This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorcourty.delive.electrofacadekickermeadowofficepipesplaygr.reliefrelief.terraceterrai.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort by
SED-MVS88.94 190.98 186.56 192.53 695.09 188.55 576.83 794.16 186.57 190.85 687.07 186.18 186.36 785.08 1288.67 2198.21 3
DVP-MVS88.07 290.73 284.97 491.98 995.01 287.86 976.88 693.90 285.15 290.11 886.90 279.46 1186.26 1084.67 1788.50 2898.25 2
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
DPE-MVS87.60 490.44 484.29 792.09 893.44 588.69 475.11 993.06 580.80 594.23 286.70 381.44 584.84 1783.52 2687.64 4697.28 5
SMA-MVScopyleft85.24 1188.27 881.72 1591.74 1190.71 2086.71 1273.16 1990.56 974.33 1983.07 1885.88 477.16 1986.28 985.58 687.23 5795.77 14
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
SD-MVS84.31 1586.96 1381.22 1688.98 3188.68 3885.65 1773.85 1589.09 1379.63 887.34 1284.84 573.71 3482.66 3481.60 4485.48 10094.51 31
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
9.1484.47 6
HPM-MVS++copyleft85.64 988.43 682.39 1292.65 490.24 2685.83 1674.21 1190.68 875.63 1886.77 1384.15 778.68 1586.33 885.26 987.32 5395.60 18
TSAR-MVS + GP.82.27 2385.98 1877.94 3380.72 7188.25 4481.12 4367.71 4587.10 1673.31 2185.23 1583.68 876.64 2180.43 6081.47 4688.15 3795.66 17
SF-MVS87.30 588.71 585.64 294.57 194.55 391.01 179.94 189.15 1179.85 692.37 383.29 979.75 783.52 2582.72 3188.75 1995.37 23
MSP-MVS87.87 390.57 384.73 589.38 2791.60 1788.24 774.15 1293.55 382.28 394.99 183.21 1085.96 287.67 484.67 1788.32 3198.29 1
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
TSAR-MVS + MP.84.39 1386.58 1681.83 1488.09 3986.47 6485.63 1873.62 1790.13 1079.24 989.67 1082.99 1177.72 1781.22 5280.92 5886.68 6894.66 30
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
CSCG82.90 2084.52 2281.02 1891.85 1093.43 687.14 1174.01 1481.96 3376.14 1570.84 3882.49 1269.71 6182.32 4185.18 1187.26 5695.40 22
TSAR-MVS + ACMM81.59 2685.84 1976.63 3989.82 2286.53 6386.32 1566.72 5285.96 2265.43 4388.98 1182.29 1367.57 7882.06 4581.33 4883.93 13593.75 42
train_agg83.35 1886.93 1479.17 2789.70 2388.41 4185.60 1972.89 2186.31 2166.58 4190.48 782.24 1473.06 4083.10 3082.64 3387.21 6195.30 25
DPM-MVS85.41 1086.72 1583.89 1091.66 1291.92 1490.49 378.09 486.90 1873.95 2074.52 3482.01 1579.29 1290.24 190.65 189.86 690.78 70
CNVR-MVS85.96 787.58 1084.06 892.58 592.40 1087.62 1077.77 588.44 1475.93 1779.49 2581.97 1681.65 487.04 686.58 488.79 1797.18 7
APDe-MVS86.37 688.41 784.00 991.43 1491.83 1588.34 674.67 1091.19 681.76 491.13 581.94 1780.07 683.38 2782.58 3487.69 4496.78 10
DeepPCF-MVS76.94 183.08 1987.77 977.60 3590.11 1990.96 1978.48 5472.63 2293.10 465.84 4280.67 2381.55 1874.80 2985.94 1285.39 883.75 13796.77 11
SR-MVS86.33 4767.54 4680.78 19
MCST-MVS85.75 886.99 1284.31 694.07 392.80 788.15 879.10 385.66 2370.72 3076.50 3280.45 2082.17 388.35 287.49 391.63 297.65 4
ACMMP_NAP83.54 1786.37 1780.25 2189.57 2690.10 2885.27 2071.66 2387.38 1573.08 2284.23 1780.16 2175.31 2584.85 1683.64 2386.57 6994.21 37
abl_679.06 2989.68 2492.14 1277.70 6269.68 3386.87 1971.88 2574.29 3580.06 2276.56 2288.84 1695.82 13
APD-MVScopyleft84.83 1287.00 1182.30 1389.61 2589.21 3486.51 1473.64 1690.98 777.99 1289.89 980.04 2379.18 1382.00 4681.37 4786.88 6595.49 20
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
MTAPA78.32 1179.42 24
zzz-MVS81.65 2583.10 2779.97 2388.14 3887.62 5383.96 2669.90 3186.92 1777.67 1472.47 3678.74 2574.13 3381.59 5081.15 5386.01 8293.19 47
NCCC84.16 1685.46 2082.64 1192.34 790.57 2386.57 1376.51 886.85 2072.91 2377.20 3178.69 2679.09 1484.64 1984.88 1588.44 2995.41 21
SteuartSystems-ACMMP82.51 2185.35 2179.20 2690.25 1789.39 3384.79 2170.95 2582.86 2968.32 3886.44 1477.19 2773.07 3983.63 2483.64 2387.82 4094.34 33
Skip Steuart: Steuart Systems R&D Blog.
MP-MVScopyleft80.94 2783.49 2577.96 3288.48 3288.16 4582.82 3269.34 3680.79 3969.67 3482.35 2077.13 2871.60 5180.97 5780.96 5785.87 8694.06 38
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
MTMP76.04 1676.65 29
HFP-MVS82.48 2284.12 2380.56 1990.15 1887.55 5484.28 2369.67 3485.22 2477.95 1384.69 1675.94 3075.04 2781.85 4781.17 5286.30 7492.40 54
MVS_030479.43 3382.20 3176.20 4284.22 5391.79 1681.82 3763.81 7076.83 5161.71 5666.37 4975.52 3176.38 2385.54 1385.03 1389.28 1194.32 34
CANet80.90 2882.93 2978.53 3186.83 4592.26 1181.19 4266.95 4981.60 3669.90 3366.93 4674.80 3276.79 2084.68 1884.77 1689.50 995.50 19
PHI-MVS79.43 3384.06 2474.04 5686.15 4891.57 1880.85 4668.90 4082.22 3251.81 9078.10 2774.28 3370.39 5884.01 2384.00 2186.14 7894.24 35
CP-MVS79.44 3281.51 3577.02 3886.95 4385.96 7082.00 3468.44 4281.82 3467.39 3977.43 2973.68 3471.62 5079.56 6679.58 6585.73 9092.51 53
ACMMPR80.62 2982.98 2877.87 3488.41 3387.05 5983.02 2969.18 3783.91 2668.35 3782.89 1973.64 3572.16 4680.78 5881.13 5486.10 7991.43 61
GG-mvs-BLEND54.54 17677.58 4927.67 2050.03 21890.09 2977.20 660.02 21566.83 720.05 21959.90 6773.33 360.04 21478.40 7579.30 6888.65 2295.20 26
MVSTER76.92 4979.92 4073.42 5974.98 11082.97 8978.15 5763.41 7478.02 4664.41 4667.54 4472.80 3771.05 5383.29 2983.73 2288.53 2791.12 66
DeepC-MVS_fast75.41 281.69 2482.10 3381.20 1791.04 1687.81 5183.42 2774.04 1383.77 2771.09 2866.88 4772.44 3879.48 1085.08 1484.97 1488.12 3993.78 41
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
XVS82.43 5686.27 6675.70 6961.07 6072.27 3985.67 94
X-MVStestdata82.43 5686.27 6675.70 6961.07 6072.27 3985.67 94
X-MVS78.16 4180.55 3875.38 4887.99 4086.27 6681.05 4468.98 3878.33 4561.07 6075.25 3372.27 3967.52 7980.03 6280.52 6385.66 9791.20 65
CDPH-MVS79.39 3682.13 3276.19 4389.22 3088.34 4284.20 2471.00 2479.67 4356.97 7577.77 2872.24 4268.50 7381.33 5182.74 2987.23 5792.84 50
PGM-MVS79.42 3581.84 3476.60 4088.38 3586.69 6182.97 3165.75 5880.39 4064.94 4481.95 2272.11 4371.41 5280.45 5980.55 6286.18 7690.76 72
QAPM77.50 4577.43 5077.59 3691.52 1392.00 1381.41 4070.63 2766.22 7358.05 7054.70 7971.79 4474.49 3282.46 3782.04 3689.46 1092.79 52
MSLP-MVS++78.57 3877.33 5180.02 2288.39 3484.79 7684.62 2266.17 5675.96 5378.40 1061.59 6071.47 4573.54 3778.43 7478.88 7188.97 1490.18 78
UA-Net64.62 11668.23 10360.42 14277.53 9181.38 10260.08 16957.47 12747.01 14344.75 11860.68 6471.32 4641.84 18073.27 12272.25 14580.83 17271.68 182
CPTT-MVS75.43 5577.13 5473.44 5881.43 6582.55 9380.96 4564.35 6677.95 4861.39 5769.20 4170.94 4769.38 6873.89 11673.32 13183.14 14792.06 57
3Dnovator+70.16 677.87 4277.29 5278.55 3089.25 2988.32 4380.09 4867.95 4474.89 5671.83 2652.05 9170.68 4876.27 2482.27 4282.04 3685.92 8390.77 71
mPP-MVS86.96 4270.61 49
EPNet79.28 3782.25 3075.83 4588.31 3690.14 2779.43 5268.07 4381.76 3561.26 5877.26 3070.08 5070.06 5982.43 3982.00 3887.82 4092.09 56
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
DeepC-MVS74.46 380.30 3081.05 3679.42 2487.42 4188.50 4083.23 2873.27 1882.78 3071.01 2962.86 5769.93 5174.80 2984.30 2084.20 2086.79 6794.77 27
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
PCF-MVS70.85 475.73 5476.55 5974.78 5483.67 5488.04 4981.47 3870.62 2969.24 6857.52 7360.59 6669.18 5270.65 5677.11 8477.65 8284.75 12094.01 39
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
DI_MVS_plusplus_trai73.94 6374.85 6672.88 6276.57 9986.80 6080.41 4761.47 9462.35 8559.44 6747.91 10368.12 5372.24 4582.84 3381.50 4587.15 6294.42 32
MAR-MVS77.19 4878.37 4875.81 4689.87 2190.58 2279.33 5365.56 6077.62 4958.33 6959.24 7067.98 5474.83 2882.37 4083.12 2886.95 6387.67 104
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
EPP-MVSNet67.58 9771.10 8563.48 12175.71 10683.35 8866.85 13657.83 12253.02 12441.15 13755.82 7467.89 5556.01 13974.40 10972.92 13983.33 14290.30 76
3Dnovator70.49 578.42 3976.77 5680.35 2091.43 1490.27 2581.84 3670.79 2672.10 5771.95 2450.02 9767.86 5677.47 1882.89 3184.24 1988.61 2489.99 79
CS-MVS75.18 5878.59 4471.20 7077.74 8687.69 5273.93 8958.81 11069.17 6955.73 7767.86 4366.89 5772.87 4182.50 3581.29 4988.15 3794.71 29
OMC-MVS74.03 6275.82 6271.95 6779.56 7480.98 10775.35 7763.21 7584.48 2561.83 5561.54 6166.89 5769.41 6776.60 8874.07 12182.34 15886.15 115
ETV-MVS76.25 5280.22 3971.63 6978.23 8287.95 5072.75 9260.27 10777.50 5057.73 7171.53 3766.60 5973.16 3880.99 5681.23 5187.63 4795.73 15
DELS-MVS79.49 3179.84 4179.08 2888.26 3792.49 884.12 2570.63 2765.27 8069.60 3661.29 6266.50 6072.75 4288.07 388.03 289.13 1297.22 6
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
CostFormer72.18 7073.90 7070.18 7879.47 7586.19 6976.94 6748.62 17566.07 7660.40 6554.14 8565.82 6167.98 7475.84 9676.41 9387.67 4592.83 51
ACMMPcopyleft77.61 4479.59 4275.30 4985.87 4985.58 7181.42 3967.38 4879.38 4462.61 5078.53 2665.79 6268.80 7278.56 7378.50 7585.75 8790.80 69
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
canonicalmvs77.65 4379.59 4275.39 4781.52 6489.83 3281.32 4160.74 10380.05 4166.72 4068.43 4265.09 6374.72 3178.87 7082.73 3087.32 5392.16 55
CHOSEN 280x42062.23 13866.57 11257.17 16459.88 18668.92 18361.20 16642.28 19754.17 12139.57 14247.78 10564.97 6462.68 9873.85 11769.52 16777.43 18786.75 109
HQP-MVS78.26 4080.91 3775.17 5085.67 5084.33 8283.01 3069.38 3579.88 4255.83 7679.85 2464.90 6570.81 5482.46 3781.78 4086.30 7493.18 48
OpenMVScopyleft67.62 874.92 5973.91 6976.09 4490.10 2090.38 2478.01 5866.35 5466.09 7562.80 4946.33 12064.55 6671.77 4979.92 6380.88 5987.52 4989.20 88
MVS_111021_HR77.42 4678.40 4776.28 4186.95 4390.68 2177.41 6470.56 3066.21 7462.48 5266.17 5063.98 6772.08 4782.87 3283.15 2788.24 3495.71 16
gg-mvs-nofinetune62.34 13366.19 11657.86 15876.15 10288.61 3971.18 10741.24 20325.74 20513.16 20722.91 20063.97 6854.52 14485.06 1585.25 1090.92 391.78 60
TAPA-MVS67.10 971.45 7573.47 7369.10 8577.04 9580.78 11073.81 9062.10 8680.80 3851.28 9160.91 6363.80 6967.98 7474.59 10772.42 14382.37 15780.97 152
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
PVSNet_Blended_VisFu71.76 7373.54 7269.69 8079.01 7987.16 5872.05 9561.80 9156.46 10659.66 6653.88 8762.48 7059.08 12481.17 5378.90 7086.53 7194.74 28
IS_MVSNet67.29 10171.98 7861.82 13576.92 9684.32 8365.90 14358.22 11455.75 11239.22 14554.51 8262.47 7145.99 17078.83 7178.52 7484.70 12189.47 85
GBi-Net69.21 8470.40 8967.81 9369.49 13778.65 12774.54 8260.97 9965.32 7751.06 9247.37 10862.05 7263.43 9377.49 7978.22 7787.37 5083.73 132
test169.21 8470.40 8967.81 9369.49 13778.65 12774.54 8260.97 9965.32 7751.06 9247.37 10862.05 7263.43 9377.49 7978.22 7787.37 5083.73 132
FMVSNet370.41 8171.89 8068.68 8870.89 13279.42 12275.63 7160.97 9965.32 7751.06 9247.37 10862.05 7264.90 8782.49 3682.27 3588.64 2384.34 129
UGNet67.57 9871.69 8162.76 12869.88 13582.58 9266.43 14058.64 11254.71 12051.87 8961.74 5962.01 7545.46 17274.78 10674.99 10784.24 13091.02 67
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
test-LLR68.23 9371.61 8264.28 11571.37 12781.32 10463.98 15061.03 9758.62 9742.96 12852.74 8861.65 7657.74 13375.64 9878.09 8088.61 2493.21 45
TESTMET0.1,167.38 10071.61 8262.45 13166.05 16081.32 10463.98 15055.36 14858.62 9742.96 12852.74 8861.65 7657.74 13375.64 9878.09 8088.61 2493.21 45
MVS_Test75.22 5676.69 5773.51 5779.30 7788.82 3780.06 4958.74 11169.77 6457.50 7459.78 6961.35 7875.31 2582.07 4483.60 2590.13 591.41 63
Vis-MVSNet (Re-imp)62.25 13668.74 9854.68 17373.70 11478.74 12656.51 17857.49 12655.22 11426.86 18654.56 8161.35 7831.06 18873.10 12474.90 10882.49 15583.31 136
baseline72.89 6674.46 6871.07 7175.99 10387.50 5574.57 8160.49 10570.72 6157.60 7260.63 6560.97 8070.79 5575.27 10176.33 9486.94 6489.79 82
EIA-MVS73.48 6476.05 6070.47 7678.12 8387.21 5771.78 9860.63 10469.66 6555.56 8064.86 5260.69 8169.53 6477.35 8378.59 7287.22 5994.01 39
ET-MVSNet_ETH3D71.38 7674.70 6767.51 9651.61 20288.06 4877.29 6560.95 10263.61 8248.36 10566.60 4860.67 8279.55 973.56 12080.58 6187.30 5589.80 81
baseline171.47 7472.02 7770.82 7380.56 7284.51 7876.61 6866.93 5056.22 10848.66 10355.40 7760.43 8362.55 10083.35 2880.99 5589.60 783.28 138
casdiffmvs75.20 5775.69 6374.63 5579.26 7889.07 3578.47 5563.59 7367.05 7163.79 4755.72 7660.32 8473.58 3582.16 4381.78 4089.08 1393.72 43
MVS_111021_LR74.26 6175.95 6172.27 6579.43 7685.04 7472.71 9365.27 6370.92 6063.58 4869.32 4060.31 8569.43 6677.01 8577.15 8583.22 14491.93 59
OPM-MVS72.74 6870.93 8774.85 5385.30 5184.34 8182.82 3269.79 3249.96 13255.39 8254.09 8660.14 8670.04 6080.38 6179.43 6685.74 8988.20 100
diffmvs74.32 6075.42 6473.04 6175.60 10787.27 5678.20 5662.96 7868.66 7061.89 5459.79 6859.84 8771.80 4878.30 7779.87 6487.80 4294.23 36
SCA63.90 12366.67 11060.66 14073.75 11371.78 17459.87 17043.66 19161.13 8945.03 11651.64 9259.45 8857.92 13070.96 14770.80 15883.71 13880.92 153
CLD-MVS77.36 4777.29 5277.45 3782.21 6088.11 4681.92 3568.96 3977.97 4769.62 3562.08 5859.44 8973.57 3681.75 4881.27 5088.41 3090.39 75
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
PMMVS70.37 8275.06 6564.90 10871.46 12681.88 9564.10 14755.64 14371.31 5946.69 10970.69 3958.56 9069.53 6479.03 6975.63 10281.96 16288.32 99
test-mter64.06 12269.24 9458.01 15659.07 18977.40 14159.13 17248.11 17855.64 11339.18 14651.56 9358.54 9155.38 14173.52 12176.00 9887.22 5992.05 58
thisisatest053068.38 9270.98 8665.35 10472.61 12084.42 7968.21 12657.98 11759.77 9350.80 9554.63 8058.48 9257.92 13076.99 8677.47 8384.60 12385.07 123
CANet_DTU72.84 6776.63 5868.43 9076.81 9786.62 6275.54 7454.71 15672.06 5843.54 12367.11 4558.46 9372.40 4481.13 5580.82 6087.57 4890.21 77
Vis-MVSNetpermissive65.53 11169.83 9360.52 14170.80 13384.59 7766.37 14255.47 14748.40 13940.62 14157.67 7158.43 9445.37 17377.49 7976.24 9684.47 12685.99 118
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
MS-PatchMatch70.34 8369.00 9671.91 6885.20 5285.35 7277.84 6161.77 9258.01 10055.40 8141.26 13858.34 9561.69 10581.70 4978.29 7689.56 880.02 155
PVSNet_BlendedMVS76.84 5078.47 4574.95 5182.37 5889.90 3075.45 7565.45 6174.99 5470.66 3163.07 5558.27 9667.60 7684.24 2181.70 4288.18 3597.10 8
PVSNet_Blended76.84 5078.47 4574.95 5182.37 5889.90 3075.45 7565.45 6174.99 5470.66 3163.07 5558.27 9667.60 7684.24 2181.70 4288.18 3597.10 8
AdaColmapbinary76.23 5373.55 7179.35 2589.38 2785.00 7579.99 5073.04 2076.60 5271.17 2755.18 7857.99 9877.87 1676.82 8776.82 8884.67 12286.45 112
tttt051767.99 9570.61 8864.94 10771.94 12583.96 8567.62 13057.98 11759.30 9549.90 10054.50 8357.98 9957.92 13076.48 8977.47 8384.24 13084.58 126
PatchmatchNetpermissive65.43 11267.71 10562.78 12773.49 11782.83 9066.42 14145.40 18560.40 9245.27 11449.22 9957.60 10060.01 11670.61 15071.38 15486.08 8081.91 149
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
FMVSNet268.06 9468.57 9967.45 9769.49 13778.65 12774.54 8260.23 10856.29 10749.64 10142.13 13457.08 10163.43 9381.15 5480.99 5587.37 5083.73 132
Anonymous2023121168.44 9066.37 11470.86 7277.58 9083.49 8775.15 7861.89 8952.54 12558.50 6828.89 18956.78 10269.29 6974.96 10576.61 8982.73 15091.36 64
CNLPA71.37 7770.27 9172.66 6480.79 7081.33 10371.07 11065.75 5882.36 3164.80 4542.46 13156.49 10372.70 4373.00 12770.52 16280.84 17185.76 120
EPNet_dtu66.17 10670.13 9261.54 13781.04 6677.39 14268.87 12362.50 8569.78 6333.51 17363.77 5456.22 10437.65 18672.20 13572.18 14685.69 9379.38 157
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
MDTV_nov1_ep1365.21 11367.28 10862.79 12670.91 13181.72 9669.28 12149.50 17458.08 9943.94 12250.50 9656.02 10558.86 12570.72 14973.37 12984.24 13080.52 154
CR-MVSNet62.31 13464.75 12259.47 14868.63 14371.29 17767.53 13143.18 19355.83 11041.40 13441.04 14055.85 10657.29 13672.76 13073.27 13378.77 18383.23 139
HyFIR lowres test68.39 9168.28 10268.52 8980.85 6888.11 4671.08 10958.09 11654.87 11947.80 10827.55 19355.80 10764.97 8679.11 6879.14 6988.31 3293.35 44
IterMVS-LS66.08 10766.56 11365.51 10373.67 11574.88 15970.89 11253.55 16250.42 13048.32 10650.59 9555.66 10861.83 10473.93 11574.42 11784.82 11886.01 117
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
LGP-MVS_train72.02 7273.18 7470.67 7582.13 6180.26 11579.58 5163.04 7770.09 6251.98 8865.06 5155.62 10962.49 10175.97 9576.32 9584.80 11988.93 91
DCV-MVSNet69.13 8669.07 9569.21 8377.65 8977.52 14074.68 8057.85 12154.92 11755.34 8355.74 7555.56 11066.35 8175.05 10276.56 9183.35 14188.13 101
PLCcopyleft64.00 1268.54 8966.66 11170.74 7480.28 7374.88 15972.64 9463.70 7269.26 6755.71 7847.24 11155.31 11170.42 5772.05 13970.67 16081.66 16577.19 163
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
Effi-MVS+70.42 7971.23 8469.47 8178.04 8485.24 7375.57 7358.88 10959.56 9448.47 10452.73 9054.94 11269.69 6278.34 7677.06 8686.18 7690.73 73
EPMVS66.21 10567.49 10764.73 10975.81 10484.20 8468.94 12244.37 19061.55 8748.07 10749.21 10054.87 11362.88 9771.82 14071.40 15388.28 3379.37 158
baseline271.22 7873.01 7569.13 8475.76 10586.34 6571.23 10562.78 8462.62 8352.85 8657.32 7254.31 11463.27 9679.74 6479.31 6788.89 1591.43 61
RPSCF55.07 17258.06 16751.57 18048.87 20558.95 20253.68 18341.26 20262.42 8445.88 11154.38 8454.26 11553.75 14657.15 19353.53 20366.01 20365.75 194
tpmrst67.15 10268.12 10466.03 10276.21 10180.98 10771.27 10445.05 18660.69 9150.63 9646.95 11654.15 11665.30 8471.80 14171.77 14787.72 4390.48 74
ACMM66.70 1070.42 7968.49 10072.67 6382.85 5577.76 13877.70 6264.76 6564.61 8160.74 6449.29 9853.97 11765.86 8374.97 10375.57 10484.13 13483.29 137
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
test_part166.32 10463.35 13069.77 7977.40 9378.35 13177.85 6056.25 13644.52 15562.15 5333.05 17853.91 11862.38 10372.19 13674.65 11182.59 15386.81 108
Anonymous20240521166.35 11578.00 8584.41 8074.85 7963.18 7651.00 12831.37 18453.73 11969.67 6376.28 9076.84 8783.21 14690.85 68
ACMP68.86 772.15 7172.25 7672.03 6680.96 6780.87 10977.93 5964.13 6869.29 6660.79 6364.04 5353.54 12063.91 9173.74 11975.27 10684.45 12788.98 90
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
tpm64.85 11566.02 11863.48 12174.52 11278.38 13070.98 11144.99 18851.61 12743.28 12747.66 10653.18 12160.57 11170.58 15271.30 15686.54 7089.45 86
RPMNet58.63 16262.80 13853.76 17867.59 15171.29 17754.60 18138.13 20555.83 11035.70 16441.58 13753.04 12247.89 16166.10 17167.38 17178.65 18584.40 128
tpm cat167.47 9967.05 10967.98 9276.63 9881.51 10174.49 8747.65 18061.18 8861.12 5942.51 13053.02 12364.74 8970.11 15871.50 14983.22 14489.49 84
FMVSNet558.86 15960.24 15757.25 16352.66 20166.25 18963.77 15352.86 16757.85 10137.92 15336.12 16752.22 12451.37 15270.88 14871.43 15284.92 11066.91 192
TSAR-MVS + COLMAP73.09 6576.86 5568.71 8774.97 11182.49 9474.51 8661.83 9083.16 2849.31 10282.22 2151.62 12568.94 7178.76 7275.52 10582.67 15284.23 130
Effi-MVS+-dtu64.58 11764.08 12665.16 10573.04 11975.17 15870.68 11456.23 13754.12 12244.71 11947.42 10751.10 12663.82 9268.08 16766.32 17882.47 15686.38 113
CDS-MVSNet64.22 12065.89 11962.28 13370.05 13480.59 11169.91 11757.98 11743.53 15946.58 11048.22 10250.76 12746.45 16775.68 9776.08 9782.70 15186.34 114
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
CHOSEN 1792x268872.55 6971.98 7873.22 6086.57 4692.41 975.63 7166.77 5162.08 8652.32 8730.27 18750.74 12866.14 8286.22 1185.41 791.90 196.75 12
PatchT60.46 15063.85 12756.51 16765.95 16275.68 15547.34 19241.39 20053.89 12341.40 13437.84 15650.30 12957.29 13672.76 13073.27 13385.67 9483.23 139
FMVSNet163.48 12663.07 13363.97 11765.31 16576.37 14971.77 9957.90 12043.32 16045.66 11235.06 17449.43 13058.57 12677.49 7978.22 7784.59 12481.60 151
IterMVS61.87 14263.55 12859.90 14467.29 15372.20 17167.34 13448.56 17647.48 14237.86 15447.07 11348.27 13154.08 14572.12 13773.71 12484.30 12983.99 131
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
IterMVS-SCA-FT60.21 15262.97 13457.00 16566.64 15771.84 17267.53 13146.93 18347.56 14136.77 15946.85 11748.21 13252.51 14870.36 15572.40 14471.63 20183.53 135
TAMVS58.86 15960.91 15256.47 16862.38 17977.57 13958.97 17352.98 16538.76 17836.17 16142.26 13347.94 13346.45 16770.23 15770.79 15981.86 16378.82 160
FC-MVSNet-train68.83 8868.29 10169.47 8178.35 8179.94 11664.72 14466.38 5354.96 11654.51 8456.75 7347.91 13466.91 8075.57 10075.75 10085.92 8387.12 106
Fast-Effi-MVS+67.59 9667.56 10667.62 9573.67 11581.14 10671.12 10854.79 15558.88 9650.61 9746.70 11847.05 13569.12 7076.06 9476.44 9286.43 7286.65 110
Fast-Effi-MVS+-dtu63.05 12964.72 12461.11 13871.21 13076.81 14670.72 11343.13 19552.51 12635.34 16646.55 11946.36 13661.40 10871.57 14471.44 15184.84 11587.79 103
CVMVSNet54.92 17558.16 16651.13 18362.61 17868.44 18455.45 18052.38 16842.28 16321.45 19447.10 11246.10 13737.96 18564.42 18163.81 18576.92 18975.01 169
LS3D64.54 11962.14 14367.34 9880.85 6875.79 15369.99 11565.87 5760.77 9044.35 12042.43 13245.95 13865.01 8569.88 15968.69 16977.97 18671.43 184
IB-MVS64.48 1169.02 8768.97 9769.09 8681.75 6389.01 3664.50 14564.91 6456.65 10462.59 5147.89 10445.23 13951.99 14969.18 16481.88 3988.77 1892.93 49
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
ADS-MVSNet58.40 16359.16 16457.52 16165.80 16474.57 16360.26 16740.17 20450.51 12938.01 15240.11 14644.72 14059.36 12164.91 17666.55 17681.53 16672.72 180
xxxxxxxxxxxxxcwj84.33 1483.20 2685.64 294.57 194.55 391.01 179.94 189.15 1179.85 692.37 344.71 14179.75 783.52 2582.72 3188.75 1995.37 23
test0.0.03 157.35 16859.89 16054.38 17671.37 12773.45 16752.71 18461.03 9746.11 14926.33 18741.73 13644.08 14229.72 19071.43 14570.90 15785.10 10671.56 183
gm-plane-assit54.99 17357.99 16951.49 18269.27 14154.42 20632.32 20942.59 19621.18 20913.71 20523.61 19743.84 14360.21 11587.09 586.55 590.81 489.28 87
dps64.08 12163.22 13165.08 10675.27 10979.65 11966.68 13846.63 18456.94 10255.67 7943.96 12243.63 14464.00 9069.50 16369.82 16482.25 15979.02 159
FC-MVSNet-test47.24 19554.37 17838.93 20159.49 18858.25 20434.48 20853.36 16345.66 1516.66 21350.62 9442.02 14516.62 20758.39 18961.21 19362.99 20564.40 196
GA-MVS64.55 11865.76 12063.12 12369.68 13681.56 10069.59 11858.16 11545.23 15335.58 16547.01 11541.82 14659.41 12079.62 6578.54 7386.32 7386.56 111
thres100view90067.14 10366.09 11768.38 9177.70 8783.84 8674.52 8566.33 5549.16 13643.40 12543.24 12341.34 14762.59 9979.31 6775.92 9985.73 9089.81 80
tfpn200view965.90 10864.96 12167.00 9977.70 8781.58 9971.71 10062.94 8149.16 13643.40 12543.24 12341.34 14761.42 10776.24 9174.63 11384.84 11588.52 97
thres20065.58 10964.74 12366.56 10077.52 9281.61 9773.44 9162.95 7946.23 14842.45 13242.76 12541.18 14958.12 12876.24 9175.59 10384.89 11389.58 83
UniMVSNet_NR-MVSNet62.30 13563.51 12960.89 13969.48 14077.83 13664.07 14863.94 6950.03 13131.17 17844.82 12141.12 15051.37 15271.02 14674.81 11085.30 10284.95 124
MSDG65.57 11061.57 14770.24 7782.02 6276.47 14774.46 8868.73 4156.52 10550.33 9838.47 15141.10 15162.42 10272.12 13772.94 13883.47 14073.37 177
v863.44 12762.58 13964.43 11268.28 14578.07 13371.82 9754.85 15346.70 14645.20 11539.40 14840.91 15260.54 11272.85 12974.39 11885.92 8385.76 120
thres40065.18 11464.44 12566.04 10176.40 10082.63 9171.52 10264.27 6744.93 15440.69 14041.86 13540.79 15358.12 12877.67 7874.64 11285.26 10388.56 96
MIMVSNet57.78 16659.71 16155.53 17054.79 19777.10 14463.89 15245.02 18746.59 14736.79 15828.36 19140.77 15445.84 17174.97 10376.58 9086.87 6673.60 175
V4262.86 13262.97 13462.74 12960.84 18378.99 12571.46 10357.13 13146.85 14444.28 12138.87 14940.73 15557.63 13572.60 13374.14 11985.09 10888.63 95
UniMVSNet (Re)60.62 14962.93 13657.92 15767.64 15077.90 13561.75 16361.24 9649.83 13329.80 18242.57 12840.62 15643.36 17670.49 15473.27 13383.76 13685.81 119
pm-mvs159.21 15759.58 16258.77 15467.97 14777.07 14564.12 14657.20 12934.73 19036.86 15635.34 17140.54 15743.34 17774.32 11273.30 13283.13 14881.77 150
thres600view763.77 12463.14 13264.51 11175.49 10881.61 9769.59 11862.95 7943.96 15838.90 14741.09 13940.24 15855.25 14276.24 9171.54 14884.89 11387.30 105
thisisatest051559.37 15660.68 15457.84 15964.39 16975.65 15658.56 17453.86 16041.55 16742.12 13340.40 14439.59 15947.09 16571.69 14373.79 12381.02 17082.08 148
CMPMVSbinary43.63 1757.67 16755.43 17560.28 14372.01 12379.00 12462.77 16053.23 16441.77 16545.42 11330.74 18639.03 16053.01 14764.81 17864.65 18475.26 19368.03 190
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
v1063.00 13062.22 14263.90 11967.88 14877.78 13771.59 10154.34 15745.37 15242.76 13138.53 15038.93 16161.05 11074.39 11074.52 11685.75 8786.04 116
v14862.00 14161.19 15062.96 12467.46 15279.49 12167.87 12757.66 12342.30 16245.02 11738.20 15438.89 16254.77 14369.83 16072.60 14284.96 10987.01 107
v2v48263.68 12562.85 13764.65 11068.01 14680.46 11371.90 9657.60 12444.26 15642.82 13039.80 14738.62 16361.56 10673.06 12574.86 10986.03 8188.90 93
v114463.00 13062.39 14163.70 12067.72 14980.27 11471.23 10556.40 13342.51 16140.81 13938.12 15537.73 16460.42 11474.46 10874.55 11585.64 9889.12 89
Baseline_NR-MVSNet59.47 15560.28 15658.54 15566.69 15573.90 16561.63 16462.90 8249.15 13826.87 18535.18 17337.62 16548.20 16069.67 16173.61 12584.92 11082.82 142
pmmvs463.14 12862.46 14063.94 11866.03 16176.40 14866.82 13757.60 12456.74 10350.26 9940.81 14237.51 16659.26 12271.75 14271.48 15083.68 13982.53 143
ACMH+60.36 1361.16 14558.38 16564.42 11377.37 9474.35 16468.45 12462.81 8345.86 15038.48 14935.71 16937.35 16759.81 11767.24 16969.80 16679.58 17978.32 161
EG-PatchMatch MVS58.73 16158.03 16859.55 14772.32 12180.49 11263.44 15655.55 14532.49 19438.31 15028.87 19037.22 16842.84 17874.30 11375.70 10184.84 11577.14 164
DU-MVS60.87 14861.82 14559.76 14666.69 15575.87 15164.07 14861.96 8749.31 13431.17 17842.76 12536.95 16951.37 15269.67 16173.20 13683.30 14384.95 124
TranMVSNet+NR-MVSNet60.38 15161.30 14959.30 15068.34 14475.57 15763.38 15763.78 7146.74 14527.73 18442.56 12936.84 17047.66 16270.36 15574.59 11484.91 11282.46 144
WR-MVS51.02 18554.56 17746.90 19263.84 17169.23 18244.78 19956.38 13438.19 17914.19 20337.38 15736.82 17122.39 19960.14 18866.20 18079.81 17773.95 174
v14419262.05 14061.46 14862.73 13066.59 15879.87 11769.30 12055.88 13941.50 16839.41 14437.23 15836.45 17259.62 11872.69 13273.51 12685.61 9988.93 91
PatchMatch-RL62.22 13960.69 15364.01 11668.74 14275.75 15459.27 17160.35 10656.09 10953.80 8547.06 11436.45 17264.80 8868.22 16667.22 17377.10 18874.02 172
pmmvs654.20 17853.54 18054.97 17163.22 17572.98 16960.17 16852.32 16926.77 20434.30 17023.29 19936.23 17440.33 18368.77 16568.76 16879.47 18178.00 162
anonymousdsp54.99 17357.24 17052.36 17953.82 19971.75 17551.49 18548.14 17733.74 19133.66 17238.34 15236.13 17547.54 16364.53 18070.60 16179.53 18085.59 122
pmmvs559.72 15360.24 15759.11 15262.77 17777.33 14363.17 15854.00 15940.21 17337.23 15540.41 14335.99 17651.75 15072.55 13472.74 14185.72 9282.45 145
v119262.25 13661.64 14662.96 12466.88 15479.72 11869.96 11655.77 14141.58 16639.42 14337.05 16035.96 17760.50 11374.30 11374.09 12085.24 10488.76 94
TransMVSNet (Re)57.83 16456.90 17158.91 15372.26 12274.69 16263.57 15561.42 9532.30 19532.65 17433.97 17635.96 17739.17 18473.84 11872.84 14084.37 12874.69 170
WR-MVS_H49.62 19052.63 18646.11 19558.80 19067.58 18646.14 19754.94 15036.51 18313.63 20636.75 16435.67 17922.10 20056.43 19662.76 19081.06 16972.73 179
v192192061.66 14361.10 15162.31 13266.32 15979.57 12068.41 12555.49 14641.03 16938.69 14836.64 16635.27 18059.60 11973.23 12373.41 12885.37 10188.51 98
UniMVSNet_ETH3D57.83 16456.46 17459.43 14963.24 17473.22 16867.70 12855.58 14436.17 18536.84 15732.64 17935.14 18151.50 15165.81 17269.81 16581.73 16482.44 146
v124061.09 14660.55 15561.72 13665.92 16379.28 12367.16 13554.91 15239.79 17538.10 15136.08 16834.64 18259.15 12372.86 12873.36 13085.10 10687.84 102
ACMH59.42 1461.59 14459.22 16364.36 11478.92 8078.26 13267.65 12967.48 4739.81 17430.98 18038.25 15334.59 18361.37 10970.55 15373.47 12779.74 17879.59 156
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
COLMAP_ROBcopyleft51.17 1555.13 17152.90 18457.73 16073.47 11867.21 18762.13 16155.82 14047.83 14034.39 16931.60 18334.24 18444.90 17463.88 18362.52 19175.67 19163.02 199
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
MDTV_nov1_ep13_2view54.47 17754.61 17654.30 17760.50 18473.82 16657.92 17543.38 19239.43 17732.51 17533.23 17734.05 18547.26 16462.36 18466.21 17984.24 13073.19 178
MVS-HIRNet53.86 18053.02 18254.85 17260.30 18572.36 17044.63 20042.20 19839.45 17643.47 12421.66 20334.00 18655.47 14065.42 17467.16 17483.02 14971.08 186
NR-MVSNet61.08 14762.09 14459.90 14471.96 12475.87 15163.60 15461.96 8749.31 13427.95 18342.76 12533.85 18748.82 15974.35 11174.05 12285.13 10584.45 127
v7n57.04 16956.64 17257.52 16162.85 17674.75 16161.76 16251.80 17035.58 18936.02 16332.33 18133.61 18850.16 15767.73 16870.34 16382.51 15482.12 147
PEN-MVS51.04 18452.94 18348.82 18661.45 18266.00 19048.68 18957.20 12936.87 18115.36 20136.98 16132.72 18928.77 19457.63 19266.37 17781.44 16774.00 173
testgi48.51 19350.53 19146.16 19464.78 16667.15 18841.54 20254.81 15429.12 20017.03 19732.07 18231.98 19020.15 20365.26 17567.00 17578.67 18461.10 203
CP-MVSNet50.57 18652.60 18748.21 18958.77 19165.82 19148.17 19056.29 13537.41 18016.59 19837.14 15931.95 19129.21 19156.60 19563.71 18680.22 17475.56 167
DTE-MVSNet49.82 18951.92 18947.37 19161.75 18164.38 19545.89 19857.33 12836.11 18612.79 20836.87 16231.93 19225.73 19758.01 19065.22 18280.75 17370.93 187
Anonymous2023120652.23 18352.80 18551.56 18164.70 16869.41 18151.01 18658.60 11336.63 18222.44 19321.80 20231.42 19330.52 18966.79 17067.83 17082.10 16175.73 166
PS-CasMVS50.17 18752.02 18848.02 19058.60 19265.54 19248.04 19156.19 13836.42 18416.42 20035.68 17031.33 19428.85 19356.42 19763.54 18880.01 17575.18 168
EU-MVSNet44.84 19747.85 19741.32 20049.26 20456.59 20543.07 20147.64 18133.03 19213.82 20436.78 16330.99 19524.37 19853.80 20155.57 20169.78 20268.21 188
test20.0347.23 19648.69 19645.53 19663.28 17364.39 19441.01 20356.93 13229.16 19915.21 20223.90 19630.76 19617.51 20664.63 17965.26 18179.21 18262.71 200
pmnet_mix0253.92 17953.30 18154.65 17561.89 18071.33 17654.54 18254.17 15840.38 17134.65 16834.76 17530.68 19740.44 18260.97 18663.71 18682.19 16071.24 185
USDC59.69 15460.03 15959.28 15164.04 17071.84 17263.15 15955.36 14854.90 11835.02 16748.34 10129.79 19858.16 12770.60 15171.33 15579.99 17673.42 176
tfpnnormal58.97 15856.48 17361.89 13471.27 12976.21 15066.65 13961.76 9332.90 19336.41 16027.83 19229.14 19950.64 15673.06 12573.05 13784.58 12583.15 141
pmmvs-eth3d55.20 17053.95 17956.65 16657.34 19567.77 18557.54 17653.74 16140.93 17041.09 13831.19 18529.10 20049.07 15865.54 17367.28 17281.14 16875.81 165
TDRefinement52.70 18151.02 19054.66 17457.41 19465.06 19361.47 16554.94 15044.03 15733.93 17130.13 18827.57 20146.17 16961.86 18562.48 19274.01 19766.06 193
LTVRE_ROB47.26 1649.41 19149.91 19448.82 18664.76 16769.79 18049.05 18847.12 18220.36 21116.52 19936.65 16526.96 20250.76 15560.47 18763.16 18964.73 20472.00 181
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
SixPastTwentyTwo49.11 19249.22 19548.99 18558.54 19364.14 19647.18 19347.75 17931.15 19724.42 18941.01 14126.55 20344.04 17554.76 20058.70 19771.99 20068.21 188
MIMVSNet140.84 20143.46 19937.79 20232.14 21058.92 20339.24 20550.83 17227.00 20311.29 21016.76 20926.53 20417.75 20557.14 19461.12 19475.46 19256.78 204
PM-MVS50.11 18850.38 19249.80 18447.23 20762.08 20050.91 18744.84 18941.90 16436.10 16235.22 17226.05 20546.83 16657.64 19155.42 20272.90 19874.32 171
N_pmnet47.67 19447.00 19848.45 18854.72 19862.78 19846.95 19451.25 17136.01 18726.09 18826.59 19525.93 20635.50 18755.67 19959.01 19576.22 19063.04 198
tmp_tt16.09 21013.07 2168.12 21813.61 2152.08 21455.09 11530.10 18140.26 14522.83 2075.35 21229.91 20825.25 21032.33 212
new-patchmatchnet42.21 19942.97 20041.33 19953.05 20059.89 20139.38 20449.61 17328.26 20212.10 20922.17 20121.54 20819.22 20450.96 20256.04 20074.61 19661.92 201
TinyColmap52.66 18250.09 19355.65 16959.72 18764.02 19757.15 17752.96 16640.28 17232.51 17532.42 18020.97 20956.65 13863.95 18265.15 18374.91 19463.87 197
pmmvs341.86 20042.29 20241.36 19839.80 20852.66 20738.93 20635.85 20923.40 20820.22 19619.30 20420.84 21040.56 18155.98 19858.79 19672.80 19965.03 195
FPMVS39.11 20236.39 20442.28 19755.97 19645.94 20946.23 19641.57 19935.73 18822.61 19123.46 19819.82 21128.32 19543.57 20440.67 20658.96 20745.54 206
PMVScopyleft27.44 1832.08 20429.07 20635.60 20348.33 20624.79 21226.97 21141.34 20120.45 21022.50 19217.11 20818.64 21220.44 20241.99 20638.06 20754.02 20942.44 207
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
new_pmnet33.19 20335.52 20530.47 20427.55 21445.31 21029.29 21030.92 21029.00 2019.88 21218.77 20517.64 21326.77 19644.07 20345.98 20558.41 20847.87 205
MDA-MVSNet-bldmvs44.15 19842.27 20346.34 19338.34 20962.31 19946.28 19555.74 14229.83 19820.98 19527.11 19416.45 21441.98 17941.11 20757.47 19874.72 19561.65 202
PMMVS220.45 20622.31 20818.27 20920.52 21526.73 21114.85 21428.43 21213.69 2120.79 21810.35 2109.10 2153.83 21327.64 20932.87 20841.17 21035.81 208
ambc42.30 20150.36 20349.51 20835.47 20732.04 19623.53 19017.36 2068.95 21629.06 19264.88 17756.26 19961.29 20667.12 191
DeepMVS_CXcopyleft19.81 21517.01 21310.02 21323.61 2075.85 21417.21 2078.03 21721.13 20122.60 21021.42 21530.01 209
Gipumacopyleft24.91 20524.61 20725.26 20631.47 21121.59 21318.06 21237.53 20625.43 20610.03 2114.18 2144.25 21814.85 20843.20 20547.03 20439.62 21126.55 211
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
MVEpermissive15.98 1914.37 20916.36 20912.04 2117.72 21720.24 2145.90 21829.05 2118.28 2153.92 2154.72 2132.42 2199.57 21118.89 21131.46 20916.07 21628.53 210
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
EMVS14.40 20810.71 21118.70 20828.15 21312.09 2177.06 21636.89 20711.00 2133.56 2174.95 2122.27 22013.91 20910.13 21316.06 21222.63 21418.51 213
E-PMN15.08 20711.65 21019.08 20728.73 21212.31 2166.95 21736.87 20810.71 2143.63 2165.13 2112.22 22113.81 21011.34 21218.50 21124.49 21321.32 212
testmvs0.05 2100.08 2120.01 2120.00 2190.01 2190.03 2200.01 2160.05 2160.00 2200.14 2160.01 2220.03 2160.05 2140.05 2130.01 2170.24 215
uanet_test0.00 2120.00 2140.00 2140.00 2190.00 2210.00 2220.00 2170.00 2180.00 2200.00 2170.00 2230.00 2170.00 2160.00 2150.00 2180.00 216
sosnet-low-res0.00 2120.00 2140.00 2140.00 2190.00 2210.00 2220.00 2170.00 2180.00 2200.00 2170.00 2230.00 2170.00 2160.00 2150.00 2180.00 216
sosnet0.00 2120.00 2140.00 2140.00 2190.00 2210.00 2220.00 2170.00 2180.00 2200.00 2170.00 2230.00 2170.00 2160.00 2150.00 2180.00 216
test1230.05 2100.08 2120.01 2120.00 2190.01 2190.01 2210.00 2170.05 2160.00 2200.16 2150.00 2230.04 2140.02 2150.05 2130.00 2180.26 214
RE-MVS-def31.47 177
our_test_363.32 17271.07 17955.90 179
Patchmatch-RL test2.17 219
NP-MVS81.60 36
Patchmtry78.06 13467.53 13143.18 19341.40 134