This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorcourty.delive.electrofacadekickermeadowofficepipesplaygr.reliefrelief.terraceterrai.
sort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort by
SED-MVS88.94 190.98 186.56 192.53 695.09 188.55 576.83 794.16 186.57 190.85 687.07 186.18 186.36 785.08 1288.67 2198.21 3
DVP-MVS88.07 290.73 284.97 491.98 995.01 287.86 976.88 693.90 285.15 290.11 886.90 279.46 1186.26 1084.67 1788.50 2898.25 2
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
MSP-MVS87.87 390.57 384.73 589.38 2791.60 1788.24 774.15 1293.55 382.28 394.99 183.21 1085.96 287.67 484.67 1788.32 3298.29 1
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
DeepPCF-MVS76.94 183.08 1987.77 977.60 3590.11 1990.96 1978.48 5472.63 2293.10 465.84 4280.67 2381.55 1874.80 3085.94 1285.39 883.75 14096.77 11
DPE-MVScopyleft87.60 490.44 484.29 792.09 893.44 588.69 475.11 993.06 580.80 594.23 286.70 381.44 584.84 1783.52 2687.64 4697.28 5
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
APDe-MVS86.37 688.41 784.00 991.43 1491.83 1588.34 674.67 1091.19 681.76 491.13 581.94 1780.07 683.38 2882.58 3587.69 4496.78 10
APD-MVScopyleft84.83 1287.00 1182.30 1389.61 2589.21 3486.51 1473.64 1690.98 777.99 1289.89 980.04 2379.18 1382.00 4681.37 4886.88 6595.49 21
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
HPM-MVS++copyleft85.64 988.43 682.39 1292.65 490.24 2685.83 1674.21 1190.68 875.63 1886.77 1384.15 778.68 1686.33 885.26 987.32 5395.60 19
SMA-MVScopyleft85.24 1188.27 881.72 1591.74 1190.71 2086.71 1273.16 1990.56 974.33 1983.07 1885.88 477.16 2086.28 985.58 687.23 5795.77 15
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
TSAR-MVS + MP.84.39 1386.58 1681.83 1488.09 3986.47 6485.63 1873.62 1790.13 1079.24 989.67 1082.99 1177.72 1881.22 5280.92 5886.68 6994.66 30
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
xxxxxxxxxxxxxcwj84.33 1483.20 2685.64 294.57 194.55 391.01 179.94 189.15 1179.85 692.37 344.71 14479.75 783.52 2682.72 3288.75 1995.37 24
SF-MVS87.30 588.71 585.64 294.57 194.55 391.01 179.94 189.15 1179.85 692.37 383.29 979.75 783.52 2682.72 3288.75 1995.37 24
SD-MVS84.31 1586.96 1381.22 1688.98 3188.68 3885.65 1773.85 1589.09 1379.63 887.34 1284.84 573.71 3582.66 3581.60 4585.48 10394.51 31
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
CNVR-MVS85.96 787.58 1084.06 892.58 592.40 1087.62 1077.77 588.44 1475.93 1779.49 2581.97 1681.65 487.04 686.58 488.79 1797.18 7
ACMMP_NAP83.54 1786.37 1780.25 2189.57 2690.10 2885.27 2071.66 2387.38 1573.08 2284.23 1780.16 2175.31 2684.85 1683.64 2386.57 7094.21 37
TSAR-MVS + GP.82.27 2385.98 1877.94 3380.72 7188.25 4481.12 4367.71 4587.10 1673.31 2185.23 1583.68 876.64 2280.43 6081.47 4788.15 3895.66 18
zzz-MVS81.65 2583.10 2779.97 2388.14 3887.62 5383.96 2669.90 3186.92 1777.67 1472.47 3678.74 2574.13 3481.59 5081.15 5386.01 8593.19 48
DPM-MVS85.41 1086.72 1583.89 1091.66 1291.92 1490.49 378.09 486.90 1873.95 2074.52 3482.01 1579.29 1290.24 190.65 189.86 690.78 72
abl_679.06 2989.68 2492.14 1277.70 6269.68 3386.87 1971.88 2574.29 3580.06 2276.56 2388.84 1695.82 14
NCCC84.16 1685.46 2082.64 1192.34 790.57 2386.57 1376.51 886.85 2072.91 2377.20 3178.69 2679.09 1484.64 1984.88 1588.44 2995.41 22
train_agg83.35 1886.93 1479.17 2789.70 2388.41 4185.60 1972.89 2186.31 2166.58 4190.48 782.24 1473.06 4283.10 3182.64 3487.21 6195.30 26
TSAR-MVS + ACMM81.59 2685.84 1976.63 3989.82 2286.53 6386.32 1566.72 5285.96 2265.43 4388.98 1182.29 1367.57 8082.06 4581.33 4983.93 13893.75 43
MCST-MVS85.75 886.99 1284.31 694.07 392.80 788.15 879.10 385.66 2370.72 3076.50 3280.45 2082.17 388.35 287.49 391.63 297.65 4
HFP-MVS82.48 2284.12 2380.56 1990.15 1887.55 5484.28 2369.67 3485.22 2477.95 1384.69 1675.94 3075.04 2881.85 4781.17 5286.30 7692.40 55
OMC-MVS74.03 6275.82 6271.95 6879.56 7480.98 11075.35 7863.21 7584.48 2561.83 5561.54 6166.89 5869.41 6876.60 8974.07 12482.34 16186.15 118
ACMMPR80.62 2982.98 2877.87 3488.41 3387.05 5983.02 2969.18 3783.91 2668.35 3782.89 1973.64 3572.16 4780.78 5881.13 5486.10 8291.43 62
DeepC-MVS_fast75.41 281.69 2482.10 3381.20 1791.04 1687.81 5283.42 2774.04 1383.77 2771.09 2866.88 4772.44 3879.48 1085.08 1484.97 1488.12 3993.78 42
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
TSAR-MVS + COLMAP73.09 6576.86 5568.71 8874.97 11382.49 9674.51 8761.83 9083.16 2849.31 10582.22 2151.62 12768.94 7378.76 7375.52 10882.67 15584.23 133
SteuartSystems-ACMMP82.51 2185.35 2179.20 2690.25 1789.39 3384.79 2170.95 2582.86 2968.32 3886.44 1477.19 2773.07 4183.63 2583.64 2387.82 4094.34 33
Skip Steuart: Steuart Systems R&D Blog.
DeepC-MVS74.46 380.30 3081.05 3679.42 2487.42 4188.50 4083.23 2873.27 1882.78 3071.01 2962.86 5769.93 5174.80 3084.30 2084.20 2086.79 6894.77 28
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
CNLPA71.37 7870.27 9272.66 6580.79 7081.33 10571.07 11365.75 5882.36 3164.80 4542.46 13456.49 10472.70 4473.00 13070.52 16580.84 17485.76 123
PHI-MVS79.43 3384.06 2474.04 5686.15 4891.57 1880.85 4668.90 4082.22 3251.81 9178.10 2774.28 3370.39 5984.01 2384.00 2186.14 8094.24 35
CSCG82.90 2084.52 2281.02 1891.85 1093.43 687.14 1174.01 1481.96 3376.14 1570.84 3882.49 1269.71 6282.32 4185.18 1187.26 5695.40 23
CP-MVS79.44 3281.51 3577.02 3886.95 4385.96 7082.00 3468.44 4281.82 3467.39 3977.43 2973.68 3471.62 5179.56 6779.58 6585.73 9392.51 54
EPNet79.28 3782.25 3075.83 4588.31 3690.14 2779.43 5268.07 4381.76 3561.26 5877.26 3070.08 5070.06 6082.43 3982.00 3987.82 4092.09 57
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
CANet80.90 2882.93 2978.53 3186.83 4592.26 1181.19 4266.95 4981.60 3669.90 3366.93 4674.80 3276.79 2184.68 1884.77 1689.50 995.50 20
NP-MVS81.60 36
TAPA-MVS67.10 971.45 7673.47 7469.10 8677.04 9580.78 11373.81 9062.10 8680.80 3851.28 9260.91 6363.80 7067.98 7674.59 10972.42 14682.37 16080.97 155
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
MP-MVScopyleft80.94 2783.49 2577.96 3288.48 3288.16 4582.82 3269.34 3680.79 3969.67 3482.35 2077.13 2871.60 5280.97 5780.96 5785.87 8994.06 39
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
PGM-MVS79.42 3581.84 3476.60 4088.38 3586.69 6182.97 3165.75 5880.39 4064.94 4481.95 2272.11 4371.41 5380.45 5980.55 6286.18 7890.76 74
canonicalmvs77.65 4479.59 4375.39 4781.52 6489.83 3281.32 4160.74 10380.05 4166.72 4068.43 4265.09 6374.72 3278.87 7182.73 3187.32 5392.16 56
HQP-MVS78.26 4080.91 3875.17 5085.67 5084.33 8383.01 3069.38 3579.88 4255.83 7779.85 2464.90 6570.81 5582.46 3781.78 4186.30 7693.18 49
CDPH-MVS79.39 3682.13 3276.19 4389.22 3088.34 4284.20 2471.00 2479.67 4356.97 7677.77 2872.24 4268.50 7581.33 5182.74 3087.23 5792.84 51
ACMMPcopyleft77.61 4579.59 4375.30 4985.87 4985.58 7181.42 3967.38 4879.38 4462.61 5078.53 2665.79 6268.80 7478.56 7478.50 7685.75 9090.80 71
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
CS-MVS77.66 4380.94 3773.84 5778.43 8188.10 4876.40 6960.03 10978.66 4560.73 6567.38 4469.53 5279.03 1583.80 2482.94 2988.41 3096.18 13
X-MVS78.16 4180.55 3975.38 4887.99 4086.27 6681.05 4468.98 3878.33 4661.07 6075.25 3372.27 3967.52 8180.03 6280.52 6385.66 10091.20 66
MVSTER76.92 5079.92 4173.42 6074.98 11282.97 9178.15 5763.41 7478.02 4764.41 4667.54 4372.80 3771.05 5483.29 3083.73 2288.53 2791.12 67
CLD-MVS77.36 4877.29 5277.45 3782.21 6088.11 4681.92 3568.96 3977.97 4869.62 3562.08 5859.44 9073.57 3881.75 4881.27 5088.41 3090.39 77
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
CPTT-MVS75.43 5677.13 5473.44 5981.43 6582.55 9580.96 4564.35 6677.95 4961.39 5769.20 4170.94 4769.38 6973.89 11973.32 13483.14 15092.06 58
MAR-MVS77.19 4978.37 4875.81 4689.87 2190.58 2279.33 5365.56 6077.62 5058.33 7059.24 7167.98 5574.83 2982.37 4083.12 2886.95 6387.67 106
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
ETV-MVS76.25 5380.22 4071.63 7078.23 8387.95 5172.75 9260.27 10777.50 5157.73 7271.53 3766.60 5973.16 4080.99 5681.23 5187.63 4795.73 16
MVS_030479.43 3382.20 3176.20 4284.22 5391.79 1681.82 3763.81 7076.83 5261.71 5666.37 4975.52 3176.38 2485.54 1385.03 1389.28 1194.32 34
AdaColmapbinary76.23 5473.55 7279.35 2589.38 2785.00 7579.99 5073.04 2076.60 5371.17 2755.18 7957.99 9977.87 1776.82 8876.82 8984.67 12586.45 115
MSLP-MVS++78.57 3877.33 5180.02 2288.39 3484.79 7684.62 2266.17 5675.96 5478.40 1061.59 6071.47 4573.54 3978.43 7578.88 7288.97 1490.18 80
PVSNet_BlendedMVS76.84 5178.47 4574.95 5182.37 5889.90 3075.45 7665.45 6174.99 5570.66 3163.07 5558.27 9767.60 7884.24 2181.70 4388.18 3697.10 8
PVSNet_Blended76.84 5178.47 4574.95 5182.37 5889.90 3075.45 7665.45 6174.99 5570.66 3163.07 5558.27 9767.60 7884.24 2181.70 4388.18 3697.10 8
3Dnovator+70.16 677.87 4277.29 5278.55 3089.25 2988.32 4380.09 4867.95 4474.89 5771.83 2652.05 9270.68 4876.27 2582.27 4282.04 3785.92 8690.77 73
3Dnovator70.49 578.42 3976.77 5680.35 2091.43 1490.27 2581.84 3670.79 2672.10 5871.95 2450.02 9867.86 5777.47 1982.89 3284.24 1988.61 2489.99 81
CANet_DTU72.84 6776.63 5868.43 9276.81 9786.62 6275.54 7554.71 15972.06 5943.54 12667.11 4558.46 9472.40 4581.13 5580.82 6087.57 4890.21 79
PMMVS70.37 8375.06 6664.90 11171.46 12981.88 9764.10 15055.64 14571.31 6046.69 11270.69 3958.56 9169.53 6579.03 7075.63 10481.96 16588.32 101
MVS_111021_LR74.26 6175.95 6172.27 6679.43 7685.04 7472.71 9365.27 6370.92 6163.58 4869.32 4060.31 8669.43 6777.01 8677.15 8683.22 14791.93 60
baseline72.89 6674.46 6971.07 7175.99 10487.50 5574.57 8260.49 10570.72 6257.60 7360.63 6560.97 8170.79 5675.27 10376.33 9686.94 6489.79 84
LGP-MVS_train72.02 7373.18 7570.67 7582.13 6180.26 11879.58 5163.04 7770.09 6351.98 8965.06 5155.62 11062.49 10475.97 9776.32 9784.80 12288.93 93
EPNet_dtu66.17 10970.13 9361.54 14081.04 6677.39 14568.87 12662.50 8569.78 6433.51 17663.77 5456.22 10537.65 18972.20 13872.18 14985.69 9679.38 160
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
MVS_Test75.22 5776.69 5773.51 5879.30 7788.82 3780.06 4958.74 11169.77 6557.50 7559.78 7061.35 7975.31 2682.07 4483.60 2590.13 591.41 64
EIA-MVS73.48 6476.05 6070.47 7678.12 8487.21 5771.78 9960.63 10469.66 6655.56 8064.86 5260.69 8269.53 6577.35 8478.59 7387.22 5994.01 40
ACMP68.86 772.15 7272.25 7772.03 6780.96 6780.87 11277.93 5964.13 6869.29 6760.79 6364.04 5353.54 12263.91 9473.74 12275.27 10984.45 13088.98 92
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
PLCcopyleft64.00 1268.54 9166.66 11470.74 7480.28 7374.88 16272.64 9463.70 7269.26 6855.71 7847.24 11255.31 11270.42 5872.05 14270.67 16381.66 16877.19 166
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
PCF-MVS70.85 475.73 5576.55 5974.78 5483.67 5488.04 5081.47 3870.62 2969.24 6957.52 7460.59 6769.18 5370.65 5777.11 8577.65 8384.75 12394.01 40
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
diffmvs74.32 6075.42 6473.04 6275.60 10887.27 5678.20 5662.96 7868.66 7061.89 5459.79 6959.84 8871.80 4978.30 7879.87 6487.80 4294.23 36
casdiffmvs75.20 5875.69 6374.63 5579.26 7889.07 3578.47 5563.59 7367.05 7163.79 4755.72 7760.32 8573.58 3782.16 4381.78 4189.08 1393.72 44
GG-mvs-BLEND54.54 17977.58 4927.67 2080.03 22290.09 2977.20 660.02 21966.83 720.05 22359.90 6873.33 360.04 21878.40 7679.30 6888.65 2295.20 27
QAPM77.50 4677.43 5077.59 3691.52 1392.00 1381.41 4070.63 2766.22 7358.05 7154.70 8071.79 4474.49 3382.46 3782.04 3789.46 1092.79 53
MVS_111021_HR77.42 4778.40 4776.28 4186.95 4390.68 2177.41 6470.56 3066.21 7462.48 5266.17 5063.98 6772.08 4882.87 3383.15 2788.24 3595.71 17
OpenMVScopyleft67.62 874.92 5973.91 7076.09 4490.10 2090.38 2478.01 5866.35 5466.09 7562.80 4946.33 12264.55 6671.77 5079.92 6480.88 5987.52 4989.20 90
CostFormer72.18 7173.90 7170.18 7879.47 7586.19 6976.94 6748.62 17866.07 7660.40 6654.14 8665.82 6167.98 7675.84 9876.41 9587.67 4592.83 52
GBi-Net69.21 8570.40 9067.81 9569.49 14078.65 13074.54 8360.97 9965.32 7751.06 9447.37 10962.05 7363.43 9677.49 8078.22 7887.37 5083.73 135
test169.21 8570.40 9067.81 9569.49 14078.65 13074.54 8360.97 9965.32 7751.06 9447.37 10962.05 7363.43 9677.49 8078.22 7887.37 5083.73 135
FMVSNet370.41 8271.89 8168.68 8970.89 13579.42 12575.63 7260.97 9965.32 7751.06 9447.37 10962.05 7364.90 8982.49 3682.27 3688.64 2384.34 132
DELS-MVS79.49 3179.84 4279.08 2888.26 3792.49 884.12 2570.63 2765.27 8069.60 3661.29 6266.50 6072.75 4388.07 388.03 289.13 1297.22 6
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
ACMM66.70 1070.42 8068.49 10272.67 6482.85 5577.76 14177.70 6264.76 6564.61 8160.74 6449.29 9953.97 11965.86 8574.97 10575.57 10684.13 13783.29 140
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
CS-MVS-test72.41 7075.21 6569.14 8475.29 11084.73 7772.34 9556.21 13963.84 8251.19 9360.60 6663.96 6973.68 3679.93 6379.24 6986.11 8194.20 38
ET-MVSNet_ETH3D71.38 7774.70 6867.51 9951.61 20588.06 4977.29 6560.95 10263.61 8348.36 10866.60 4860.67 8379.55 973.56 12380.58 6187.30 5589.80 83
baseline271.22 7973.01 7669.13 8575.76 10686.34 6571.23 10762.78 8462.62 8452.85 8757.32 7354.31 11663.27 9979.74 6579.31 6788.89 1591.43 62
RPSCF55.07 17558.06 17051.57 18348.87 20858.95 20553.68 18641.26 20562.42 8545.88 11454.38 8554.26 11753.75 14957.15 19653.53 20666.01 20665.75 198
DI_MVS_plusplus_trai73.94 6374.85 6772.88 6376.57 10086.80 6080.41 4761.47 9462.35 8659.44 6847.91 10468.12 5472.24 4682.84 3481.50 4687.15 6294.42 32
CHOSEN 1792x268872.55 6971.98 7973.22 6186.57 4692.41 975.63 7266.77 5162.08 8752.32 8830.27 19050.74 13066.14 8486.22 1185.41 791.90 196.75 12
EPMVS66.21 10867.49 11064.73 11275.81 10584.20 8568.94 12544.37 19361.55 8848.07 11049.21 10154.87 11462.88 10071.82 14371.40 15688.28 3479.37 161
tpm cat167.47 10267.05 11267.98 9476.63 9881.51 10374.49 8847.65 18361.18 8961.12 5942.51 13353.02 12564.74 9170.11 16171.50 15283.22 14789.49 86
SCA63.90 12666.67 11360.66 14373.75 11571.78 17759.87 17343.66 19461.13 9045.03 11951.64 9359.45 8957.92 13370.96 15070.80 16183.71 14180.92 156
LS3D64.54 12262.14 14667.34 10180.85 6875.79 15669.99 11865.87 5760.77 9144.35 12342.43 13545.95 14165.01 8769.88 16268.69 17277.97 18971.43 187
tpmrst67.15 10568.12 10666.03 10576.21 10280.98 11071.27 10645.05 18960.69 9250.63 9846.95 11754.15 11865.30 8671.80 14471.77 15087.72 4390.48 76
PatchmatchNetpermissive65.43 11567.71 10762.78 13073.49 12082.83 9266.42 14445.40 18860.40 9345.27 11749.22 10057.60 10160.01 11970.61 15371.38 15786.08 8381.91 152
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
GeoE68.96 8969.32 9568.54 9076.61 9983.12 9071.78 9956.87 13360.21 9454.86 8445.95 12354.79 11564.27 9274.59 10975.54 10786.84 6791.01 69
thisisatest053068.38 9470.98 8765.35 10772.61 12384.42 8068.21 12957.98 11759.77 9550.80 9754.63 8158.48 9357.92 13376.99 8777.47 8484.60 12685.07 126
Effi-MVS+70.42 8071.23 8569.47 8178.04 8585.24 7375.57 7458.88 11059.56 9648.47 10752.73 9154.94 11369.69 6378.34 7777.06 8786.18 7890.73 75
tttt051767.99 9770.61 8964.94 11071.94 12883.96 8667.62 13357.98 11759.30 9749.90 10354.50 8457.98 10057.92 13376.48 9077.47 8484.24 13384.58 129
Fast-Effi-MVS+67.59 9867.56 10867.62 9773.67 11781.14 10871.12 11054.79 15758.88 9850.61 9946.70 11947.05 13769.12 7176.06 9576.44 9386.43 7386.65 112
DROMVSNet67.59 9867.56 10867.62 9773.67 11781.14 10871.12 11054.79 15758.88 9850.61 9946.70 11947.05 13769.12 7176.06 9576.44 9386.43 7386.65 112
test-LLR68.23 9571.61 8364.28 11871.37 13081.32 10663.98 15361.03 9758.62 10042.96 13152.74 8961.65 7757.74 13675.64 10078.09 8188.61 2493.21 46
TESTMET0.1,167.38 10371.61 8362.45 13466.05 16381.32 10663.98 15355.36 15058.62 10042.96 13152.74 8961.65 7757.74 13675.64 10078.09 8188.61 2493.21 46
MDTV_nov1_ep1365.21 11667.28 11162.79 12970.91 13481.72 9869.28 12449.50 17758.08 10243.94 12550.50 9756.02 10658.86 12870.72 15273.37 13284.24 13380.52 157
MS-PatchMatch70.34 8469.00 9871.91 6985.20 5285.35 7277.84 6161.77 9258.01 10355.40 8141.26 14158.34 9661.69 10881.70 4978.29 7789.56 880.02 158
FMVSNet558.86 16260.24 16057.25 16652.66 20466.25 19263.77 15652.86 17057.85 10437.92 15636.12 17052.22 12651.37 15570.88 15171.43 15584.92 11366.91 196
dps64.08 12463.22 13465.08 10975.27 11179.65 12266.68 14146.63 18756.94 10555.67 7943.96 12543.63 14764.00 9369.50 16669.82 16782.25 16279.02 162
pmmvs463.14 13162.46 14363.94 12166.03 16476.40 15166.82 14057.60 12456.74 10650.26 10240.81 14537.51 16959.26 12571.75 14571.48 15383.68 14282.53 146
IB-MVS64.48 1169.02 8868.97 9969.09 8781.75 6389.01 3664.50 14864.91 6456.65 10762.59 5147.89 10545.23 14251.99 15269.18 16781.88 4088.77 1892.93 50
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
MSDG65.57 11361.57 15070.24 7782.02 6276.47 15074.46 8968.73 4156.52 10850.33 10138.47 15441.10 15462.42 10572.12 14072.94 14183.47 14373.37 180
PVSNet_Blended_VisFu71.76 7473.54 7369.69 8079.01 7987.16 5872.05 9661.80 9156.46 10959.66 6753.88 8862.48 7159.08 12781.17 5378.90 7186.53 7294.74 29
FMVSNet268.06 9668.57 10167.45 10069.49 14078.65 13074.54 8360.23 10856.29 11049.64 10442.13 13757.08 10263.43 9681.15 5480.99 5587.37 5083.73 135
baseline171.47 7572.02 7870.82 7380.56 7284.51 7976.61 6866.93 5056.22 11148.66 10655.40 7860.43 8462.55 10383.35 2980.99 5589.60 783.28 141
PatchMatch-RL62.22 14260.69 15664.01 11968.74 14575.75 15759.27 17460.35 10656.09 11253.80 8647.06 11536.45 17564.80 9068.22 16967.22 17677.10 19174.02 175
CR-MVSNet62.31 13764.75 12559.47 15168.63 14671.29 18067.53 13443.18 19655.83 11341.40 13741.04 14355.85 10757.29 13972.76 13373.27 13678.77 18683.23 142
RPMNet58.63 16562.80 14153.76 18167.59 15471.29 18054.60 18438.13 20855.83 11335.70 16741.58 14053.04 12447.89 16466.10 17467.38 17478.65 18884.40 131
IS_MVSNet67.29 10471.98 7961.82 13876.92 9684.32 8465.90 14658.22 11455.75 11539.22 14854.51 8362.47 7245.99 17378.83 7278.52 7584.70 12489.47 87
test-mter64.06 12569.24 9658.01 15959.07 19277.40 14459.13 17548.11 18155.64 11639.18 14951.56 9458.54 9255.38 14473.52 12476.00 10087.22 5992.05 59
Vis-MVSNet (Re-imp)62.25 13968.74 10054.68 17673.70 11678.74 12956.51 18157.49 12655.22 11726.86 18954.56 8261.35 7931.06 19173.10 12774.90 11182.49 15883.31 139
tmp_tt16.09 21413.07 2198.12 22213.61 2192.08 21855.09 11830.10 18440.26 14822.83 2115.35 21629.91 21225.25 21432.33 216
FC-MVSNet-train68.83 9068.29 10369.47 8178.35 8279.94 11964.72 14766.38 5354.96 11954.51 8556.75 7447.91 13666.91 8275.57 10275.75 10285.92 8687.12 108
DCV-MVSNet69.13 8769.07 9769.21 8377.65 8977.52 14374.68 8157.85 12154.92 12055.34 8355.74 7655.56 11166.35 8375.05 10476.56 9283.35 14488.13 103
USDC59.69 15760.03 16259.28 15464.04 17371.84 17563.15 16255.36 15054.90 12135.02 17048.34 10229.79 20258.16 13070.60 15471.33 15879.99 17973.42 179
HyFIR lowres test68.39 9368.28 10468.52 9180.85 6888.11 4671.08 11258.09 11654.87 12247.80 11127.55 19655.80 10864.97 8879.11 6979.14 7088.31 3393.35 45
UGNet67.57 10171.69 8262.76 13169.88 13882.58 9466.43 14358.64 11254.71 12351.87 9061.74 5962.01 7645.46 17574.78 10874.99 11084.24 13391.02 68
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
CHOSEN 280x42062.23 14166.57 11557.17 16759.88 18968.92 18661.20 16942.28 20054.17 12439.57 14547.78 10664.97 6462.68 10173.85 12069.52 17077.43 19086.75 111
Effi-MVS+-dtu64.58 12064.08 12965.16 10873.04 12275.17 16170.68 11756.23 13854.12 12544.71 12247.42 10851.10 12863.82 9568.08 17066.32 18182.47 15986.38 116
PatchT60.46 15363.85 13056.51 17065.95 16575.68 15847.34 19541.39 20353.89 12641.40 13737.84 15950.30 13157.29 13972.76 13373.27 13685.67 9783.23 142
EPP-MVSNet67.58 10071.10 8663.48 12475.71 10783.35 8966.85 13957.83 12253.02 12741.15 14055.82 7567.89 5656.01 14274.40 11272.92 14283.33 14590.30 78
Anonymous2023121168.44 9266.37 11770.86 7277.58 9083.49 8875.15 7961.89 8952.54 12858.50 6928.89 19256.78 10369.29 7074.96 10776.61 9082.73 15391.36 65
Fast-Effi-MVS+-dtu63.05 13264.72 12761.11 14171.21 13376.81 14970.72 11643.13 19852.51 12935.34 16946.55 12146.36 13961.40 11171.57 14771.44 15484.84 11887.79 105
tpm64.85 11866.02 12163.48 12474.52 11478.38 13370.98 11444.99 19151.61 13043.28 13047.66 10753.18 12360.57 11470.58 15571.30 15986.54 7189.45 88
Anonymous20240521166.35 11878.00 8684.41 8174.85 8063.18 7651.00 13131.37 18753.73 12169.67 6476.28 9176.84 8883.21 14990.85 70
ADS-MVSNet58.40 16659.16 16757.52 16465.80 16774.57 16660.26 17040.17 20750.51 13238.01 15540.11 14944.72 14359.36 12464.91 17966.55 17981.53 16972.72 183
IterMVS-LS66.08 11066.56 11665.51 10673.67 11774.88 16270.89 11553.55 16550.42 13348.32 10950.59 9655.66 10961.83 10773.93 11874.42 12084.82 12186.01 120
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
UniMVSNet_NR-MVSNet62.30 13863.51 13260.89 14269.48 14377.83 13964.07 15163.94 6950.03 13431.17 18144.82 12441.12 15351.37 15571.02 14974.81 11385.30 10584.95 127
OPM-MVS72.74 6870.93 8874.85 5385.30 5184.34 8282.82 3269.79 3249.96 13555.39 8254.09 8760.14 8770.04 6180.38 6179.43 6685.74 9288.20 102
UniMVSNet (Re)60.62 15262.93 13957.92 16067.64 15377.90 13861.75 16661.24 9649.83 13629.80 18542.57 13140.62 15943.36 17970.49 15773.27 13683.76 13985.81 122
DU-MVS60.87 15161.82 14859.76 14966.69 15875.87 15464.07 15161.96 8749.31 13731.17 18142.76 12836.95 17251.37 15569.67 16473.20 13983.30 14684.95 127
NR-MVSNet61.08 15062.09 14759.90 14771.96 12775.87 15463.60 15761.96 8749.31 13727.95 18642.76 12833.85 19048.82 16274.35 11474.05 12585.13 10884.45 130
thres100view90067.14 10666.09 12068.38 9377.70 8783.84 8774.52 8666.33 5549.16 13943.40 12843.24 12641.34 15062.59 10279.31 6875.92 10185.73 9389.81 82
tfpn200view965.90 11164.96 12467.00 10277.70 8781.58 10171.71 10262.94 8149.16 13943.40 12843.24 12641.34 15061.42 11076.24 9274.63 11684.84 11888.52 99
Baseline_NR-MVSNet59.47 15860.28 15958.54 15866.69 15873.90 16861.63 16762.90 8249.15 14126.87 18835.18 17637.62 16848.20 16369.67 16473.61 12884.92 11382.82 145
Vis-MVSNetpermissive65.53 11469.83 9460.52 14470.80 13684.59 7866.37 14555.47 14948.40 14240.62 14457.67 7258.43 9545.37 17677.49 8076.24 9884.47 12985.99 121
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
COLMAP_ROBcopyleft51.17 1555.13 17452.90 18757.73 16373.47 12167.21 19062.13 16455.82 14247.83 14334.39 17231.60 18634.24 18744.90 17763.88 18662.52 19475.67 19463.02 203
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
IterMVS-SCA-FT60.21 15562.97 13757.00 16866.64 16071.84 17567.53 13446.93 18647.56 14436.77 16246.85 11848.21 13452.51 15170.36 15872.40 14771.63 20483.53 138
IterMVS61.87 14563.55 13159.90 14767.29 15672.20 17467.34 13748.56 17947.48 14537.86 15747.07 11448.27 13354.08 14872.12 14073.71 12784.30 13283.99 134
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
UA-Net64.62 11968.23 10560.42 14577.53 9181.38 10460.08 17257.47 12747.01 14644.75 12160.68 6471.32 4641.84 18373.27 12572.25 14880.83 17571.68 185
V4262.86 13562.97 13762.74 13260.84 18678.99 12871.46 10557.13 13146.85 14744.28 12438.87 15240.73 15857.63 13872.60 13674.14 12285.09 11188.63 97
TranMVSNet+NR-MVSNet60.38 15461.30 15259.30 15368.34 14775.57 16063.38 16063.78 7146.74 14827.73 18742.56 13236.84 17347.66 16570.36 15874.59 11784.91 11582.46 147
v863.44 13062.58 14264.43 11568.28 14878.07 13671.82 9854.85 15546.70 14945.20 11839.40 15140.91 15560.54 11572.85 13274.39 12185.92 8685.76 123
MIMVSNet57.78 16959.71 16455.53 17354.79 20077.10 14763.89 15545.02 19046.59 15036.79 16128.36 19440.77 15745.84 17474.97 10576.58 9186.87 6673.60 178
thres20065.58 11264.74 12666.56 10377.52 9281.61 9973.44 9162.95 7946.23 15142.45 13542.76 12841.18 15258.12 13176.24 9275.59 10584.89 11689.58 85
test0.0.03 157.35 17159.89 16354.38 17971.37 13073.45 17052.71 18761.03 9746.11 15226.33 19041.73 13944.08 14529.72 19371.43 14870.90 16085.10 10971.56 186
ACMH+60.36 1361.16 14858.38 16864.42 11677.37 9474.35 16768.45 12762.81 8345.86 15338.48 15235.71 17237.35 17059.81 12067.24 17269.80 16979.58 18278.32 164
FC-MVSNet-test47.24 19854.37 18138.93 20459.49 19158.25 20734.48 21153.36 16645.66 1546.66 21750.62 9542.02 14816.62 21158.39 19261.21 19662.99 20864.40 200
v1063.00 13362.22 14563.90 12267.88 15177.78 14071.59 10354.34 16045.37 15542.76 13438.53 15338.93 16461.05 11374.39 11374.52 11985.75 9086.04 119
GA-MVS64.55 12165.76 12363.12 12669.68 13981.56 10269.59 12158.16 11545.23 15635.58 16847.01 11641.82 14959.41 12379.62 6678.54 7486.32 7586.56 114
thres40065.18 11764.44 12866.04 10476.40 10182.63 9371.52 10464.27 6744.93 15740.69 14341.86 13840.79 15658.12 13177.67 7974.64 11585.26 10688.56 98
test_part166.32 10763.35 13369.77 7977.40 9378.35 13477.85 6056.25 13744.52 15862.15 5333.05 18153.91 12062.38 10672.19 13974.65 11482.59 15686.81 110
v2v48263.68 12862.85 14064.65 11368.01 14980.46 11671.90 9757.60 12444.26 15942.82 13339.80 15038.62 16661.56 10973.06 12874.86 11286.03 8488.90 95
TDRefinement52.70 18451.02 19354.66 17757.41 19765.06 19661.47 16854.94 15244.03 16033.93 17430.13 19127.57 20546.17 17261.86 18862.48 19574.01 20066.06 197
thres600view763.77 12763.14 13564.51 11475.49 10981.61 9969.59 12162.95 7943.96 16138.90 15041.09 14240.24 16155.25 14576.24 9271.54 15184.89 11687.30 107
CDS-MVSNet64.22 12365.89 12262.28 13670.05 13780.59 11469.91 12057.98 11743.53 16246.58 11348.22 10350.76 12946.45 17075.68 9976.08 9982.70 15486.34 117
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
FMVSNet163.48 12963.07 13663.97 12065.31 16876.37 15271.77 10157.90 12043.32 16345.66 11535.06 17749.43 13258.57 12977.49 8078.22 7884.59 12781.60 154
v114463.00 13362.39 14463.70 12367.72 15280.27 11771.23 10756.40 13442.51 16440.81 14238.12 15837.73 16760.42 11774.46 11174.55 11885.64 10189.12 91
v14862.00 14461.19 15362.96 12767.46 15579.49 12467.87 13057.66 12342.30 16545.02 12038.20 15738.89 16554.77 14669.83 16372.60 14584.96 11287.01 109
CVMVSNet54.92 17858.16 16951.13 18662.61 18168.44 18755.45 18352.38 17142.28 16621.45 19747.10 11346.10 14037.96 18864.42 18463.81 18876.92 19275.01 172
PM-MVS50.11 19150.38 19549.80 18747.23 21062.08 20350.91 19044.84 19241.90 16736.10 16535.22 17526.05 20946.83 16957.64 19455.42 20572.90 20174.32 174
CMPMVSbinary43.63 1757.67 17055.43 17860.28 14672.01 12679.00 12762.77 16353.23 16741.77 16845.42 11630.74 18939.03 16353.01 15064.81 18164.65 18775.26 19668.03 194
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
v119262.25 13961.64 14962.96 12766.88 15779.72 12169.96 11955.77 14341.58 16939.42 14637.05 16335.96 18060.50 11674.30 11674.09 12385.24 10788.76 96
thisisatest051559.37 15960.68 15757.84 16264.39 17275.65 15958.56 17753.86 16341.55 17042.12 13640.40 14739.59 16247.09 16871.69 14673.79 12681.02 17382.08 151
v14419262.05 14361.46 15162.73 13366.59 16179.87 12069.30 12355.88 14141.50 17139.41 14737.23 16136.45 17559.62 12172.69 13573.51 12985.61 10288.93 93
v192192061.66 14661.10 15462.31 13566.32 16279.57 12368.41 12855.49 14841.03 17238.69 15136.64 16935.27 18359.60 12273.23 12673.41 13185.37 10488.51 100
pmmvs-eth3d55.20 17353.95 18256.65 16957.34 19867.77 18857.54 17953.74 16440.93 17341.09 14131.19 18829.10 20449.07 16165.54 17667.28 17581.14 17175.81 168
pmnet_mix0253.92 18253.30 18454.65 17861.89 18371.33 17954.54 18554.17 16140.38 17434.65 17134.76 17830.68 20140.44 18560.97 18963.71 18982.19 16371.24 188
TinyColmap52.66 18550.09 19655.65 17259.72 19064.02 20057.15 18052.96 16940.28 17532.51 17832.42 18320.97 21356.65 14163.95 18565.15 18674.91 19763.87 201
pmmvs559.72 15660.24 16059.11 15562.77 18077.33 14663.17 16154.00 16240.21 17637.23 15840.41 14635.99 17951.75 15372.55 13772.74 14485.72 9582.45 148
ACMH59.42 1461.59 14759.22 16664.36 11778.92 8078.26 13567.65 13267.48 4739.81 17730.98 18338.25 15634.59 18661.37 11270.55 15673.47 13079.74 18179.59 159
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
v124061.09 14960.55 15861.72 13965.92 16679.28 12667.16 13854.91 15439.79 17838.10 15436.08 17134.64 18559.15 12672.86 13173.36 13385.10 10987.84 104
MVS-HIRNet53.86 18353.02 18554.85 17560.30 18872.36 17344.63 20342.20 20139.45 17943.47 12721.66 20634.00 18955.47 14365.42 17767.16 17783.02 15271.08 189
MDTV_nov1_ep13_2view54.47 18054.61 17954.30 18060.50 18773.82 16957.92 17843.38 19539.43 18032.51 17833.23 18034.05 18847.26 16762.36 18766.21 18284.24 13373.19 181
TAMVS58.86 16260.91 15556.47 17162.38 18277.57 14258.97 17652.98 16838.76 18136.17 16442.26 13647.94 13546.45 17070.23 16070.79 16281.86 16678.82 163
WR-MVS51.02 18854.56 18046.90 19563.84 17469.23 18544.78 20256.38 13538.19 18214.19 20737.38 16036.82 17422.39 20360.14 19166.20 18379.81 18073.95 177
CP-MVSNet50.57 18952.60 19048.21 19258.77 19465.82 19448.17 19356.29 13637.41 18316.59 20237.14 16231.95 19429.21 19456.60 19863.71 18980.22 17775.56 170
PEN-MVS51.04 18752.94 18648.82 18961.45 18566.00 19348.68 19257.20 12936.87 18415.36 20536.98 16432.72 19228.77 19757.63 19566.37 18081.44 17074.00 176
test_method28.15 20834.48 20920.76 2106.76 22121.18 21721.03 21518.41 21636.77 18517.52 20015.67 21331.63 19624.05 20241.03 21126.69 21336.82 21568.38 191
Anonymous2023120652.23 18652.80 18851.56 18464.70 17169.41 18451.01 18958.60 11336.63 18622.44 19621.80 20531.42 19730.52 19266.79 17367.83 17382.10 16475.73 169
WR-MVS_H49.62 19352.63 18946.11 19858.80 19367.58 18946.14 20054.94 15236.51 18713.63 21036.75 16735.67 18222.10 20456.43 19962.76 19381.06 17272.73 182
PS-CasMVS50.17 19052.02 19148.02 19358.60 19565.54 19548.04 19456.19 14036.42 18816.42 20435.68 17331.33 19828.85 19656.42 20063.54 19180.01 17875.18 171
UniMVSNet_ETH3D57.83 16756.46 17759.43 15263.24 17773.22 17167.70 13155.58 14636.17 18936.84 16032.64 18235.14 18451.50 15465.81 17569.81 16881.73 16782.44 149
DTE-MVSNet49.82 19251.92 19247.37 19461.75 18464.38 19845.89 20157.33 12836.11 19012.79 21236.87 16531.93 19525.73 20058.01 19365.22 18580.75 17670.93 190
N_pmnet47.67 19747.00 20148.45 19154.72 20162.78 20146.95 19751.25 17436.01 19126.09 19126.59 19825.93 21035.50 19055.67 20259.01 19876.22 19363.04 202
FPMVS39.11 20536.39 20742.28 20055.97 19945.94 21246.23 19941.57 20235.73 19222.61 19423.46 20119.82 21528.32 19843.57 20740.67 20958.96 21045.54 210
v7n57.04 17256.64 17557.52 16462.85 17974.75 16461.76 16551.80 17335.58 19336.02 16632.33 18433.61 19150.16 16067.73 17170.34 16682.51 15782.12 150
pm-mvs159.21 16059.58 16558.77 15767.97 15077.07 14864.12 14957.20 12934.73 19436.86 15935.34 17440.54 16043.34 18074.32 11573.30 13583.13 15181.77 153
anonymousdsp54.99 17657.24 17352.36 18253.82 20271.75 17851.49 18848.14 18033.74 19533.66 17538.34 15536.13 17847.54 16664.53 18370.60 16479.53 18385.59 125
EU-MVSNet44.84 20047.85 20041.32 20349.26 20756.59 20843.07 20447.64 18433.03 19613.82 20836.78 16630.99 19924.37 20153.80 20455.57 20469.78 20568.21 192
tfpnnormal58.97 16156.48 17661.89 13771.27 13276.21 15366.65 14261.76 9332.90 19736.41 16327.83 19529.14 20350.64 15973.06 12873.05 14084.58 12883.15 144
EG-PatchMatch MVS58.73 16458.03 17159.55 15072.32 12480.49 11563.44 15955.55 14732.49 19838.31 15328.87 19337.22 17142.84 18174.30 11675.70 10384.84 11877.14 167
TransMVSNet (Re)57.83 16756.90 17458.91 15672.26 12574.69 16563.57 15861.42 9532.30 19932.65 17733.97 17935.96 18039.17 18773.84 12172.84 14384.37 13174.69 173
ambc42.30 20450.36 20649.51 21135.47 21032.04 20023.53 19317.36 2098.95 22029.06 19564.88 18056.26 20261.29 20967.12 195
SixPastTwentyTwo49.11 19549.22 19848.99 18858.54 19664.14 19947.18 19647.75 18231.15 20124.42 19241.01 14426.55 20744.04 17854.76 20358.70 20071.99 20368.21 192
MDA-MVSNet-bldmvs44.15 20142.27 20646.34 19638.34 21262.31 20246.28 19855.74 14429.83 20220.98 19827.11 19716.45 21841.98 18241.11 21057.47 20174.72 19861.65 206
test20.0347.23 19948.69 19945.53 19963.28 17664.39 19741.01 20656.93 13229.16 20315.21 20623.90 19930.76 20017.51 21064.63 18265.26 18479.21 18562.71 204
testgi48.51 19650.53 19446.16 19764.78 16967.15 19141.54 20554.81 15629.12 20417.03 20132.07 18531.98 19320.15 20765.26 17867.00 17878.67 18761.10 207
new_pmnet33.19 20635.52 20830.47 20727.55 21745.31 21329.29 21330.92 21329.00 2059.88 21618.77 20817.64 21726.77 19944.07 20645.98 20858.41 21147.87 209
new-patchmatchnet42.21 20242.97 20341.33 20253.05 20359.89 20439.38 20749.61 17628.26 20612.10 21322.17 20421.54 21219.22 20850.96 20556.04 20374.61 19961.92 205
MIMVSNet140.84 20443.46 20237.79 20532.14 21358.92 20639.24 20850.83 17527.00 20711.29 21416.76 21226.53 20817.75 20957.14 19761.12 19775.46 19556.78 208
pmmvs654.20 18153.54 18354.97 17463.22 17872.98 17260.17 17152.32 17226.77 20834.30 17323.29 20236.23 17740.33 18668.77 16868.76 17179.47 18478.00 165
gg-mvs-nofinetune62.34 13666.19 11957.86 16176.15 10388.61 3971.18 10941.24 20625.74 20913.16 21122.91 20363.97 6854.52 14785.06 1585.25 1090.92 391.78 61
Gipumacopyleft24.91 20924.61 21125.26 20931.47 21421.59 21618.06 21637.53 20925.43 21010.03 2154.18 2184.25 22214.85 21243.20 20847.03 20739.62 21426.55 215
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
DeepMVS_CXcopyleft19.81 21917.01 21710.02 21723.61 2115.85 21817.21 2108.03 22121.13 20522.60 21421.42 21930.01 213
pmmvs341.86 20342.29 20541.36 20139.80 21152.66 21038.93 20935.85 21223.40 21220.22 19919.30 20720.84 21440.56 18455.98 20158.79 19972.80 20265.03 199
gm-plane-assit54.99 17657.99 17251.49 18569.27 14454.42 20932.32 21242.59 19921.18 21313.71 20923.61 20043.84 14660.21 11887.09 586.55 590.81 489.28 89
PMVScopyleft27.44 1832.08 20729.07 21035.60 20648.33 20924.79 21526.97 21441.34 20420.45 21422.50 19517.11 21118.64 21620.44 20641.99 20938.06 21054.02 21242.44 211
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
LTVRE_ROB47.26 1649.41 19449.91 19748.82 18964.76 17069.79 18349.05 19147.12 18520.36 21516.52 20336.65 16826.96 20650.76 15860.47 19063.16 19264.73 20772.00 184
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
PMMVS220.45 21022.31 21218.27 21320.52 21826.73 21414.85 21828.43 21513.69 2160.79 22210.35 2149.10 2193.83 21727.64 21332.87 21141.17 21335.81 212
EMVS14.40 21210.71 21518.70 21228.15 21612.09 2217.06 22036.89 21011.00 2173.56 2214.95 2162.27 22413.91 21310.13 21716.06 21622.63 21818.51 217
E-PMN15.08 21111.65 21419.08 21128.73 21512.31 2206.95 22136.87 21110.71 2183.63 2205.13 2152.22 22513.81 21411.34 21618.50 21524.49 21721.32 216
MVEpermissive15.98 1914.37 21316.36 21312.04 2157.72 22020.24 2185.90 22229.05 2148.28 2193.92 2194.72 2172.42 2239.57 21518.89 21531.46 21216.07 22028.53 214
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
testmvs0.05 2140.08 2160.01 2160.00 2230.01 2230.03 2240.01 2200.05 2200.00 2240.14 2200.01 2260.03 2200.05 2180.05 2170.01 2210.24 219
test1230.05 2140.08 2160.01 2160.00 2230.01 2230.01 2250.00 2210.05 2200.00 2240.16 2190.00 2270.04 2180.02 2190.05 2170.00 2220.26 218
uanet_test0.00 2160.00 2180.00 2180.00 2230.00 2250.00 2260.00 2210.00 2220.00 2240.00 2210.00 2270.00 2210.00 2200.00 2190.00 2220.00 220
sosnet-low-res0.00 2160.00 2180.00 2180.00 2230.00 2250.00 2260.00 2210.00 2220.00 2240.00 2210.00 2270.00 2210.00 2200.00 2190.00 2220.00 220
sosnet0.00 2160.00 2180.00 2180.00 2230.00 2250.00 2260.00 2210.00 2220.00 2240.00 2210.00 2270.00 2210.00 2200.00 2190.00 2220.00 220
RE-MVS-def31.47 180
9.1484.47 6
SR-MVS86.33 4767.54 4680.78 19
our_test_363.32 17571.07 18255.90 182
MTAPA78.32 1179.42 24
MTMP76.04 1676.65 29
Patchmatch-RL test2.17 223
XVS82.43 5686.27 6675.70 7061.07 6072.27 3985.67 97
X-MVStestdata82.43 5686.27 6675.70 7061.07 6072.27 3985.67 97
mPP-MVS86.96 4270.61 49
Patchmtry78.06 13767.53 13443.18 19641.40 137