This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorcourty.delive.electrofacadekickermeadowofficepipesplaygr.reliefrelief.terraceterrai.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort by
MSP-MVS88.07 190.73 184.97 391.98 895.01 187.86 876.88 693.90 185.15 190.11 786.90 179.46 1086.26 984.67 1688.50 2798.25 2
DVP-MVS87.87 290.57 284.73 489.38 2691.60 1688.24 674.15 1193.55 282.28 294.99 183.21 985.96 187.67 484.67 1688.32 3098.29 1
APDe-MVS86.37 588.41 684.00 891.43 1391.83 1488.34 574.67 991.19 581.76 391.13 581.94 1680.07 583.38 2682.58 3387.69 4396.78 10
DPE-MVS87.60 390.44 384.29 692.09 793.44 488.69 475.11 893.06 480.80 494.23 286.70 281.44 484.84 1683.52 2587.64 4597.28 5
xxxxxxxxxxxxxcwj84.33 1383.20 2585.64 194.57 194.55 291.01 179.94 189.15 1079.85 592.37 344.71 13979.75 683.52 2482.72 3088.75 1995.37 23
SF-MVS87.30 488.71 485.64 194.57 194.55 291.01 179.94 189.15 1079.85 592.37 383.29 879.75 683.52 2482.72 3088.75 1995.37 23
SD-MVS84.31 1486.96 1281.22 1588.98 3088.68 3785.65 1673.85 1489.09 1279.63 787.34 1184.84 473.71 3382.66 3381.60 4385.48 9994.51 31
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
TSAR-MVS + MP.84.39 1286.58 1581.83 1388.09 3886.47 6385.63 1773.62 1690.13 979.24 889.67 982.99 1077.72 1681.22 5180.92 5786.68 6794.66 30
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
MSLP-MVS++78.57 3777.33 5080.02 2188.39 3384.79 7584.62 2166.17 5575.96 5278.40 961.59 5971.47 4473.54 3678.43 7378.88 7088.97 1490.18 78
MTAPA78.32 1079.42 23
APD-MVScopyleft84.83 1187.00 1082.30 1289.61 2489.21 3386.51 1373.64 1590.98 677.99 1189.89 880.04 2279.18 1282.00 4581.37 4686.88 6495.49 20
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
HFP-MVS82.48 2184.12 2280.56 1890.15 1787.55 5384.28 2269.67 3385.22 2377.95 1284.69 1575.94 2975.04 2681.85 4681.17 5186.30 7392.40 54
zzz-MVS81.65 2483.10 2679.97 2288.14 3787.62 5283.96 2569.90 3086.92 1677.67 1372.47 3578.74 2474.13 3281.59 4981.15 5286.01 8193.19 47
CSCG82.90 1984.52 2181.02 1791.85 993.43 587.14 1074.01 1381.96 3276.14 1470.84 3782.49 1169.71 6082.32 4085.18 1187.26 5595.40 22
MTMP76.04 1576.65 28
CNVR-MVS85.96 687.58 984.06 792.58 592.40 987.62 977.77 588.44 1375.93 1679.49 2481.97 1581.65 387.04 686.58 488.79 1797.18 7
HPM-MVS++copyleft85.64 888.43 582.39 1192.65 490.24 2585.83 1574.21 1090.68 775.63 1786.77 1284.15 678.68 1486.33 785.26 987.32 5295.60 18
SMA-MVS85.24 1088.27 781.72 1491.74 1090.71 1986.71 1173.16 1890.56 874.33 1883.07 1785.88 377.16 1886.28 885.58 687.23 5695.77 14
DPM-MVS85.41 986.72 1483.89 991.66 1191.92 1390.49 378.09 486.90 1773.95 1974.52 3382.01 1479.29 1190.24 190.65 189.86 690.78 70
TSAR-MVS + GP.82.27 2285.98 1777.94 3280.72 7088.25 4381.12 4267.71 4487.10 1573.31 2085.23 1483.68 776.64 2080.43 5981.47 4588.15 3695.66 17
ACMMP_NAP83.54 1686.37 1680.25 2089.57 2590.10 2785.27 1971.66 2287.38 1473.08 2184.23 1680.16 2075.31 2484.85 1583.64 2286.57 6894.21 37
NCCC84.16 1585.46 1982.64 1092.34 690.57 2286.57 1276.51 786.85 1972.91 2277.20 3078.69 2579.09 1384.64 1884.88 1488.44 2895.41 21
3Dnovator70.49 578.42 3876.77 5580.35 1991.43 1390.27 2481.84 3570.79 2572.10 5671.95 2350.02 9667.86 5577.47 1782.89 3084.24 1888.61 2389.99 79
abl_679.06 2889.68 2392.14 1177.70 6069.68 3286.87 1871.88 2474.29 3480.06 2176.56 2188.84 1695.82 13
3Dnovator+70.16 677.87 4177.29 5178.55 2989.25 2888.32 4280.09 4767.95 4374.89 5571.83 2552.05 9070.68 4776.27 2382.27 4182.04 3585.92 8290.77 71
AdaColmapbinary76.23 5273.55 7079.35 2489.38 2685.00 7479.99 4973.04 1976.60 5171.17 2655.18 7757.99 9777.87 1576.82 8676.82 8784.67 12186.45 111
DeepC-MVS_fast75.41 281.69 2382.10 3281.20 1691.04 1587.81 5083.42 2674.04 1283.77 2671.09 2766.88 4672.44 3779.48 985.08 1384.97 1388.12 3893.78 41
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
DeepC-MVS74.46 380.30 2981.05 3579.42 2387.42 4088.50 3983.23 2773.27 1782.78 2971.01 2862.86 5669.93 5074.80 2884.30 1984.20 1986.79 6694.77 27
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
MCST-MVS85.75 786.99 1184.31 594.07 392.80 688.15 779.10 385.66 2270.72 2976.50 3180.45 1982.17 288.35 287.49 391.63 297.65 3
PVSNet_BlendedMVS76.84 4978.47 4474.95 5082.37 5789.90 2975.45 7365.45 6074.99 5370.66 3063.07 5458.27 9567.60 7584.24 2081.70 4188.18 3497.10 8
PVSNet_Blended76.84 4978.47 4474.95 5082.37 5789.90 2975.45 7365.45 6074.99 5370.66 3063.07 5458.27 9567.60 7584.24 2081.70 4188.18 3497.10 8
CANet80.90 2782.93 2878.53 3086.83 4492.26 1081.19 4166.95 4881.60 3569.90 3266.93 4574.80 3176.79 1984.68 1784.77 1589.50 995.50 19
MP-MVScopyleft80.94 2683.49 2477.96 3188.48 3188.16 4482.82 3169.34 3580.79 3869.67 3382.35 1977.13 2771.60 5080.97 5680.96 5685.87 8594.06 38
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
CLD-MVS77.36 4677.29 5177.45 3682.21 5988.11 4581.92 3468.96 3877.97 4669.62 3462.08 5759.44 8873.57 3581.75 4781.27 4988.41 2990.39 75
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
DELS-MVS79.49 3079.84 4079.08 2788.26 3692.49 784.12 2470.63 2665.27 7969.60 3561.29 6166.50 5972.75 4188.07 388.03 289.13 1297.22 6
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
ACMMPR80.62 2882.98 2777.87 3388.41 3287.05 5883.02 2869.18 3683.91 2568.35 3682.89 1873.64 3472.16 4580.78 5781.13 5386.10 7891.43 61
SteuartSystems-ACMMP82.51 2085.35 2079.20 2590.25 1689.39 3284.79 2070.95 2482.86 2868.32 3786.44 1377.19 2673.07 3883.63 2383.64 2287.82 3994.34 33
Skip Steuart: Steuart Systems R&D Blog.
CP-MVS79.44 3181.51 3477.02 3786.95 4285.96 6982.00 3368.44 4181.82 3367.39 3877.43 2873.68 3371.62 4979.56 6579.58 6485.73 8992.51 53
canonicalmvs77.65 4279.59 4175.39 4681.52 6389.83 3181.32 4060.74 10280.05 4066.72 3968.43 4165.09 6274.72 3078.87 6982.73 2987.32 5292.16 55
train_agg83.35 1786.93 1379.17 2689.70 2288.41 4085.60 1872.89 2086.31 2066.58 4090.48 682.24 1373.06 3983.10 2982.64 3287.21 6095.30 25
DeepPCF-MVS76.94 183.08 1887.77 877.60 3490.11 1890.96 1878.48 5372.63 2193.10 365.84 4180.67 2281.55 1774.80 2885.94 1185.39 883.75 13696.77 11
TSAR-MVS + ACMM81.59 2585.84 1876.63 3889.82 2186.53 6286.32 1466.72 5185.96 2165.43 4288.98 1082.29 1267.57 7782.06 4481.33 4783.93 13493.75 42
PGM-MVS79.42 3481.84 3376.60 3988.38 3486.69 6082.97 3065.75 5780.39 3964.94 4381.95 2172.11 4271.41 5180.45 5880.55 6186.18 7590.76 72
CNLPA71.37 7670.27 9072.66 6380.79 6981.33 10271.07 10865.75 5782.36 3064.80 4442.46 13056.49 10272.70 4273.00 12670.52 16080.84 16885.76 119
MVSTER76.92 4879.92 3973.42 5874.98 10882.97 8878.15 5663.41 7378.02 4564.41 4567.54 4372.80 3671.05 5283.29 2883.73 2188.53 2691.12 66
casdiffmvs75.20 5675.69 6274.63 5479.26 7789.07 3478.47 5463.59 7267.05 7063.79 4655.72 7560.32 8373.58 3482.16 4281.78 3989.08 1393.72 43
MVS_111021_LR74.26 6075.95 6072.27 6479.43 7585.04 7372.71 9165.27 6270.92 5963.58 4769.32 3960.31 8469.43 6577.01 8477.15 8483.22 14391.93 59
OpenMVScopyleft67.62 874.92 5873.91 6876.09 4390.10 1990.38 2378.01 5766.35 5366.09 7462.80 4846.33 11964.55 6571.77 4879.92 6280.88 5887.52 4889.20 88
ACMMPcopyleft77.61 4379.59 4175.30 4885.87 4885.58 7081.42 3867.38 4779.38 4362.61 4978.53 2565.79 6168.80 7178.56 7278.50 7485.75 8690.80 69
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
IB-MVS64.48 1169.02 8668.97 9669.09 8481.75 6289.01 3564.50 14364.91 6356.65 10362.59 5047.89 10345.23 13751.99 14769.18 16281.88 3888.77 1892.93 49
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
MVS_111021_HR77.42 4578.40 4676.28 4086.95 4290.68 2077.41 6270.56 2966.21 7362.48 5166.17 4963.98 6672.08 4682.87 3183.15 2688.24 3395.71 16
diffmvs74.32 5975.42 6373.04 6075.60 10587.27 5578.20 5562.96 7768.66 6961.89 5259.79 6759.84 8671.80 4778.30 7679.87 6387.80 4194.23 36
OMC-MVS74.03 6175.82 6171.95 6679.56 7380.98 10675.35 7563.21 7484.48 2461.83 5361.54 6066.89 5669.41 6676.60 8774.07 11982.34 15686.15 114
MVS_030479.43 3282.20 3076.20 4184.22 5291.79 1581.82 3663.81 6976.83 5061.71 5466.37 4875.52 3076.38 2285.54 1285.03 1289.28 1194.32 34
CPTT-MVS75.43 5477.13 5373.44 5781.43 6482.55 9280.96 4464.35 6577.95 4761.39 5569.20 4070.94 4669.38 6773.89 11573.32 12983.14 14692.06 57
EPNet79.28 3682.25 2975.83 4488.31 3590.14 2679.43 5168.07 4281.76 3461.26 5677.26 2970.08 4970.06 5882.43 3882.00 3787.82 3992.09 56
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
tpm cat167.47 9867.05 10867.98 9076.63 9681.51 10074.49 8547.65 17761.18 8761.12 5742.51 12953.02 12164.74 8870.11 15671.50 14783.22 14389.49 84
XVS82.43 5586.27 6575.70 6761.07 5872.27 3885.67 93
X-MVStestdata82.43 5586.27 6575.70 6761.07 5872.27 3885.67 93
X-MVS78.16 4080.55 3775.38 4787.99 3986.27 6581.05 4368.98 3778.33 4461.07 5875.25 3272.27 3867.52 7880.03 6180.52 6285.66 9691.20 65
ACMP68.86 772.15 7072.25 7572.03 6580.96 6680.87 10877.93 5864.13 6769.29 6560.79 6164.04 5253.54 11863.91 9073.74 11875.27 10584.45 12688.98 90
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
ACMM66.70 1070.42 7868.49 9972.67 6282.85 5477.76 13677.70 6064.76 6464.61 8060.74 6249.29 9753.97 11665.86 8274.97 10275.57 10384.13 13383.29 136
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
CostFormer72.18 6973.90 6970.18 7779.47 7486.19 6876.94 6548.62 17266.07 7560.40 6354.14 8465.82 6067.98 7375.84 9576.41 9287.67 4492.83 51
PVSNet_Blended_VisFu71.76 7273.54 7169.69 7879.01 7887.16 5772.05 9361.80 9056.46 10559.66 6453.88 8662.48 6959.08 12281.17 5278.90 6986.53 7094.74 28
DI_MVS_plusplus_trai73.94 6274.85 6572.88 6176.57 9786.80 5980.41 4661.47 9362.35 8459.44 6547.91 10268.12 5272.24 4482.84 3281.50 4487.15 6194.42 32
Anonymous2023121168.44 8966.37 11370.86 7177.58 8983.49 8675.15 7661.89 8852.54 12458.50 6628.89 18656.78 10169.29 6874.96 10476.61 8882.73 14991.36 64
MAR-MVS77.19 4778.37 4775.81 4589.87 2090.58 2179.33 5265.56 5977.62 4858.33 6759.24 6967.98 5374.83 2782.37 3983.12 2786.95 6287.67 104
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
QAPM77.50 4477.43 4977.59 3591.52 1292.00 1281.41 3970.63 2666.22 7258.05 6854.70 7871.79 4374.49 3182.46 3682.04 3589.46 1092.79 52
ETV-MVS76.25 5180.22 3871.63 6878.23 8187.95 4972.75 9060.27 10677.50 4957.73 6971.53 3666.60 5873.16 3780.99 5581.23 5087.63 4695.73 15
baseline72.89 6574.46 6771.07 7075.99 10187.50 5474.57 7960.49 10470.72 6057.60 7060.63 6460.97 7970.79 5475.27 10076.33 9386.94 6389.79 82
PCF-MVS70.85 475.73 5376.55 5874.78 5383.67 5388.04 4881.47 3770.62 2869.24 6757.52 7160.59 6569.18 5170.65 5577.11 8377.65 8184.75 11994.01 39
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
MVS_Test75.22 5576.69 5673.51 5679.30 7688.82 3680.06 4858.74 11069.77 6357.50 7259.78 6861.35 7775.31 2482.07 4383.60 2490.13 591.41 63
CDPH-MVS79.39 3582.13 3176.19 4289.22 2988.34 4184.20 2371.00 2379.67 4256.97 7377.77 2772.24 4168.50 7281.33 5082.74 2887.23 5692.84 50
HQP-MVS78.26 3980.91 3675.17 4985.67 4984.33 8183.01 2969.38 3479.88 4155.83 7479.85 2364.90 6470.81 5382.46 3681.78 3986.30 7393.18 48
CS-MVS75.18 5778.59 4371.20 6977.74 8587.69 5173.93 8758.81 10969.17 6855.73 7567.86 4266.89 5672.87 4082.50 3481.29 4888.15 3694.71 29
PLCcopyleft64.00 1268.54 8866.66 11070.74 7380.28 7274.88 15772.64 9263.70 7169.26 6655.71 7647.24 11055.31 11070.42 5672.05 13770.67 15881.66 16277.19 162
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
dps64.08 11963.22 12965.08 10475.27 10779.65 11866.68 13646.63 18156.94 10155.67 7743.96 12143.63 14264.00 8969.50 16169.82 16282.25 15779.02 158
EIA-MVS73.48 6376.05 5970.47 7578.12 8287.21 5671.78 9660.63 10369.66 6455.56 7864.86 5160.69 8069.53 6377.35 8278.59 7187.22 5894.01 39
MS-PatchMatch70.34 8269.00 9571.91 6785.20 5185.35 7177.84 5961.77 9158.01 9955.40 7941.26 13758.34 9461.69 10381.70 4878.29 7589.56 880.02 154
OPM-MVS72.74 6770.93 8674.85 5285.30 5084.34 8082.82 3169.79 3149.96 13155.39 8054.09 8560.14 8570.04 5980.38 6079.43 6585.74 8888.20 100
DCV-MVSNet69.13 8569.07 9469.21 8177.65 8877.52 13874.68 7857.85 12054.92 11655.34 8155.74 7455.56 10966.35 8075.05 10176.56 9083.35 14088.13 101
FC-MVSNet-train68.83 8768.29 10069.47 7978.35 8079.94 11564.72 14266.38 5254.96 11554.51 8256.75 7247.91 13266.91 7975.57 9975.75 9985.92 8287.12 106
PatchMatch-RL62.22 13760.69 15164.01 11468.74 14075.75 15259.27 16960.35 10556.09 10853.80 8347.06 11336.45 17064.80 8768.22 16467.22 17177.10 18574.02 171
baseline271.22 7773.01 7469.13 8275.76 10386.34 6471.23 10362.78 8362.62 8252.85 8457.32 7154.31 11363.27 9579.74 6379.31 6688.89 1591.43 61
CHOSEN 1792x268872.55 6871.98 7773.22 5986.57 4592.41 875.63 6966.77 5062.08 8552.32 8530.27 18450.74 12666.14 8186.22 1085.41 791.90 196.75 12
LGP-MVS_train72.02 7173.18 7370.67 7482.13 6080.26 11479.58 5063.04 7670.09 6151.98 8665.06 5055.62 10862.49 10075.97 9476.32 9484.80 11888.93 91
UGNet67.57 9771.69 8062.76 12669.88 13382.58 9166.43 13858.64 11154.71 11951.87 8761.74 5862.01 7445.46 17074.78 10574.99 10684.24 12991.02 67
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
PHI-MVS79.43 3284.06 2374.04 5586.15 4791.57 1780.85 4568.90 3982.22 3151.81 8878.10 2674.28 3270.39 5784.01 2284.00 2086.14 7794.24 35
TAPA-MVS67.10 971.45 7473.47 7269.10 8377.04 9380.78 10973.81 8862.10 8580.80 3751.28 8960.91 6263.80 6867.98 7374.59 10672.42 14182.37 15580.97 151
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
GBi-Net69.21 8370.40 8867.81 9169.49 13578.65 12674.54 8060.97 9865.32 7651.06 9047.37 10762.05 7163.43 9277.49 7878.22 7687.37 4983.73 131
test169.21 8370.40 8867.81 9169.49 13578.65 12674.54 8060.97 9865.32 7651.06 9047.37 10762.05 7163.43 9277.49 7878.22 7687.37 4983.73 131
FMVSNet370.41 8071.89 7968.68 8670.89 13079.42 12175.63 6960.97 9865.32 7651.06 9047.37 10762.05 7164.90 8682.49 3582.27 3488.64 2284.34 128
thisisatest053068.38 9170.98 8565.35 10272.61 11884.42 7868.21 12457.98 11659.77 9250.80 9354.63 7958.48 9157.92 12876.99 8577.47 8284.60 12285.07 122
tpmrst67.15 10168.12 10366.03 10076.21 9980.98 10671.27 10245.05 18360.69 9050.63 9446.95 11554.15 11565.30 8371.80 13971.77 14587.72 4290.48 74
Fast-Effi-MVS+67.59 9567.56 10567.62 9373.67 11381.14 10571.12 10654.79 15358.88 9550.61 9546.70 11747.05 13369.12 6976.06 9376.44 9186.43 7186.65 109
MSDG65.57 10861.57 14570.24 7682.02 6176.47 14574.46 8668.73 4056.52 10450.33 9638.47 15041.10 14962.42 10172.12 13572.94 13683.47 13973.37 176
pmmvs463.14 12662.46 13863.94 11666.03 15976.40 14666.82 13557.60 12356.74 10250.26 9740.81 14137.51 16459.26 12071.75 14071.48 14883.68 13882.53 142
tttt051767.99 9470.61 8764.94 10571.94 12383.96 8467.62 12857.98 11659.30 9449.90 9854.50 8257.98 9857.92 12876.48 8877.47 8284.24 12984.58 125
FMVSNet268.06 9368.57 9867.45 9569.49 13578.65 12674.54 8060.23 10756.29 10649.64 9942.13 13357.08 10063.43 9281.15 5380.99 5487.37 4983.73 131
TSAR-MVS + COLMAP73.09 6476.86 5468.71 8574.97 10982.49 9374.51 8461.83 8983.16 2749.31 10082.22 2051.62 12368.94 7078.76 7175.52 10482.67 15184.23 129
baseline171.47 7372.02 7670.82 7280.56 7184.51 7776.61 6666.93 4956.22 10748.66 10155.40 7660.43 8262.55 9983.35 2780.99 5489.60 783.28 137
Effi-MVS+70.42 7871.23 8369.47 7978.04 8385.24 7275.57 7158.88 10859.56 9348.47 10252.73 8954.94 11169.69 6178.34 7577.06 8586.18 7590.73 73
ET-MVSNet_ETH3D71.38 7574.70 6667.51 9451.61 19988.06 4777.29 6360.95 10163.61 8148.36 10366.60 4760.67 8179.55 873.56 11980.58 6087.30 5489.80 81
IterMVS-LS66.08 10566.56 11265.51 10173.67 11374.88 15770.89 11053.55 15950.42 12948.32 10450.59 9455.66 10761.83 10273.93 11474.42 11584.82 11786.01 116
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
EPMVS66.21 10367.49 10664.73 10775.81 10284.20 8368.94 12044.37 18761.55 8648.07 10549.21 9954.87 11262.88 9671.82 13871.40 15188.28 3279.37 157
HyFIR lowres test68.39 9068.28 10168.52 8780.85 6788.11 4571.08 10758.09 11554.87 11847.80 10627.55 19055.80 10664.97 8579.11 6779.14 6888.31 3193.35 44
PMMVS70.37 8175.06 6464.90 10671.46 12481.88 9464.10 14555.64 14171.31 5846.69 10770.69 3858.56 8969.53 6379.03 6875.63 10181.96 15988.32 99
CDS-MVSNet64.22 11865.89 11862.28 13170.05 13280.59 11069.91 11557.98 11643.53 15746.58 10848.22 10150.76 12546.45 16575.68 9676.08 9682.70 15086.34 113
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
RPSCF55.07 17058.06 16551.57 17748.87 20258.95 19953.68 18041.26 19962.42 8345.88 10954.38 8354.26 11453.75 14457.15 19053.53 20066.01 20065.75 192
FMVSNet163.48 12463.07 13163.97 11565.31 16376.37 14771.77 9757.90 11943.32 15845.66 11035.06 17349.43 12858.57 12477.49 7878.22 7684.59 12381.60 150
CMPMVSbinary43.63 1757.67 16555.43 17360.28 14172.01 12179.00 12362.77 15853.23 16141.77 16345.42 11130.74 18339.03 15853.01 14564.81 17664.65 18275.26 19068.03 188
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
PatchmatchNetpermissive65.43 11067.71 10462.78 12573.49 11582.83 8966.42 13945.40 18260.40 9145.27 11249.22 9857.60 9960.01 11470.61 14871.38 15286.08 7981.91 148
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
v863.44 12562.58 13764.43 11068.28 14378.07 13171.82 9554.85 15146.70 14545.20 11339.40 14740.91 15060.54 11072.85 12874.39 11685.92 8285.76 119
SCA63.90 12166.67 10960.66 13873.75 11171.78 17259.87 16843.66 18861.13 8845.03 11451.64 9159.45 8757.92 12870.96 14570.80 15683.71 13780.92 152
v14862.00 13961.19 14862.96 12267.46 15079.49 12067.87 12557.66 12242.30 16045.02 11538.20 15338.89 16054.77 14169.83 15872.60 14084.96 10887.01 107
UA-Net64.62 11468.23 10260.42 14077.53 9081.38 10160.08 16757.47 12647.01 14244.75 11660.68 6371.32 4541.84 17873.27 12172.25 14380.83 16971.68 181
Effi-MVS+-dtu64.58 11564.08 12565.16 10373.04 11775.17 15670.68 11256.23 13554.12 12144.71 11747.42 10651.10 12463.82 9168.08 16566.32 17682.47 15486.38 112
LS3D64.54 11762.14 14167.34 9680.85 6775.79 15169.99 11365.87 5660.77 8944.35 11842.43 13145.95 13665.01 8469.88 15768.69 16777.97 18371.43 183
V4262.86 13062.97 13262.74 12760.84 18078.99 12471.46 10157.13 13046.85 14344.28 11938.87 14840.73 15357.63 13372.60 13274.14 11785.09 10788.63 95
MDTV_nov1_ep1365.21 11167.28 10762.79 12470.91 12981.72 9569.28 11949.50 17158.08 9843.94 12050.50 9556.02 10458.86 12370.72 14773.37 12784.24 12980.52 153
CANet_DTU72.84 6676.63 5768.43 8876.81 9586.62 6175.54 7254.71 15472.06 5743.54 12167.11 4458.46 9272.40 4381.13 5480.82 5987.57 4790.21 77
MVS-HIRNet53.86 17753.02 17954.85 17060.30 18272.36 16844.63 19742.20 19539.45 17343.47 12221.66 20034.00 18455.47 13865.42 17267.16 17283.02 14871.08 184
thres100view90067.14 10266.09 11668.38 8977.70 8683.84 8574.52 8366.33 5449.16 13543.40 12343.24 12241.34 14562.59 9879.31 6675.92 9885.73 8989.81 80
tfpn200view965.90 10664.96 12067.00 9777.70 8681.58 9871.71 9862.94 8049.16 13543.40 12343.24 12241.34 14561.42 10576.24 9074.63 11184.84 11488.52 97
tpm64.85 11366.02 11763.48 11974.52 11078.38 12970.98 10944.99 18551.61 12643.28 12547.66 10553.18 11960.57 10970.58 15071.30 15486.54 6989.45 86
test-LLR68.23 9271.61 8164.28 11371.37 12581.32 10363.98 14861.03 9658.62 9642.96 12652.74 8761.65 7557.74 13175.64 9778.09 7988.61 2393.21 45
TESTMET0.1,167.38 9971.61 8162.45 12966.05 15881.32 10363.98 14855.36 14658.62 9642.96 12652.74 8761.65 7557.74 13175.64 9778.09 7988.61 2393.21 45
v2v48263.68 12362.85 13564.65 10868.01 14480.46 11271.90 9457.60 12344.26 15442.82 12839.80 14638.62 16161.56 10473.06 12474.86 10886.03 8088.90 93
v1063.00 12862.22 14063.90 11767.88 14677.78 13571.59 9954.34 15545.37 15142.76 12938.53 14938.93 15961.05 10874.39 10974.52 11485.75 8686.04 115
thres20065.58 10764.74 12266.56 9877.52 9181.61 9673.44 8962.95 7846.23 14742.45 13042.76 12441.18 14758.12 12676.24 9075.59 10284.89 11289.58 83
thisisatest051559.37 15460.68 15257.84 15764.39 16775.65 15458.56 17253.86 15741.55 16542.12 13140.40 14339.59 15747.09 16371.69 14173.79 12181.02 16782.08 147
CR-MVSNet62.31 13264.75 12159.47 14668.63 14171.29 17467.53 12943.18 19055.83 10941.40 13241.04 13955.85 10557.29 13472.76 12973.27 13178.77 18083.23 138
Patchmtry78.06 13267.53 12943.18 19041.40 132
PatchT60.46 14863.85 12656.51 16565.95 16075.68 15347.34 18941.39 19753.89 12241.40 13237.84 15550.30 12757.29 13472.76 12973.27 13185.67 9383.23 138
EPP-MVSNet67.58 9671.10 8463.48 11975.71 10483.35 8766.85 13457.83 12153.02 12341.15 13555.82 7367.89 5456.01 13774.40 10872.92 13783.33 14190.30 76
pmmvs-eth3d55.20 16853.95 17756.65 16457.34 19267.77 18257.54 17453.74 15840.93 16841.09 13631.19 18229.10 19749.07 15665.54 17167.28 17081.14 16575.81 164
v114463.00 12862.39 13963.70 11867.72 14780.27 11371.23 10356.40 13242.51 15940.81 13738.12 15437.73 16260.42 11274.46 10774.55 11385.64 9789.12 89
thres40065.18 11264.44 12466.04 9976.40 9882.63 9071.52 10064.27 6644.93 15340.69 13841.86 13440.79 15158.12 12677.67 7774.64 11085.26 10288.56 96
Vis-MVSNetpermissive65.53 10969.83 9260.52 13970.80 13184.59 7666.37 14055.47 14548.40 13840.62 13957.67 7058.43 9345.37 17177.49 7876.24 9584.47 12585.99 117
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
CHOSEN 280x42062.23 13666.57 11157.17 16259.88 18368.92 18061.20 16442.28 19454.17 12039.57 14047.78 10464.97 6362.68 9773.85 11669.52 16577.43 18486.75 108
v119262.25 13461.64 14462.96 12266.88 15279.72 11769.96 11455.77 13941.58 16439.42 14137.05 15935.96 17560.50 11174.30 11274.09 11885.24 10388.76 94
v14419262.05 13861.46 14662.73 12866.59 15679.87 11669.30 11855.88 13741.50 16639.41 14237.23 15736.45 17059.62 11672.69 13173.51 12485.61 9888.93 91
IS_MVSNet67.29 10071.98 7761.82 13376.92 9484.32 8265.90 14158.22 11355.75 11139.22 14354.51 8162.47 7045.99 16878.83 7078.52 7384.70 12089.47 85
test-mter64.06 12069.24 9358.01 15459.07 18677.40 13959.13 17048.11 17555.64 11239.18 14451.56 9258.54 9055.38 13973.52 12076.00 9787.22 5892.05 58
thres600view763.77 12263.14 13064.51 10975.49 10681.61 9669.59 11662.95 7843.96 15638.90 14541.09 13840.24 15655.25 14076.24 9071.54 14684.89 11287.30 105
v192192061.66 14161.10 14962.31 13066.32 15779.57 11968.41 12355.49 14441.03 16738.69 14636.64 16535.27 17859.60 11773.23 12273.41 12685.37 10088.51 98
ACMH+60.36 1361.16 14358.38 16364.42 11177.37 9274.35 16268.45 12262.81 8245.86 14938.48 14735.71 16837.35 16559.81 11567.24 16769.80 16479.58 17678.32 160
EG-PatchMatch MVS58.73 15958.03 16659.55 14572.32 11980.49 11163.44 15455.55 14332.49 19138.31 14828.87 18737.22 16642.84 17674.30 11275.70 10084.84 11477.14 163
v124061.09 14460.55 15361.72 13465.92 16179.28 12267.16 13354.91 15039.79 17238.10 14936.08 16734.64 18059.15 12172.86 12773.36 12885.10 10587.84 102
ADS-MVSNet58.40 16159.16 16257.52 15965.80 16274.57 16160.26 16540.17 20150.51 12838.01 15040.11 14544.72 13859.36 11964.91 17466.55 17481.53 16372.72 179
FMVSNet558.86 15760.24 15557.25 16152.66 19866.25 18663.77 15152.86 16457.85 10037.92 15136.12 16652.22 12251.37 15070.88 14671.43 15084.92 10966.91 190
IterMVS61.87 14063.55 12759.90 14267.29 15172.20 16967.34 13248.56 17347.48 14137.86 15247.07 11248.27 12954.08 14372.12 13573.71 12284.30 12883.99 130
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
pmmvs559.72 15160.24 15559.11 15062.77 17577.33 14163.17 15654.00 15640.21 17037.23 15340.41 14235.99 17451.75 14872.55 13372.74 13985.72 9182.45 144
pm-mvs159.21 15559.58 16058.77 15267.97 14577.07 14364.12 14457.20 12834.73 18736.86 15435.34 17040.54 15543.34 17574.32 11173.30 13083.13 14781.77 149
UniMVSNet_ETH3D57.83 16256.46 17259.43 14763.24 17273.22 16667.70 12655.58 14236.17 18236.84 15532.64 17635.14 17951.50 14965.81 17069.81 16381.73 16182.44 145
MIMVSNet57.78 16459.71 15955.53 16854.79 19477.10 14263.89 15045.02 18446.59 14636.79 15628.36 18840.77 15245.84 16974.97 10276.58 8986.87 6573.60 174
IterMVS-SCA-FT60.21 15062.97 13257.00 16366.64 15571.84 17067.53 12946.93 18047.56 14036.77 15746.85 11648.21 13052.51 14670.36 15372.40 14271.63 19883.53 134
tfpnnormal58.97 15656.48 17161.89 13271.27 12776.21 14866.65 13761.76 9232.90 19036.41 15827.83 18929.14 19650.64 15473.06 12473.05 13584.58 12483.15 140
TAMVS58.86 15760.91 15056.47 16662.38 17777.57 13758.97 17152.98 16238.76 17536.17 15942.26 13247.94 13146.45 16570.23 15570.79 15781.86 16078.82 159
PM-MVS50.11 18550.38 18949.80 18147.23 20462.08 19750.91 18444.84 18641.90 16236.10 16035.22 17126.05 20246.83 16457.64 18855.42 19972.90 19574.32 170
v7n57.04 16756.64 17057.52 15962.85 17474.75 15961.76 16051.80 16735.58 18636.02 16132.33 17833.61 18650.16 15567.73 16670.34 16182.51 15282.12 146
RPMNet58.63 16062.80 13653.76 17567.59 14971.29 17454.60 17938.13 20255.83 10935.70 16241.58 13653.04 12047.89 15966.10 16967.38 16978.65 18284.40 127
GA-MVS64.55 11665.76 11963.12 12169.68 13481.56 9969.59 11658.16 11445.23 15235.58 16347.01 11441.82 14459.41 11879.62 6478.54 7286.32 7286.56 110
Fast-Effi-MVS+-dtu63.05 12764.72 12361.11 13671.21 12876.81 14470.72 11143.13 19252.51 12535.34 16446.55 11846.36 13461.40 10671.57 14271.44 14984.84 11487.79 103
USDC59.69 15260.03 15759.28 14964.04 16871.84 17063.15 15755.36 14654.90 11735.02 16548.34 10029.79 19558.16 12570.60 14971.33 15379.99 17373.42 175
COLMAP_ROBcopyleft51.17 1555.13 16952.90 18157.73 15873.47 11667.21 18462.13 15955.82 13847.83 13934.39 16631.60 18034.24 18244.90 17263.88 18162.52 18875.67 18863.02 197
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
pmmvs654.20 17653.54 17854.97 16963.22 17372.98 16760.17 16652.32 16626.77 20134.30 16723.29 19636.23 17240.33 18068.77 16368.76 16679.47 17878.00 161
TDRefinement52.70 17851.02 18754.66 17257.41 19165.06 19061.47 16354.94 14844.03 15533.93 16830.13 18527.57 19846.17 16761.86 18362.48 18974.01 19466.06 191
anonymousdsp54.99 17157.24 16852.36 17653.82 19671.75 17351.49 18248.14 17433.74 18833.66 16938.34 15136.13 17347.54 16164.53 17870.60 15979.53 17785.59 121
EPNet_dtu66.17 10470.13 9161.54 13581.04 6577.39 14068.87 12162.50 8469.78 6233.51 17063.77 5356.22 10337.65 18372.20 13472.18 14485.69 9279.38 156
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
TransMVSNet (Re)57.83 16256.90 16958.91 15172.26 12074.69 16063.57 15361.42 9432.30 19232.65 17133.97 17435.96 17539.17 18173.84 11772.84 13884.37 12774.69 169
MDTV_nov1_ep13_2view54.47 17554.61 17454.30 17460.50 18173.82 16457.92 17343.38 18939.43 17432.51 17233.23 17534.05 18347.26 16262.36 18266.21 17784.24 12973.19 177
TinyColmap52.66 17950.09 19055.65 16759.72 18464.02 19457.15 17552.96 16340.28 16932.51 17232.42 17720.97 20656.65 13663.95 18065.15 18174.91 19163.87 195
UniMVSNet_NR-MVSNet62.30 13363.51 12860.89 13769.48 13877.83 13464.07 14663.94 6850.03 13031.17 17444.82 12041.12 14851.37 15071.02 14474.81 10985.30 10184.95 123
DU-MVS60.87 14661.82 14359.76 14466.69 15375.87 14964.07 14661.96 8649.31 13331.17 17442.76 12436.95 16751.37 15069.67 15973.20 13483.30 14284.95 123
ACMH59.42 1461.59 14259.22 16164.36 11278.92 7978.26 13067.65 12767.48 4639.81 17130.98 17638.25 15234.59 18161.37 10770.55 15173.47 12579.74 17579.59 155
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
tmp_tt16.09 20713.07 2138.12 21513.61 2122.08 21155.09 11430.10 17740.26 14422.83 2045.35 20929.91 20525.25 20732.33 209
UniMVSNet (Re)60.62 14762.93 13457.92 15567.64 14877.90 13361.75 16161.24 9549.83 13229.80 17842.57 12740.62 15443.36 17470.49 15273.27 13183.76 13585.81 118
NR-MVSNet61.08 14562.09 14259.90 14271.96 12275.87 14963.60 15261.96 8649.31 13327.95 17942.76 12433.85 18548.82 15774.35 11074.05 12085.13 10484.45 126
TranMVSNet+NR-MVSNet60.38 14961.30 14759.30 14868.34 14275.57 15563.38 15563.78 7046.74 14427.73 18042.56 12836.84 16847.66 16070.36 15374.59 11284.91 11182.46 143
Baseline_NR-MVSNet59.47 15360.28 15458.54 15366.69 15373.90 16361.63 16262.90 8149.15 13726.87 18135.18 17237.62 16348.20 15869.67 15973.61 12384.92 10982.82 141
Vis-MVSNet (Re-imp)62.25 13468.74 9754.68 17173.70 11278.74 12556.51 17657.49 12555.22 11326.86 18254.56 8061.35 7731.06 18573.10 12374.90 10782.49 15383.31 135
test0.0.03 157.35 16659.89 15854.38 17371.37 12573.45 16552.71 18161.03 9646.11 14826.33 18341.73 13544.08 14029.72 18771.43 14370.90 15585.10 10571.56 182
N_pmnet47.67 19147.00 19548.45 18554.72 19562.78 19546.95 19151.25 16836.01 18426.09 18426.59 19225.93 20335.50 18455.67 19659.01 19276.22 18763.04 196
SixPastTwentyTwo49.11 18949.22 19248.99 18258.54 19064.14 19347.18 19047.75 17631.15 19424.42 18541.01 14026.55 20044.04 17354.76 19758.70 19471.99 19768.21 186
ambc42.30 19850.36 20049.51 20535.47 20432.04 19323.53 18617.36 2038.95 21329.06 18964.88 17556.26 19661.29 20367.12 189
FPMVS39.11 19936.39 20142.28 19455.97 19345.94 20646.23 19341.57 19635.73 18522.61 18723.46 19519.82 20828.32 19243.57 20140.67 20358.96 20445.54 204
PMVScopyleft27.44 1832.08 20129.07 20335.60 20048.33 20324.79 20926.97 20841.34 19820.45 20722.50 18817.11 20518.64 20920.44 19941.99 20338.06 20454.02 20642.44 205
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
Anonymous2023120652.23 18052.80 18251.56 17864.70 16669.41 17851.01 18358.60 11236.63 17922.44 18921.80 19931.42 19130.52 18666.79 16867.83 16882.10 15875.73 165
CVMVSNet54.92 17358.16 16451.13 18062.61 17668.44 18155.45 17852.38 16542.28 16121.45 19047.10 11146.10 13537.96 18264.42 17963.81 18376.92 18675.01 168
MDA-MVSNet-bldmvs44.15 19542.27 20046.34 19038.34 20662.31 19646.28 19255.74 14029.83 19520.98 19127.11 19116.45 21141.98 17741.11 20457.47 19574.72 19261.65 200
pmmvs341.86 19742.29 19941.36 19539.80 20552.66 20438.93 20335.85 20623.40 20520.22 19219.30 20120.84 20740.56 17955.98 19558.79 19372.80 19665.03 193
testgi48.51 19050.53 18846.16 19164.78 16467.15 18541.54 19954.81 15229.12 19717.03 19332.07 17931.98 18820.15 20065.26 17367.00 17378.67 18161.10 201
CP-MVSNet50.57 18352.60 18448.21 18658.77 18865.82 18848.17 18756.29 13437.41 17716.59 19437.14 15831.95 18929.21 18856.60 19263.71 18480.22 17175.56 166
LTVRE_ROB47.26 1649.41 18849.91 19148.82 18364.76 16569.79 17749.05 18547.12 17920.36 20816.52 19536.65 16426.96 19950.76 15360.47 18463.16 18664.73 20172.00 180
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
PS-CasMVS50.17 18452.02 18548.02 18758.60 18965.54 18948.04 18856.19 13636.42 18116.42 19635.68 16931.33 19228.85 19056.42 19463.54 18580.01 17275.18 167
PEN-MVS51.04 18152.94 18048.82 18361.45 17966.00 18748.68 18657.20 12836.87 17815.36 19736.98 16032.72 18728.77 19157.63 18966.37 17581.44 16474.00 172
test20.0347.23 19348.69 19345.53 19363.28 17164.39 19141.01 20056.93 13129.16 19615.21 19823.90 19330.76 19417.51 20364.63 17765.26 17979.21 17962.71 198
WR-MVS51.02 18254.56 17546.90 18963.84 16969.23 17944.78 19656.38 13338.19 17614.19 19937.38 15636.82 16922.39 19660.14 18566.20 17879.81 17473.95 173
EU-MVSNet44.84 19447.85 19441.32 19749.26 20156.59 20243.07 19847.64 17833.03 18913.82 20036.78 16230.99 19324.37 19553.80 19855.57 19869.78 19968.21 186
gm-plane-assit54.99 17157.99 16751.49 17969.27 13954.42 20332.32 20642.59 19321.18 20613.71 20123.61 19443.84 14160.21 11387.09 586.55 590.81 489.28 87
WR-MVS_H49.62 18752.63 18346.11 19258.80 18767.58 18346.14 19454.94 14836.51 18013.63 20236.75 16335.67 17722.10 19756.43 19362.76 18781.06 16672.73 178
gg-mvs-nofinetune62.34 13166.19 11557.86 15676.15 10088.61 3871.18 10541.24 20025.74 20213.16 20322.91 19763.97 6754.52 14285.06 1485.25 1090.92 391.78 60
DTE-MVSNet49.82 18651.92 18647.37 18861.75 17864.38 19245.89 19557.33 12736.11 18312.79 20436.87 16131.93 19025.73 19458.01 18765.22 18080.75 17070.93 185
new-patchmatchnet42.21 19642.97 19741.33 19653.05 19759.89 19839.38 20149.61 17028.26 19912.10 20522.17 19821.54 20519.22 20150.96 19956.04 19774.61 19361.92 199
MIMVSNet140.84 19843.46 19637.79 19932.14 20758.92 20039.24 20250.83 16927.00 20011.29 20616.76 20626.53 20117.75 20257.14 19161.12 19175.46 18956.78 202
Gipumacopyleft24.91 20224.61 20425.26 20331.47 20821.59 21018.06 20937.53 20325.43 20310.03 2074.18 2114.25 21514.85 20543.20 20247.03 20139.62 20826.55 209
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
new_pmnet33.19 20035.52 20230.47 20127.55 21145.31 20729.29 20730.92 20729.00 1989.88 20818.77 20217.64 21026.77 19344.07 20045.98 20258.41 20547.87 203
FC-MVSNet-test47.24 19254.37 17638.93 19859.49 18558.25 20134.48 20553.36 16045.66 1506.66 20950.62 9342.02 14316.62 20458.39 18661.21 19062.99 20264.40 194
DeepMVS_CXcopyleft19.81 21217.01 21010.02 21023.61 2045.85 21017.21 2048.03 21421.13 19822.60 20721.42 21230.01 207
MVEpermissive15.98 1914.37 20616.36 20612.04 2087.72 21420.24 2115.90 21529.05 2088.28 2123.92 2114.72 2102.42 2169.57 20818.89 20831.46 20616.07 21328.53 208
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
E-PMN15.08 20411.65 20719.08 20428.73 20912.31 2136.95 21436.87 20510.71 2113.63 2125.13 2082.22 21813.81 20711.34 20918.50 20824.49 21021.32 210
EMVS14.40 20510.71 20818.70 20528.15 21012.09 2147.06 21336.89 20411.00 2103.56 2134.95 2092.27 21713.91 20610.13 21016.06 20922.63 21118.51 211
PMMVS220.45 20322.31 20518.27 20620.52 21226.73 20814.85 21128.43 20913.69 2090.79 21410.35 2079.10 2123.83 21027.64 20632.87 20541.17 20735.81 206
GG-mvs-BLEND54.54 17477.58 4827.67 2020.03 21590.09 2877.20 640.02 21266.83 710.05 21559.90 6673.33 350.04 21178.40 7479.30 6788.65 2195.20 26
uanet_test0.00 2090.00 2110.00 2110.00 2160.00 2180.00 2190.00 2140.00 2150.00 2160.00 2140.00 2200.00 2140.00 2130.00 2120.00 2150.00 214
sosnet-low-res0.00 2090.00 2110.00 2110.00 2160.00 2180.00 2190.00 2140.00 2150.00 2160.00 2140.00 2200.00 2140.00 2130.00 2120.00 2150.00 214
sosnet0.00 2090.00 2110.00 2110.00 2160.00 2180.00 2190.00 2140.00 2150.00 2160.00 2140.00 2200.00 2140.00 2130.00 2120.00 2150.00 214
testmvs0.05 2070.08 2090.01 2090.00 2160.01 2160.03 2170.01 2130.05 2130.00 2160.14 2130.01 2190.03 2130.05 2110.05 2100.01 2140.24 213
test1230.05 2070.08 2090.01 2090.00 2160.01 2160.01 2180.00 2140.05 2130.00 2160.16 2120.00 2200.04 2110.02 2120.05 2100.00 2150.26 212
9.1484.47 5
SR-MVS86.33 4667.54 4580.78 18
Anonymous20240521166.35 11478.00 8484.41 7974.85 7763.18 7551.00 12731.37 18153.73 11769.67 6276.28 8976.84 8683.21 14590.85 68
our_test_363.32 17071.07 17655.90 177
test_part197.29 4
Patchmatch-RL test2.17 216
mPP-MVS86.96 4170.61 48
NP-MVS81.60 35