.49 144 | 41.03 167 | 38.69 146 | 36.64 165 | 35.27 178 | 59.60 117 | 73.23 122 | 73.41 126 | 85.37 100 | 88.51 98 |
|
TESTMET0.1,1 | | | 67.38 99 | 71.61 81 | 62.45 129 | 66.05 158 | 81.32 103 | 63.98 148 | 55.36 146 | 58.62 96 | 42.96 126 | 52.74 87 | 61.65 76 | 57.74 131 | 75.64 97 | 78.09 79 | 88.61 23 | 93.21 45 |
|
pmmvs4 | | | 63.14 126 | 62.46 138 | 63.94 116 | 66.03 159 | 76.40 146 | 66.82 135 | 57.60 123 | 56.74 102 | 50.26 97 | 40.81 141 | 37.51 164 | 59.26 120 | 71.75 140 | 71.48 148 | 83.68 138 | 82.53 142 |
|
PatchT | | | 60.46 148 | 63.85 126 | 56.51 165 | 65.95 160 | 75.68 153 | 47.34 189 | 41.39 197 | 53.89 122 | 41.40 132 | 37.84 155 | 50.30 128 | 57.29 134 | 72.76 129 | 73.27 131 | 85.67 93 | 83.23 138 |
|
v1240 | | | 61.09 144 | 60.55 153 | 61.72 134 | 65.92 161 | 79.28 122 | 67.16 133 | 54.91 150 | 39.79 172 | 38.10 149 | 36.08 167 | 34.64 180 | 59.15 121 | 72.86 127 | 73.36 128 | 85.10 105 | 87.84 102 |
|
ADS-MVSNet | | | 58.40 161 | 59.16 162 | 57.52 159 | 65.80 162 | 74.57 161 | 60.26 165 | 40.17 201 | 50.51 128 | 38.01 150 | 40.11 145 | 44.72 139 | 59.36 119 | 64.91 174 | 66.55 174 | 81.53 163 | 72.72 179 |
|
FMVSNet1 | | | 63.48 124 | 63.07 131 | 63.97 115 | 65.31 163 | 76.37 147 | 71.77 97 | 57.90 119 | 43.32 158 | 45.66 110 | 35.06 173 | 49.43 129 | 58.57 124 | 77.49 78 | 78.22 76 | 84.59 123 | 81.60 150 |
|
testgi | | | 48.51 190 | 50.53 188 | 46.16 191 | 64.78 164 | 67.15 185 | 41.54 199 | 54.81 152 | 29.12 197 | 17.03 193 | 32.07 179 | 31.98 188 | 20.15 200 | 65.26 173 | 67.00 173 | 78.67 181 | 61.10 201 |
|
LTVRE_ROB | | 47.26 16 | 49.41 188 | 49.91 191 | 48.82 183 | 64.76 165 | 69.79 177 | 49.05 185 | 47.12 179 | 20.36 208 | 16.52 195 | 36.65 164 | 26.96 199 | 50.76 153 | 60.47 184 | 63.16 186 | 64.73 201 | 72.00 180 |
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
Anonymous20231206 | | | 52.23 180 | 52.80 182 | 51.56 178 | 64.70 166 | 69.41 178 | 51.01 183 | 58.60 112 | 36.63 179 | 22.44 189 | 21.80 199 | 31.42 191 | 30.52 186 | 66.79 168 | 67.83 168 | 82.10 158 | 75.73 165 |
|
thisisatest0515 | | | 59.37 154 | 60.68 152 | 57.84 157 | 64.39 167 | 75.65 154 | 58.56 172 | 53.86 157 | 41.55 165 | 42.12 131 | 40.40 143 | 39.59 157 | 47.09 163 | 71.69 141 | 73.79 121 | 81.02 167 | 82.08 147 |
|
USDC | | | 59.69 152 | 60.03 157 | 59.28 149 | 64.04 168 | 71.84 170 | 63.15 157 | 55.36 146 | 54.90 117 | 35.02 165 | 48.34 100 | 29.79 195 | 58.16 125 | 70.60 149 | 71.33 153 | 79.99 173 | 73.42 175 |
|
WR-MVS | | | 51.02 182 | 54.56 175 | 46.90 189 | 63.84 169 | 69.23 179 | 44.78 196 | 56.38 133 | 38.19 176 | 14.19 199 | 37.38 156 | 36.82 169 | 22.39 196 | 60.14 185 | 66.20 178 | 79.81 174 | 73.95 173 |
|
our_test_3 | | | | | | 63.32 170 | 71.07 176 | 55.90 177 | | | | | | | | | | |
|
test20.03 | | | 47.23 193 | 48.69 193 | 45.53 193 | 63.28 171 | 64.39 191 | 41.01 200 | 56.93 131 | 29.16 196 | 15.21 198 | 23.90 193 | 30.76 194 | 17.51 203 | 64.63 177 | 65.26 179 | 79.21 179 | 62.71 198 |
|
UniMVSNet_ETH3D | | | 57.83 162 | 56.46 172 | 59.43 147 | 63.24 172 | 73.22 166 | 67.70 126 | 55.58 142 | 36.17 182 | 36.84 155 | 32.64 176 | 35.14 179 | 51.50 149 | 65.81 170 | 69.81 163 | 81.73 161 | 82.44 145 |
|
pmmvs6 | | | 54.20 176 | 53.54 178 | 54.97 169 | 63.22 173 | 72.98 167 | 60.17 166 | 52.32 166 | 26.77 201 | 34.30 167 | 23.29 196 | 36.23 172 | 40.33 180 | 68.77 163 | 68.76 166 | 79.47 178 | 78.00 161 |
|
v7n | | | 57.04 167 | 56.64 170 | 57.52 159 | 62.85 174 | 74.75 159 | 61.76 160 | 51.80 167 | 35.58 186 | 36.02 161 | 32.33 178 | 33.61 186 | 50.16 155 | 67.73 166 | 70.34 161 | 82.51 152 | 82.12 146 |
|
pmmvs5 | | | 59.72 151 | 60.24 155 | 59.11 150 | 62.77 175 | 77.33 141 | 63.17 156 | 54.00 156 | 40.21 170 | 37.23 153 | 40.41 142 | 35.99 174 | 51.75 148 | 72.55 133 | 72.74 139 | 85.72 91 | 82.45 144 |
|
CVMVSNet | | | 54.92 173 | 58.16 164 | 51.13 180 | 62.61 176 | 68.44 181 | 55.45 178 | 52.38 165 | 42.28 161 | 21.45 190 | 47.10 111 | 46.10 136 | 37.96 182 | 64.42 179 | 63.81 183 | 76.92 186 | 75.01 168 |
|
TAMVS | | | 58.86 157 | 60.91 150 | 56.47 166 | 62.38 177 | 77.57 137 | 58.97 171 | 52.98 162 | 38.76 175 | 36.17 159 | 42.26 132 | 47.94 132 | 46.45 165 | 70.23 155 | 70.79 157 | 81.86 160 | 78.82 159 |
|
DTE-MVSNet | | | 49.82 186 | 51.92 186 | 47.37 188 | 61.75 178 | 64.38 192 | 45.89 195 | 57.33 127 | 36.11 183 | 12.79 204 | 36.87 161 | 31.93 190 | 25.73 194 | 58.01 187 | 65.22 180 | 80.75 170 | 70.93 185 |
|
PEN-MVS | | | 51.04 181 | 52.94 180 | 48.82 183 | 61.45 179 | 66.00 187 | 48.68 186 | 57.20 128 | 36.87 178 | 15.36 197 | 36.98 160 | 32.72 187 | 28.77 191 | 57.63 189 | 66.37 175 | 81.44 164 | 74.00 172 |
|
V42 | | | 62.86 130 | 62.97 132 | 62.74 127 | 60.84 180 | 78.99 124 | 71.46 101 | 57.13 130 | 46.85 143 | 44.28 119 | 38.87 148 | 40.73 153 | 57.63 133 | 72.60 132 | 74.14 117 | 85.09 107 | 88.63 95 |
|
MDTV_nov1_ep13_2view | | | 54.47 175 | 54.61 174 | 54.30 174 | 60.50 181 | 73.82 164 | 57.92 173 | 43.38 189 | 39.43 174 | 32.51 172 | 33.23 175 | 34.05 183 | 47.26 162 | 62.36 182 | 66.21 177 | 84.24 129 | 73.19 177 |
|
MVS-HIRNet | | | 53.86 177 | 53.02 179 | 54.85 170 | 60.30 182 | 72.36 168 | 44.63 197 | 42.20 195 | 39.45 173 | 43.47 122 | 21.66 200 | 34.00 184 | 55.47 138 | 65.42 172 | 67.16 172 | 83.02 148 | 71.08 184 |
|
CHOSEN 280x420 | | | 62.23 136 | 66.57 111 | 57.17 162 | 59.88 183 | 68.92 180 | 61.20 164 | 42.28 194 | 54.17 120 | 39.57 140 | 47.78 104 | 64.97 64 | 62.68 97 | 73.85 116 | 69.52 165 | 77.43 184 | 86.75 108 |
|
TinyColmap | | | 52.66 179 | 50.09 190 | 55.65 167 | 59.72 184 | 64.02 194 | 57.15 175 | 52.96 163 | 40.28 169 | 32.51 172 | 32.42 177 | 20.97 206 | 56.65 136 | 63.95 180 | 65.15 181 | 74.91 191 | 63.87 195 |
|
FC-MVSNet-test | | | 47.24 192 | 54.37 176 | 38.93 198 | 59.49 185 | 58.25 201 | 34.48 205 | 53.36 160 | 45.66 150 | 6.66 209 | 50.62 93 | 42.02 143 | 16.62 204 | 58.39 186 | 61.21 190 | 62.99 202 | 64.40 194 |
|
test-mter | | | 64.06 120 | 69.24 93 | 58.01 154 | 59.07 186 | 77.40 139 | 59.13 170 | 48.11 175 | 55.64 112 | 39.18 144 | 51.56 92 | 58.54 91 | 55.38 139 | 73.52 120 | 76.00 97 | 87.22 58 | 92.05 58 |
|
WR-MVS_H | | | 49.62 187 | 52.63 183 | 46.11 192 | 58.80 187 | 67.58 183 | 46.14 194 | 54.94 148 | 36.51 180 | 13.63 202 | 36.75 163 | 35.67 177 | 22.10 197 | 56.43 193 | 62.76 187 | 81.06 166 | 72.73 178 |
|
CP-MVSNet | | | 50.57 183 | 52.60 184 | 48.21 186 | 58.77 188 | 65.82 188 | 48.17 187 | 56.29 134 | 37.41 177 | 16.59 194 | 37.14 158 | 31.95 189 | 29.21 188 | 56.60 192 | 63.71 184 | 80.22 171 | 75.56 166 |
|
PS-CasMVS | | | 50.17 184 | 52.02 185 | 48.02 187 | 58.60 189 | 65.54 189 | 48.04 188 | 56.19 136 | 36.42 181 | 16.42 196 | 35.68 169 | 31.33 192 | 28.85 190 | 56.42 194 | 63.54 185 | 80.01 172 | 75.18 167 |
|
SixPastTwentyTwo | | | 49.11 189 | 49.22 192 | 48.99 182 | 58.54 190 | 64.14 193 | 47.18 190 | 47.75 176 | 31.15 194 | 24.42 185 | 41.01 140 | 26.55 200 | 44.04 173 | 54.76 197 | 58.70 194 | 71.99 197 | 68.21 186 |
|
TDRefinement | | | 52.70 178 | 51.02 187 | 54.66 172 | 57.41 191 | 65.06 190 | 61.47 163 | 54.94 148 | 44.03 155 | 33.93 168 | 30.13 185 | 27.57 198 | 46.17 167 | 61.86 183 | 62.48 189 | 74.01 194 | 66.06 191 |
|
pmmvs-eth3d | | | 55.20 168 | 53.95 177 | 56.65 164 | 57.34 192 | 67.77 182 | 57.54 174 | 53.74 158 | 40.93 168 | 41.09 136 | 31.19 182 | 29.10 197 | 49.07 156 | 65.54 171 | 67.28 170 | 81.14 165 | 75.81 164 |
|
FPMVS | | | 39.11 199 | 36.39 201 | 42.28 194 | 55.97 193 | 45.94 206 | 46.23 193 | 41.57 196 | 35.73 185 | 22.61 187 | 23.46 195 | 19.82 208 | 28.32 192 | 43.57 201 | 40.67 203 | 58.96 204 | 45.54 204 |
|
MIMVSNet | | | 57.78 164 | 59.71 159 | 55.53 168 | 54.79 194 | 77.10 142 | 63.89 150 | 45.02 184 | 46.59 146 | 36.79 156 | 28.36 188 | 40.77 152 | 45.84 169 | 74.97 102 | 76.58 89 | 86.87 65 | 73.60 174 |
|
N_pmnet | | | 47.67 191 | 47.00 195 | 48.45 185 | 54.72 195 | 62.78 195 | 46.95 191 | 51.25 168 | 36.01 184 | 26.09 184 | 26.59 192 | 25.93 203 | 35.50 184 | 55.67 196 | 59.01 192 | 76.22 187 | 63.04 196 |
|
anonymousdsp | | | 54.99 171 | 57.24 168 | 52.36 176 | 53.82 196 | 71.75 173 | 51.49 182 | 48.14 174 | 33.74 188 | 33.66 169 | 38.34 151 | 36.13 173 | 47.54 161 | 64.53 178 | 70.60 159 | 79.53 177 | 85.59 121 |
|
new-patchmatchnet | | | 42.21 196 | 42.97 197 | 41.33 196 | 53.05 197 | 59.89 198 | 39.38 201 | 49.61 170 | 28.26 199 | 12.10 205 | 22.17 198 | 21.54 205 | 19.22 201 | 50.96 199 | 56.04 197 | 74.61 193 | 61.92 199 |
|
FMVSNet5 | | | 58.86 157 | 60.24 155 | 57.25 161 | 52.66 198 | 66.25 186 | 63.77 151 | 52.86 164 | 57.85 100 | 37.92 151 | 36.12 166 | 52.22 123 | 51.37 150 | 70.88 146 | 71.43 150 | 84.92 109 | 66.91 190 |
|
ET-MVSNet_ETH3D | | | 71.38 75 | 74.70 66 | 67.51 94 | 51.61 199 | 88.06 47 | 77.29 63 | 60.95 101 | 63.61 81 | 48.36 103 | 66.60 47 | 60.67 82 | 79.55 8 | 73.56 119 | 80.58 60 | 87.30 54 | 89.80 81 |
|
ambc | | | | 42.30 198 | | 50.36 200 | 49.51 205 | 35.47 204 | | 32.04 193 | 23.53 186 | 17.36 203 | 8.95 213 | 29.06 189 | 64.88 175 | 56.26 196 | 61.29 203 | 67.12 189 |
|
EU-MVSNet | | | 44.84 194 | 47.85 194 | 41.32 197 | 49.26 201 | 56.59 202 | 43.07 198 | 47.64 178 | 33.03 189 | 13.82 200 | 36.78 162 | 30.99 193 | 24.37 195 | 53.80 198 | 55.57 198 | 69.78 199 | 68.21 186 |
|
RPSCF | | | 55.07 170 | 58.06 165 | 51.57 177 | 48.87 202 | 58.95 199 | 53.68 180 | 41.26 199 | 62.42 83 | 45.88 109 | 54.38 83 | 54.26 115 | 53.75 144 | 57.15 190 | 53.53 200 | 66.01 200 | 65.75 192 |
|
PMVS | | 27.44 18 | 32.08 201 | 29.07 203 | 35.60 200 | 48.33 203 | 24.79 209 | 26.97 208 | 41.34 198 | 20.45 207 | 22.50 188 | 17.11 205 | 18.64 209 | 20.44 199 | 41.99 203 | 38.06 204 | 54.02 206 | 42.44 205 |
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
PM-MVS | | | 50.11 185 | 50.38 189 | 49.80 181 | 47.23 204 | 62.08 197 | 50.91 184 | 44.84 186 | 41.90 162 | 36.10 160 | 35.22 171 | 26.05 202 | 46.83 164 | 57.64 188 | 55.42 199 | 72.90 195 | 74.32 170 |
|
pmmvs3 | | | 41.86 197 | 42.29 199 | 41.36 195 | 39.80 205 | 52.66 204 | 38.93 203 | 35.85 206 | 23.40 205 | 20.22 192 | 19.30 201 | 20.84 207 | 40.56 179 | 55.98 195 | 58.79 193 | 72.80 196 | 65.03 193 |
|
MDA-MVSNet-bldmvs | | | 44.15 195 | 42.27 200 | 46.34 190 | 38.34 206 | 62.31 196 | 46.28 192 | 55.74 140 | 29.83 195 | 20.98 191 | 27.11 191 | 16.45 211 | 41.98 177 | 41.11 204 | 57.47 195 | 74.72 192 | 61.65 200 |
|
MIMVSNet1 | | | 40.84 198 | 43.46 196 | 37.79 199 | 32.14 207 | 58.92 200 | 39.24 202 | 50.83 169 | 27.00 200 | 11.29 206 | 16.76 206 | 26.53 201 | 17.75 202 | 57.14 191 | 61.12 191 | 75.46 189 | 56.78 202 |
|
Gipuma | | | 24.91 202 | 24.61 204 | 25.26 203 | 31.47 208 | 21.59 210 | 18.06 209 | 37.53 203 | 25.43 203 | 10.03 207 | 4.18 211 | 4.25 215 | 14.85 205 | 43.20 202 | 47.03 201 | 39.62 208 | 26.55 209 |
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
E-PMN | | | 15.08 204 | 11.65 207 | 19.08 204 | 28.73 209 | 12.31 213 | 6.95 214 | 36.87 205 | 10.71 211 | 3.63 212 | 5.13 208 | 2.22 218 | 13.81 207 | 11.34 209 | 18.50 208 | 24.49 210 | 21.32 210 |
|
EMVS | | | 14.40 205 | 10.71 208 | 18.70 205 | 28.15 210 | 12.09 214 | 7.06 213 | 36.89 204 | 11.00 210 | 3.56 213 | 4.95 209 | 2.27 217 | 13.91 206 | 10.13 210 | 16.06 209 | 22.63 211 | 18.51 211 |
|
new_pmnet | | | 33.19 200 | 35.52 202 | 30.47 201 | 27.55 211 | 45.31 207 | 29.29 207 | 30.92 207 | 29.00 198 | 9.88 208 | 18.77 202 | 17.64 210 | 26.77 193 | 44.07 200 | 45.98 202 | 58.41 205 | 47.87 203 |
|
PMMVS2 | | | 20.45 203 | 22.31 205 | 18.27 206 | 20.52 212 | 26.73 208 | 14.85 211 | 28.43 209 | 13.69 209 | 0.79 214 | 10.35 207 | 9.10 212 | 3.83 210 | 27.64 206 | 32.87 205 | 41.17 207 | 35.81 206 |
|
tmp_tt | | | | | 16.09 207 | 13.07 213 | 8.12 215 | 13.61 212 | 2.08 211 | 55.09 114 | 30.10 177 | 40.26 144 | 22.83 204 | 5.35 209 | 29.91 205 | 25.25 207 | 32.33 209 | |
|
MVE | | 15.98 19 | 14.37 206 | 16.36 206 | 12.04 208 | 7.72 214 | 20.24 211 | 5.90 215 | 29.05 208 | 8.28 212 | 3.92 211 | 4.72 210 | 2.42 216 | 9.57 208 | 18.89 208 | 31.46 206 | 16.07 213 | 28.53 208 |
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
GG-mvs-BLEND | | | 54.54 174 | 77.58 48 | 27.67 202 | 0.03 215 | 90.09 28 | 77.20 64 | 0.02 212 | 66.83 71 | 0.05 215 | 59.90 66 | 73.33 36 | 0.04 211 | 78.40 74 | 79.30 67 | 88.65 21 | 95.20 26 |
|
uanet_test | | | 0.00 209 | 0.00 211 | 0.00 211 | 0.00 216 | 0.00 218 | 0.00 219 | 0.00 214 | 0.00 215 | 0.00 216 | 0.00 214 | 0.00 220 | 0.00 214 | 0.00 213 | 0.00 212 | 0.00 215 | 0.00 214 |
|
sosnet-low-res | | | 0.00 209 | 0.00 211 | 0.00 211 | 0.00 216 | 0.00 218 | 0.00 219 | 0.00 214 | 0.00 215 | 0.00 216 | 0.00 214 | 0.00 220 | 0.00 214 | 0.00 213 | 0.00 212 | 0.00 215 | 0.00 214 |
|
sosnet | | | 0.00 209 | 0.00 211 | 0.00 211 | 0.00 216 | 0.00 218 | 0.00 219 | 0.00 214 | 0.00 215 | 0.00 216 | 0.00 214 | 0.00 220 | 0.00 214 | 0.00 213 | 0.00 212 | 0.00 215 | 0.00 214 |
|
testmvs | | | 0.05 207 | 0.08 209 | 0.01 209 | 0.00 216 | 0.01 216 | 0.03 217 | 0.01 213 | 0.05 213 | 0.00 216 | 0.14 213 | 0.01 219 | 0.03 213 | 0.05 211 | 0.05 210 | 0.01 214 | 0.24 213 |
|
test123 | | | 0.05 207 | 0.08 209 | 0.01 209 | 0.00 216 | 0.01 216 | 0.01 218 | 0.00 214 | 0.05 213 | 0.00 216 | 0.16 212 | 0.00 220 | 0.04 211 | 0.02 212 | 0.05 210 | 0.00 215 | 0.26 212 |
|
9.14 | | | | | | | | | | | | | 84.47 5 | | | | | |
|
test_part1 | | | | | | | | | | | | | | | | | | 97.29 4 |
|
MTAPA | | | | | | | | | | | 78.32 10 | | 79.42 24 | | | | | |
|
MTMP | | | | | | | | | | | 76.04 15 | | 76.65 29 | | | | | |
|
Patchmatch-RL test | | | | | | | | 2.17 216 | | | | | | | | | | |
|
NP-MVS | | | | | | | | | | 81.60 35 | | | | | | | | |
|
Patchmtry | | | | | | | 78.06 132 | 67.53 129 | 43.18 190 | | 41.40 132 | | | | | | | |
|
DeepMVS_CX | | | | | | | 19.81 212 | 17.01 210 | 10.02 210 | 23.61 204 | 5.85 210 | 17.21 204 | 8.03 214 | 21.13 198 | 22.60 207 | | 21.42 212 | 30.01 207 |
|