SED-MVS | | | 88.94 1 | 90.98 1 | 86.56 1 | 92.53 6 | 95.09 1 | 88.55 5 | 76.83 7 | 94.16 1 | 86.57 1 | 90.85 6 | 87.07 1 | 86.18 1 | 86.36 7 | 85.08 12 | 88.67 21 | 98.21 3 |
|
DVP-MVS | | | 88.07 2 | 90.73 2 | 84.97 4 | 91.98 9 | 95.01 2 | 87.86 9 | 76.88 6 | 93.90 2 | 85.15 2 | 90.11 8 | 86.90 2 | 79.46 11 | 86.26 10 | 84.67 17 | 88.50 28 | 98.25 2 |
|
MSP-MVS | | | 87.87 3 | 90.57 3 | 84.73 5 | 89.38 27 | 91.60 17 | 88.24 7 | 74.15 12 | 93.55 3 | 82.28 3 | 94.99 1 | 83.21 10 | 85.96 2 | 87.67 4 | 84.67 17 | 88.32 31 | 98.29 1 |
|
DPE-MVS | | | 87.60 4 | 90.44 4 | 84.29 7 | 92.09 8 | 93.44 5 | 88.69 4 | 75.11 9 | 93.06 5 | 80.80 5 | 94.23 2 | 86.70 3 | 81.44 5 | 84.84 17 | 83.52 26 | 87.64 46 | 97.28 5 |
|
SF-MVS | | | 87.30 5 | 88.71 5 | 85.64 2 | 94.57 1 | 94.55 3 | 91.01 1 | 79.94 1 | 89.15 11 | 79.85 6 | 92.37 3 | 83.29 9 | 79.75 7 | 83.52 25 | 82.72 31 | 88.75 19 | 95.37 23 |
|
HPM-MVS++ | | | 85.64 9 | 88.43 6 | 82.39 12 | 92.65 4 | 90.24 26 | 85.83 16 | 74.21 11 | 90.68 8 | 75.63 18 | 86.77 13 | 84.15 7 | 78.68 15 | 86.33 8 | 85.26 9 | 87.32 53 | 95.60 18 |
|
APDe-MVS | | | 86.37 6 | 88.41 7 | 84.00 9 | 91.43 14 | 91.83 15 | 88.34 6 | 74.67 10 | 91.19 6 | 81.76 4 | 91.13 5 | 81.94 17 | 80.07 6 | 83.38 27 | 82.58 34 | 87.69 44 | 96.78 10 |
|
SMA-MVS | | | 85.24 11 | 88.27 8 | 81.72 15 | 91.74 11 | 90.71 20 | 86.71 12 | 73.16 19 | 90.56 9 | 74.33 19 | 83.07 18 | 85.88 4 | 77.16 19 | 86.28 9 | 85.58 6 | 87.23 57 | 95.77 14 |
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
DeepPCF-MVS | | 76.94 1 | 83.08 19 | 87.77 9 | 77.60 35 | 90.11 19 | 90.96 19 | 78.48 54 | 72.63 22 | 93.10 4 | 65.84 42 | 80.67 23 | 81.55 18 | 74.80 29 | 85.94 12 | 85.39 8 | 83.75 137 | 96.77 11 |
|
CNVR-MVS | | | 85.96 7 | 87.58 10 | 84.06 8 | 92.58 5 | 92.40 10 | 87.62 10 | 77.77 5 | 88.44 14 | 75.93 17 | 79.49 25 | 81.97 16 | 81.65 4 | 87.04 6 | 86.58 4 | 88.79 17 | 97.18 7 |
|
APD-MVS | | | 84.83 12 | 87.00 11 | 82.30 13 | 89.61 25 | 89.21 34 | 86.51 14 | 73.64 16 | 90.98 7 | 77.99 12 | 89.89 9 | 80.04 23 | 79.18 13 | 82.00 46 | 81.37 47 | 86.88 65 | 95.49 20 |
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
MCST-MVS | | | 85.75 8 | 86.99 12 | 84.31 6 | 94.07 3 | 92.80 7 | 88.15 8 | 79.10 3 | 85.66 23 | 70.72 30 | 76.50 32 | 80.45 20 | 82.17 3 | 88.35 2 | 87.49 3 | 91.63 2 | 97.65 4 |
|
SD-MVS | | | 84.31 15 | 86.96 13 | 81.22 16 | 88.98 31 | 88.68 38 | 85.65 17 | 73.85 15 | 89.09 13 | 79.63 8 | 87.34 12 | 84.84 5 | 73.71 34 | 82.66 34 | 81.60 44 | 85.48 100 | 94.51 31 |
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
train_agg | | | 83.35 18 | 86.93 14 | 79.17 27 | 89.70 23 | 88.41 41 | 85.60 19 | 72.89 21 | 86.31 21 | 66.58 41 | 90.48 7 | 82.24 14 | 73.06 40 | 83.10 30 | 82.64 33 | 87.21 61 | 95.30 25 |
|
DPM-MVS | | | 85.41 10 | 86.72 15 | 83.89 10 | 91.66 12 | 91.92 14 | 90.49 3 | 78.09 4 | 86.90 18 | 73.95 20 | 74.52 34 | 82.01 15 | 79.29 12 | 90.24 1 | 90.65 1 | 89.86 6 | 90.78 70 |
|
TSAR-MVS + MP. | | | 84.39 13 | 86.58 16 | 81.83 14 | 88.09 39 | 86.47 64 | 85.63 18 | 73.62 17 | 90.13 10 | 79.24 9 | 89.67 10 | 82.99 11 | 77.72 17 | 81.22 52 | 80.92 58 | 86.68 68 | 94.66 30 |
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
ACMMP_NAP | | | 83.54 17 | 86.37 17 | 80.25 21 | 89.57 26 | 90.10 28 | 85.27 20 | 71.66 23 | 87.38 15 | 73.08 22 | 84.23 17 | 80.16 21 | 75.31 25 | 84.85 16 | 83.64 23 | 86.57 69 | 94.21 37 |
|
TSAR-MVS + GP. | | | 82.27 23 | 85.98 18 | 77.94 33 | 80.72 71 | 88.25 44 | 81.12 43 | 67.71 45 | 87.10 16 | 73.31 21 | 85.23 15 | 83.68 8 | 76.64 21 | 80.43 60 | 81.47 46 | 88.15 37 | 95.66 17 |
|
TSAR-MVS + ACMM | | | 81.59 26 | 85.84 19 | 76.63 39 | 89.82 22 | 86.53 63 | 86.32 15 | 66.72 52 | 85.96 22 | 65.43 43 | 88.98 11 | 82.29 13 | 67.57 78 | 82.06 45 | 81.33 48 | 83.93 135 | 93.75 42 |
|
NCCC | | | 84.16 16 | 85.46 20 | 82.64 11 | 92.34 7 | 90.57 23 | 86.57 13 | 76.51 8 | 86.85 20 | 72.91 23 | 77.20 31 | 78.69 26 | 79.09 14 | 84.64 19 | 84.88 15 | 88.44 29 | 95.41 21 |
|
SteuartSystems-ACMMP | | | 82.51 21 | 85.35 21 | 79.20 26 | 90.25 17 | 89.39 33 | 84.79 21 | 70.95 25 | 82.86 29 | 68.32 38 | 86.44 14 | 77.19 27 | 73.07 39 | 83.63 24 | 83.64 23 | 87.82 40 | 94.34 33 |
Skip Steuart: Steuart Systems R&D Blog. |
CSCG | | | 82.90 20 | 84.52 22 | 81.02 18 | 91.85 10 | 93.43 6 | 87.14 11 | 74.01 14 | 81.96 33 | 76.14 15 | 70.84 38 | 82.49 12 | 69.71 61 | 82.32 41 | 85.18 11 | 87.26 56 | 95.40 22 |
|
HFP-MVS | | | 82.48 22 | 84.12 23 | 80.56 19 | 90.15 18 | 87.55 54 | 84.28 23 | 69.67 34 | 85.22 24 | 77.95 13 | 84.69 16 | 75.94 30 | 75.04 27 | 81.85 47 | 81.17 52 | 86.30 74 | 92.40 54 |
|
PHI-MVS | | | 79.43 33 | 84.06 24 | 74.04 56 | 86.15 48 | 91.57 18 | 80.85 46 | 68.90 40 | 82.22 32 | 51.81 90 | 78.10 27 | 74.28 33 | 70.39 58 | 84.01 23 | 84.00 21 | 86.14 78 | 94.24 35 |
|
MP-MVS | | | 80.94 27 | 83.49 25 | 77.96 32 | 88.48 32 | 88.16 45 | 82.82 32 | 69.34 36 | 80.79 39 | 69.67 34 | 82.35 20 | 77.13 28 | 71.60 51 | 80.97 57 | 80.96 57 | 85.87 86 | 94.06 38 |
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
xxxxxxxxxxxxxcwj | | | 84.33 14 | 83.20 26 | 85.64 2 | 94.57 1 | 94.55 3 | 91.01 1 | 79.94 1 | 89.15 11 | 79.85 6 | 92.37 3 | 44.71 141 | 79.75 7 | 83.52 25 | 82.72 31 | 88.75 19 | 95.37 23 |
|
zzz-MVS | | | 81.65 25 | 83.10 27 | 79.97 23 | 88.14 38 | 87.62 53 | 83.96 26 | 69.90 31 | 86.92 17 | 77.67 14 | 72.47 36 | 78.74 25 | 74.13 33 | 81.59 50 | 81.15 53 | 86.01 82 | 93.19 47 |
|
ACMMPR | | | 80.62 29 | 82.98 28 | 77.87 34 | 88.41 33 | 87.05 59 | 83.02 29 | 69.18 37 | 83.91 26 | 68.35 37 | 82.89 19 | 73.64 35 | 72.16 46 | 80.78 58 | 81.13 54 | 86.10 79 | 91.43 61 |
|
CANet | | | 80.90 28 | 82.93 29 | 78.53 31 | 86.83 45 | 92.26 11 | 81.19 42 | 66.95 49 | 81.60 36 | 69.90 33 | 66.93 46 | 74.80 32 | 76.79 20 | 84.68 18 | 84.77 16 | 89.50 9 | 95.50 19 |
|
EPNet | | | 79.28 37 | 82.25 30 | 75.83 45 | 88.31 36 | 90.14 27 | 79.43 52 | 68.07 43 | 81.76 35 | 61.26 58 | 77.26 30 | 70.08 50 | 70.06 59 | 82.43 39 | 82.00 38 | 87.82 40 | 92.09 56 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
MVS_0304 | | | 79.43 33 | 82.20 31 | 76.20 42 | 84.22 53 | 91.79 16 | 81.82 37 | 63.81 70 | 76.83 51 | 61.71 56 | 66.37 49 | 75.52 31 | 76.38 23 | 85.54 13 | 85.03 13 | 89.28 11 | 94.32 34 |
|
CDPH-MVS | | | 79.39 36 | 82.13 32 | 76.19 43 | 89.22 30 | 88.34 42 | 84.20 24 | 71.00 24 | 79.67 43 | 56.97 75 | 77.77 28 | 72.24 42 | 68.50 73 | 81.33 51 | 82.74 29 | 87.23 57 | 92.84 50 |
|
DeepC-MVS_fast | | 75.41 2 | 81.69 24 | 82.10 33 | 81.20 17 | 91.04 16 | 87.81 51 | 83.42 27 | 74.04 13 | 83.77 27 | 71.09 28 | 66.88 47 | 72.44 38 | 79.48 10 | 85.08 14 | 84.97 14 | 88.12 39 | 93.78 41 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
PGM-MVS | | | 79.42 35 | 81.84 34 | 76.60 40 | 88.38 35 | 86.69 61 | 82.97 31 | 65.75 58 | 80.39 40 | 64.94 44 | 81.95 22 | 72.11 43 | 71.41 52 | 80.45 59 | 80.55 62 | 86.18 76 | 90.76 72 |
|
CP-MVS | | | 79.44 32 | 81.51 35 | 77.02 38 | 86.95 43 | 85.96 70 | 82.00 34 | 68.44 42 | 81.82 34 | 67.39 39 | 77.43 29 | 73.68 34 | 71.62 50 | 79.56 66 | 79.58 65 | 85.73 90 | 92.51 53 |
|
DeepC-MVS | | 74.46 3 | 80.30 30 | 81.05 36 | 79.42 24 | 87.42 41 | 88.50 40 | 83.23 28 | 73.27 18 | 82.78 30 | 71.01 29 | 62.86 57 | 69.93 51 | 74.80 29 | 84.30 20 | 84.20 20 | 86.79 67 | 94.77 27 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
HQP-MVS | | | 78.26 40 | 80.91 37 | 75.17 50 | 85.67 50 | 84.33 82 | 83.01 30 | 69.38 35 | 79.88 42 | 55.83 76 | 79.85 24 | 64.90 65 | 70.81 54 | 82.46 37 | 81.78 40 | 86.30 74 | 93.18 48 |
|
X-MVS | | | 78.16 41 | 80.55 38 | 75.38 48 | 87.99 40 | 86.27 66 | 81.05 44 | 68.98 38 | 78.33 45 | 61.07 60 | 75.25 33 | 72.27 39 | 67.52 79 | 80.03 62 | 80.52 63 | 85.66 97 | 91.20 65 |
|
ETV-MVS | | | 76.25 52 | 80.22 39 | 71.63 69 | 78.23 82 | 87.95 50 | 72.75 92 | 60.27 107 | 77.50 50 | 57.73 71 | 71.53 37 | 66.60 59 | 73.16 38 | 80.99 56 | 81.23 51 | 87.63 47 | 95.73 15 |
|
MVSTER | | | 76.92 49 | 79.92 40 | 73.42 59 | 74.98 110 | 82.97 89 | 78.15 57 | 63.41 74 | 78.02 46 | 64.41 46 | 67.54 44 | 72.80 37 | 71.05 53 | 83.29 29 | 83.73 22 | 88.53 27 | 91.12 66 |
|
DELS-MVS | | | 79.49 31 | 79.84 41 | 79.08 28 | 88.26 37 | 92.49 8 | 84.12 25 | 70.63 27 | 65.27 80 | 69.60 36 | 61.29 62 | 66.50 60 | 72.75 42 | 88.07 3 | 88.03 2 | 89.13 12 | 97.22 6 |
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
canonicalmvs | | | 77.65 43 | 79.59 42 | 75.39 47 | 81.52 64 | 89.83 32 | 81.32 41 | 60.74 103 | 80.05 41 | 66.72 40 | 68.43 42 | 65.09 63 | 74.72 31 | 78.87 70 | 82.73 30 | 87.32 53 | 92.16 55 |
|
ACMMP | | | 77.61 44 | 79.59 42 | 75.30 49 | 85.87 49 | 85.58 71 | 81.42 39 | 67.38 48 | 79.38 44 | 62.61 50 | 78.53 26 | 65.79 62 | 68.80 72 | 78.56 73 | 78.50 75 | 85.75 87 | 90.80 69 |
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
CS-MVS | | | 75.18 58 | 78.59 44 | 71.20 70 | 77.74 86 | 87.69 52 | 73.93 89 | 58.81 110 | 69.17 69 | 55.73 77 | 67.86 43 | 66.89 57 | 72.87 41 | 82.50 35 | 81.29 49 | 88.15 37 | 94.71 29 |
|
PVSNet_BlendedMVS | | | 76.84 50 | 78.47 45 | 74.95 51 | 82.37 58 | 89.90 30 | 75.45 75 | 65.45 61 | 74.99 54 | 70.66 31 | 63.07 55 | 58.27 96 | 67.60 76 | 84.24 21 | 81.70 42 | 88.18 35 | 97.10 8 |
|
PVSNet_Blended | | | 76.84 50 | 78.47 45 | 74.95 51 | 82.37 58 | 89.90 30 | 75.45 75 | 65.45 61 | 74.99 54 | 70.66 31 | 63.07 55 | 58.27 96 | 67.60 76 | 84.24 21 | 81.70 42 | 88.18 35 | 97.10 8 |
|
MVS_111021_HR | | | 77.42 46 | 78.40 47 | 76.28 41 | 86.95 43 | 90.68 21 | 77.41 64 | 70.56 30 | 66.21 74 | 62.48 52 | 66.17 50 | 63.98 67 | 72.08 47 | 82.87 32 | 83.15 27 | 88.24 34 | 95.71 16 |
|
MAR-MVS | | | 77.19 48 | 78.37 48 | 75.81 46 | 89.87 21 | 90.58 22 | 79.33 53 | 65.56 60 | 77.62 49 | 58.33 69 | 59.24 70 | 67.98 54 | 74.83 28 | 82.37 40 | 83.12 28 | 86.95 63 | 87.67 104 |
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
GG-mvs-BLEND | | | 54.54 176 | 77.58 49 | 27.67 204 | 0.03 217 | 90.09 29 | 77.20 66 | 0.02 214 | 66.83 72 | 0.05 218 | 59.90 67 | 73.33 36 | 0.04 213 | 78.40 75 | 79.30 68 | 88.65 22 | 95.20 26 |
|
QAPM | | | 77.50 45 | 77.43 50 | 77.59 36 | 91.52 13 | 92.00 13 | 81.41 40 | 70.63 27 | 66.22 73 | 58.05 70 | 54.70 79 | 71.79 44 | 74.49 32 | 82.46 37 | 82.04 36 | 89.46 10 | 92.79 52 |
|
MSLP-MVS++ | | | 78.57 38 | 77.33 51 | 80.02 22 | 88.39 34 | 84.79 76 | 84.62 22 | 66.17 56 | 75.96 53 | 78.40 10 | 61.59 60 | 71.47 45 | 73.54 37 | 78.43 74 | 78.88 71 | 88.97 14 | 90.18 78 |
|
3Dnovator+ | | 70.16 6 | 77.87 42 | 77.29 52 | 78.55 30 | 89.25 29 | 88.32 43 | 80.09 48 | 67.95 44 | 74.89 56 | 71.83 26 | 52.05 91 | 70.68 48 | 76.27 24 | 82.27 42 | 82.04 36 | 85.92 83 | 90.77 71 |
|
CLD-MVS | | | 77.36 47 | 77.29 52 | 77.45 37 | 82.21 60 | 88.11 46 | 81.92 35 | 68.96 39 | 77.97 47 | 69.62 35 | 62.08 58 | 59.44 89 | 73.57 36 | 81.75 48 | 81.27 50 | 88.41 30 | 90.39 75 |
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
CPTT-MVS | | | 75.43 55 | 77.13 54 | 73.44 58 | 81.43 65 | 82.55 93 | 80.96 45 | 64.35 66 | 77.95 48 | 61.39 57 | 69.20 41 | 70.94 47 | 69.38 68 | 73.89 116 | 73.32 131 | 83.14 147 | 92.06 57 |
|
TSAR-MVS + COLMAP | | | 73.09 65 | 76.86 55 | 68.71 87 | 74.97 111 | 82.49 94 | 74.51 86 | 61.83 90 | 83.16 28 | 49.31 102 | 82.22 21 | 51.62 125 | 68.94 71 | 78.76 72 | 75.52 105 | 82.67 152 | 84.23 130 |
|
3Dnovator | | 70.49 5 | 78.42 39 | 76.77 56 | 80.35 20 | 91.43 14 | 90.27 25 | 81.84 36 | 70.79 26 | 72.10 57 | 71.95 24 | 50.02 97 | 67.86 56 | 77.47 18 | 82.89 31 | 84.24 19 | 88.61 24 | 89.99 79 |
|
MVS_Test | | | 75.22 56 | 76.69 57 | 73.51 57 | 79.30 77 | 88.82 37 | 80.06 49 | 58.74 111 | 69.77 64 | 57.50 74 | 59.78 69 | 61.35 78 | 75.31 25 | 82.07 44 | 83.60 25 | 90.13 5 | 91.41 63 |
|
CANet_DTU | | | 72.84 67 | 76.63 58 | 68.43 90 | 76.81 97 | 86.62 62 | 75.54 74 | 54.71 156 | 72.06 58 | 43.54 123 | 67.11 45 | 58.46 93 | 72.40 44 | 81.13 55 | 80.82 60 | 87.57 48 | 90.21 77 |
|
PCF-MVS | | 70.85 4 | 75.73 54 | 76.55 59 | 74.78 54 | 83.67 54 | 88.04 49 | 81.47 38 | 70.62 29 | 69.24 68 | 57.52 73 | 60.59 66 | 69.18 52 | 70.65 56 | 77.11 84 | 77.65 82 | 84.75 120 | 94.01 39 |
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
EIA-MVS | | | 73.48 64 | 76.05 60 | 70.47 76 | 78.12 83 | 87.21 57 | 71.78 98 | 60.63 104 | 69.66 65 | 55.56 80 | 64.86 52 | 60.69 81 | 69.53 64 | 77.35 83 | 78.59 72 | 87.22 59 | 94.01 39 |
|
MVS_111021_LR | | | 74.26 61 | 75.95 61 | 72.27 65 | 79.43 76 | 85.04 74 | 72.71 93 | 65.27 63 | 70.92 60 | 63.58 48 | 69.32 40 | 60.31 85 | 69.43 66 | 77.01 85 | 77.15 85 | 83.22 144 | 91.93 59 |
|
OMC-MVS | | | 74.03 62 | 75.82 62 | 71.95 67 | 79.56 74 | 80.98 107 | 75.35 77 | 63.21 75 | 84.48 25 | 61.83 55 | 61.54 61 | 66.89 57 | 69.41 67 | 76.60 88 | 74.07 121 | 82.34 158 | 86.15 115 |
|
casdiffmvs | | | 75.20 57 | 75.69 63 | 74.63 55 | 79.26 78 | 89.07 35 | 78.47 55 | 63.59 73 | 67.05 71 | 63.79 47 | 55.72 76 | 60.32 84 | 73.58 35 | 82.16 43 | 81.78 40 | 89.08 13 | 93.72 43 |
|
diffmvs | | | 74.32 60 | 75.42 64 | 73.04 61 | 75.60 107 | 87.27 56 | 78.20 56 | 62.96 78 | 68.66 70 | 61.89 54 | 59.79 68 | 59.84 87 | 71.80 48 | 78.30 77 | 79.87 64 | 87.80 42 | 94.23 36 |
|
PMMVS | | | 70.37 82 | 75.06 65 | 64.90 108 | 71.46 126 | 81.88 95 | 64.10 147 | 55.64 143 | 71.31 59 | 46.69 109 | 70.69 39 | 58.56 90 | 69.53 64 | 79.03 69 | 75.63 102 | 81.96 161 | 88.32 99 |
|
DI_MVS_plusplus_trai | | | 73.94 63 | 74.85 66 | 72.88 62 | 76.57 99 | 86.80 60 | 80.41 47 | 61.47 94 | 62.35 85 | 59.44 67 | 47.91 103 | 68.12 53 | 72.24 45 | 82.84 33 | 81.50 45 | 87.15 62 | 94.42 32 |
|
ET-MVSNet_ETH3D | | | 71.38 76 | 74.70 67 | 67.51 96 | 51.61 201 | 88.06 48 | 77.29 65 | 60.95 102 | 63.61 82 | 48.36 105 | 66.60 48 | 60.67 82 | 79.55 9 | 73.56 120 | 80.58 61 | 87.30 55 | 89.80 81 |
|
baseline | | | 72.89 66 | 74.46 68 | 71.07 71 | 75.99 103 | 87.50 55 | 74.57 81 | 60.49 105 | 70.72 61 | 57.60 72 | 60.63 65 | 60.97 80 | 70.79 55 | 75.27 101 | 76.33 94 | 86.94 64 | 89.79 82 |
|
OpenMVS | | 67.62 8 | 74.92 59 | 73.91 69 | 76.09 44 | 90.10 20 | 90.38 24 | 78.01 58 | 66.35 54 | 66.09 75 | 62.80 49 | 46.33 120 | 64.55 66 | 71.77 49 | 79.92 63 | 80.88 59 | 87.52 49 | 89.20 88 |
|
CostFormer | | | 72.18 70 | 73.90 70 | 70.18 78 | 79.47 75 | 86.19 69 | 76.94 67 | 48.62 174 | 66.07 76 | 60.40 65 | 54.14 85 | 65.82 61 | 67.98 74 | 75.84 96 | 76.41 93 | 87.67 45 | 92.83 51 |
|
AdaColmap | | | 76.23 53 | 73.55 71 | 79.35 25 | 89.38 27 | 85.00 75 | 79.99 50 | 73.04 20 | 76.60 52 | 71.17 27 | 55.18 78 | 57.99 98 | 77.87 16 | 76.82 87 | 76.82 88 | 84.67 122 | 86.45 112 |
|
PVSNet_Blended_VisFu | | | 71.76 73 | 73.54 72 | 69.69 80 | 79.01 79 | 87.16 58 | 72.05 95 | 61.80 91 | 56.46 106 | 59.66 66 | 53.88 87 | 62.48 70 | 59.08 124 | 81.17 53 | 78.90 70 | 86.53 71 | 94.74 28 |
|
TAPA-MVS | | 67.10 9 | 71.45 75 | 73.47 73 | 69.10 85 | 77.04 95 | 80.78 110 | 73.81 90 | 62.10 86 | 80.80 38 | 51.28 91 | 60.91 63 | 63.80 69 | 67.98 74 | 74.59 107 | 72.42 143 | 82.37 157 | 80.97 152 |
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
LGP-MVS_train | | | 72.02 72 | 73.18 74 | 70.67 75 | 82.13 61 | 80.26 115 | 79.58 51 | 63.04 77 | 70.09 62 | 51.98 88 | 65.06 51 | 55.62 109 | 62.49 101 | 75.97 95 | 76.32 95 | 84.80 119 | 88.93 91 |
|
baseline2 | | | 71.22 78 | 73.01 75 | 69.13 84 | 75.76 105 | 86.34 65 | 71.23 105 | 62.78 84 | 62.62 83 | 52.85 86 | 57.32 72 | 54.31 114 | 63.27 96 | 79.74 64 | 79.31 67 | 88.89 15 | 91.43 61 |
|
ACMP | | 68.86 7 | 72.15 71 | 72.25 76 | 72.03 66 | 80.96 67 | 80.87 109 | 77.93 59 | 64.13 68 | 69.29 66 | 60.79 63 | 64.04 53 | 53.54 120 | 63.91 91 | 73.74 119 | 75.27 106 | 84.45 127 | 88.98 90 |
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
baseline1 | | | 71.47 74 | 72.02 77 | 70.82 73 | 80.56 72 | 84.51 78 | 76.61 68 | 66.93 50 | 56.22 108 | 48.66 103 | 55.40 77 | 60.43 83 | 62.55 100 | 83.35 28 | 80.99 55 | 89.60 7 | 83.28 138 |
|
CHOSEN 1792x2688 | | | 72.55 69 | 71.98 78 | 73.22 60 | 86.57 46 | 92.41 9 | 75.63 71 | 66.77 51 | 62.08 86 | 52.32 87 | 30.27 186 | 50.74 128 | 66.14 82 | 86.22 11 | 85.41 7 | 91.90 1 | 96.75 12 |
|
IS_MVSNet | | | 67.29 101 | 71.98 78 | 61.82 135 | 76.92 96 | 84.32 83 | 65.90 143 | 58.22 114 | 55.75 112 | 39.22 145 | 54.51 82 | 62.47 71 | 45.99 170 | 78.83 71 | 78.52 74 | 84.70 121 | 89.47 85 |
|
FMVSNet3 | | | 70.41 81 | 71.89 80 | 68.68 88 | 70.89 132 | 79.42 122 | 75.63 71 | 60.97 99 | 65.32 77 | 51.06 92 | 47.37 108 | 62.05 72 | 64.90 87 | 82.49 36 | 82.27 35 | 88.64 23 | 84.34 129 |
|
UGNet | | | 67.57 98 | 71.69 81 | 62.76 128 | 69.88 135 | 82.58 92 | 66.43 140 | 58.64 112 | 54.71 120 | 51.87 89 | 61.74 59 | 62.01 75 | 45.46 172 | 74.78 106 | 74.99 107 | 84.24 130 | 91.02 67 |
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
test-LLR | | | 68.23 93 | 71.61 82 | 64.28 115 | 71.37 127 | 81.32 104 | 63.98 150 | 61.03 97 | 58.62 97 | 42.96 128 | 52.74 88 | 61.65 76 | 57.74 133 | 75.64 98 | 78.09 80 | 88.61 24 | 93.21 45 |
|
TESTMET0.1,1 | | | 67.38 100 | 71.61 82 | 62.45 131 | 66.05 160 | 81.32 104 | 63.98 150 | 55.36 148 | 58.62 97 | 42.96 128 | 52.74 88 | 61.65 76 | 57.74 133 | 75.64 98 | 78.09 80 | 88.61 24 | 93.21 45 |
|
Effi-MVS+ | | | 70.42 79 | 71.23 84 | 69.47 81 | 78.04 84 | 85.24 73 | 75.57 73 | 58.88 109 | 59.56 94 | 48.47 104 | 52.73 90 | 54.94 112 | 69.69 62 | 78.34 76 | 77.06 86 | 86.18 76 | 90.73 73 |
|
EPP-MVSNet | | | 67.58 97 | 71.10 85 | 63.48 121 | 75.71 106 | 83.35 88 | 66.85 136 | 57.83 122 | 53.02 124 | 41.15 137 | 55.82 74 | 67.89 55 | 56.01 139 | 74.40 109 | 72.92 139 | 83.33 142 | 90.30 76 |
|
thisisatest0530 | | | 68.38 92 | 70.98 86 | 65.35 104 | 72.61 120 | 84.42 79 | 68.21 126 | 57.98 117 | 59.77 93 | 50.80 95 | 54.63 80 | 58.48 92 | 57.92 130 | 76.99 86 | 77.47 83 | 84.60 123 | 85.07 123 |
|
OPM-MVS | | | 72.74 68 | 70.93 87 | 74.85 53 | 85.30 51 | 84.34 81 | 82.82 32 | 69.79 32 | 49.96 132 | 55.39 82 | 54.09 86 | 60.14 86 | 70.04 60 | 80.38 61 | 79.43 66 | 85.74 89 | 88.20 100 |
|
tttt0517 | | | 67.99 95 | 70.61 88 | 64.94 107 | 71.94 125 | 83.96 85 | 67.62 130 | 57.98 117 | 59.30 95 | 49.90 100 | 54.50 83 | 57.98 99 | 57.92 130 | 76.48 89 | 77.47 83 | 84.24 130 | 84.58 126 |
|
GBi-Net | | | 69.21 84 | 70.40 89 | 67.81 93 | 69.49 137 | 78.65 127 | 74.54 82 | 60.97 99 | 65.32 77 | 51.06 92 | 47.37 108 | 62.05 72 | 63.43 93 | 77.49 79 | 78.22 77 | 87.37 50 | 83.73 132 |
|
test1 | | | 69.21 84 | 70.40 89 | 67.81 93 | 69.49 137 | 78.65 127 | 74.54 82 | 60.97 99 | 65.32 77 | 51.06 92 | 47.37 108 | 62.05 72 | 63.43 93 | 77.49 79 | 78.22 77 | 87.37 50 | 83.73 132 |
|
CNLPA | | | 71.37 77 | 70.27 91 | 72.66 64 | 80.79 70 | 81.33 103 | 71.07 110 | 65.75 58 | 82.36 31 | 64.80 45 | 42.46 131 | 56.49 103 | 72.70 43 | 73.00 127 | 70.52 162 | 80.84 170 | 85.76 120 |
|
EPNet_dtu | | | 66.17 106 | 70.13 92 | 61.54 137 | 81.04 66 | 77.39 142 | 68.87 123 | 62.50 85 | 69.78 63 | 33.51 172 | 63.77 54 | 56.22 104 | 37.65 185 | 72.20 135 | 72.18 146 | 85.69 93 | 79.38 157 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
Vis-MVSNet | | | 65.53 111 | 69.83 93 | 60.52 141 | 70.80 133 | 84.59 77 | 66.37 142 | 55.47 147 | 48.40 139 | 40.62 141 | 57.67 71 | 58.43 94 | 45.37 173 | 77.49 79 | 76.24 96 | 84.47 126 | 85.99 118 |
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
test-mter | | | 64.06 122 | 69.24 94 | 58.01 156 | 59.07 188 | 77.40 141 | 59.13 172 | 48.11 177 | 55.64 113 | 39.18 146 | 51.56 93 | 58.54 91 | 55.38 141 | 73.52 121 | 76.00 98 | 87.22 59 | 92.05 58 |
|
DCV-MVSNet | | | 69.13 86 | 69.07 95 | 69.21 83 | 77.65 89 | 77.52 140 | 74.68 80 | 57.85 121 | 54.92 117 | 55.34 83 | 55.74 75 | 55.56 110 | 66.35 81 | 75.05 102 | 76.56 91 | 83.35 141 | 88.13 101 |
|
MS-PatchMatch | | | 70.34 83 | 69.00 96 | 71.91 68 | 85.20 52 | 85.35 72 | 77.84 61 | 61.77 92 | 58.01 100 | 55.40 81 | 41.26 138 | 58.34 95 | 61.69 105 | 81.70 49 | 78.29 76 | 89.56 8 | 80.02 155 |
|
IB-MVS | | 64.48 11 | 69.02 87 | 68.97 97 | 69.09 86 | 81.75 63 | 89.01 36 | 64.50 145 | 64.91 64 | 56.65 104 | 62.59 51 | 47.89 104 | 45.23 139 | 51.99 149 | 69.18 164 | 81.88 39 | 88.77 18 | 92.93 49 |
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
Vis-MVSNet (Re-imp) | | | 62.25 136 | 68.74 98 | 54.68 173 | 73.70 114 | 78.74 126 | 56.51 178 | 57.49 126 | 55.22 114 | 26.86 185 | 54.56 81 | 61.35 78 | 31.06 187 | 73.10 124 | 74.90 108 | 82.49 155 | 83.31 136 |
|
FMVSNet2 | | | 68.06 94 | 68.57 99 | 67.45 97 | 69.49 137 | 78.65 127 | 74.54 82 | 60.23 108 | 56.29 107 | 49.64 101 | 42.13 134 | 57.08 101 | 63.43 93 | 81.15 54 | 80.99 55 | 87.37 50 | 83.73 132 |
|
ACMM | | 66.70 10 | 70.42 79 | 68.49 100 | 72.67 63 | 82.85 55 | 77.76 138 | 77.70 62 | 64.76 65 | 64.61 81 | 60.74 64 | 49.29 98 | 53.97 117 | 65.86 83 | 74.97 103 | 75.57 104 | 84.13 134 | 83.29 137 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
FC-MVSNet-train | | | 68.83 88 | 68.29 101 | 69.47 81 | 78.35 81 | 79.94 116 | 64.72 144 | 66.38 53 | 54.96 116 | 54.51 84 | 56.75 73 | 47.91 134 | 66.91 80 | 75.57 100 | 75.75 100 | 85.92 83 | 87.12 106 |
|
HyFIR lowres test | | | 68.39 91 | 68.28 102 | 68.52 89 | 80.85 68 | 88.11 46 | 71.08 109 | 58.09 116 | 54.87 119 | 47.80 108 | 27.55 192 | 55.80 107 | 64.97 86 | 79.11 68 | 79.14 69 | 88.31 32 | 93.35 44 |
|
UA-Net | | | 64.62 116 | 68.23 103 | 60.42 142 | 77.53 91 | 81.38 102 | 60.08 169 | 57.47 127 | 47.01 143 | 44.75 118 | 60.68 64 | 71.32 46 | 41.84 180 | 73.27 122 | 72.25 145 | 80.83 171 | 71.68 182 |
|
tpmrst | | | 67.15 102 | 68.12 104 | 66.03 102 | 76.21 101 | 80.98 107 | 71.27 104 | 45.05 185 | 60.69 91 | 50.63 96 | 46.95 116 | 54.15 116 | 65.30 84 | 71.80 141 | 71.77 147 | 87.72 43 | 90.48 74 |
|
PatchmatchNet | | | 65.43 112 | 67.71 105 | 62.78 127 | 73.49 117 | 82.83 90 | 66.42 141 | 45.40 184 | 60.40 92 | 45.27 114 | 49.22 99 | 57.60 100 | 60.01 116 | 70.61 150 | 71.38 154 | 86.08 80 | 81.91 149 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
Fast-Effi-MVS+ | | | 67.59 96 | 67.56 106 | 67.62 95 | 73.67 115 | 81.14 106 | 71.12 108 | 54.79 155 | 58.88 96 | 50.61 97 | 46.70 118 | 47.05 135 | 69.12 70 | 76.06 94 | 76.44 92 | 86.43 72 | 86.65 110 |
|
EPMVS | | | 66.21 105 | 67.49 107 | 64.73 109 | 75.81 104 | 84.20 84 | 68.94 122 | 44.37 189 | 61.55 87 | 48.07 107 | 49.21 100 | 54.87 113 | 62.88 97 | 71.82 140 | 71.40 153 | 88.28 33 | 79.37 158 |
|
MDTV_nov1_ep13 | | | 65.21 113 | 67.28 108 | 62.79 126 | 70.91 131 | 81.72 96 | 69.28 121 | 49.50 173 | 58.08 99 | 43.94 122 | 50.50 96 | 56.02 105 | 58.86 125 | 70.72 149 | 73.37 129 | 84.24 130 | 80.52 154 |
|
tpm cat1 | | | 67.47 99 | 67.05 109 | 67.98 92 | 76.63 98 | 81.51 101 | 74.49 87 | 47.65 179 | 61.18 88 | 61.12 59 | 42.51 130 | 53.02 123 | 64.74 89 | 70.11 158 | 71.50 149 | 83.22 144 | 89.49 84 |
|
SCA | | | 63.90 123 | 66.67 110 | 60.66 140 | 73.75 113 | 71.78 174 | 59.87 170 | 43.66 190 | 61.13 89 | 45.03 116 | 51.64 92 | 59.45 88 | 57.92 130 | 70.96 147 | 70.80 158 | 83.71 138 | 80.92 153 |
|
PLC | | 64.00 12 | 68.54 89 | 66.66 111 | 70.74 74 | 80.28 73 | 74.88 159 | 72.64 94 | 63.70 72 | 69.26 67 | 55.71 78 | 47.24 111 | 55.31 111 | 70.42 57 | 72.05 139 | 70.67 160 | 81.66 164 | 77.19 163 |
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
CHOSEN 280x420 | | | 62.23 138 | 66.57 112 | 57.17 164 | 59.88 185 | 68.92 182 | 61.20 166 | 42.28 196 | 54.17 121 | 39.57 142 | 47.78 105 | 64.97 64 | 62.68 98 | 73.85 117 | 69.52 167 | 77.43 186 | 86.75 109 |
|
IterMVS-LS | | | 66.08 107 | 66.56 113 | 65.51 103 | 73.67 115 | 74.88 159 | 70.89 112 | 53.55 161 | 50.42 130 | 48.32 106 | 50.59 95 | 55.66 108 | 61.83 104 | 73.93 115 | 74.42 117 | 84.82 118 | 86.01 117 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
Anonymous20231211 | | | 68.44 90 | 66.37 114 | 70.86 72 | 77.58 90 | 83.49 87 | 75.15 78 | 61.89 89 | 52.54 125 | 58.50 68 | 28.89 188 | 56.78 102 | 69.29 69 | 74.96 105 | 76.61 89 | 82.73 150 | 91.36 64 |
|
Anonymous202405211 | | | | 66.35 115 | | 78.00 85 | 84.41 80 | 74.85 79 | 63.18 76 | 51.00 128 | | 31.37 183 | 53.73 119 | 69.67 63 | 76.28 90 | 76.84 87 | 83.21 146 | 90.85 68 |
|
gg-mvs-nofinetune | | | 62.34 133 | 66.19 116 | 57.86 158 | 76.15 102 | 88.61 39 | 71.18 107 | 41.24 202 | 25.74 204 | 13.16 206 | 22.91 199 | 63.97 68 | 54.52 144 | 85.06 15 | 85.25 10 | 90.92 3 | 91.78 60 |
|
thres100view900 | | | 67.14 103 | 66.09 117 | 68.38 91 | 77.70 87 | 83.84 86 | 74.52 85 | 66.33 55 | 49.16 136 | 43.40 125 | 43.24 123 | 41.34 147 | 62.59 99 | 79.31 67 | 75.92 99 | 85.73 90 | 89.81 80 |
|
tpm | | | 64.85 115 | 66.02 118 | 63.48 121 | 74.52 112 | 78.38 130 | 70.98 111 | 44.99 187 | 51.61 127 | 43.28 127 | 47.66 106 | 53.18 121 | 60.57 111 | 70.58 152 | 71.30 156 | 86.54 70 | 89.45 86 |
|
CDS-MVSNet | | | 64.22 120 | 65.89 119 | 62.28 133 | 70.05 134 | 80.59 111 | 69.91 117 | 57.98 117 | 43.53 159 | 46.58 110 | 48.22 102 | 50.76 127 | 46.45 167 | 75.68 97 | 76.08 97 | 82.70 151 | 86.34 114 |
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
GA-MVS | | | 64.55 118 | 65.76 120 | 63.12 123 | 69.68 136 | 81.56 100 | 69.59 118 | 58.16 115 | 45.23 153 | 35.58 165 | 47.01 115 | 41.82 146 | 59.41 120 | 79.62 65 | 78.54 73 | 86.32 73 | 86.56 111 |
|
tfpn200view9 | | | 65.90 108 | 64.96 121 | 67.00 99 | 77.70 87 | 81.58 99 | 71.71 100 | 62.94 81 | 49.16 136 | 43.40 125 | 43.24 123 | 41.34 147 | 61.42 107 | 76.24 91 | 74.63 113 | 84.84 115 | 88.52 97 |
|
CR-MVSNet | | | 62.31 134 | 64.75 122 | 59.47 148 | 68.63 143 | 71.29 176 | 67.53 131 | 43.18 192 | 55.83 110 | 41.40 134 | 41.04 140 | 55.85 106 | 57.29 136 | 72.76 130 | 73.27 133 | 78.77 182 | 83.23 139 |
|
thres200 | | | 65.58 109 | 64.74 123 | 66.56 100 | 77.52 92 | 81.61 97 | 73.44 91 | 62.95 79 | 46.23 148 | 42.45 132 | 42.76 125 | 41.18 149 | 58.12 128 | 76.24 91 | 75.59 103 | 84.89 113 | 89.58 83 |
|
Fast-Effi-MVS+-dtu | | | 63.05 129 | 64.72 124 | 61.11 138 | 71.21 130 | 76.81 146 | 70.72 113 | 43.13 194 | 52.51 126 | 35.34 166 | 46.55 119 | 46.36 136 | 61.40 108 | 71.57 144 | 71.44 151 | 84.84 115 | 87.79 103 |
|
thres400 | | | 65.18 114 | 64.44 125 | 66.04 101 | 76.40 100 | 82.63 91 | 71.52 102 | 64.27 67 | 44.93 154 | 40.69 140 | 41.86 135 | 40.79 153 | 58.12 128 | 77.67 78 | 74.64 112 | 85.26 103 | 88.56 96 |
|
Effi-MVS+-dtu | | | 64.58 117 | 64.08 126 | 65.16 105 | 73.04 119 | 75.17 158 | 70.68 114 | 56.23 137 | 54.12 122 | 44.71 119 | 47.42 107 | 51.10 126 | 63.82 92 | 68.08 167 | 66.32 178 | 82.47 156 | 86.38 113 |
|
PatchT | | | 60.46 150 | 63.85 127 | 56.51 167 | 65.95 162 | 75.68 155 | 47.34 191 | 41.39 199 | 53.89 123 | 41.40 134 | 37.84 156 | 50.30 129 | 57.29 136 | 72.76 130 | 73.27 133 | 85.67 94 | 83.23 139 |
|
IterMVS | | | 61.87 142 | 63.55 128 | 59.90 144 | 67.29 153 | 72.20 171 | 67.34 134 | 48.56 175 | 47.48 142 | 37.86 154 | 47.07 113 | 48.27 131 | 54.08 145 | 72.12 137 | 73.71 124 | 84.30 129 | 83.99 131 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
UniMVSNet_NR-MVSNet | | | 62.30 135 | 63.51 129 | 60.89 139 | 69.48 140 | 77.83 136 | 64.07 148 | 63.94 69 | 50.03 131 | 31.17 177 | 44.82 121 | 41.12 150 | 51.37 152 | 71.02 146 | 74.81 110 | 85.30 102 | 84.95 124 |
|
test_part1 | | | 66.32 104 | 63.35 130 | 69.77 79 | 77.40 93 | 78.35 131 | 77.85 60 | 56.25 136 | 44.52 155 | 62.15 53 | 33.05 177 | 53.91 118 | 62.38 103 | 72.19 136 | 74.65 111 | 82.59 153 | 86.81 108 |
|
dps | | | 64.08 121 | 63.22 131 | 65.08 106 | 75.27 109 | 79.65 119 | 66.68 138 | 46.63 183 | 56.94 102 | 55.67 79 | 43.96 122 | 43.63 144 | 64.00 90 | 69.50 163 | 69.82 164 | 82.25 159 | 79.02 159 |
|
thres600view7 | | | 63.77 124 | 63.14 132 | 64.51 111 | 75.49 108 | 81.61 97 | 69.59 118 | 62.95 79 | 43.96 158 | 38.90 147 | 41.09 139 | 40.24 158 | 55.25 142 | 76.24 91 | 71.54 148 | 84.89 113 | 87.30 105 |
|
FMVSNet1 | | | 63.48 126 | 63.07 133 | 63.97 117 | 65.31 165 | 76.37 149 | 71.77 99 | 57.90 120 | 43.32 160 | 45.66 112 | 35.06 174 | 49.43 130 | 58.57 126 | 77.49 79 | 78.22 77 | 84.59 124 | 81.60 151 |
|
IterMVS-SCA-FT | | | 60.21 152 | 62.97 134 | 57.00 165 | 66.64 157 | 71.84 172 | 67.53 131 | 46.93 182 | 47.56 141 | 36.77 159 | 46.85 117 | 48.21 132 | 52.51 148 | 70.36 155 | 72.40 144 | 71.63 200 | 83.53 135 |
|
V42 | | | 62.86 132 | 62.97 134 | 62.74 129 | 60.84 182 | 78.99 125 | 71.46 103 | 57.13 131 | 46.85 144 | 44.28 121 | 38.87 149 | 40.73 155 | 57.63 135 | 72.60 133 | 74.14 119 | 85.09 108 | 88.63 95 |
|
UniMVSNet (Re) | | | 60.62 149 | 62.93 136 | 57.92 157 | 67.64 150 | 77.90 135 | 61.75 163 | 61.24 96 | 49.83 133 | 29.80 181 | 42.57 128 | 40.62 156 | 43.36 176 | 70.49 154 | 73.27 133 | 83.76 136 | 85.81 119 |
|
v2v482 | | | 63.68 125 | 62.85 137 | 64.65 110 | 68.01 146 | 80.46 113 | 71.90 96 | 57.60 124 | 44.26 156 | 42.82 130 | 39.80 147 | 38.62 163 | 61.56 106 | 73.06 125 | 74.86 109 | 86.03 81 | 88.90 93 |
|
RPMNet | | | 58.63 162 | 62.80 138 | 53.76 177 | 67.59 151 | 71.29 176 | 54.60 181 | 38.13 204 | 55.83 110 | 35.70 164 | 41.58 137 | 53.04 122 | 47.89 161 | 66.10 171 | 67.38 171 | 78.65 184 | 84.40 128 |
|
v8 | | | 63.44 127 | 62.58 139 | 64.43 112 | 68.28 145 | 78.07 133 | 71.82 97 | 54.85 153 | 46.70 146 | 45.20 115 | 39.40 148 | 40.91 152 | 60.54 112 | 72.85 129 | 74.39 118 | 85.92 83 | 85.76 120 |
|
pmmvs4 | | | 63.14 128 | 62.46 140 | 63.94 118 | 66.03 161 | 76.40 148 | 66.82 137 | 57.60 124 | 56.74 103 | 50.26 99 | 40.81 142 | 37.51 166 | 59.26 122 | 71.75 142 | 71.48 150 | 83.68 139 | 82.53 143 |
|
v1144 | | | 63.00 130 | 62.39 141 | 63.70 120 | 67.72 149 | 80.27 114 | 71.23 105 | 56.40 133 | 42.51 161 | 40.81 139 | 38.12 155 | 37.73 164 | 60.42 114 | 74.46 108 | 74.55 115 | 85.64 98 | 89.12 89 |
|
v10 | | | 63.00 130 | 62.22 142 | 63.90 119 | 67.88 148 | 77.78 137 | 71.59 101 | 54.34 157 | 45.37 152 | 42.76 131 | 38.53 150 | 38.93 161 | 61.05 110 | 74.39 110 | 74.52 116 | 85.75 87 | 86.04 116 |
|
LS3D | | | 64.54 119 | 62.14 143 | 67.34 98 | 80.85 68 | 75.79 153 | 69.99 115 | 65.87 57 | 60.77 90 | 44.35 120 | 42.43 132 | 45.95 138 | 65.01 85 | 69.88 159 | 68.69 169 | 77.97 185 | 71.43 184 |
|
NR-MVSNet | | | 61.08 147 | 62.09 144 | 59.90 144 | 71.96 124 | 75.87 151 | 63.60 154 | 61.96 87 | 49.31 134 | 27.95 182 | 42.76 125 | 33.85 187 | 48.82 159 | 74.35 111 | 74.05 122 | 85.13 105 | 84.45 127 |
|
DU-MVS | | | 60.87 148 | 61.82 145 | 59.76 146 | 66.69 155 | 75.87 151 | 64.07 148 | 61.96 87 | 49.31 134 | 31.17 177 | 42.76 125 | 36.95 169 | 51.37 152 | 69.67 161 | 73.20 136 | 83.30 143 | 84.95 124 |
|
v1192 | | | 62.25 136 | 61.64 146 | 62.96 124 | 66.88 154 | 79.72 118 | 69.96 116 | 55.77 141 | 41.58 166 | 39.42 143 | 37.05 160 | 35.96 177 | 60.50 113 | 74.30 113 | 74.09 120 | 85.24 104 | 88.76 94 |
|
MSDG | | | 65.57 110 | 61.57 147 | 70.24 77 | 82.02 62 | 76.47 147 | 74.46 88 | 68.73 41 | 56.52 105 | 50.33 98 | 38.47 151 | 41.10 151 | 62.42 102 | 72.12 137 | 72.94 138 | 83.47 140 | 73.37 177 |
|
v144192 | | | 62.05 140 | 61.46 148 | 62.73 130 | 66.59 158 | 79.87 117 | 69.30 120 | 55.88 139 | 41.50 168 | 39.41 144 | 37.23 158 | 36.45 172 | 59.62 118 | 72.69 132 | 73.51 126 | 85.61 99 | 88.93 91 |
|
TranMVSNet+NR-MVSNet | | | 60.38 151 | 61.30 149 | 59.30 150 | 68.34 144 | 75.57 157 | 63.38 157 | 63.78 71 | 46.74 145 | 27.73 183 | 42.56 129 | 36.84 170 | 47.66 162 | 70.36 155 | 74.59 114 | 84.91 112 | 82.46 144 |
|
v148 | | | 62.00 141 | 61.19 150 | 62.96 124 | 67.46 152 | 79.49 121 | 67.87 127 | 57.66 123 | 42.30 162 | 45.02 117 | 38.20 154 | 38.89 162 | 54.77 143 | 69.83 160 | 72.60 142 | 84.96 109 | 87.01 107 |
|
v1921920 | | | 61.66 143 | 61.10 151 | 62.31 132 | 66.32 159 | 79.57 120 | 68.41 125 | 55.49 146 | 41.03 169 | 38.69 148 | 36.64 166 | 35.27 180 | 59.60 119 | 73.23 123 | 73.41 128 | 85.37 101 | 88.51 98 |
|
TAMVS | | | 58.86 159 | 60.91 152 | 56.47 168 | 62.38 179 | 77.57 139 | 58.97 173 | 52.98 164 | 38.76 177 | 36.17 161 | 42.26 133 | 47.94 133 | 46.45 167 | 70.23 157 | 70.79 159 | 81.86 162 | 78.82 160 |
|
PatchMatch-RL | | | 62.22 139 | 60.69 153 | 64.01 116 | 68.74 142 | 75.75 154 | 59.27 171 | 60.35 106 | 56.09 109 | 53.80 85 | 47.06 114 | 36.45 172 | 64.80 88 | 68.22 166 | 67.22 173 | 77.10 187 | 74.02 172 |
|
thisisatest0515 | | | 59.37 156 | 60.68 154 | 57.84 159 | 64.39 169 | 75.65 156 | 58.56 174 | 53.86 159 | 41.55 167 | 42.12 133 | 40.40 144 | 39.59 159 | 47.09 165 | 71.69 143 | 73.79 123 | 81.02 169 | 82.08 148 |
|
v1240 | | | 61.09 146 | 60.55 155 | 61.72 136 | 65.92 163 | 79.28 123 | 67.16 135 | 54.91 152 | 39.79 174 | 38.10 151 | 36.08 168 | 34.64 182 | 59.15 123 | 72.86 128 | 73.36 130 | 85.10 106 | 87.84 102 |
|
Baseline_NR-MVSNet | | | 59.47 155 | 60.28 156 | 58.54 155 | 66.69 155 | 73.90 165 | 61.63 164 | 62.90 82 | 49.15 138 | 26.87 184 | 35.18 173 | 37.62 165 | 48.20 160 | 69.67 161 | 73.61 125 | 84.92 110 | 82.82 142 |
|
pmmvs5 | | | 59.72 153 | 60.24 157 | 59.11 152 | 62.77 177 | 77.33 143 | 63.17 158 | 54.00 158 | 40.21 172 | 37.23 155 | 40.41 143 | 35.99 176 | 51.75 150 | 72.55 134 | 72.74 141 | 85.72 92 | 82.45 145 |
|
FMVSNet5 | | | 58.86 159 | 60.24 157 | 57.25 163 | 52.66 200 | 66.25 188 | 63.77 153 | 52.86 166 | 57.85 101 | 37.92 153 | 36.12 167 | 52.22 124 | 51.37 152 | 70.88 148 | 71.43 152 | 84.92 110 | 66.91 191 |
|
USDC | | | 59.69 154 | 60.03 159 | 59.28 151 | 64.04 170 | 71.84 172 | 63.15 159 | 55.36 148 | 54.90 118 | 35.02 167 | 48.34 101 | 29.79 197 | 58.16 127 | 70.60 151 | 71.33 155 | 79.99 175 | 73.42 176 |
|
test0.0.03 1 | | | 57.35 168 | 59.89 160 | 54.38 175 | 71.37 127 | 73.45 167 | 52.71 183 | 61.03 97 | 46.11 149 | 26.33 186 | 41.73 136 | 44.08 142 | 29.72 189 | 71.43 145 | 70.90 157 | 85.10 106 | 71.56 183 |
|
MIMVSNet | | | 57.78 166 | 59.71 161 | 55.53 170 | 54.79 196 | 77.10 144 | 63.89 152 | 45.02 186 | 46.59 147 | 36.79 158 | 28.36 190 | 40.77 154 | 45.84 171 | 74.97 103 | 76.58 90 | 86.87 66 | 73.60 175 |
|
pm-mvs1 | | | 59.21 157 | 59.58 162 | 58.77 154 | 67.97 147 | 77.07 145 | 64.12 146 | 57.20 129 | 34.73 189 | 36.86 156 | 35.34 171 | 40.54 157 | 43.34 177 | 74.32 112 | 73.30 132 | 83.13 148 | 81.77 150 |
|
ACMH | | 59.42 14 | 61.59 144 | 59.22 163 | 64.36 114 | 78.92 80 | 78.26 132 | 67.65 129 | 67.48 47 | 39.81 173 | 30.98 179 | 38.25 153 | 34.59 183 | 61.37 109 | 70.55 153 | 73.47 127 | 79.74 177 | 79.59 156 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
ADS-MVSNet | | | 58.40 163 | 59.16 164 | 57.52 161 | 65.80 164 | 74.57 163 | 60.26 167 | 40.17 203 | 50.51 129 | 38.01 152 | 40.11 146 | 44.72 140 | 59.36 121 | 64.91 176 | 66.55 176 | 81.53 165 | 72.72 180 |
|
ACMH+ | | 60.36 13 | 61.16 145 | 58.38 165 | 64.42 113 | 77.37 94 | 74.35 164 | 68.45 124 | 62.81 83 | 45.86 150 | 38.48 149 | 35.71 169 | 37.35 167 | 59.81 117 | 67.24 169 | 69.80 166 | 79.58 178 | 78.32 161 |
|
CVMVSNet | | | 54.92 175 | 58.16 166 | 51.13 182 | 62.61 178 | 68.44 183 | 55.45 180 | 52.38 167 | 42.28 163 | 21.45 193 | 47.10 112 | 46.10 137 | 37.96 184 | 64.42 181 | 63.81 185 | 76.92 188 | 75.01 169 |
|
RPSCF | | | 55.07 172 | 58.06 167 | 51.57 179 | 48.87 204 | 58.95 201 | 53.68 182 | 41.26 201 | 62.42 84 | 45.88 111 | 54.38 84 | 54.26 115 | 53.75 146 | 57.15 192 | 53.53 202 | 66.01 202 | 65.75 193 |
|
EG-PatchMatch MVS | | | 58.73 161 | 58.03 168 | 59.55 147 | 72.32 121 | 80.49 112 | 63.44 156 | 55.55 145 | 32.49 193 | 38.31 150 | 28.87 189 | 37.22 168 | 42.84 178 | 74.30 113 | 75.70 101 | 84.84 115 | 77.14 164 |
|
gm-plane-assit | | | 54.99 173 | 57.99 169 | 51.49 181 | 69.27 141 | 54.42 205 | 32.32 208 | 42.59 195 | 21.18 208 | 13.71 204 | 23.61 196 | 43.84 143 | 60.21 115 | 87.09 5 | 86.55 5 | 90.81 4 | 89.28 87 |
|
anonymousdsp | | | 54.99 173 | 57.24 170 | 52.36 178 | 53.82 198 | 71.75 175 | 51.49 184 | 48.14 176 | 33.74 190 | 33.66 171 | 38.34 152 | 36.13 175 | 47.54 163 | 64.53 180 | 70.60 161 | 79.53 179 | 85.59 122 |
|
TransMVSNet (Re) | | | 57.83 164 | 56.90 171 | 58.91 153 | 72.26 122 | 74.69 162 | 63.57 155 | 61.42 95 | 32.30 194 | 32.65 173 | 33.97 175 | 35.96 177 | 39.17 183 | 73.84 118 | 72.84 140 | 84.37 128 | 74.69 170 |
|
v7n | | | 57.04 169 | 56.64 172 | 57.52 161 | 62.85 176 | 74.75 161 | 61.76 162 | 51.80 169 | 35.58 188 | 36.02 163 | 32.33 180 | 33.61 188 | 50.16 157 | 67.73 168 | 70.34 163 | 82.51 154 | 82.12 147 |
|
tfpnnormal | | | 58.97 158 | 56.48 173 | 61.89 134 | 71.27 129 | 76.21 150 | 66.65 139 | 61.76 93 | 32.90 192 | 36.41 160 | 27.83 191 | 29.14 198 | 50.64 156 | 73.06 125 | 73.05 137 | 84.58 125 | 83.15 141 |
|
UniMVSNet_ETH3D | | | 57.83 164 | 56.46 174 | 59.43 149 | 63.24 174 | 73.22 168 | 67.70 128 | 55.58 144 | 36.17 184 | 36.84 157 | 32.64 178 | 35.14 181 | 51.50 151 | 65.81 172 | 69.81 165 | 81.73 163 | 82.44 146 |
|
CMPMVS | | 43.63 17 | 57.67 167 | 55.43 175 | 60.28 143 | 72.01 123 | 79.00 124 | 62.77 160 | 53.23 163 | 41.77 165 | 45.42 113 | 30.74 185 | 39.03 160 | 53.01 147 | 64.81 178 | 64.65 184 | 75.26 192 | 68.03 189 |
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
MDTV_nov1_ep13_2view | | | 54.47 177 | 54.61 176 | 54.30 176 | 60.50 183 | 73.82 166 | 57.92 175 | 43.38 191 | 39.43 176 | 32.51 174 | 33.23 176 | 34.05 185 | 47.26 164 | 62.36 184 | 66.21 179 | 84.24 130 | 73.19 178 |
|
WR-MVS | | | 51.02 184 | 54.56 177 | 46.90 191 | 63.84 171 | 69.23 181 | 44.78 198 | 56.38 134 | 38.19 178 | 14.19 202 | 37.38 157 | 36.82 171 | 22.39 198 | 60.14 187 | 66.20 180 | 79.81 176 | 73.95 174 |
|
FC-MVSNet-test | | | 47.24 194 | 54.37 178 | 38.93 200 | 59.49 187 | 58.25 203 | 34.48 207 | 53.36 162 | 45.66 151 | 6.66 212 | 50.62 94 | 42.02 145 | 16.62 206 | 58.39 188 | 61.21 192 | 62.99 204 | 64.40 195 |
|
pmmvs-eth3d | | | 55.20 170 | 53.95 179 | 56.65 166 | 57.34 194 | 67.77 184 | 57.54 176 | 53.74 160 | 40.93 170 | 41.09 138 | 31.19 184 | 29.10 199 | 49.07 158 | 65.54 173 | 67.28 172 | 81.14 167 | 75.81 165 |
|
pmmvs6 | | | 54.20 178 | 53.54 180 | 54.97 171 | 63.22 175 | 72.98 169 | 60.17 168 | 52.32 168 | 26.77 203 | 34.30 169 | 23.29 198 | 36.23 174 | 40.33 182 | 68.77 165 | 68.76 168 | 79.47 180 | 78.00 162 |
|
MVS-HIRNet | | | 53.86 179 | 53.02 181 | 54.85 172 | 60.30 184 | 72.36 170 | 44.63 199 | 42.20 197 | 39.45 175 | 43.47 124 | 21.66 202 | 34.00 186 | 55.47 140 | 65.42 174 | 67.16 174 | 83.02 149 | 71.08 185 |
|
PEN-MVS | | | 51.04 183 | 52.94 182 | 48.82 185 | 61.45 181 | 66.00 189 | 48.68 188 | 57.20 129 | 36.87 180 | 15.36 200 | 36.98 161 | 32.72 189 | 28.77 193 | 57.63 191 | 66.37 177 | 81.44 166 | 74.00 173 |
|
COLMAP_ROB | | 51.17 15 | 55.13 171 | 52.90 183 | 57.73 160 | 73.47 118 | 67.21 186 | 62.13 161 | 55.82 140 | 47.83 140 | 34.39 168 | 31.60 182 | 34.24 184 | 44.90 174 | 63.88 183 | 62.52 190 | 75.67 190 | 63.02 198 |
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
Anonymous20231206 | | | 52.23 182 | 52.80 184 | 51.56 180 | 64.70 168 | 69.41 180 | 51.01 185 | 58.60 113 | 36.63 181 | 22.44 192 | 21.80 201 | 31.42 193 | 30.52 188 | 66.79 170 | 67.83 170 | 82.10 160 | 75.73 166 |
|
WR-MVS_H | | | 49.62 189 | 52.63 185 | 46.11 194 | 58.80 189 | 67.58 185 | 46.14 196 | 54.94 150 | 36.51 182 | 13.63 205 | 36.75 164 | 35.67 179 | 22.10 199 | 56.43 195 | 62.76 189 | 81.06 168 | 72.73 179 |
|
CP-MVSNet | | | 50.57 185 | 52.60 186 | 48.21 188 | 58.77 190 | 65.82 190 | 48.17 189 | 56.29 135 | 37.41 179 | 16.59 197 | 37.14 159 | 31.95 191 | 29.21 190 | 56.60 194 | 63.71 186 | 80.22 173 | 75.56 167 |
|
PS-CasMVS | | | 50.17 186 | 52.02 187 | 48.02 189 | 58.60 191 | 65.54 191 | 48.04 190 | 56.19 138 | 36.42 183 | 16.42 199 | 35.68 170 | 31.33 194 | 28.85 192 | 56.42 196 | 63.54 187 | 80.01 174 | 75.18 168 |
|
DTE-MVSNet | | | 49.82 188 | 51.92 188 | 47.37 190 | 61.75 180 | 64.38 194 | 45.89 197 | 57.33 128 | 36.11 185 | 12.79 207 | 36.87 162 | 31.93 192 | 25.73 196 | 58.01 189 | 65.22 182 | 80.75 172 | 70.93 186 |
|
TDRefinement | | | 52.70 180 | 51.02 189 | 54.66 174 | 57.41 193 | 65.06 192 | 61.47 165 | 54.94 150 | 44.03 157 | 33.93 170 | 30.13 187 | 27.57 200 | 46.17 169 | 61.86 185 | 62.48 191 | 74.01 196 | 66.06 192 |
|
testgi | | | 48.51 192 | 50.53 190 | 46.16 193 | 64.78 166 | 67.15 187 | 41.54 201 | 54.81 154 | 29.12 199 | 17.03 196 | 32.07 181 | 31.98 190 | 20.15 202 | 65.26 175 | 67.00 175 | 78.67 183 | 61.10 202 |
|
PM-MVS | | | 50.11 187 | 50.38 191 | 49.80 183 | 47.23 206 | 62.08 199 | 50.91 186 | 44.84 188 | 41.90 164 | 36.10 162 | 35.22 172 | 26.05 204 | 46.83 166 | 57.64 190 | 55.42 201 | 72.90 197 | 74.32 171 |
|
TinyColmap | | | 52.66 181 | 50.09 192 | 55.65 169 | 59.72 186 | 64.02 196 | 57.15 177 | 52.96 165 | 40.28 171 | 32.51 174 | 32.42 179 | 20.97 208 | 56.65 138 | 63.95 182 | 65.15 183 | 74.91 193 | 63.87 196 |
|
LTVRE_ROB | | 47.26 16 | 49.41 190 | 49.91 193 | 48.82 185 | 64.76 167 | 69.79 179 | 49.05 187 | 47.12 181 | 20.36 210 | 16.52 198 | 36.65 165 | 26.96 201 | 50.76 155 | 60.47 186 | 63.16 188 | 64.73 203 | 72.00 181 |
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
SixPastTwentyTwo | | | 49.11 191 | 49.22 194 | 48.99 184 | 58.54 192 | 64.14 195 | 47.18 192 | 47.75 178 | 31.15 196 | 24.42 188 | 41.01 141 | 26.55 202 | 44.04 175 | 54.76 199 | 58.70 196 | 71.99 199 | 68.21 187 |
|
test20.03 | | | 47.23 195 | 48.69 195 | 45.53 195 | 63.28 173 | 64.39 193 | 41.01 202 | 56.93 132 | 29.16 198 | 15.21 201 | 23.90 195 | 30.76 196 | 17.51 205 | 64.63 179 | 65.26 181 | 79.21 181 | 62.71 199 |
|
EU-MVSNet | | | 44.84 196 | 47.85 196 | 41.32 199 | 49.26 203 | 56.59 204 | 43.07 200 | 47.64 180 | 33.03 191 | 13.82 203 | 36.78 163 | 30.99 195 | 24.37 197 | 53.80 200 | 55.57 200 | 69.78 201 | 68.21 187 |
|
N_pmnet | | | 47.67 193 | 47.00 197 | 48.45 187 | 54.72 197 | 62.78 197 | 46.95 193 | 51.25 170 | 36.01 186 | 26.09 187 | 26.59 194 | 25.93 205 | 35.50 186 | 55.67 198 | 59.01 194 | 76.22 189 | 63.04 197 |
|
MIMVSNet1 | | | 40.84 200 | 43.46 198 | 37.79 201 | 32.14 209 | 58.92 202 | 39.24 204 | 50.83 171 | 27.00 202 | 11.29 209 | 16.76 208 | 26.53 203 | 17.75 204 | 57.14 193 | 61.12 193 | 75.46 191 | 56.78 203 |
|
new-patchmatchnet | | | 42.21 198 | 42.97 199 | 41.33 198 | 53.05 199 | 59.89 200 | 39.38 203 | 49.61 172 | 28.26 201 | 12.10 208 | 22.17 200 | 21.54 207 | 19.22 203 | 50.96 201 | 56.04 199 | 74.61 195 | 61.92 200 |
|
ambc | | | | 42.30 200 | | 50.36 202 | 49.51 207 | 35.47 206 | | 32.04 195 | 23.53 189 | 17.36 205 | 8.95 215 | 29.06 191 | 64.88 177 | 56.26 198 | 61.29 205 | 67.12 190 |
|
pmmvs3 | | | 41.86 199 | 42.29 201 | 41.36 197 | 39.80 207 | 52.66 206 | 38.93 205 | 35.85 208 | 23.40 207 | 20.22 195 | 19.30 203 | 20.84 209 | 40.56 181 | 55.98 197 | 58.79 195 | 72.80 198 | 65.03 194 |
|
MDA-MVSNet-bldmvs | | | 44.15 197 | 42.27 202 | 46.34 192 | 38.34 208 | 62.31 198 | 46.28 194 | 55.74 142 | 29.83 197 | 20.98 194 | 27.11 193 | 16.45 213 | 41.98 179 | 41.11 206 | 57.47 197 | 74.72 194 | 61.65 201 |
|
FPMVS | | | 39.11 201 | 36.39 203 | 42.28 196 | 55.97 195 | 45.94 208 | 46.23 195 | 41.57 198 | 35.73 187 | 22.61 190 | 23.46 197 | 19.82 210 | 28.32 194 | 43.57 203 | 40.67 205 | 58.96 206 | 45.54 205 |
|
new_pmnet | | | 33.19 202 | 35.52 204 | 30.47 203 | 27.55 213 | 45.31 209 | 29.29 209 | 30.92 209 | 29.00 200 | 9.88 211 | 18.77 204 | 17.64 212 | 26.77 195 | 44.07 202 | 45.98 204 | 58.41 207 | 47.87 204 |
|
PMVS | | 27.44 18 | 32.08 203 | 29.07 205 | 35.60 202 | 48.33 205 | 24.79 211 | 26.97 210 | 41.34 200 | 20.45 209 | 22.50 191 | 17.11 207 | 18.64 211 | 20.44 201 | 41.99 205 | 38.06 206 | 54.02 208 | 42.44 206 |
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
Gipuma | | | 24.91 204 | 24.61 206 | 25.26 205 | 31.47 210 | 21.59 212 | 18.06 211 | 37.53 205 | 25.43 205 | 10.03 210 | 4.18 213 | 4.25 217 | 14.85 207 | 43.20 204 | 47.03 203 | 39.62 210 | 26.55 210 |
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
PMMVS2 | | | 20.45 205 | 22.31 207 | 18.27 208 | 20.52 214 | 26.73 210 | 14.85 213 | 28.43 211 | 13.69 211 | 0.79 217 | 10.35 209 | 9.10 214 | 3.83 212 | 27.64 208 | 32.87 207 | 41.17 209 | 35.81 207 |
|
MVE | | 15.98 19 | 14.37 208 | 16.36 208 | 12.04 210 | 7.72 216 | 20.24 213 | 5.90 217 | 29.05 210 | 8.28 214 | 3.92 214 | 4.72 212 | 2.42 218 | 9.57 210 | 18.89 210 | 31.46 208 | 16.07 215 | 28.53 209 |
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
E-PMN | | | 15.08 206 | 11.65 209 | 19.08 206 | 28.73 211 | 12.31 215 | 6.95 216 | 36.87 207 | 10.71 213 | 3.63 215 | 5.13 210 | 2.22 220 | 13.81 209 | 11.34 211 | 18.50 210 | 24.49 212 | 21.32 211 |
|
EMVS | | | 14.40 207 | 10.71 210 | 18.70 207 | 28.15 212 | 12.09 216 | 7.06 215 | 36.89 206 | 11.00 212 | 3.56 216 | 4.95 211 | 2.27 219 | 13.91 208 | 10.13 212 | 16.06 211 | 22.63 213 | 18.51 212 |
|
testmvs | | | 0.05 209 | 0.08 211 | 0.01 211 | 0.00 218 | 0.01 218 | 0.03 219 | 0.01 215 | 0.05 215 | 0.00 219 | 0.14 215 | 0.01 221 | 0.03 215 | 0.05 213 | 0.05 212 | 0.01 216 | 0.24 214 |
|
test123 | | | 0.05 209 | 0.08 211 | 0.01 211 | 0.00 218 | 0.01 218 | 0.01 220 | 0.00 216 | 0.05 215 | 0.00 219 | 0.16 214 | 0.00 222 | 0.04 213 | 0.02 214 | 0.05 212 | 0.00 217 | 0.26 213 |
|
uanet_test | | | 0.00 211 | 0.00 213 | 0.00 213 | 0.00 218 | 0.00 220 | 0.00 221 | 0.00 216 | 0.00 217 | 0.00 219 | 0.00 216 | 0.00 222 | 0.00 216 | 0.00 215 | 0.00 214 | 0.00 217 | 0.00 215 |
|
sosnet-low-res | | | 0.00 211 | 0.00 213 | 0.00 213 | 0.00 218 | 0.00 220 | 0.00 221 | 0.00 216 | 0.00 217 | 0.00 219 | 0.00 216 | 0.00 222 | 0.00 216 | 0.00 215 | 0.00 214 | 0.00 217 | 0.00 215 |
|
sosnet | | | 0.00 211 | 0.00 213 | 0.00 213 | 0.00 218 | 0.00 220 | 0.00 221 | 0.00 216 | 0.00 217 | 0.00 219 | 0.00 216 | 0.00 222 | 0.00 216 | 0.00 215 | 0.00 214 | 0.00 217 | 0.00 215 |
|
RE-MVS-def | | | | | | | | | | | 31.47 176 | | | | | | | |
|
9.14 | | | | | | | | | | | | | 84.47 6 | | | | | |
|
SR-MVS | | | | | | 86.33 47 | | | 67.54 46 | | | | 80.78 19 | | | | | |
|
our_test_3 | | | | | | 63.32 172 | 71.07 178 | 55.90 179 | | | | | | | | | | |
|
MTAPA | | | | | | | | | | | 78.32 11 | | 79.42 24 | | | | | |
|
MTMP | | | | | | | | | | | 76.04 16 | | 76.65 29 | | | | | |
|
Patchmatch-RL test | | | | | | | | 2.17 218 | | | | | | | | | | |
|
tmp_tt | | | | | 16.09 209 | 13.07 215 | 8.12 217 | 13.61 214 | 2.08 213 | 55.09 115 | 30.10 180 | 40.26 145 | 22.83 206 | 5.35 211 | 29.91 207 | 25.25 209 | 32.33 211 | |
|
XVS | | | | | | 82.43 56 | 86.27 66 | 75.70 69 | | | 61.07 60 | | 72.27 39 | | | | 85.67 94 | |
|
X-MVStestdata | | | | | | 82.43 56 | 86.27 66 | 75.70 69 | | | 61.07 60 | | 72.27 39 | | | | 85.67 94 | |
|
abl_6 | | | | | 79.06 29 | 89.68 24 | 92.14 12 | 77.70 62 | 69.68 33 | 86.87 19 | 71.88 25 | 74.29 35 | 80.06 22 | 76.56 22 | | | 88.84 16 | 95.82 13 |
|
mPP-MVS | | | | | | 86.96 42 | | | | | | | 70.61 49 | | | | | |
|
NP-MVS | | | | | | | | | | 81.60 36 | | | | | | | | |
|
Patchmtry | | | | | | | 78.06 134 | 67.53 131 | 43.18 192 | | 41.40 134 | | | | | | | |
|
DeepMVS_CX | | | | | | | 19.81 214 | 17.01 212 | 10.02 212 | 23.61 206 | 5.85 213 | 17.21 206 | 8.03 216 | 21.13 200 | 22.60 209 | | 21.42 214 | 30.01 208 |
|