This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorcourty.delive.electrofacadekickermeadowofficepipesplaygr.reliefrelief.terraceterrai.
sort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
SED-MVS88.94 190.98 186.56 192.53 695.09 188.55 576.83 794.16 186.57 190.85 687.07 186.18 186.36 785.08 1288.67 2198.21 3
DVP-MVS88.07 290.73 284.97 491.98 995.01 287.86 976.88 693.90 285.15 290.11 886.90 279.46 1186.26 1084.67 1788.50 2898.25 2
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
xxxxxxxxxxxxxcwj84.33 1483.20 2685.64 294.57 194.55 391.01 179.94 189.15 1179.85 692.37 344.71 14179.75 783.52 2582.72 3188.75 1995.37 23
SF-MVS87.30 588.71 585.64 294.57 194.55 391.01 179.94 189.15 1179.85 692.37 383.29 979.75 783.52 2582.72 3188.75 1995.37 23
DPE-MVS87.60 490.44 484.29 792.09 893.44 588.69 475.11 993.06 580.80 594.23 286.70 381.44 584.84 1783.52 2687.64 4697.28 5
CSCG82.90 2084.52 2281.02 1891.85 1093.43 687.14 1174.01 1481.96 3376.14 1570.84 3882.49 1269.71 6182.32 4185.18 1187.26 5695.40 22
MCST-MVS85.75 886.99 1284.31 694.07 392.80 788.15 879.10 385.66 2370.72 3076.50 3280.45 2082.17 388.35 287.49 391.63 297.65 4
DELS-MVS79.49 3179.84 4179.08 2888.26 3792.49 884.12 2570.63 2765.27 8069.60 3661.29 6266.50 6072.75 4288.07 388.03 289.13 1297.22 6
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
CHOSEN 1792x268872.55 6971.98 7873.22 6086.57 4692.41 975.63 7166.77 5162.08 8652.32 8730.27 18750.74 12866.14 8286.22 1185.41 791.90 196.75 12
CNVR-MVS85.96 787.58 1084.06 892.58 592.40 1087.62 1077.77 588.44 1475.93 1779.49 2581.97 1681.65 487.04 686.58 488.79 1797.18 7
CANet80.90 2882.93 2978.53 3186.83 4592.26 1181.19 4266.95 4981.60 3669.90 3366.93 4674.80 3276.79 2084.68 1884.77 1689.50 995.50 19
abl_679.06 2989.68 2492.14 1277.70 6269.68 3386.87 1971.88 2574.29 3580.06 2276.56 2288.84 1695.82 13
QAPM77.50 4577.43 5077.59 3691.52 1392.00 1381.41 4070.63 2766.22 7358.05 7054.70 7971.79 4474.49 3282.46 3782.04 3689.46 1092.79 52
DPM-MVS85.41 1086.72 1583.89 1091.66 1291.92 1490.49 378.09 486.90 1873.95 2074.52 3482.01 1579.29 1290.24 190.65 189.86 690.78 70
APDe-MVS86.37 688.41 784.00 991.43 1491.83 1588.34 674.67 1091.19 681.76 491.13 581.94 1780.07 683.38 2782.58 3487.69 4496.78 10
MVS_030479.43 3382.20 3176.20 4284.22 5391.79 1681.82 3763.81 7076.83 5161.71 5666.37 4975.52 3176.38 2385.54 1385.03 1389.28 1194.32 34
MSP-MVS87.87 390.57 384.73 589.38 2791.60 1788.24 774.15 1293.55 382.28 394.99 183.21 1085.96 287.67 484.67 1788.32 3198.29 1
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
PHI-MVS79.43 3384.06 2474.04 5686.15 4891.57 1880.85 4668.90 4082.22 3251.81 9078.10 2774.28 3370.39 5884.01 2384.00 2186.14 7894.24 35
DeepPCF-MVS76.94 183.08 1987.77 977.60 3590.11 1990.96 1978.48 5472.63 2293.10 465.84 4280.67 2381.55 1874.80 2985.94 1285.39 883.75 13796.77 11
SMA-MVScopyleft85.24 1188.27 881.72 1591.74 1190.71 2086.71 1273.16 1990.56 974.33 1983.07 1885.88 477.16 1986.28 985.58 687.23 5795.77 14
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
MVS_111021_HR77.42 4678.40 4776.28 4186.95 4390.68 2177.41 6470.56 3066.21 7462.48 5266.17 5063.98 6772.08 4782.87 3283.15 2788.24 3495.71 16
MAR-MVS77.19 4878.37 4875.81 4689.87 2190.58 2279.33 5365.56 6077.62 4958.33 6959.24 7067.98 5474.83 2882.37 4083.12 2886.95 6387.67 104
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
NCCC84.16 1685.46 2082.64 1192.34 790.57 2386.57 1376.51 886.85 2072.91 2377.20 3178.69 2679.09 1484.64 1984.88 1588.44 2995.41 21
OpenMVScopyleft67.62 874.92 5973.91 6976.09 4490.10 2090.38 2478.01 5866.35 5466.09 7562.80 4946.33 12064.55 6671.77 4979.92 6380.88 5987.52 4989.20 88
3Dnovator70.49 578.42 3976.77 5680.35 2091.43 1490.27 2581.84 3670.79 2672.10 5771.95 2450.02 9767.86 5677.47 1882.89 3184.24 1988.61 2489.99 79
HPM-MVS++copyleft85.64 988.43 682.39 1292.65 490.24 2685.83 1674.21 1190.68 875.63 1886.77 1384.15 778.68 1586.33 885.26 987.32 5395.60 18
EPNet79.28 3782.25 3075.83 4588.31 3690.14 2779.43 5268.07 4381.76 3561.26 5877.26 3070.08 5070.06 5982.43 3982.00 3887.82 4092.09 56
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
ACMMP_NAP83.54 1786.37 1780.25 2189.57 2690.10 2885.27 2071.66 2387.38 1573.08 2284.23 1780.16 2175.31 2584.85 1683.64 2386.57 6994.21 37
GG-mvs-BLEND54.54 17677.58 4927.67 2050.03 21890.09 2977.20 660.02 21566.83 720.05 21959.90 6773.33 360.04 21478.40 7579.30 6888.65 2295.20 26
PVSNet_BlendedMVS76.84 5078.47 4574.95 5182.37 5889.90 3075.45 7565.45 6174.99 5470.66 3163.07 5558.27 9667.60 7684.24 2181.70 4288.18 3597.10 8
PVSNet_Blended76.84 5078.47 4574.95 5182.37 5889.90 3075.45 7565.45 6174.99 5470.66 3163.07 5558.27 9667.60 7684.24 2181.70 4288.18 3597.10 8
canonicalmvs77.65 4379.59 4275.39 4781.52 6489.83 3281.32 4160.74 10380.05 4166.72 4068.43 4265.09 6374.72 3178.87 7082.73 3087.32 5392.16 55
SteuartSystems-ACMMP82.51 2185.35 2179.20 2690.25 1789.39 3384.79 2170.95 2582.86 2968.32 3886.44 1477.19 2773.07 3983.63 2483.64 2387.82 4094.34 33
Skip Steuart: Steuart Systems R&D Blog.
APD-MVScopyleft84.83 1287.00 1182.30 1389.61 2589.21 3486.51 1473.64 1690.98 777.99 1289.89 980.04 2379.18 1382.00 4681.37 4786.88 6595.49 20
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
casdiffmvs75.20 5775.69 6374.63 5579.26 7889.07 3578.47 5563.59 7367.05 7163.79 4755.72 7660.32 8473.58 3582.16 4381.78 4089.08 1393.72 43
IB-MVS64.48 1169.02 8768.97 9769.09 8681.75 6389.01 3664.50 14564.91 6456.65 10462.59 5147.89 10445.23 13951.99 14969.18 16481.88 3988.77 1892.93 49
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
MVS_Test75.22 5676.69 5773.51 5779.30 7788.82 3780.06 4958.74 11169.77 6457.50 7459.78 6961.35 7875.31 2582.07 4483.60 2590.13 591.41 63
SD-MVS84.31 1586.96 1381.22 1688.98 3188.68 3885.65 1773.85 1589.09 1379.63 887.34 1284.84 573.71 3482.66 3481.60 4485.48 10094.51 31
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
gg-mvs-nofinetune62.34 13366.19 11657.86 15876.15 10288.61 3971.18 10741.24 20325.74 20513.16 20722.91 20063.97 6854.52 14485.06 1585.25 1090.92 391.78 60
DeepC-MVS74.46 380.30 3081.05 3679.42 2487.42 4188.50 4083.23 2873.27 1882.78 3071.01 2962.86 5769.93 5174.80 2984.30 2084.20 2086.79 6794.77 27
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
train_agg83.35 1886.93 1479.17 2789.70 2388.41 4185.60 1972.89 2186.31 2166.58 4190.48 782.24 1473.06 4083.10 3082.64 3387.21 6195.30 25
CDPH-MVS79.39 3682.13 3276.19 4389.22 3088.34 4284.20 2471.00 2479.67 4356.97 7577.77 2872.24 4268.50 7381.33 5182.74 2987.23 5792.84 50
3Dnovator+70.16 677.87 4277.29 5278.55 3089.25 2988.32 4380.09 4867.95 4474.89 5671.83 2652.05 9170.68 4876.27 2482.27 4282.04 3685.92 8390.77 71
TSAR-MVS + GP.82.27 2385.98 1877.94 3380.72 7188.25 4481.12 4367.71 4587.10 1673.31 2185.23 1583.68 876.64 2180.43 6081.47 4688.15 3795.66 17
MP-MVScopyleft80.94 2783.49 2577.96 3288.48 3288.16 4582.82 3269.34 3680.79 3969.67 3482.35 2077.13 2871.60 5180.97 5780.96 5785.87 8694.06 38
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
HyFIR lowres test68.39 9168.28 10268.52 8980.85 6888.11 4671.08 10958.09 11654.87 11947.80 10827.55 19355.80 10764.97 8679.11 6879.14 6988.31 3293.35 44
CLD-MVS77.36 4777.29 5277.45 3782.21 6088.11 4681.92 3568.96 3977.97 4769.62 3562.08 5859.44 8973.57 3681.75 4881.27 5088.41 3090.39 75
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
ET-MVSNet_ETH3D71.38 7674.70 6767.51 9651.61 20288.06 4877.29 6560.95 10263.61 8248.36 10566.60 4860.67 8279.55 973.56 12080.58 6187.30 5589.80 81
PCF-MVS70.85 475.73 5476.55 5974.78 5483.67 5488.04 4981.47 3870.62 2969.24 6857.52 7360.59 6669.18 5270.65 5677.11 8477.65 8284.75 12094.01 39
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
ETV-MVS76.25 5280.22 3971.63 6978.23 8287.95 5072.75 9260.27 10777.50 5057.73 7171.53 3766.60 5973.16 3880.99 5681.23 5187.63 4795.73 15
DeepC-MVS_fast75.41 281.69 2482.10 3381.20 1791.04 1687.81 5183.42 2774.04 1383.77 2771.09 2866.88 4772.44 3879.48 1085.08 1484.97 1488.12 3993.78 41
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
CS-MVS75.18 5878.59 4471.20 7077.74 8687.69 5273.93 8958.81 11069.17 6955.73 7767.86 4366.89 5772.87 4182.50 3581.29 4988.15 3794.71 29
zzz-MVS81.65 2583.10 2779.97 2388.14 3887.62 5383.96 2669.90 3186.92 1777.67 1472.47 3678.74 2574.13 3381.59 5081.15 5386.01 8293.19 47
HFP-MVS82.48 2284.12 2380.56 1990.15 1887.55 5484.28 2369.67 3485.22 2477.95 1384.69 1675.94 3075.04 2781.85 4781.17 5286.30 7492.40 54
baseline72.89 6674.46 6871.07 7175.99 10387.50 5574.57 8160.49 10570.72 6157.60 7260.63 6560.97 8070.79 5575.27 10176.33 9486.94 6489.79 82
diffmvs74.32 6075.42 6473.04 6175.60 10787.27 5678.20 5662.96 7868.66 7061.89 5459.79 6859.84 8771.80 4878.30 7779.87 6487.80 4294.23 36
EIA-MVS73.48 6476.05 6070.47 7678.12 8387.21 5771.78 9860.63 10469.66 6555.56 8064.86 5260.69 8169.53 6477.35 8378.59 7287.22 5994.01 39
PVSNet_Blended_VisFu71.76 7373.54 7269.69 8079.01 7987.16 5872.05 9561.80 9156.46 10659.66 6653.88 8762.48 7059.08 12481.17 5378.90 7086.53 7194.74 28
ACMMPR80.62 2982.98 2877.87 3488.41 3387.05 5983.02 2969.18 3783.91 2668.35 3782.89 1973.64 3572.16 4680.78 5881.13 5486.10 7991.43 61
DI_MVS_plusplus_trai73.94 6374.85 6672.88 6276.57 9986.80 6080.41 4761.47 9462.35 8559.44 6747.91 10368.12 5372.24 4582.84 3381.50 4587.15 6294.42 32
PGM-MVS79.42 3581.84 3476.60 4088.38 3586.69 6182.97 3165.75 5880.39 4064.94 4481.95 2272.11 4371.41 5280.45 5980.55 6286.18 7690.76 72
CANet_DTU72.84 6776.63 5868.43 9076.81 9786.62 6275.54 7454.71 15672.06 5843.54 12367.11 4558.46 9372.40 4481.13 5580.82 6087.57 4890.21 77
TSAR-MVS + ACMM81.59 2685.84 1976.63 3989.82 2286.53 6386.32 1566.72 5285.96 2265.43 4388.98 1182.29 1367.57 7882.06 4581.33 4883.93 13593.75 42
TSAR-MVS + MP.84.39 1386.58 1681.83 1488.09 3986.47 6485.63 1873.62 1790.13 1079.24 989.67 1082.99 1177.72 1781.22 5280.92 5886.68 6894.66 30
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
baseline271.22 7873.01 7569.13 8475.76 10586.34 6571.23 10562.78 8462.62 8352.85 8657.32 7254.31 11463.27 9679.74 6479.31 6788.89 1591.43 61
XVS82.43 5686.27 6675.70 6961.07 6072.27 3985.67 94
X-MVStestdata82.43 5686.27 6675.70 6961.07 6072.27 3985.67 94
X-MVS78.16 4180.55 3875.38 4887.99 4086.27 6681.05 4468.98 3878.33 4561.07 6075.25 3372.27 3967.52 7980.03 6280.52 6385.66 9791.20 65
CostFormer72.18 7073.90 7070.18 7879.47 7586.19 6976.94 6748.62 17566.07 7660.40 6554.14 8565.82 6167.98 7475.84 9676.41 9387.67 4592.83 51
CP-MVS79.44 3281.51 3577.02 3886.95 4385.96 7082.00 3468.44 4281.82 3467.39 3977.43 2973.68 3471.62 5079.56 6679.58 6585.73 9092.51 53
ACMMPcopyleft77.61 4479.59 4275.30 4985.87 4985.58 7181.42 3967.38 4879.38 4462.61 5078.53 2665.79 6268.80 7278.56 7378.50 7585.75 8790.80 69
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
MS-PatchMatch70.34 8369.00 9671.91 6885.20 5285.35 7277.84 6161.77 9258.01 10055.40 8141.26 13858.34 9561.69 10581.70 4978.29 7689.56 880.02 155
Effi-MVS+70.42 7971.23 8469.47 8178.04 8485.24 7375.57 7358.88 10959.56 9448.47 10452.73 9054.94 11269.69 6278.34 7677.06 8686.18 7690.73 73
MVS_111021_LR74.26 6175.95 6172.27 6579.43 7685.04 7472.71 9365.27 6370.92 6063.58 4869.32 4060.31 8569.43 6677.01 8577.15 8583.22 14491.93 59
AdaColmapbinary76.23 5373.55 7179.35 2589.38 2785.00 7579.99 5073.04 2076.60 5271.17 2755.18 7857.99 9877.87 1676.82 8776.82 8884.67 12286.45 112
MSLP-MVS++78.57 3877.33 5180.02 2288.39 3484.79 7684.62 2266.17 5675.96 5378.40 1061.59 6071.47 4573.54 3778.43 7478.88 7188.97 1490.18 78
Vis-MVSNetpermissive65.53 11169.83 9360.52 14170.80 13384.59 7766.37 14255.47 14748.40 13940.62 14157.67 7158.43 9445.37 17377.49 7976.24 9684.47 12685.99 118
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
baseline171.47 7472.02 7770.82 7380.56 7284.51 7876.61 6866.93 5056.22 10848.66 10355.40 7760.43 8362.55 10083.35 2880.99 5589.60 783.28 138
thisisatest053068.38 9270.98 8665.35 10472.61 12084.42 7968.21 12657.98 11759.77 9350.80 9554.63 8058.48 9257.92 13076.99 8677.47 8384.60 12385.07 123
Anonymous20240521166.35 11578.00 8584.41 8074.85 7963.18 7651.00 12831.37 18453.73 11969.67 6376.28 9076.84 8783.21 14690.85 68
OPM-MVS72.74 6870.93 8774.85 5385.30 5184.34 8182.82 3269.79 3249.96 13255.39 8254.09 8660.14 8670.04 6080.38 6179.43 6685.74 8988.20 100
HQP-MVS78.26 4080.91 3775.17 5085.67 5084.33 8283.01 3069.38 3579.88 4255.83 7679.85 2464.90 6570.81 5482.46 3781.78 4086.30 7493.18 48
IS_MVSNet67.29 10171.98 7861.82 13576.92 9684.32 8365.90 14358.22 11455.75 11239.22 14554.51 8262.47 7145.99 17078.83 7178.52 7484.70 12189.47 85
EPMVS66.21 10567.49 10764.73 10975.81 10484.20 8468.94 12244.37 19061.55 8748.07 10749.21 10054.87 11362.88 9771.82 14071.40 15388.28 3379.37 158
tttt051767.99 9570.61 8864.94 10771.94 12583.96 8567.62 13057.98 11759.30 9549.90 10054.50 8357.98 9957.92 13076.48 8977.47 8384.24 13084.58 126
thres100view90067.14 10366.09 11768.38 9177.70 8783.84 8674.52 8566.33 5549.16 13643.40 12543.24 12341.34 14762.59 9979.31 6775.92 9985.73 9089.81 80
Anonymous2023121168.44 9066.37 11470.86 7277.58 9083.49 8775.15 7861.89 8952.54 12558.50 6828.89 18956.78 10269.29 6974.96 10576.61 8982.73 15091.36 64
EPP-MVSNet67.58 9771.10 8563.48 12175.71 10683.35 8866.85 13657.83 12253.02 12441.15 13755.82 7467.89 5556.01 13974.40 10972.92 13983.33 14290.30 76
MVSTER76.92 4979.92 4073.42 5974.98 11082.97 8978.15 5763.41 7478.02 4664.41 4667.54 4472.80 3771.05 5383.29 2983.73 2288.53 2791.12 66
PatchmatchNetpermissive65.43 11267.71 10562.78 12773.49 11782.83 9066.42 14145.40 18560.40 9245.27 11449.22 9957.60 10060.01 11670.61 15071.38 15486.08 8081.91 149
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
thres40065.18 11464.44 12566.04 10176.40 10082.63 9171.52 10264.27 6744.93 15440.69 14041.86 13540.79 15358.12 12877.67 7874.64 11285.26 10388.56 96
UGNet67.57 9871.69 8162.76 12869.88 13582.58 9266.43 14058.64 11254.71 12051.87 8961.74 5962.01 7545.46 17274.78 10674.99 10784.24 13091.02 67
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
CPTT-MVS75.43 5577.13 5473.44 5881.43 6582.55 9380.96 4564.35 6677.95 4861.39 5769.20 4170.94 4769.38 6873.89 11673.32 13183.14 14792.06 57
TSAR-MVS + COLMAP73.09 6576.86 5568.71 8774.97 11182.49 9474.51 8661.83 9083.16 2849.31 10282.22 2151.62 12568.94 7178.76 7275.52 10582.67 15284.23 130
PMMVS70.37 8275.06 6564.90 10871.46 12681.88 9564.10 14755.64 14371.31 5946.69 10970.69 3958.56 9069.53 6479.03 6975.63 10281.96 16288.32 99
MDTV_nov1_ep1365.21 11367.28 10862.79 12670.91 13181.72 9669.28 12149.50 17458.08 9943.94 12250.50 9656.02 10558.86 12570.72 14973.37 12984.24 13080.52 154
thres600view763.77 12463.14 13264.51 11175.49 10881.61 9769.59 11862.95 7943.96 15838.90 14741.09 13940.24 15855.25 14276.24 9171.54 14884.89 11387.30 105
thres20065.58 10964.74 12366.56 10077.52 9281.61 9773.44 9162.95 7946.23 14842.45 13242.76 12541.18 14958.12 12876.24 9175.59 10384.89 11389.58 83
tfpn200view965.90 10864.96 12167.00 9977.70 8781.58 9971.71 10062.94 8149.16 13643.40 12543.24 12341.34 14761.42 10776.24 9174.63 11384.84 11588.52 97
GA-MVS64.55 11865.76 12063.12 12369.68 13681.56 10069.59 11858.16 11545.23 15335.58 16547.01 11541.82 14659.41 12079.62 6578.54 7386.32 7386.56 111
tpm cat167.47 9967.05 10967.98 9276.63 9881.51 10174.49 8747.65 18061.18 8861.12 5942.51 13053.02 12364.74 8970.11 15871.50 14983.22 14489.49 84
UA-Net64.62 11668.23 10360.42 14277.53 9181.38 10260.08 16957.47 12747.01 14344.75 11860.68 6471.32 4641.84 18073.27 12272.25 14580.83 17271.68 182
CNLPA71.37 7770.27 9172.66 6480.79 7081.33 10371.07 11065.75 5882.36 3164.80 4542.46 13156.49 10372.70 4373.00 12770.52 16280.84 17185.76 120
test-LLR68.23 9371.61 8264.28 11571.37 12781.32 10463.98 15061.03 9758.62 9742.96 12852.74 8861.65 7657.74 13375.64 9878.09 8088.61 2493.21 45
TESTMET0.1,167.38 10071.61 8262.45 13166.05 16081.32 10463.98 15055.36 14858.62 9742.96 12852.74 8861.65 7657.74 13375.64 9878.09 8088.61 2493.21 45
Fast-Effi-MVS+67.59 9667.56 10667.62 9573.67 11581.14 10671.12 10854.79 15558.88 9650.61 9746.70 11847.05 13569.12 7076.06 9476.44 9286.43 7286.65 110
tpmrst67.15 10268.12 10466.03 10276.21 10180.98 10771.27 10445.05 18660.69 9150.63 9646.95 11654.15 11665.30 8471.80 14171.77 14787.72 4390.48 74
OMC-MVS74.03 6275.82 6271.95 6779.56 7480.98 10775.35 7763.21 7584.48 2561.83 5561.54 6166.89 5769.41 6776.60 8874.07 12182.34 15886.15 115
ACMP68.86 772.15 7172.25 7672.03 6680.96 6780.87 10977.93 5964.13 6869.29 6660.79 6364.04 5353.54 12063.91 9173.74 11975.27 10684.45 12788.98 90
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
TAPA-MVS67.10 971.45 7573.47 7369.10 8577.04 9580.78 11073.81 9062.10 8680.80 3851.28 9160.91 6363.80 6967.98 7474.59 10772.42 14382.37 15780.97 152
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
CDS-MVSNet64.22 12065.89 11962.28 13370.05 13480.59 11169.91 11757.98 11743.53 15946.58 11048.22 10250.76 12746.45 16775.68 9776.08 9782.70 15186.34 114
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
EG-PatchMatch MVS58.73 16158.03 16859.55 14772.32 12180.49 11263.44 15655.55 14532.49 19438.31 15028.87 19037.22 16842.84 17874.30 11375.70 10184.84 11577.14 164
v2v48263.68 12562.85 13764.65 11068.01 14680.46 11371.90 9657.60 12444.26 15642.82 13039.80 14738.62 16361.56 10673.06 12574.86 10986.03 8188.90 93
v114463.00 13062.39 14163.70 12067.72 14980.27 11471.23 10556.40 13342.51 16140.81 13938.12 15537.73 16460.42 11474.46 10874.55 11585.64 9889.12 89
LGP-MVS_train72.02 7273.18 7470.67 7582.13 6180.26 11579.58 5163.04 7770.09 6251.98 8865.06 5155.62 10962.49 10175.97 9576.32 9584.80 11988.93 91
FC-MVSNet-train68.83 8868.29 10169.47 8178.35 8179.94 11664.72 14466.38 5354.96 11654.51 8456.75 7347.91 13466.91 8075.57 10075.75 10085.92 8387.12 106
v14419262.05 14061.46 14862.73 13066.59 15879.87 11769.30 12055.88 13941.50 16839.41 14437.23 15836.45 17259.62 11872.69 13273.51 12685.61 9988.93 91
v119262.25 13661.64 14662.96 12466.88 15479.72 11869.96 11655.77 14141.58 16639.42 14337.05 16035.96 17760.50 11374.30 11374.09 12085.24 10488.76 94
dps64.08 12163.22 13165.08 10675.27 10979.65 11966.68 13846.63 18456.94 10255.67 7943.96 12243.63 14464.00 9069.50 16369.82 16482.25 15979.02 159
v192192061.66 14361.10 15162.31 13266.32 15979.57 12068.41 12555.49 14641.03 16938.69 14836.64 16635.27 18059.60 11973.23 12373.41 12885.37 10188.51 98
v14862.00 14161.19 15062.96 12467.46 15279.49 12167.87 12757.66 12342.30 16245.02 11738.20 15438.89 16254.77 14369.83 16072.60 14284.96 10987.01 107
FMVSNet370.41 8171.89 8068.68 8870.89 13279.42 12275.63 7160.97 9965.32 7751.06 9247.37 10862.05 7264.90 8782.49 3682.27 3588.64 2384.34 129
v124061.09 14660.55 15561.72 13665.92 16379.28 12367.16 13554.91 15239.79 17538.10 15136.08 16834.64 18259.15 12372.86 12873.36 13085.10 10687.84 102
CMPMVSbinary43.63 1757.67 16755.43 17560.28 14372.01 12379.00 12462.77 16053.23 16441.77 16545.42 11330.74 18639.03 16053.01 14764.81 17864.65 18475.26 19368.03 190
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
V4262.86 13262.97 13462.74 12960.84 18378.99 12571.46 10357.13 13146.85 14444.28 12138.87 14940.73 15557.63 13572.60 13374.14 11985.09 10888.63 95
Vis-MVSNet (Re-imp)62.25 13668.74 9854.68 17373.70 11478.74 12656.51 17857.49 12655.22 11426.86 18654.56 8161.35 7831.06 18873.10 12474.90 10882.49 15583.31 136
GBi-Net69.21 8470.40 8967.81 9369.49 13778.65 12774.54 8260.97 9965.32 7751.06 9247.37 10862.05 7263.43 9377.49 7978.22 7787.37 5083.73 132
test169.21 8470.40 8967.81 9369.49 13778.65 12774.54 8260.97 9965.32 7751.06 9247.37 10862.05 7263.43 9377.49 7978.22 7787.37 5083.73 132
FMVSNet268.06 9468.57 9967.45 9769.49 13778.65 12774.54 8260.23 10856.29 10749.64 10142.13 13457.08 10163.43 9381.15 5480.99 5587.37 5083.73 132
tpm64.85 11566.02 11863.48 12174.52 11278.38 13070.98 11144.99 18851.61 12743.28 12747.66 10653.18 12160.57 11170.58 15271.30 15686.54 7089.45 86
test_part166.32 10463.35 13069.77 7977.40 9378.35 13177.85 6056.25 13644.52 15562.15 5333.05 17853.91 11862.38 10372.19 13674.65 11182.59 15386.81 108
ACMH59.42 1461.59 14459.22 16364.36 11478.92 8078.26 13267.65 12967.48 4739.81 17430.98 18038.25 15334.59 18361.37 10970.55 15373.47 12779.74 17879.59 156
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
v863.44 12762.58 13964.43 11268.28 14578.07 13371.82 9754.85 15346.70 14645.20 11539.40 14840.91 15260.54 11272.85 12974.39 11885.92 8385.76 120
Patchmtry78.06 13467.53 13143.18 19341.40 134
UniMVSNet (Re)60.62 14962.93 13657.92 15767.64 15077.90 13561.75 16361.24 9649.83 13329.80 18242.57 12840.62 15643.36 17670.49 15473.27 13383.76 13685.81 119
UniMVSNet_NR-MVSNet62.30 13563.51 12960.89 13969.48 14077.83 13664.07 14863.94 6950.03 13131.17 17844.82 12141.12 15051.37 15271.02 14674.81 11085.30 10284.95 124
v1063.00 13062.22 14263.90 11967.88 14877.78 13771.59 10154.34 15745.37 15242.76 13138.53 15038.93 16161.05 11074.39 11074.52 11685.75 8786.04 116
ACMM66.70 1070.42 7968.49 10072.67 6382.85 5577.76 13877.70 6264.76 6564.61 8160.74 6449.29 9853.97 11765.86 8374.97 10375.57 10484.13 13483.29 137
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
TAMVS58.86 15960.91 15256.47 16862.38 17977.57 13958.97 17352.98 16538.76 17836.17 16142.26 13347.94 13346.45 16770.23 15770.79 15981.86 16378.82 160
DCV-MVSNet69.13 8669.07 9569.21 8377.65 8977.52 14074.68 8057.85 12154.92 11755.34 8355.74 7555.56 11066.35 8175.05 10276.56 9183.35 14188.13 101
test-mter64.06 12269.24 9458.01 15659.07 18977.40 14159.13 17248.11 17855.64 11339.18 14651.56 9358.54 9155.38 14173.52 12176.00 9887.22 5992.05 58
EPNet_dtu66.17 10670.13 9261.54 13781.04 6677.39 14268.87 12362.50 8569.78 6333.51 17363.77 5456.22 10437.65 18672.20 13572.18 14685.69 9379.38 157
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
pmmvs559.72 15360.24 15759.11 15262.77 17777.33 14363.17 15854.00 15940.21 17337.23 15540.41 14335.99 17651.75 15072.55 13472.74 14185.72 9282.45 145
MIMVSNet57.78 16659.71 16155.53 17054.79 19777.10 14463.89 15245.02 18746.59 14736.79 15828.36 19140.77 15445.84 17174.97 10376.58 9086.87 6673.60 175
pm-mvs159.21 15759.58 16258.77 15467.97 14777.07 14564.12 14657.20 12934.73 19036.86 15635.34 17140.54 15743.34 17774.32 11273.30 13283.13 14881.77 150
Fast-Effi-MVS+-dtu63.05 12964.72 12461.11 13871.21 13076.81 14670.72 11343.13 19552.51 12635.34 16646.55 11946.36 13661.40 10871.57 14471.44 15184.84 11587.79 103
MSDG65.57 11061.57 14770.24 7782.02 6276.47 14774.46 8868.73 4156.52 10550.33 9838.47 15141.10 15162.42 10272.12 13772.94 13883.47 14073.37 177
pmmvs463.14 12862.46 14063.94 11866.03 16176.40 14866.82 13757.60 12456.74 10350.26 9940.81 14237.51 16659.26 12271.75 14271.48 15083.68 13982.53 143
FMVSNet163.48 12663.07 13363.97 11765.31 16576.37 14971.77 9957.90 12043.32 16045.66 11235.06 17449.43 13058.57 12677.49 7978.22 7784.59 12481.60 151
tfpnnormal58.97 15856.48 17361.89 13471.27 12976.21 15066.65 13961.76 9332.90 19336.41 16027.83 19229.14 19950.64 15673.06 12573.05 13784.58 12583.15 141
DU-MVS60.87 14861.82 14559.76 14666.69 15575.87 15164.07 14861.96 8749.31 13431.17 17842.76 12536.95 16951.37 15269.67 16173.20 13683.30 14384.95 124
NR-MVSNet61.08 14762.09 14459.90 14471.96 12475.87 15163.60 15461.96 8749.31 13427.95 18342.76 12533.85 18748.82 15974.35 11174.05 12285.13 10584.45 127
LS3D64.54 11962.14 14367.34 9880.85 6875.79 15369.99 11565.87 5760.77 9044.35 12042.43 13245.95 13865.01 8569.88 15968.69 16977.97 18671.43 184
PatchMatch-RL62.22 13960.69 15364.01 11668.74 14275.75 15459.27 17160.35 10656.09 10953.80 8547.06 11436.45 17264.80 8868.22 16667.22 17377.10 18874.02 172
PatchT60.46 15063.85 12756.51 16765.95 16275.68 15547.34 19241.39 20053.89 12341.40 13437.84 15650.30 12957.29 13672.76 13073.27 13385.67 9483.23 139
thisisatest051559.37 15660.68 15457.84 15964.39 16975.65 15658.56 17453.86 16041.55 16742.12 13340.40 14439.59 15947.09 16571.69 14373.79 12381.02 17082.08 148
TranMVSNet+NR-MVSNet60.38 15161.30 14959.30 15068.34 14475.57 15763.38 15763.78 7146.74 14527.73 18442.56 12936.84 17047.66 16270.36 15574.59 11484.91 11282.46 144
Effi-MVS+-dtu64.58 11764.08 12665.16 10573.04 11975.17 15870.68 11456.23 13754.12 12244.71 11947.42 10751.10 12663.82 9268.08 16766.32 17882.47 15686.38 113
IterMVS-LS66.08 10766.56 11365.51 10373.67 11574.88 15970.89 11253.55 16250.42 13048.32 10650.59 9555.66 10861.83 10473.93 11574.42 11784.82 11886.01 117
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
PLCcopyleft64.00 1268.54 8966.66 11170.74 7480.28 7374.88 15972.64 9463.70 7269.26 6755.71 7847.24 11155.31 11170.42 5772.05 13970.67 16081.66 16577.19 163
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
v7n57.04 16956.64 17257.52 16162.85 17674.75 16161.76 16251.80 17035.58 18936.02 16332.33 18133.61 18850.16 15767.73 16870.34 16382.51 15482.12 147
TransMVSNet (Re)57.83 16456.90 17158.91 15372.26 12274.69 16263.57 15561.42 9532.30 19532.65 17433.97 17635.96 17739.17 18473.84 11872.84 14084.37 12874.69 170
ADS-MVSNet58.40 16359.16 16457.52 16165.80 16474.57 16360.26 16740.17 20450.51 12938.01 15240.11 14644.72 14059.36 12164.91 17666.55 17681.53 16672.72 180
ACMH+60.36 1361.16 14558.38 16564.42 11377.37 9474.35 16468.45 12462.81 8345.86 15038.48 14935.71 16937.35 16759.81 11767.24 16969.80 16679.58 17978.32 161
Baseline_NR-MVSNet59.47 15560.28 15658.54 15566.69 15573.90 16561.63 16462.90 8249.15 13826.87 18535.18 17337.62 16548.20 16069.67 16173.61 12584.92 11082.82 142
MDTV_nov1_ep13_2view54.47 17754.61 17654.30 17760.50 18473.82 16657.92 17543.38 19239.43 17732.51 17533.23 17734.05 18547.26 16462.36 18466.21 17984.24 13073.19 178
test0.0.03 157.35 16859.89 16054.38 17671.37 12773.45 16752.71 18461.03 9746.11 14926.33 18741.73 13644.08 14229.72 19071.43 14570.90 15785.10 10671.56 183
UniMVSNet_ETH3D57.83 16456.46 17459.43 14963.24 17473.22 16867.70 12855.58 14436.17 18536.84 15732.64 17935.14 18151.50 15165.81 17269.81 16581.73 16482.44 146
pmmvs654.20 17853.54 18054.97 17163.22 17572.98 16960.17 16852.32 16926.77 20434.30 17023.29 19936.23 17440.33 18368.77 16568.76 16879.47 18178.00 162
MVS-HIRNet53.86 18053.02 18254.85 17260.30 18572.36 17044.63 20042.20 19839.45 17643.47 12421.66 20334.00 18655.47 14065.42 17467.16 17483.02 14971.08 186
IterMVS61.87 14263.55 12859.90 14467.29 15372.20 17167.34 13448.56 17647.48 14237.86 15447.07 11348.27 13154.08 14572.12 13773.71 12484.30 12983.99 131
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
IterMVS-SCA-FT60.21 15262.97 13457.00 16566.64 15771.84 17267.53 13146.93 18347.56 14136.77 15946.85 11748.21 13252.51 14870.36 15572.40 14471.63 20183.53 135
USDC59.69 15460.03 15959.28 15164.04 17071.84 17263.15 15955.36 14854.90 11835.02 16748.34 10129.79 19858.16 12770.60 15171.33 15579.99 17673.42 176
SCA63.90 12366.67 11060.66 14073.75 11371.78 17459.87 17043.66 19161.13 8945.03 11651.64 9259.45 8857.92 13070.96 14770.80 15883.71 13880.92 153
anonymousdsp54.99 17357.24 17052.36 17953.82 19971.75 17551.49 18548.14 17733.74 19133.66 17238.34 15236.13 17547.54 16364.53 18070.60 16179.53 18085.59 122
pmnet_mix0253.92 17953.30 18154.65 17561.89 18071.33 17654.54 18254.17 15840.38 17134.65 16834.76 17530.68 19740.44 18260.97 18663.71 18682.19 16071.24 185
CR-MVSNet62.31 13464.75 12259.47 14868.63 14371.29 17767.53 13143.18 19355.83 11041.40 13441.04 14055.85 10657.29 13672.76 13073.27 13378.77 18383.23 139
RPMNet58.63 16262.80 13853.76 17867.59 15171.29 17754.60 18138.13 20555.83 11035.70 16441.58 13753.04 12247.89 16166.10 17167.38 17178.65 18584.40 128
our_test_363.32 17271.07 17955.90 179
LTVRE_ROB47.26 1649.41 19149.91 19448.82 18664.76 16769.79 18049.05 18847.12 18220.36 21116.52 19936.65 16526.96 20250.76 15560.47 18763.16 18964.73 20472.00 181
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
Anonymous2023120652.23 18352.80 18551.56 18164.70 16869.41 18151.01 18658.60 11336.63 18222.44 19321.80 20231.42 19330.52 18966.79 17067.83 17082.10 16175.73 166
WR-MVS51.02 18554.56 17746.90 19263.84 17169.23 18244.78 19956.38 13438.19 17914.19 20337.38 15736.82 17122.39 19960.14 18866.20 18079.81 17773.95 174
CHOSEN 280x42062.23 13866.57 11257.17 16459.88 18668.92 18361.20 16642.28 19754.17 12139.57 14247.78 10564.97 6462.68 9873.85 11769.52 16777.43 18786.75 109
CVMVSNet54.92 17558.16 16651.13 18362.61 17868.44 18455.45 18052.38 16842.28 16321.45 19447.10 11246.10 13737.96 18564.42 18163.81 18576.92 18975.01 169
pmmvs-eth3d55.20 17053.95 17956.65 16657.34 19567.77 18557.54 17653.74 16140.93 17041.09 13831.19 18529.10 20049.07 15865.54 17367.28 17281.14 16875.81 165
WR-MVS_H49.62 19052.63 18646.11 19558.80 19067.58 18646.14 19754.94 15036.51 18313.63 20636.75 16435.67 17922.10 20056.43 19662.76 19081.06 16972.73 179
COLMAP_ROBcopyleft51.17 1555.13 17152.90 18457.73 16073.47 11867.21 18762.13 16155.82 14047.83 14034.39 16931.60 18334.24 18444.90 17463.88 18362.52 19175.67 19163.02 199
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
testgi48.51 19350.53 19146.16 19464.78 16667.15 18841.54 20254.81 15429.12 20017.03 19732.07 18231.98 19020.15 20365.26 17567.00 17578.67 18461.10 203
FMVSNet558.86 15960.24 15757.25 16352.66 20166.25 18963.77 15352.86 16757.85 10137.92 15336.12 16752.22 12451.37 15270.88 14871.43 15284.92 11066.91 192
PEN-MVS51.04 18452.94 18348.82 18661.45 18266.00 19048.68 18957.20 12936.87 18115.36 20136.98 16132.72 18928.77 19457.63 19266.37 17781.44 16774.00 173
CP-MVSNet50.57 18652.60 18748.21 18958.77 19165.82 19148.17 19056.29 13537.41 18016.59 19837.14 15931.95 19129.21 19156.60 19563.71 18680.22 17475.56 167
PS-CasMVS50.17 18752.02 18848.02 19058.60 19265.54 19248.04 19156.19 13836.42 18416.42 20035.68 17031.33 19428.85 19356.42 19763.54 18880.01 17575.18 168
TDRefinement52.70 18151.02 19054.66 17457.41 19465.06 19361.47 16554.94 15044.03 15733.93 17130.13 18827.57 20146.17 16961.86 18562.48 19274.01 19766.06 193
test20.0347.23 19648.69 19645.53 19663.28 17364.39 19441.01 20356.93 13229.16 19915.21 20223.90 19630.76 19617.51 20664.63 17965.26 18179.21 18262.71 200
DTE-MVSNet49.82 18951.92 18947.37 19161.75 18164.38 19545.89 19857.33 12836.11 18612.79 20836.87 16231.93 19225.73 19758.01 19065.22 18280.75 17370.93 187
SixPastTwentyTwo49.11 19249.22 19548.99 18558.54 19364.14 19647.18 19347.75 17931.15 19724.42 18941.01 14126.55 20344.04 17554.76 20058.70 19771.99 20068.21 188
TinyColmap52.66 18250.09 19355.65 16959.72 18764.02 19757.15 17752.96 16640.28 17232.51 17532.42 18020.97 20956.65 13863.95 18265.15 18374.91 19463.87 197
N_pmnet47.67 19447.00 19848.45 18854.72 19862.78 19846.95 19451.25 17136.01 18726.09 18826.59 19525.93 20635.50 18755.67 19959.01 19576.22 19063.04 198
MDA-MVSNet-bldmvs44.15 19842.27 20346.34 19338.34 20962.31 19946.28 19555.74 14229.83 19820.98 19527.11 19416.45 21441.98 17941.11 20757.47 19874.72 19561.65 202
PM-MVS50.11 18850.38 19249.80 18447.23 20762.08 20050.91 18744.84 18941.90 16436.10 16235.22 17226.05 20546.83 16657.64 19155.42 20272.90 19874.32 171
new-patchmatchnet42.21 19942.97 20041.33 19953.05 20059.89 20139.38 20449.61 17328.26 20212.10 20922.17 20121.54 20819.22 20450.96 20256.04 20074.61 19661.92 201
RPSCF55.07 17258.06 16751.57 18048.87 20558.95 20253.68 18341.26 20262.42 8445.88 11154.38 8454.26 11553.75 14657.15 19353.53 20366.01 20365.75 194
MIMVSNet140.84 20143.46 19937.79 20232.14 21058.92 20339.24 20550.83 17227.00 20311.29 21016.76 20926.53 20417.75 20557.14 19461.12 19475.46 19256.78 204
FC-MVSNet-test47.24 19554.37 17838.93 20159.49 18858.25 20434.48 20853.36 16345.66 1516.66 21350.62 9442.02 14516.62 20758.39 18961.21 19362.99 20564.40 196
EU-MVSNet44.84 19747.85 19741.32 20049.26 20456.59 20543.07 20147.64 18133.03 19213.82 20436.78 16330.99 19524.37 19853.80 20155.57 20169.78 20268.21 188
gm-plane-assit54.99 17357.99 16951.49 18269.27 14154.42 20632.32 20942.59 19621.18 20913.71 20523.61 19743.84 14360.21 11587.09 586.55 590.81 489.28 87
pmmvs341.86 20042.29 20241.36 19839.80 20852.66 20738.93 20635.85 20923.40 20820.22 19619.30 20420.84 21040.56 18155.98 19858.79 19672.80 19965.03 195
ambc42.30 20150.36 20349.51 20835.47 20732.04 19623.53 19017.36 2068.95 21629.06 19264.88 17756.26 19961.29 20667.12 191
FPMVS39.11 20236.39 20442.28 19755.97 19645.94 20946.23 19641.57 19935.73 18822.61 19123.46 19819.82 21128.32 19543.57 20440.67 20658.96 20745.54 206
new_pmnet33.19 20335.52 20530.47 20427.55 21445.31 21029.29 21030.92 21029.00 2019.88 21218.77 20517.64 21326.77 19644.07 20345.98 20558.41 20847.87 205
PMMVS220.45 20622.31 20818.27 20920.52 21526.73 21114.85 21428.43 21213.69 2120.79 21810.35 2109.10 2153.83 21327.64 20932.87 20841.17 21035.81 208
PMVScopyleft27.44 1832.08 20429.07 20635.60 20348.33 20624.79 21226.97 21141.34 20120.45 21022.50 19217.11 20818.64 21220.44 20241.99 20638.06 20754.02 20942.44 207
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
Gipumacopyleft24.91 20524.61 20725.26 20631.47 21121.59 21318.06 21237.53 20625.43 20610.03 2114.18 2144.25 21814.85 20843.20 20547.03 20439.62 21126.55 211
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
MVEpermissive15.98 1914.37 20916.36 20912.04 2117.72 21720.24 2145.90 21829.05 2118.28 2153.92 2154.72 2132.42 2199.57 21118.89 21131.46 20916.07 21628.53 210
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
DeepMVS_CXcopyleft19.81 21517.01 21310.02 21323.61 2075.85 21417.21 2078.03 21721.13 20122.60 21021.42 21530.01 209
E-PMN15.08 20711.65 21019.08 20728.73 21212.31 2166.95 21736.87 20810.71 2143.63 2165.13 2112.22 22113.81 21011.34 21218.50 21124.49 21321.32 212
EMVS14.40 20810.71 21118.70 20828.15 21312.09 2177.06 21636.89 20711.00 2133.56 2174.95 2122.27 22013.91 20910.13 21316.06 21222.63 21418.51 213
tmp_tt16.09 21013.07 2168.12 21813.61 2152.08 21455.09 11530.10 18140.26 14522.83 2075.35 21229.91 20825.25 21032.33 212
testmvs0.05 2100.08 2120.01 2120.00 2190.01 2190.03 2200.01 2160.05 2160.00 2200.14 2160.01 2220.03 2160.05 2140.05 2130.01 2170.24 215
test1230.05 2100.08 2120.01 2120.00 2190.01 2190.01 2210.00 2170.05 2160.00 2200.16 2150.00 2230.04 2140.02 2150.05 2130.00 2180.26 214
uanet_test0.00 2120.00 2140.00 2140.00 2190.00 2210.00 2220.00 2170.00 2180.00 2200.00 2170.00 2230.00 2170.00 2160.00 2150.00 2180.00 216
sosnet-low-res0.00 2120.00 2140.00 2140.00 2190.00 2210.00 2220.00 2170.00 2180.00 2200.00 2170.00 2230.00 2170.00 2160.00 2150.00 2180.00 216
sosnet0.00 2120.00 2140.00 2140.00 2190.00 2210.00 2220.00 2170.00 2180.00 2200.00 2170.00 2230.00 2170.00 2160.00 2150.00 2180.00 216
RE-MVS-def31.47 177
9.1484.47 6
SR-MVS86.33 4767.54 4680.78 19
MTAPA78.32 1179.42 24
MTMP76.04 1676.65 29
Patchmatch-RL test2.17 219
mPP-MVS86.96 4270.61 49
NP-MVS81.60 36