This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorcourty.delive.electrofacadekickermeadowofficepipesplaygr.reliefrelief.terraceterrai.
sort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
SED-MVS88.94 190.98 186.56 192.53 695.09 188.55 576.83 794.16 186.57 190.85 687.07 186.18 186.36 785.08 1288.67 2198.21 3
DVP-MVS88.07 290.73 284.97 491.98 995.01 287.86 976.88 693.90 285.15 290.11 886.90 279.46 1186.26 1084.67 1788.50 2898.25 2
MSP-MVS87.87 390.57 384.73 589.38 2791.60 1788.24 774.15 1293.55 382.28 394.99 183.21 1085.96 287.67 484.67 1788.32 3198.29 1
DPE-MVS87.60 490.44 484.29 792.09 893.44 588.69 475.11 993.06 580.80 594.23 286.70 381.44 584.84 1783.52 2687.64 4697.28 5
SF-MVS87.30 588.71 585.64 294.57 194.55 391.01 179.94 189.15 1179.85 692.37 383.29 979.75 783.52 2582.72 3188.75 1995.37 23
HPM-MVS++copyleft85.64 988.43 682.39 1292.65 490.24 2685.83 1674.21 1190.68 875.63 1886.77 1384.15 778.68 1586.33 885.26 987.32 5395.60 18
APDe-MVS86.37 688.41 784.00 991.43 1491.83 1588.34 674.67 1091.19 681.76 491.13 581.94 1780.07 683.38 2782.58 3487.69 4496.78 10
SMA-MVScopyleft85.24 1188.27 881.72 1591.74 1190.71 2086.71 1273.16 1990.56 974.33 1983.07 1885.88 477.16 1986.28 985.58 687.23 5795.77 14
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
DeepPCF-MVS76.94 183.08 1987.77 977.60 3590.11 1990.96 1978.48 5472.63 2293.10 465.84 4280.67 2381.55 1874.80 2985.94 1285.39 883.75 13796.77 11
CNVR-MVS85.96 787.58 1084.06 892.58 592.40 1087.62 1077.77 588.44 1475.93 1779.49 2581.97 1681.65 487.04 686.58 488.79 1797.18 7
APD-MVScopyleft84.83 1287.00 1182.30 1389.61 2589.21 3486.51 1473.64 1690.98 777.99 1289.89 980.04 2379.18 1382.00 4681.37 4786.88 6595.49 20
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
MCST-MVS85.75 886.99 1284.31 694.07 392.80 788.15 879.10 385.66 2370.72 3076.50 3280.45 2082.17 388.35 287.49 391.63 297.65 4
SD-MVS84.31 1586.96 1381.22 1688.98 3188.68 3885.65 1773.85 1589.09 1379.63 887.34 1284.84 573.71 3482.66 3481.60 4485.48 10094.51 31
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
train_agg83.35 1886.93 1479.17 2789.70 2388.41 4185.60 1972.89 2186.31 2166.58 4190.48 782.24 1473.06 4083.10 3082.64 3387.21 6195.30 25
DPM-MVS85.41 1086.72 1583.89 1091.66 1291.92 1490.49 378.09 486.90 1873.95 2074.52 3482.01 1579.29 1290.24 190.65 189.86 690.78 70
TSAR-MVS + MP.84.39 1386.58 1681.83 1488.09 3986.47 6485.63 1873.62 1790.13 1079.24 989.67 1082.99 1177.72 1781.22 5280.92 5886.68 6894.66 30
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
ACMMP_NAP83.54 1786.37 1780.25 2189.57 2690.10 2885.27 2071.66 2387.38 1573.08 2284.23 1780.16 2175.31 2584.85 1683.64 2386.57 6994.21 37
TSAR-MVS + GP.82.27 2385.98 1877.94 3380.72 7188.25 4481.12 4367.71 4587.10 1673.31 2185.23 1583.68 876.64 2180.43 6081.47 4688.15 3795.66 17
TSAR-MVS + ACMM81.59 2685.84 1976.63 3989.82 2286.53 6386.32 1566.72 5285.96 2265.43 4388.98 1182.29 1367.57 7882.06 4581.33 4883.93 13593.75 42
NCCC84.16 1685.46 2082.64 1192.34 790.57 2386.57 1376.51 886.85 2072.91 2377.20 3178.69 2679.09 1484.64 1984.88 1588.44 2995.41 21
SteuartSystems-ACMMP82.51 2185.35 2179.20 2690.25 1789.39 3384.79 2170.95 2582.86 2968.32 3886.44 1477.19 2773.07 3983.63 2483.64 2387.82 4094.34 33
Skip Steuart: Steuart Systems R&D Blog.
CSCG82.90 2084.52 2281.02 1891.85 1093.43 687.14 1174.01 1481.96 3376.14 1570.84 3882.49 1269.71 6182.32 4185.18 1187.26 5695.40 22
HFP-MVS82.48 2284.12 2380.56 1990.15 1887.55 5484.28 2369.67 3485.22 2477.95 1384.69 1675.94 3075.04 2781.85 4781.17 5286.30 7492.40 54
PHI-MVS79.43 3384.06 2474.04 5686.15 4891.57 1880.85 4668.90 4082.22 3251.81 9078.10 2774.28 3370.39 5884.01 2384.00 2186.14 7894.24 35
MP-MVScopyleft80.94 2783.49 2577.96 3288.48 3288.16 4582.82 3269.34 3680.79 3969.67 3482.35 2077.13 2871.60 5180.97 5780.96 5785.87 8694.06 38
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
xxxxxxxxxxxxxcwj84.33 1483.20 2685.64 294.57 194.55 391.01 179.94 189.15 1179.85 692.37 344.71 14179.75 783.52 2582.72 3188.75 1995.37 23
zzz-MVS81.65 2583.10 2779.97 2388.14 3887.62 5383.96 2669.90 3186.92 1777.67 1472.47 3678.74 2574.13 3381.59 5081.15 5386.01 8293.19 47
ACMMPR80.62 2982.98 2877.87 3488.41 3387.05 5983.02 2969.18 3783.91 2668.35 3782.89 1973.64 3572.16 4680.78 5881.13 5486.10 7991.43 61
CANet80.90 2882.93 2978.53 3186.83 4592.26 1181.19 4266.95 4981.60 3669.90 3366.93 4674.80 3276.79 2084.68 1884.77 1689.50 995.50 19
EPNet79.28 3782.25 3075.83 4588.31 3690.14 2779.43 5268.07 4381.76 3561.26 5877.26 3070.08 5070.06 5982.43 3982.00 3887.82 4092.09 56
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
MVS_030479.43 3382.20 3176.20 4284.22 5391.79 1681.82 3763.81 7076.83 5161.71 5666.37 4975.52 3176.38 2385.54 1385.03 1389.28 1194.32 34
CDPH-MVS79.39 3682.13 3276.19 4389.22 3088.34 4284.20 2471.00 2479.67 4356.97 7577.77 2872.24 4268.50 7381.33 5182.74 2987.23 5792.84 50
DeepC-MVS_fast75.41 281.69 2482.10 3381.20 1791.04 1687.81 5183.42 2774.04 1383.77 2771.09 2866.88 4772.44 3879.48 1085.08 1484.97 1488.12 3993.78 41
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
PGM-MVS79.42 3581.84 3476.60 4088.38 3586.69 6182.97 3165.75 5880.39 4064.94 4481.95 2272.11 4371.41 5280.45 5980.55 6286.18 7690.76 72
CP-MVS79.44 3281.51 3577.02 3886.95 4385.96 7082.00 3468.44 4281.82 3467.39 3977.43 2973.68 3471.62 5079.56 6679.58 6585.73 9092.51 53
DeepC-MVS74.46 380.30 3081.05 3679.42 2487.42 4188.50 4083.23 2873.27 1882.78 3071.01 2962.86 5769.93 5174.80 2984.30 2084.20 2086.79 6794.77 27
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
HQP-MVS78.26 4080.91 3775.17 5085.67 5084.33 8283.01 3069.38 3579.88 4255.83 7679.85 2464.90 6570.81 5482.46 3781.78 4086.30 7493.18 48
X-MVS78.16 4180.55 3875.38 4887.99 4086.27 6681.05 4468.98 3878.33 4561.07 6075.25 3372.27 3967.52 7980.03 6280.52 6385.66 9791.20 65
ETV-MVS76.25 5280.22 3971.63 6978.23 8287.95 5072.75 9260.27 10777.50 5057.73 7171.53 3766.60 5973.16 3880.99 5681.23 5187.63 4795.73 15
MVSTER76.92 4979.92 4073.42 5974.98 11082.97 8978.15 5763.41 7478.02 4664.41 4667.54 4472.80 3771.05 5383.29 2983.73 2288.53 2791.12 66
DELS-MVS79.49 3179.84 4179.08 2888.26 3792.49 884.12 2570.63 2765.27 8069.60 3661.29 6266.50 6072.75 4288.07 388.03 289.13 1297.22 6
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
canonicalmvs77.65 4379.59 4275.39 4781.52 6489.83 3281.32 4160.74 10380.05 4166.72 4068.43 4265.09 6374.72 3178.87 7082.73 3087.32 5392.16 55
ACMMPcopyleft77.61 4479.59 4275.30 4985.87 4985.58 7181.42 3967.38 4879.38 4462.61 5078.53 2665.79 6268.80 7278.56 7378.50 7585.75 8790.80 69
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
CS-MVS75.18 5878.59 4471.20 7077.74 8687.69 5273.93 8958.81 11069.17 6955.73 7767.86 4366.89 5772.87 4182.50 3581.29 4988.15 3794.71 29
PVSNet_BlendedMVS76.84 5078.47 4574.95 5182.37 5889.90 3075.45 7565.45 6174.99 5470.66 3163.07 5558.27 9667.60 7684.24 2181.70 4288.18 3597.10 8
PVSNet_Blended76.84 5078.47 4574.95 5182.37 5889.90 3075.45 7565.45 6174.99 5470.66 3163.07 5558.27 9667.60 7684.24 2181.70 4288.18 3597.10 8
MVS_111021_HR77.42 4678.40 4776.28 4186.95 4390.68 2177.41 6470.56 3066.21 7462.48 5266.17 5063.98 6772.08 4782.87 3283.15 2788.24 3495.71 16
MAR-MVS77.19 4878.37 4875.81 4689.87 2190.58 2279.33 5365.56 6077.62 4958.33 6959.24 7067.98 5474.83 2882.37 4083.12 2886.95 6387.67 104
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
GG-mvs-BLEND54.54 17677.58 4927.67 2040.03 21790.09 2977.20 660.02 21466.83 720.05 21859.90 6773.33 360.04 21378.40 7579.30 6888.65 2295.20 26
QAPM77.50 4577.43 5077.59 3691.52 1392.00 1381.41 4070.63 2766.22 7358.05 7054.70 7971.79 4474.49 3282.46 3782.04 3689.46 1092.79 52
MSLP-MVS++78.57 3877.33 5180.02 2288.39 3484.79 7684.62 2266.17 5675.96 5378.40 1061.59 6071.47 4573.54 3778.43 7478.88 7188.97 1490.18 78
3Dnovator+70.16 677.87 4277.29 5278.55 3089.25 2988.32 4380.09 4867.95 4474.89 5671.83 2652.05 9170.68 4876.27 2482.27 4282.04 3685.92 8390.77 71
CLD-MVS77.36 4777.29 5277.45 3782.21 6088.11 4681.92 3568.96 3977.97 4769.62 3562.08 5859.44 8973.57 3681.75 4881.27 5088.41 3090.39 75
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
CPTT-MVS75.43 5577.13 5473.44 5881.43 6582.55 9380.96 4564.35 6677.95 4861.39 5769.20 4170.94 4769.38 6873.89 11673.32 13183.14 14792.06 57
TSAR-MVS + COLMAP73.09 6576.86 5568.71 8774.97 11182.49 9474.51 8661.83 9083.16 2849.31 10282.22 2151.62 12568.94 7178.76 7275.52 10582.67 15284.23 130
3Dnovator70.49 578.42 3976.77 5680.35 2091.43 1490.27 2581.84 3670.79 2672.10 5771.95 2450.02 9767.86 5677.47 1882.89 3184.24 1988.61 2489.99 79
MVS_Test75.22 5676.69 5773.51 5779.30 7788.82 3780.06 4958.74 11169.77 6457.50 7459.78 6961.35 7875.31 2582.07 4483.60 2590.13 591.41 63
CANet_DTU72.84 6776.63 5868.43 9076.81 9786.62 6275.54 7454.71 15672.06 5843.54 12367.11 4558.46 9372.40 4481.13 5580.82 6087.57 4890.21 77
PCF-MVS70.85 475.73 5476.55 5974.78 5483.67 5488.04 4981.47 3870.62 2969.24 6857.52 7360.59 6669.18 5270.65 5677.11 8477.65 8284.75 12094.01 39
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
EIA-MVS73.48 6476.05 6070.47 7678.12 8387.21 5771.78 9860.63 10469.66 6555.56 8064.86 5260.69 8169.53 6477.35 8378.59 7287.22 5994.01 39
MVS_111021_LR74.26 6175.95 6172.27 6579.43 7685.04 7472.71 9365.27 6370.92 6063.58 4869.32 4060.31 8569.43 6677.01 8577.15 8583.22 14491.93 59
OMC-MVS74.03 6275.82 6271.95 6779.56 7480.98 10775.35 7763.21 7584.48 2561.83 5561.54 6166.89 5769.41 6776.60 8874.07 12182.34 15886.15 115
casdiffmvs75.20 5775.69 6374.63 5579.26 7889.07 3578.47 5563.59 7367.05 7163.79 4755.72 7660.32 8473.58 3582.16 4381.78 4089.08 1393.72 43
diffmvs74.32 6075.42 6473.04 6175.60 10787.27 5678.20 5662.96 7868.66 7061.89 5459.79 6859.84 8771.80 4878.30 7779.87 6487.80 4294.23 36
PMMVS70.37 8275.06 6564.90 10871.46 12681.88 9564.10 14755.64 14371.31 5946.69 10970.69 3958.56 9069.53 6479.03 6975.63 10281.96 16188.32 99
DI_MVS_plusplus_trai73.94 6374.85 6672.88 6276.57 9986.80 6080.41 4761.47 9462.35 8559.44 6747.91 10368.12 5372.24 4582.84 3381.50 4587.15 6294.42 32
ET-MVSNet_ETH3D71.38 7674.70 6767.51 9651.61 20188.06 4877.29 6560.95 10263.61 8248.36 10566.60 4860.67 8279.55 973.56 12080.58 6187.30 5589.80 81
baseline72.89 6674.46 6871.07 7175.99 10387.50 5574.57 8160.49 10570.72 6157.60 7260.63 6560.97 8070.79 5575.27 10176.33 9486.94 6489.79 82
OpenMVScopyleft67.62 874.92 5973.91 6976.09 4490.10 2090.38 2478.01 5866.35 5466.09 7562.80 4946.33 12064.55 6671.77 4979.92 6380.88 5987.52 4989.20 88
CostFormer72.18 7073.90 7070.18 7879.47 7586.19 6976.94 6748.62 17466.07 7660.40 6554.14 8565.82 6167.98 7475.84 9676.41 9387.67 4592.83 51
AdaColmapbinary76.23 5373.55 7179.35 2589.38 2785.00 7579.99 5073.04 2076.60 5271.17 2755.18 7857.99 9877.87 1676.82 8776.82 8884.67 12286.45 112
PVSNet_Blended_VisFu71.76 7373.54 7269.69 8079.01 7987.16 5872.05 9561.80 9156.46 10659.66 6653.88 8762.48 7059.08 12481.17 5378.90 7086.53 7194.74 28
TAPA-MVS67.10 971.45 7573.47 7369.10 8577.04 9580.78 11073.81 9062.10 8680.80 3851.28 9160.91 6363.80 6967.98 7474.59 10772.42 14382.37 15780.97 152
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
LGP-MVS_train72.02 7273.18 7470.67 7582.13 6180.26 11579.58 5163.04 7770.09 6251.98 8865.06 5155.62 10962.49 10175.97 9576.32 9584.80 11988.93 91
baseline271.22 7873.01 7569.13 8475.76 10586.34 6571.23 10562.78 8462.62 8352.85 8657.32 7254.31 11463.27 9679.74 6479.31 6788.89 1591.43 61
ACMP68.86 772.15 7172.25 7672.03 6680.96 6780.87 10977.93 5964.13 6869.29 6660.79 6364.04 5353.54 12063.91 9173.74 11975.27 10684.45 12788.98 90
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
baseline171.47 7472.02 7770.82 7380.56 7284.51 7876.61 6866.93 5056.22 10848.66 10355.40 7760.43 8362.55 10083.35 2880.99 5589.60 783.28 138
CHOSEN 1792x268872.55 6971.98 7873.22 6086.57 4692.41 975.63 7166.77 5162.08 8652.32 8730.27 18650.74 12866.14 8286.22 1185.41 791.90 196.75 12
IS_MVSNet67.29 10171.98 7861.82 13576.92 9684.32 8365.90 14358.22 11455.75 11239.22 14554.51 8262.47 7145.99 17078.83 7178.52 7484.70 12189.47 85
FMVSNet370.41 8171.89 8068.68 8870.89 13279.42 12275.63 7160.97 9965.32 7751.06 9247.37 10862.05 7264.90 8782.49 3682.27 3588.64 2384.34 129
UGNet67.57 9871.69 8162.76 12869.88 13582.58 9266.43 14058.64 11254.71 12051.87 8961.74 5962.01 7545.46 17274.78 10674.99 10784.24 13091.02 67
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
test-LLR68.23 9371.61 8264.28 11571.37 12781.32 10463.98 15061.03 9758.62 9742.96 12852.74 8861.65 7657.74 13375.64 9878.09 8088.61 2493.21 45
TESTMET0.1,167.38 10071.61 8262.45 13166.05 16081.32 10463.98 15055.36 14858.62 9742.96 12852.74 8861.65 7657.74 13375.64 9878.09 8088.61 2493.21 45
Effi-MVS+70.42 7971.23 8469.47 8178.04 8485.24 7375.57 7358.88 10959.56 9448.47 10452.73 9054.94 11269.69 6278.34 7677.06 8686.18 7690.73 73
EPP-MVSNet67.58 9771.10 8563.48 12175.71 10683.35 8866.85 13657.83 12253.02 12441.15 13755.82 7467.89 5556.01 13974.40 10972.92 13983.33 14290.30 76
thisisatest053068.38 9270.98 8665.35 10472.61 12084.42 7968.21 12657.98 11759.77 9350.80 9554.63 8058.48 9257.92 13076.99 8677.47 8384.60 12385.07 123
OPM-MVS72.74 6870.93 8774.85 5385.30 5184.34 8182.82 3269.79 3249.96 13255.39 8254.09 8660.14 8670.04 6080.38 6179.43 6685.74 8988.20 100
tttt051767.99 9570.61 8864.94 10771.94 12583.96 8567.62 13057.98 11759.30 9549.90 10054.50 8357.98 9957.92 13076.48 8977.47 8384.24 13084.58 126
GBi-Net69.21 8470.40 8967.81 9369.49 13778.65 12774.54 8260.97 9965.32 7751.06 9247.37 10862.05 7263.43 9377.49 7978.22 7787.37 5083.73 132
test169.21 8470.40 8967.81 9369.49 13778.65 12774.54 8260.97 9965.32 7751.06 9247.37 10862.05 7263.43 9377.49 7978.22 7787.37 5083.73 132
CNLPA71.37 7770.27 9172.66 6480.79 7081.33 10371.07 11065.75 5882.36 3164.80 4542.46 13156.49 10372.70 4373.00 12770.52 16280.84 17085.76 120
EPNet_dtu66.17 10670.13 9261.54 13781.04 6677.39 14268.87 12362.50 8569.78 6333.51 17263.77 5456.22 10437.65 18572.20 13572.18 14685.69 9379.38 157
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
Vis-MVSNetpermissive65.53 11169.83 9360.52 14170.80 13384.59 7766.37 14255.47 14748.40 13940.62 14157.67 7158.43 9445.37 17377.49 7976.24 9684.47 12685.99 118
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
test-mter64.06 12269.24 9458.01 15659.07 18877.40 14159.13 17248.11 17755.64 11339.18 14651.56 9358.54 9155.38 14173.52 12176.00 9887.22 5992.05 58
DCV-MVSNet69.13 8669.07 9569.21 8377.65 8977.52 14074.68 8057.85 12154.92 11755.34 8355.74 7555.56 11066.35 8175.05 10276.56 9183.35 14188.13 101
MS-PatchMatch70.34 8369.00 9671.91 6885.20 5285.35 7277.84 6161.77 9258.01 10055.40 8141.26 13858.34 9561.69 10581.70 4978.29 7689.56 880.02 155
IB-MVS64.48 1169.02 8768.97 9769.09 8681.75 6389.01 3664.50 14564.91 6456.65 10462.59 5147.89 10445.23 13951.99 14969.18 16481.88 3988.77 1892.93 49
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
Vis-MVSNet (Re-imp)62.25 13668.74 9854.68 17373.70 11478.74 12656.51 17857.49 12655.22 11426.86 18554.56 8161.35 7831.06 18773.10 12474.90 10882.49 15583.31 136
FMVSNet268.06 9468.57 9967.45 9769.49 13778.65 12774.54 8260.23 10856.29 10749.64 10142.13 13457.08 10163.43 9381.15 5480.99 5587.37 5083.73 132
ACMM66.70 1070.42 7968.49 10072.67 6382.85 5577.76 13877.70 6264.76 6564.61 8160.74 6449.29 9853.97 11765.86 8374.97 10375.57 10484.13 13483.29 137
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
FC-MVSNet-train68.83 8868.29 10169.47 8178.35 8179.94 11664.72 14466.38 5354.96 11654.51 8456.75 7347.91 13466.91 8075.57 10075.75 10085.92 8387.12 106
HyFIR lowres test68.39 9168.28 10268.52 8980.85 6888.11 4671.08 10958.09 11654.87 11947.80 10827.55 19255.80 10764.97 8679.11 6879.14 6988.31 3293.35 44
UA-Net64.62 11668.23 10360.42 14277.53 9181.38 10260.08 16957.47 12747.01 14344.75 11860.68 6471.32 4641.84 18073.27 12272.25 14580.83 17171.68 182
tpmrst67.15 10268.12 10466.03 10276.21 10180.98 10771.27 10445.05 18560.69 9150.63 9646.95 11654.15 11665.30 8471.80 14171.77 14787.72 4390.48 74
PatchmatchNetpermissive65.43 11267.71 10562.78 12773.49 11782.83 9066.42 14145.40 18460.40 9245.27 11449.22 9957.60 10060.01 11670.61 15071.38 15486.08 8081.91 149
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
Fast-Effi-MVS+67.59 9667.56 10667.62 9573.67 11581.14 10671.12 10854.79 15558.88 9650.61 9746.70 11847.05 13569.12 7076.06 9476.44 9286.43 7286.65 110
EPMVS66.21 10567.49 10764.73 10975.81 10484.20 8468.94 12244.37 18961.55 8748.07 10749.21 10054.87 11362.88 9771.82 14071.40 15388.28 3379.37 158
MDTV_nov1_ep1365.21 11367.28 10862.79 12670.91 13181.72 9669.28 12149.50 17358.08 9943.94 12250.50 9656.02 10558.86 12570.72 14973.37 12984.24 13080.52 154
tpm cat167.47 9967.05 10967.98 9276.63 9881.51 10174.49 8747.65 17961.18 8861.12 5942.51 13053.02 12364.74 8970.11 15871.50 14983.22 14489.49 84
SCA63.90 12366.67 11060.66 14073.75 11371.78 17459.87 17043.66 19061.13 8945.03 11651.64 9259.45 8857.92 13070.96 14770.80 15883.71 13880.92 153
PLCcopyleft64.00 1268.54 8966.66 11170.74 7480.28 7374.88 15972.64 9463.70 7269.26 6755.71 7847.24 11155.31 11170.42 5772.05 13970.67 16081.66 16477.19 163
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
CHOSEN 280x42062.23 13866.57 11257.17 16459.88 18568.92 18261.20 16642.28 19654.17 12139.57 14247.78 10564.97 6462.68 9873.85 11769.52 16777.43 18686.75 109
IterMVS-LS66.08 10766.56 11365.51 10373.67 11574.88 15970.89 11253.55 16150.42 13048.32 10650.59 9555.66 10861.83 10473.93 11574.42 11784.82 11886.01 117
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
Anonymous2023121168.44 9066.37 11470.86 7277.58 9083.49 8775.15 7861.89 8952.54 12558.50 6828.89 18856.78 10269.29 6974.96 10576.61 8982.73 15091.36 64
Anonymous20240521166.35 11578.00 8584.41 8074.85 7963.18 7651.00 12831.37 18353.73 11969.67 6376.28 9076.84 8783.21 14690.85 68
gg-mvs-nofinetune62.34 13366.19 11657.86 15876.15 10288.61 3971.18 10741.24 20225.74 20413.16 20622.91 19963.97 6854.52 14485.06 1585.25 1090.92 391.78 60
thres100view90067.14 10366.09 11768.38 9177.70 8783.84 8674.52 8566.33 5549.16 13643.40 12543.24 12341.34 14762.59 9979.31 6775.92 9985.73 9089.81 80
tpm64.85 11566.02 11863.48 12174.52 11278.38 13070.98 11144.99 18751.61 12743.28 12747.66 10653.18 12160.57 11170.58 15271.30 15686.54 7089.45 86
CDS-MVSNet64.22 12065.89 11962.28 13370.05 13480.59 11169.91 11757.98 11743.53 15946.58 11048.22 10250.76 12746.45 16775.68 9776.08 9782.70 15186.34 114
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
GA-MVS64.55 11865.76 12063.12 12369.68 13681.56 10069.59 11858.16 11545.23 15335.58 16547.01 11541.82 14659.41 12079.62 6578.54 7386.32 7386.56 111
tfpn200view965.90 10864.96 12167.00 9977.70 8781.58 9971.71 10062.94 8149.16 13643.40 12543.24 12341.34 14761.42 10776.24 9174.63 11384.84 11588.52 97
CR-MVSNet62.31 13464.75 12259.47 14868.63 14371.29 17667.53 13143.18 19255.83 11041.40 13441.04 14055.85 10657.29 13672.76 13073.27 13378.77 18283.23 139
thres20065.58 10964.74 12366.56 10077.52 9281.61 9773.44 9162.95 7946.23 14842.45 13242.76 12541.18 14958.12 12876.24 9175.59 10384.89 11389.58 83
Fast-Effi-MVS+-dtu63.05 12964.72 12461.11 13871.21 13076.81 14670.72 11343.13 19452.51 12635.34 16646.55 11946.36 13661.40 10871.57 14471.44 15184.84 11587.79 103
thres40065.18 11464.44 12566.04 10176.40 10082.63 9171.52 10264.27 6744.93 15440.69 14041.86 13540.79 15358.12 12877.67 7874.64 11285.26 10388.56 96
Effi-MVS+-dtu64.58 11764.08 12665.16 10573.04 11975.17 15870.68 11456.23 13754.12 12244.71 11947.42 10751.10 12663.82 9268.08 16766.32 17882.47 15686.38 113
PatchT60.46 15063.85 12756.51 16765.95 16275.68 15547.34 19141.39 19953.89 12341.40 13437.84 15650.30 12957.29 13672.76 13073.27 13385.67 9483.23 139
IterMVS61.87 14263.55 12859.90 14467.29 15372.20 17167.34 13448.56 17547.48 14237.86 15447.07 11348.27 13154.08 14572.12 13773.71 12484.30 12983.99 131
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
UniMVSNet_NR-MVSNet62.30 13563.51 12960.89 13969.48 14077.83 13664.07 14863.94 6950.03 13131.17 17744.82 12141.12 15051.37 15271.02 14674.81 11085.30 10284.95 124
test_part166.32 10463.35 13069.77 7977.40 9378.35 13177.85 6056.25 13644.52 15562.15 5333.05 17753.91 11862.38 10372.19 13674.65 11182.59 15386.81 108
dps64.08 12163.22 13165.08 10675.27 10979.65 11966.68 13846.63 18356.94 10255.67 7943.96 12243.63 14464.00 9069.50 16369.82 16482.25 15979.02 159
thres600view763.77 12463.14 13264.51 11175.49 10881.61 9769.59 11862.95 7943.96 15838.90 14741.09 13940.24 15855.25 14276.24 9171.54 14884.89 11387.30 105
FMVSNet163.48 12663.07 13363.97 11765.31 16576.37 14971.77 9957.90 12043.32 16045.66 11235.06 17449.43 13058.57 12677.49 7978.22 7784.59 12481.60 151
IterMVS-SCA-FT60.21 15262.97 13457.00 16566.64 15771.84 17267.53 13146.93 18247.56 14136.77 15946.85 11748.21 13252.51 14870.36 15572.40 14471.63 20083.53 135
V4262.86 13262.97 13462.74 12960.84 18278.99 12571.46 10357.13 13146.85 14444.28 12138.87 14940.73 15557.63 13572.60 13374.14 11985.09 10888.63 95
UniMVSNet (Re)60.62 14962.93 13657.92 15767.64 15077.90 13561.75 16361.24 9649.83 13329.80 18142.57 12840.62 15643.36 17670.49 15473.27 13383.76 13685.81 119
v2v48263.68 12562.85 13764.65 11068.01 14680.46 11371.90 9657.60 12444.26 15642.82 13039.80 14738.62 16361.56 10673.06 12574.86 10986.03 8188.90 93
RPMNet58.63 16262.80 13853.76 17767.59 15171.29 17654.60 18138.13 20455.83 11035.70 16441.58 13753.04 12247.89 16166.10 17167.38 17178.65 18484.40 128
v863.44 12762.58 13964.43 11268.28 14578.07 13371.82 9754.85 15346.70 14645.20 11539.40 14840.91 15260.54 11272.85 12974.39 11885.92 8385.76 120
pmmvs463.14 12862.46 14063.94 11866.03 16176.40 14866.82 13757.60 12456.74 10350.26 9940.81 14237.51 16659.26 12271.75 14271.48 15083.68 13982.53 143
v114463.00 13062.39 14163.70 12067.72 14980.27 11471.23 10556.40 13342.51 16140.81 13938.12 15537.73 16460.42 11474.46 10874.55 11585.64 9889.12 89
v1063.00 13062.22 14263.90 11967.88 14877.78 13771.59 10154.34 15745.37 15242.76 13138.53 15038.93 16161.05 11074.39 11074.52 11685.75 8786.04 116
LS3D64.54 11962.14 14367.34 9880.85 6875.79 15369.99 11565.87 5760.77 9044.35 12042.43 13245.95 13865.01 8569.88 15968.69 16977.97 18571.43 184
NR-MVSNet61.08 14762.09 14459.90 14471.96 12475.87 15163.60 15461.96 8749.31 13427.95 18242.76 12533.85 18748.82 15974.35 11174.05 12285.13 10584.45 127
DU-MVS60.87 14861.82 14559.76 14666.69 15575.87 15164.07 14861.96 8749.31 13431.17 17742.76 12536.95 16951.37 15269.67 16173.20 13683.30 14384.95 124
v119262.25 13661.64 14662.96 12466.88 15479.72 11869.96 11655.77 14141.58 16639.42 14337.05 16035.96 17760.50 11374.30 11374.09 12085.24 10488.76 94
MSDG65.57 11061.57 14770.24 7782.02 6276.47 14774.46 8868.73 4156.52 10550.33 9838.47 15141.10 15162.42 10272.12 13772.94 13883.47 14073.37 177
v14419262.05 14061.46 14862.73 13066.59 15879.87 11769.30 12055.88 13941.50 16839.41 14437.23 15836.45 17259.62 11872.69 13273.51 12685.61 9988.93 91
TranMVSNet+NR-MVSNet60.38 15161.30 14959.30 15068.34 14475.57 15763.38 15763.78 7146.74 14527.73 18342.56 12936.84 17047.66 16270.36 15574.59 11484.91 11282.46 144
v14862.00 14161.19 15062.96 12467.46 15279.49 12167.87 12757.66 12342.30 16245.02 11738.20 15438.89 16254.77 14369.83 16072.60 14284.96 10987.01 107
v192192061.66 14361.10 15162.31 13266.32 15979.57 12068.41 12555.49 14641.03 16938.69 14836.64 16635.27 18059.60 11973.23 12373.41 12885.37 10188.51 98
TAMVS58.86 15960.91 15256.47 16862.38 17977.57 13958.97 17352.98 16438.76 17736.17 16142.26 13347.94 13346.45 16770.23 15770.79 15981.86 16278.82 160
PatchMatch-RL62.22 13960.69 15364.01 11668.74 14275.75 15459.27 17160.35 10656.09 10953.80 8547.06 11436.45 17264.80 8868.22 16667.22 17377.10 18774.02 172
thisisatest051559.37 15660.68 15457.84 15964.39 16975.65 15658.56 17453.86 15941.55 16742.12 13340.40 14439.59 15947.09 16571.69 14373.79 12381.02 16982.08 148
v124061.09 14660.55 15561.72 13665.92 16379.28 12367.16 13554.91 15239.79 17438.10 15136.08 16834.64 18259.15 12372.86 12873.36 13085.10 10687.84 102
Baseline_NR-MVSNet59.47 15560.28 15658.54 15566.69 15573.90 16561.63 16462.90 8249.15 13826.87 18435.18 17337.62 16548.20 16069.67 16173.61 12584.92 11082.82 142
pmmvs559.72 15360.24 15759.11 15262.77 17777.33 14363.17 15854.00 15840.21 17237.23 15540.41 14335.99 17651.75 15072.55 13472.74 14185.72 9282.45 145
FMVSNet558.86 15960.24 15757.25 16352.66 20066.25 18863.77 15352.86 16657.85 10137.92 15336.12 16752.22 12451.37 15270.88 14871.43 15284.92 11066.91 191
USDC59.69 15460.03 15959.28 15164.04 17071.84 17263.15 15955.36 14854.90 11835.02 16748.34 10129.79 19758.16 12770.60 15171.33 15579.99 17573.42 176
test0.0.03 157.35 16859.89 16054.38 17571.37 12773.45 16752.71 18361.03 9746.11 14926.33 18641.73 13644.08 14229.72 18971.43 14570.90 15785.10 10671.56 183
MIMVSNet57.78 16659.71 16155.53 17054.79 19677.10 14463.89 15245.02 18646.59 14736.79 15828.36 19040.77 15445.84 17174.97 10376.58 9086.87 6673.60 175
pm-mvs159.21 15759.58 16258.77 15467.97 14777.07 14564.12 14657.20 12934.73 18936.86 15635.34 17140.54 15743.34 17774.32 11273.30 13283.13 14881.77 150
ACMH59.42 1461.59 14459.22 16364.36 11478.92 8078.26 13267.65 12967.48 4739.81 17330.98 17938.25 15334.59 18361.37 10970.55 15373.47 12779.74 17779.59 156
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
ADS-MVSNet58.40 16359.16 16457.52 16165.80 16474.57 16360.26 16740.17 20350.51 12938.01 15240.11 14644.72 14059.36 12164.91 17666.55 17681.53 16572.72 180
ACMH+60.36 1361.16 14558.38 16564.42 11377.37 9474.35 16468.45 12462.81 8345.86 15038.48 14935.71 16937.35 16759.81 11767.24 16969.80 16679.58 17878.32 161
CVMVSNet54.92 17558.16 16651.13 18262.61 17868.44 18355.45 18052.38 16742.28 16321.45 19347.10 11246.10 13737.96 18464.42 18163.81 18576.92 18875.01 169
RPSCF55.07 17258.06 16751.57 17948.87 20458.95 20153.68 18241.26 20162.42 8445.88 11154.38 8454.26 11553.75 14657.15 19253.53 20266.01 20265.75 193
EG-PatchMatch MVS58.73 16158.03 16859.55 14772.32 12180.49 11263.44 15655.55 14532.49 19338.31 15028.87 18937.22 16842.84 17874.30 11375.70 10184.84 11577.14 164
gm-plane-assit54.99 17357.99 16951.49 18169.27 14154.42 20532.32 20842.59 19521.18 20813.71 20423.61 19643.84 14360.21 11587.09 586.55 590.81 489.28 87
anonymousdsp54.99 17357.24 17052.36 17853.82 19871.75 17551.49 18448.14 17633.74 19033.66 17138.34 15236.13 17547.54 16364.53 18070.60 16179.53 17985.59 122
TransMVSNet (Re)57.83 16456.90 17158.91 15372.26 12274.69 16263.57 15561.42 9532.30 19432.65 17333.97 17535.96 17739.17 18373.84 11872.84 14084.37 12874.69 170
v7n57.04 16956.64 17257.52 16162.85 17674.75 16161.76 16251.80 16935.58 18836.02 16332.33 18033.61 18850.16 15767.73 16870.34 16382.51 15482.12 147
tfpnnormal58.97 15856.48 17361.89 13471.27 12976.21 15066.65 13961.76 9332.90 19236.41 16027.83 19129.14 19850.64 15673.06 12573.05 13784.58 12583.15 141
UniMVSNet_ETH3D57.83 16456.46 17459.43 14963.24 17473.22 16867.70 12855.58 14436.17 18436.84 15732.64 17835.14 18151.50 15165.81 17269.81 16581.73 16382.44 146
CMPMVSbinary43.63 1757.67 16755.43 17560.28 14372.01 12379.00 12462.77 16053.23 16341.77 16545.42 11330.74 18539.03 16053.01 14764.81 17864.65 18475.26 19268.03 189
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
MDTV_nov1_ep13_2view54.47 17754.61 17654.30 17660.50 18373.82 16657.92 17543.38 19139.43 17632.51 17433.23 17634.05 18547.26 16462.36 18466.21 17984.24 13073.19 178
WR-MVS51.02 18454.56 17746.90 19163.84 17169.23 18144.78 19856.38 13438.19 17814.19 20237.38 15736.82 17122.39 19860.14 18766.20 18079.81 17673.95 174
FC-MVSNet-test47.24 19454.37 17838.93 20059.49 18758.25 20334.48 20753.36 16245.66 1516.66 21250.62 9442.02 14516.62 20658.39 18861.21 19262.99 20464.40 195
pmmvs-eth3d55.20 17053.95 17956.65 16657.34 19467.77 18457.54 17653.74 16040.93 17041.09 13831.19 18429.10 19949.07 15865.54 17367.28 17281.14 16775.81 165
pmmvs654.20 17853.54 18054.97 17163.22 17572.98 16960.17 16852.32 16826.77 20334.30 16923.29 19836.23 17440.33 18268.77 16568.76 16879.47 18078.00 162
MVS-HIRNet53.86 17953.02 18154.85 17260.30 18472.36 17044.63 19942.20 19739.45 17543.47 12421.66 20234.00 18655.47 14065.42 17467.16 17483.02 14971.08 185
PEN-MVS51.04 18352.94 18248.82 18561.45 18166.00 18948.68 18857.20 12936.87 18015.36 20036.98 16132.72 18928.77 19357.63 19166.37 17781.44 16674.00 173
COLMAP_ROBcopyleft51.17 1555.13 17152.90 18357.73 16073.47 11867.21 18662.13 16155.82 14047.83 14034.39 16831.60 18234.24 18444.90 17463.88 18362.52 19075.67 19063.02 198
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
Anonymous2023120652.23 18252.80 18451.56 18064.70 16869.41 18051.01 18558.60 11336.63 18122.44 19221.80 20131.42 19330.52 18866.79 17067.83 17082.10 16075.73 166
WR-MVS_H49.62 18952.63 18546.11 19458.80 18967.58 18546.14 19654.94 15036.51 18213.63 20536.75 16435.67 17922.10 19956.43 19562.76 18981.06 16872.73 179
CP-MVSNet50.57 18552.60 18648.21 18858.77 19065.82 19048.17 18956.29 13537.41 17916.59 19737.14 15931.95 19129.21 19056.60 19463.71 18680.22 17375.56 167
PS-CasMVS50.17 18652.02 18748.02 18958.60 19165.54 19148.04 19056.19 13836.42 18316.42 19935.68 17031.33 19428.85 19256.42 19663.54 18780.01 17475.18 168
DTE-MVSNet49.82 18851.92 18847.37 19061.75 18064.38 19445.89 19757.33 12836.11 18512.79 20736.87 16231.93 19225.73 19658.01 18965.22 18280.75 17270.93 186
TDRefinement52.70 18051.02 18954.66 17457.41 19365.06 19261.47 16554.94 15044.03 15733.93 17030.13 18727.57 20046.17 16961.86 18562.48 19174.01 19666.06 192
testgi48.51 19250.53 19046.16 19364.78 16667.15 18741.54 20154.81 15429.12 19917.03 19632.07 18131.98 19020.15 20265.26 17567.00 17578.67 18361.10 202
PM-MVS50.11 18750.38 19149.80 18347.23 20662.08 19950.91 18644.84 18841.90 16436.10 16235.22 17226.05 20446.83 16657.64 19055.42 20172.90 19774.32 171
TinyColmap52.66 18150.09 19255.65 16959.72 18664.02 19657.15 17752.96 16540.28 17132.51 17432.42 17920.97 20856.65 13863.95 18265.15 18374.91 19363.87 196
LTVRE_ROB47.26 1649.41 19049.91 19348.82 18564.76 16769.79 17949.05 18747.12 18120.36 21016.52 19836.65 16526.96 20150.76 15560.47 18663.16 18864.73 20372.00 181
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
SixPastTwentyTwo49.11 19149.22 19448.99 18458.54 19264.14 19547.18 19247.75 17831.15 19624.42 18841.01 14126.55 20244.04 17554.76 19958.70 19671.99 19968.21 187
test20.0347.23 19548.69 19545.53 19563.28 17364.39 19341.01 20256.93 13229.16 19815.21 20123.90 19530.76 19617.51 20564.63 17965.26 18179.21 18162.71 199
EU-MVSNet44.84 19647.85 19641.32 19949.26 20356.59 20443.07 20047.64 18033.03 19113.82 20336.78 16330.99 19524.37 19753.80 20055.57 20069.78 20168.21 187
N_pmnet47.67 19347.00 19748.45 18754.72 19762.78 19746.95 19351.25 17036.01 18626.09 18726.59 19425.93 20535.50 18655.67 19859.01 19476.22 18963.04 197
MIMVSNet140.84 20043.46 19837.79 20132.14 20958.92 20239.24 20450.83 17127.00 20211.29 20916.76 20826.53 20317.75 20457.14 19361.12 19375.46 19156.78 203
new-patchmatchnet42.21 19842.97 19941.33 19853.05 19959.89 20039.38 20349.61 17228.26 20112.10 20822.17 20021.54 20719.22 20350.96 20156.04 19974.61 19561.92 200
ambc42.30 20050.36 20249.51 20735.47 20632.04 19523.53 18917.36 2058.95 21529.06 19164.88 17756.26 19861.29 20567.12 190
pmmvs341.86 19942.29 20141.36 19739.80 20752.66 20638.93 20535.85 20823.40 20720.22 19519.30 20320.84 20940.56 18155.98 19758.79 19572.80 19865.03 194
MDA-MVSNet-bldmvs44.15 19742.27 20246.34 19238.34 20862.31 19846.28 19455.74 14229.83 19720.98 19427.11 19316.45 21341.98 17941.11 20657.47 19774.72 19461.65 201
FPMVS39.11 20136.39 20342.28 19655.97 19545.94 20846.23 19541.57 19835.73 18722.61 19023.46 19719.82 21028.32 19443.57 20340.67 20558.96 20645.54 205
new_pmnet33.19 20235.52 20430.47 20327.55 21345.31 20929.29 20930.92 20929.00 2009.88 21118.77 20417.64 21226.77 19544.07 20245.98 20458.41 20747.87 204
PMVScopyleft27.44 1832.08 20329.07 20535.60 20248.33 20524.79 21126.97 21041.34 20020.45 20922.50 19117.11 20718.64 21120.44 20141.99 20538.06 20654.02 20842.44 206
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
Gipumacopyleft24.91 20424.61 20625.26 20531.47 21021.59 21218.06 21137.53 20525.43 20510.03 2104.18 2134.25 21714.85 20743.20 20447.03 20339.62 21026.55 210
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
PMMVS220.45 20522.31 20718.27 20820.52 21426.73 21014.85 21328.43 21113.69 2110.79 21710.35 2099.10 2143.83 21227.64 20832.87 20741.17 20935.81 207
MVEpermissive15.98 1914.37 20816.36 20812.04 2107.72 21620.24 2135.90 21729.05 2108.28 2143.92 2144.72 2122.42 2189.57 21018.89 21031.46 20816.07 21528.53 209
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
E-PMN15.08 20611.65 20919.08 20628.73 21112.31 2156.95 21636.87 20710.71 2133.63 2155.13 2102.22 22013.81 20911.34 21118.50 21024.49 21221.32 211
EMVS14.40 20710.71 21018.70 20728.15 21212.09 2167.06 21536.89 20611.00 2123.56 2164.95 2112.27 21913.91 20810.13 21216.06 21122.63 21318.51 212
testmvs0.05 2090.08 2110.01 2110.00 2180.01 2180.03 2190.01 2150.05 2150.00 2190.14 2150.01 2210.03 2150.05 2130.05 2120.01 2160.24 214
test1230.05 2090.08 2110.01 2110.00 2180.01 2180.01 2200.00 2160.05 2150.00 2190.16 2140.00 2220.04 2130.02 2140.05 2120.00 2170.26 213
uanet_test0.00 2110.00 2130.00 2130.00 2180.00 2200.00 2210.00 2160.00 2170.00 2190.00 2160.00 2220.00 2160.00 2150.00 2140.00 2170.00 215
sosnet-low-res0.00 2110.00 2130.00 2130.00 2180.00 2200.00 2210.00 2160.00 2170.00 2190.00 2160.00 2220.00 2160.00 2150.00 2140.00 2170.00 215
sosnet0.00 2110.00 2130.00 2130.00 2180.00 2200.00 2210.00 2160.00 2170.00 2190.00 2160.00 2220.00 2160.00 2150.00 2140.00 2170.00 215
RE-MVS-def31.47 176
9.1484.47 6
SR-MVS86.33 4767.54 4680.78 19
our_test_363.32 17271.07 17855.90 179
MTAPA78.32 1179.42 24
MTMP76.04 1676.65 29
Patchmatch-RL test2.17 218
tmp_tt16.09 20913.07 2158.12 21713.61 2142.08 21355.09 11530.10 18040.26 14522.83 2065.35 21129.91 20725.25 20932.33 211
XVS82.43 5686.27 6675.70 6961.07 6072.27 3985.67 94
X-MVStestdata82.43 5686.27 6675.70 6961.07 6072.27 3985.67 94
abl_679.06 2989.68 2492.14 1277.70 6269.68 3386.87 1971.88 2574.29 3580.06 2276.56 2288.84 1695.82 13
mPP-MVS86.96 4270.61 49
NP-MVS81.60 36
Patchmtry78.06 13467.53 13143.18 19241.40 134
DeepMVS_CXcopyleft19.81 21417.01 21210.02 21223.61 2065.85 21317.21 2068.03 21621.13 20022.60 20921.42 21430.01 208