This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorcourty.delive.electrofacadekickermeadowofficepipesplaygr.reliefrelief.terraceterrai.
sort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
SED-MVS88.94 190.98 186.56 192.53 695.09 188.55 576.83 794.16 186.57 190.85 687.07 186.18 186.36 785.08 1288.67 2198.21 3
xxxxxxxxxxxxxcwj84.33 1483.20 2685.64 294.57 194.55 391.01 179.94 189.15 1179.85 692.37 344.71 14179.75 783.52 2582.72 3188.75 1995.37 23
SF-MVS87.30 588.71 585.64 294.57 194.55 391.01 179.94 189.15 1179.85 692.37 383.29 979.75 783.52 2582.72 3188.75 1995.37 23
DVP-MVS88.07 290.73 284.97 491.98 995.01 287.86 976.88 693.90 285.15 290.11 886.90 279.46 1186.26 1084.67 1788.50 2898.25 2
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
MSP-MVS87.87 390.57 384.73 589.38 2791.60 1788.24 774.15 1293.55 382.28 394.99 183.21 1085.96 287.67 484.67 1788.32 3198.29 1
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
MCST-MVS85.75 886.99 1284.31 694.07 392.80 788.15 879.10 385.66 2370.72 3076.50 3280.45 2082.17 388.35 287.49 391.63 297.65 4
DPE-MVScopyleft87.60 490.44 484.29 792.09 893.44 588.69 475.11 993.06 580.80 594.23 286.70 381.44 584.84 1783.52 2687.64 4697.28 5
CNVR-MVS85.96 787.58 1084.06 892.58 592.40 1087.62 1077.77 588.44 1475.93 1779.49 2581.97 1681.65 487.04 686.58 488.79 1797.18 7
APDe-MVS86.37 688.41 784.00 991.43 1491.83 1588.34 674.67 1091.19 681.76 491.13 581.94 1780.07 683.38 2782.58 3487.69 4496.78 10
DPM-MVS85.41 1086.72 1583.89 1091.66 1291.92 1490.49 378.09 486.90 1873.95 2074.52 3482.01 1579.29 1290.24 190.65 189.86 690.78 70
NCCC84.16 1685.46 2082.64 1192.34 790.57 2386.57 1376.51 886.85 2072.91 2377.20 3178.69 2679.09 1484.64 1984.88 1588.44 2995.41 21
HPM-MVS++copyleft85.64 988.43 682.39 1292.65 490.24 2685.83 1674.21 1190.68 875.63 1886.77 1384.15 778.68 1586.33 885.26 987.32 5395.60 18
APD-MVScopyleft84.83 1287.00 1182.30 1389.61 2589.21 3486.51 1473.64 1690.98 777.99 1289.89 980.04 2379.18 1382.00 4681.37 4786.88 6595.49 20
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
TSAR-MVS + MP.84.39 1386.58 1681.83 1488.09 3986.47 6485.63 1873.62 1790.13 1079.24 989.67 1082.99 1177.72 1781.22 5280.92 5886.68 6894.66 30
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
SMA-MVScopyleft85.24 1188.27 881.72 1591.74 1190.71 2086.71 1273.16 1990.56 974.33 1983.07 1885.88 477.16 1986.28 985.58 687.23 5795.77 14
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
SD-MVS84.31 1586.96 1381.22 1688.98 3188.68 3885.65 1773.85 1589.09 1379.63 887.34 1284.84 573.71 3482.66 3481.60 4485.48 10094.51 31
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
DeepC-MVS_fast75.41 281.69 2482.10 3381.20 1791.04 1687.81 5183.42 2774.04 1383.77 2771.09 2866.88 4772.44 3879.48 1085.08 1484.97 1488.12 3993.78 41
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
CSCG82.90 2084.52 2281.02 1891.85 1093.43 687.14 1174.01 1481.96 3376.14 1570.84 3882.49 1269.71 6182.32 4185.18 1187.26 5695.40 22
HFP-MVS82.48 2284.12 2380.56 1990.15 1887.55 5484.28 2369.67 3485.22 2477.95 1384.69 1675.94 3075.04 2781.85 4781.17 5286.30 7492.40 54
3Dnovator70.49 578.42 3976.77 5680.35 2091.43 1490.27 2581.84 3670.79 2672.10 5771.95 2450.02 9767.86 5677.47 1882.89 3184.24 1988.61 2489.99 79
ACMMP_NAP83.54 1786.37 1780.25 2189.57 2690.10 2885.27 2071.66 2387.38 1573.08 2284.23 1780.16 2175.31 2584.85 1683.64 2386.57 6994.21 37
MSLP-MVS++78.57 3877.33 5180.02 2288.39 3484.79 7684.62 2266.17 5675.96 5378.40 1061.59 6071.47 4573.54 3778.43 7478.88 7188.97 1490.18 78
zzz-MVS81.65 2583.10 2779.97 2388.14 3887.62 5383.96 2669.90 3186.92 1777.67 1472.47 3678.74 2574.13 3381.59 5081.15 5386.01 8293.19 47
DeepC-MVS74.46 380.30 3081.05 3679.42 2487.42 4188.50 4083.23 2873.27 1882.78 3071.01 2962.86 5769.93 5174.80 2984.30 2084.20 2086.79 6794.77 27
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
AdaColmapbinary76.23 5373.55 7179.35 2589.38 2785.00 7579.99 5073.04 2076.60 5271.17 2755.18 7857.99 9877.87 1676.82 8776.82 8884.67 12286.45 112
SteuartSystems-ACMMP82.51 2185.35 2179.20 2690.25 1789.39 3384.79 2170.95 2582.86 2968.32 3886.44 1477.19 2773.07 3983.63 2483.64 2387.82 4094.34 33
Skip Steuart: Steuart Systems R&D Blog.
train_agg83.35 1886.93 1479.17 2789.70 2388.41 4185.60 1972.89 2186.31 2166.58 4190.48 782.24 1473.06 4083.10 3082.64 3387.21 6195.30 25
DELS-MVS79.49 3179.84 4179.08 2888.26 3792.49 884.12 2570.63 2765.27 8069.60 3661.29 6266.50 6072.75 4288.07 388.03 289.13 1297.22 6
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
abl_679.06 2989.68 2492.14 1277.70 6269.68 3386.87 1971.88 2574.29 3580.06 2276.56 2288.84 1695.82 13
3Dnovator+70.16 677.87 4277.29 5278.55 3089.25 2988.32 4380.09 4867.95 4474.89 5671.83 2652.05 9170.68 4876.27 2482.27 4282.04 3685.92 8390.77 71
CANet80.90 2882.93 2978.53 3186.83 4592.26 1181.19 4266.95 4981.60 3669.90 3366.93 4674.80 3276.79 2084.68 1884.77 1689.50 995.50 19
MP-MVScopyleft80.94 2783.49 2577.96 3288.48 3288.16 4582.82 3269.34 3680.79 3969.67 3482.35 2077.13 2871.60 5180.97 5780.96 5785.87 8694.06 38
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
TSAR-MVS + GP.82.27 2385.98 1877.94 3380.72 7188.25 4481.12 4367.71 4587.10 1673.31 2185.23 1583.68 876.64 2180.43 6081.47 4688.15 3795.66 17
ACMMPR80.62 2982.98 2877.87 3488.41 3387.05 5983.02 2969.18 3783.91 2668.35 3782.89 1973.64 3572.16 4680.78 5881.13 5486.10 7991.43 61
DeepPCF-MVS76.94 183.08 1987.77 977.60 3590.11 1990.96 1978.48 5472.63 2293.10 465.84 4280.67 2381.55 1874.80 2985.94 1285.39 883.75 13796.77 11
QAPM77.50 4577.43 5077.59 3691.52 1392.00 1381.41 4070.63 2766.22 7358.05 7054.70 7971.79 4474.49 3282.46 3782.04 3689.46 1092.79 52
CLD-MVS77.36 4777.29 5277.45 3782.21 6088.11 4681.92 3568.96 3977.97 4769.62 3562.08 5859.44 8973.57 3681.75 4881.27 5088.41 3090.39 75
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
CP-MVS79.44 3281.51 3577.02 3886.95 4385.96 7082.00 3468.44 4281.82 3467.39 3977.43 2973.68 3471.62 5079.56 6679.58 6585.73 9092.51 53
TSAR-MVS + ACMM81.59 2685.84 1976.63 3989.82 2286.53 6386.32 1566.72 5285.96 2265.43 4388.98 1182.29 1367.57 7882.06 4581.33 4883.93 13593.75 42
PGM-MVS79.42 3581.84 3476.60 4088.38 3586.69 6182.97 3165.75 5880.39 4064.94 4481.95 2272.11 4371.41 5280.45 5980.55 6286.18 7690.76 72
MVS_111021_HR77.42 4678.40 4776.28 4186.95 4390.68 2177.41 6470.56 3066.21 7462.48 5266.17 5063.98 6772.08 4782.87 3283.15 2788.24 3495.71 16
MVS_030479.43 3382.20 3176.20 4284.22 5391.79 1681.82 3763.81 7076.83 5161.71 5666.37 4975.52 3176.38 2385.54 1385.03 1389.28 1194.32 34
CDPH-MVS79.39 3682.13 3276.19 4389.22 3088.34 4284.20 2471.00 2479.67 4356.97 7577.77 2872.24 4268.50 7381.33 5182.74 2987.23 5792.84 50
OpenMVScopyleft67.62 874.92 5973.91 6976.09 4490.10 2090.38 2478.01 5866.35 5466.09 7562.80 4946.33 12064.55 6671.77 4979.92 6380.88 5987.52 4989.20 88
EPNet79.28 3782.25 3075.83 4588.31 3690.14 2779.43 5268.07 4381.76 3561.26 5877.26 3070.08 5070.06 5982.43 3982.00 3887.82 4092.09 56
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
MAR-MVS77.19 4878.37 4875.81 4689.87 2190.58 2279.33 5365.56 6077.62 4958.33 6959.24 7067.98 5474.83 2882.37 4083.12 2886.95 6387.67 104
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
canonicalmvs77.65 4379.59 4275.39 4781.52 6489.83 3281.32 4160.74 10380.05 4166.72 4068.43 4265.09 6374.72 3178.87 7082.73 3087.32 5392.16 55
X-MVS78.16 4180.55 3875.38 4887.99 4086.27 6681.05 4468.98 3878.33 4561.07 6075.25 3372.27 3967.52 7980.03 6280.52 6385.66 9791.20 65
ACMMPcopyleft77.61 4479.59 4275.30 4985.87 4985.58 7181.42 3967.38 4879.38 4462.61 5078.53 2665.79 6268.80 7278.56 7378.50 7585.75 8790.80 69
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
HQP-MVS78.26 4080.91 3775.17 5085.67 5084.33 8283.01 3069.38 3579.88 4255.83 7679.85 2464.90 6570.81 5482.46 3781.78 4086.30 7493.18 48
PVSNet_BlendedMVS76.84 5078.47 4574.95 5182.37 5889.90 3075.45 7565.45 6174.99 5470.66 3163.07 5558.27 9667.60 7684.24 2181.70 4288.18 3597.10 8
PVSNet_Blended76.84 5078.47 4574.95 5182.37 5889.90 3075.45 7565.45 6174.99 5470.66 3163.07 5558.27 9667.60 7684.24 2181.70 4288.18 3597.10 8
OPM-MVS72.74 6870.93 8774.85 5385.30 5184.34 8182.82 3269.79 3249.96 13255.39 8254.09 8660.14 8670.04 6080.38 6179.43 6685.74 8988.20 100
PCF-MVS70.85 475.73 5476.55 5974.78 5483.67 5488.04 4981.47 3870.62 2969.24 6857.52 7360.59 6669.18 5270.65 5677.11 8477.65 8284.75 12094.01 39
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
casdiffmvs75.20 5775.69 6374.63 5579.26 7889.07 3578.47 5563.59 7367.05 7163.79 4755.72 7660.32 8473.58 3582.16 4381.78 4089.08 1393.72 43
PHI-MVS79.43 3384.06 2474.04 5686.15 4891.57 1880.85 4668.90 4082.22 3251.81 9078.10 2774.28 3370.39 5884.01 2384.00 2186.14 7894.24 35
MVS_Test75.22 5676.69 5773.51 5779.30 7788.82 3780.06 4958.74 11169.77 6457.50 7459.78 6961.35 7875.31 2582.07 4483.60 2590.13 591.41 63
CPTT-MVS75.43 5577.13 5473.44 5881.43 6582.55 9380.96 4564.35 6677.95 4861.39 5769.20 4170.94 4769.38 6873.89 11673.32 13183.14 14792.06 57
MVSTER76.92 4979.92 4073.42 5974.98 11082.97 8978.15 5763.41 7478.02 4664.41 4667.54 4472.80 3771.05 5383.29 2983.73 2288.53 2791.12 66
CHOSEN 1792x268872.55 6971.98 7873.22 6086.57 4692.41 975.63 7166.77 5162.08 8652.32 8730.27 18750.74 12866.14 8286.22 1185.41 791.90 196.75 12
diffmvs74.32 6075.42 6473.04 6175.60 10787.27 5678.20 5662.96 7868.66 7061.89 5459.79 6859.84 8771.80 4878.30 7779.87 6487.80 4294.23 36
DI_MVS_plusplus_trai73.94 6374.85 6672.88 6276.57 9986.80 6080.41 4761.47 9462.35 8559.44 6747.91 10368.12 5372.24 4582.84 3381.50 4587.15 6294.42 32
ACMM66.70 1070.42 7968.49 10072.67 6382.85 5577.76 13877.70 6264.76 6564.61 8160.74 6449.29 9853.97 11765.86 8374.97 10375.57 10484.13 13483.29 137
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
CNLPA71.37 7770.27 9172.66 6480.79 7081.33 10371.07 11065.75 5882.36 3164.80 4542.46 13156.49 10372.70 4373.00 12770.52 16280.84 17185.76 120
MVS_111021_LR74.26 6175.95 6172.27 6579.43 7685.04 7472.71 9365.27 6370.92 6063.58 4869.32 4060.31 8569.43 6677.01 8577.15 8583.22 14491.93 59
ACMP68.86 772.15 7172.25 7672.03 6680.96 6780.87 10977.93 5964.13 6869.29 6660.79 6364.04 5353.54 12063.91 9173.74 11975.27 10684.45 12788.98 90
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
OMC-MVS74.03 6275.82 6271.95 6779.56 7480.98 10775.35 7763.21 7584.48 2561.83 5561.54 6166.89 5769.41 6776.60 8874.07 12182.34 15886.15 115
MS-PatchMatch70.34 8369.00 9671.91 6885.20 5285.35 7277.84 6161.77 9258.01 10055.40 8141.26 13858.34 9561.69 10581.70 4978.29 7689.56 880.02 155
ETV-MVS76.25 5280.22 3971.63 6978.23 8287.95 5072.75 9260.27 10777.50 5057.73 7171.53 3766.60 5973.16 3880.99 5681.23 5187.63 4795.73 15
CS-MVS75.18 5878.59 4471.20 7077.74 8687.69 5273.93 8958.81 11069.17 6955.73 7767.86 4366.89 5772.87 4182.50 3581.29 4988.15 3794.71 29
baseline72.89 6674.46 6871.07 7175.99 10387.50 5574.57 8160.49 10570.72 6157.60 7260.63 6560.97 8070.79 5575.27 10176.33 9486.94 6489.79 82
Anonymous2023121168.44 9066.37 11470.86 7277.58 9083.49 8775.15 7861.89 8952.54 12558.50 6828.89 18956.78 10269.29 6974.96 10576.61 8982.73 15091.36 64
baseline171.47 7472.02 7770.82 7380.56 7284.51 7876.61 6866.93 5056.22 10848.66 10355.40 7760.43 8362.55 10083.35 2880.99 5589.60 783.28 138
PLCcopyleft64.00 1268.54 8966.66 11170.74 7480.28 7374.88 15972.64 9463.70 7269.26 6755.71 7847.24 11155.31 11170.42 5772.05 13970.67 16081.66 16577.19 163
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
LGP-MVS_train72.02 7273.18 7470.67 7582.13 6180.26 11579.58 5163.04 7770.09 6251.98 8865.06 5155.62 10962.49 10175.97 9576.32 9584.80 11988.93 91
EIA-MVS73.48 6476.05 6070.47 7678.12 8387.21 5771.78 9860.63 10469.66 6555.56 8064.86 5260.69 8169.53 6477.35 8378.59 7287.22 5994.01 39
MSDG65.57 11061.57 14770.24 7782.02 6276.47 14774.46 8868.73 4156.52 10550.33 9838.47 15141.10 15162.42 10272.12 13772.94 13883.47 14073.37 177
CostFormer72.18 7073.90 7070.18 7879.47 7586.19 6976.94 6748.62 17566.07 7660.40 6554.14 8565.82 6167.98 7475.84 9676.41 9387.67 4592.83 51
test_part166.32 10463.35 13069.77 7977.40 9378.35 13177.85 6056.25 13644.52 15562.15 5333.05 17853.91 11862.38 10372.19 13674.65 11182.59 15386.81 108
PVSNet_Blended_VisFu71.76 7373.54 7269.69 8079.01 7987.16 5872.05 9561.80 9156.46 10659.66 6653.88 8762.48 7059.08 12481.17 5378.90 7086.53 7194.74 28
Effi-MVS+70.42 7971.23 8469.47 8178.04 8485.24 7375.57 7358.88 10959.56 9448.47 10452.73 9054.94 11269.69 6278.34 7677.06 8686.18 7690.73 73
FC-MVSNet-train68.83 8868.29 10169.47 8178.35 8179.94 11664.72 14466.38 5354.96 11654.51 8456.75 7347.91 13466.91 8075.57 10075.75 10085.92 8387.12 106
DCV-MVSNet69.13 8669.07 9569.21 8377.65 8977.52 14074.68 8057.85 12154.92 11755.34 8355.74 7555.56 11066.35 8175.05 10276.56 9183.35 14188.13 101
baseline271.22 7873.01 7569.13 8475.76 10586.34 6571.23 10562.78 8462.62 8352.85 8657.32 7254.31 11463.27 9679.74 6479.31 6788.89 1591.43 61
TAPA-MVS67.10 971.45 7573.47 7369.10 8577.04 9580.78 11073.81 9062.10 8680.80 3851.28 9160.91 6363.80 6967.98 7474.59 10772.42 14382.37 15780.97 152
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
IB-MVS64.48 1169.02 8768.97 9769.09 8681.75 6389.01 3664.50 14564.91 6456.65 10462.59 5147.89 10445.23 13951.99 14969.18 16481.88 3988.77 1892.93 49
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
TSAR-MVS + COLMAP73.09 6576.86 5568.71 8774.97 11182.49 9474.51 8661.83 9083.16 2849.31 10282.22 2151.62 12568.94 7178.76 7275.52 10582.67 15284.23 130
FMVSNet370.41 8171.89 8068.68 8870.89 13279.42 12275.63 7160.97 9965.32 7751.06 9247.37 10862.05 7264.90 8782.49 3682.27 3588.64 2384.34 129
HyFIR lowres test68.39 9168.28 10268.52 8980.85 6888.11 4671.08 10958.09 11654.87 11947.80 10827.55 19355.80 10764.97 8679.11 6879.14 6988.31 3293.35 44
CANet_DTU72.84 6776.63 5868.43 9076.81 9786.62 6275.54 7454.71 15672.06 5843.54 12367.11 4558.46 9372.40 4481.13 5580.82 6087.57 4890.21 77
thres100view90067.14 10366.09 11768.38 9177.70 8783.84 8674.52 8566.33 5549.16 13643.40 12543.24 12341.34 14762.59 9979.31 6775.92 9985.73 9089.81 80
tpm cat167.47 9967.05 10967.98 9276.63 9881.51 10174.49 8747.65 18061.18 8861.12 5942.51 13053.02 12364.74 8970.11 15871.50 14983.22 14489.49 84
GBi-Net69.21 8470.40 8967.81 9369.49 13778.65 12774.54 8260.97 9965.32 7751.06 9247.37 10862.05 7263.43 9377.49 7978.22 7787.37 5083.73 132
test169.21 8470.40 8967.81 9369.49 13778.65 12774.54 8260.97 9965.32 7751.06 9247.37 10862.05 7263.43 9377.49 7978.22 7787.37 5083.73 132
Fast-Effi-MVS+67.59 9667.56 10667.62 9573.67 11581.14 10671.12 10854.79 15558.88 9650.61 9746.70 11847.05 13569.12 7076.06 9476.44 9286.43 7286.65 110
ET-MVSNet_ETH3D71.38 7674.70 6767.51 9651.61 20288.06 4877.29 6560.95 10263.61 8248.36 10566.60 4860.67 8279.55 973.56 12080.58 6187.30 5589.80 81
FMVSNet268.06 9468.57 9967.45 9769.49 13778.65 12774.54 8260.23 10856.29 10749.64 10142.13 13457.08 10163.43 9381.15 5480.99 5587.37 5083.73 132
LS3D64.54 11962.14 14367.34 9880.85 6875.79 15369.99 11565.87 5760.77 9044.35 12042.43 13245.95 13865.01 8569.88 15968.69 16977.97 18671.43 184
tfpn200view965.90 10864.96 12167.00 9977.70 8781.58 9971.71 10062.94 8149.16 13643.40 12543.24 12341.34 14761.42 10776.24 9174.63 11384.84 11588.52 97
thres20065.58 10964.74 12366.56 10077.52 9281.61 9773.44 9162.95 7946.23 14842.45 13242.76 12541.18 14958.12 12876.24 9175.59 10384.89 11389.58 83
thres40065.18 11464.44 12566.04 10176.40 10082.63 9171.52 10264.27 6744.93 15440.69 14041.86 13540.79 15358.12 12877.67 7874.64 11285.26 10388.56 96
tpmrst67.15 10268.12 10466.03 10276.21 10180.98 10771.27 10445.05 18660.69 9150.63 9646.95 11654.15 11665.30 8471.80 14171.77 14787.72 4390.48 74
IterMVS-LS66.08 10766.56 11365.51 10373.67 11574.88 15970.89 11253.55 16250.42 13048.32 10650.59 9555.66 10861.83 10473.93 11574.42 11784.82 11886.01 117
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
thisisatest053068.38 9270.98 8665.35 10472.61 12084.42 7968.21 12657.98 11759.77 9350.80 9554.63 8058.48 9257.92 13076.99 8677.47 8384.60 12385.07 123
Effi-MVS+-dtu64.58 11764.08 12665.16 10573.04 11975.17 15870.68 11456.23 13754.12 12244.71 11947.42 10751.10 12663.82 9268.08 16766.32 17882.47 15686.38 113
dps64.08 12163.22 13165.08 10675.27 10979.65 11966.68 13846.63 18456.94 10255.67 7943.96 12243.63 14464.00 9069.50 16369.82 16482.25 15979.02 159
tttt051767.99 9570.61 8864.94 10771.94 12583.96 8567.62 13057.98 11759.30 9549.90 10054.50 8357.98 9957.92 13076.48 8977.47 8384.24 13084.58 126
PMMVS70.37 8275.06 6564.90 10871.46 12681.88 9564.10 14755.64 14371.31 5946.69 10970.69 3958.56 9069.53 6479.03 6975.63 10281.96 16288.32 99
EPMVS66.21 10567.49 10764.73 10975.81 10484.20 8468.94 12244.37 19061.55 8748.07 10749.21 10054.87 11362.88 9771.82 14071.40 15388.28 3379.37 158
v2v48263.68 12562.85 13764.65 11068.01 14680.46 11371.90 9657.60 12444.26 15642.82 13039.80 14738.62 16361.56 10673.06 12574.86 10986.03 8188.90 93
thres600view763.77 12463.14 13264.51 11175.49 10881.61 9769.59 11862.95 7943.96 15838.90 14741.09 13940.24 15855.25 14276.24 9171.54 14884.89 11387.30 105
v863.44 12762.58 13964.43 11268.28 14578.07 13371.82 9754.85 15346.70 14645.20 11539.40 14840.91 15260.54 11272.85 12974.39 11885.92 8385.76 120
ACMH+60.36 1361.16 14558.38 16564.42 11377.37 9474.35 16468.45 12462.81 8345.86 15038.48 14935.71 16937.35 16759.81 11767.24 16969.80 16679.58 17978.32 161
ACMH59.42 1461.59 14459.22 16364.36 11478.92 8078.26 13267.65 12967.48 4739.81 17430.98 18038.25 15334.59 18361.37 10970.55 15373.47 12779.74 17879.59 156
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
test-LLR68.23 9371.61 8264.28 11571.37 12781.32 10463.98 15061.03 9758.62 9742.96 12852.74 8861.65 7657.74 13375.64 9878.09 8088.61 2493.21 45
PatchMatch-RL62.22 13960.69 15364.01 11668.74 14275.75 15459.27 17160.35 10656.09 10953.80 8547.06 11436.45 17264.80 8868.22 16667.22 17377.10 18874.02 172
FMVSNet163.48 12663.07 13363.97 11765.31 16576.37 14971.77 9957.90 12043.32 16045.66 11235.06 17449.43 13058.57 12677.49 7978.22 7784.59 12481.60 151
pmmvs463.14 12862.46 14063.94 11866.03 16176.40 14866.82 13757.60 12456.74 10350.26 9940.81 14237.51 16659.26 12271.75 14271.48 15083.68 13982.53 143
v1063.00 13062.22 14263.90 11967.88 14877.78 13771.59 10154.34 15745.37 15242.76 13138.53 15038.93 16161.05 11074.39 11074.52 11685.75 8786.04 116
v114463.00 13062.39 14163.70 12067.72 14980.27 11471.23 10556.40 13342.51 16140.81 13938.12 15537.73 16460.42 11474.46 10874.55 11585.64 9889.12 89
tpm64.85 11566.02 11863.48 12174.52 11278.38 13070.98 11144.99 18851.61 12743.28 12747.66 10653.18 12160.57 11170.58 15271.30 15686.54 7089.45 86
EPP-MVSNet67.58 9771.10 8563.48 12175.71 10683.35 8866.85 13657.83 12253.02 12441.15 13755.82 7467.89 5556.01 13974.40 10972.92 13983.33 14290.30 76
GA-MVS64.55 11865.76 12063.12 12369.68 13681.56 10069.59 11858.16 11545.23 15335.58 16547.01 11541.82 14659.41 12079.62 6578.54 7386.32 7386.56 111
v119262.25 13661.64 14662.96 12466.88 15479.72 11869.96 11655.77 14141.58 16639.42 14337.05 16035.96 17760.50 11374.30 11374.09 12085.24 10488.76 94
v14862.00 14161.19 15062.96 12467.46 15279.49 12167.87 12757.66 12342.30 16245.02 11738.20 15438.89 16254.77 14369.83 16072.60 14284.96 10987.01 107
MDTV_nov1_ep1365.21 11367.28 10862.79 12670.91 13181.72 9669.28 12149.50 17458.08 9943.94 12250.50 9656.02 10558.86 12570.72 14973.37 12984.24 13080.52 154
PatchmatchNetpermissive65.43 11267.71 10562.78 12773.49 11782.83 9066.42 14145.40 18560.40 9245.27 11449.22 9957.60 10060.01 11670.61 15071.38 15486.08 8081.91 149
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
UGNet67.57 9871.69 8162.76 12869.88 13582.58 9266.43 14058.64 11254.71 12051.87 8961.74 5962.01 7545.46 17274.78 10674.99 10784.24 13091.02 67
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
V4262.86 13262.97 13462.74 12960.84 18378.99 12571.46 10357.13 13146.85 14444.28 12138.87 14940.73 15557.63 13572.60 13374.14 11985.09 10888.63 95
v14419262.05 14061.46 14862.73 13066.59 15879.87 11769.30 12055.88 13941.50 16839.41 14437.23 15836.45 17259.62 11872.69 13273.51 12685.61 9988.93 91
TESTMET0.1,167.38 10071.61 8262.45 13166.05 16081.32 10463.98 15055.36 14858.62 9742.96 12852.74 8861.65 7657.74 13375.64 9878.09 8088.61 2493.21 45
v192192061.66 14361.10 15162.31 13266.32 15979.57 12068.41 12555.49 14641.03 16938.69 14836.64 16635.27 18059.60 11973.23 12373.41 12885.37 10188.51 98
CDS-MVSNet64.22 12065.89 11962.28 13370.05 13480.59 11169.91 11757.98 11743.53 15946.58 11048.22 10250.76 12746.45 16775.68 9776.08 9782.70 15186.34 114
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
tfpnnormal58.97 15856.48 17361.89 13471.27 12976.21 15066.65 13961.76 9332.90 19336.41 16027.83 19229.14 19950.64 15673.06 12573.05 13784.58 12583.15 141
IS_MVSNet67.29 10171.98 7861.82 13576.92 9684.32 8365.90 14358.22 11455.75 11239.22 14554.51 8262.47 7145.99 17078.83 7178.52 7484.70 12189.47 85
v124061.09 14660.55 15561.72 13665.92 16379.28 12367.16 13554.91 15239.79 17538.10 15136.08 16834.64 18259.15 12372.86 12873.36 13085.10 10687.84 102
EPNet_dtu66.17 10670.13 9261.54 13781.04 6677.39 14268.87 12362.50 8569.78 6333.51 17363.77 5456.22 10437.65 18672.20 13572.18 14685.69 9379.38 157
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
Fast-Effi-MVS+-dtu63.05 12964.72 12461.11 13871.21 13076.81 14670.72 11343.13 19552.51 12635.34 16646.55 11946.36 13661.40 10871.57 14471.44 15184.84 11587.79 103
UniMVSNet_NR-MVSNet62.30 13563.51 12960.89 13969.48 14077.83 13664.07 14863.94 6950.03 13131.17 17844.82 12141.12 15051.37 15271.02 14674.81 11085.30 10284.95 124
SCA63.90 12366.67 11060.66 14073.75 11371.78 17459.87 17043.66 19161.13 8945.03 11651.64 9259.45 8857.92 13070.96 14770.80 15883.71 13880.92 153
Vis-MVSNetpermissive65.53 11169.83 9360.52 14170.80 13384.59 7766.37 14255.47 14748.40 13940.62 14157.67 7158.43 9445.37 17377.49 7976.24 9684.47 12685.99 118
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
UA-Net64.62 11668.23 10360.42 14277.53 9181.38 10260.08 16957.47 12747.01 14344.75 11860.68 6471.32 4641.84 18073.27 12272.25 14580.83 17271.68 182
CMPMVSbinary43.63 1757.67 16755.43 17560.28 14372.01 12379.00 12462.77 16053.23 16441.77 16545.42 11330.74 18639.03 16053.01 14764.81 17864.65 18475.26 19368.03 190
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
NR-MVSNet61.08 14762.09 14459.90 14471.96 12475.87 15163.60 15461.96 8749.31 13427.95 18342.76 12533.85 18748.82 15974.35 11174.05 12285.13 10584.45 127
IterMVS61.87 14263.55 12859.90 14467.29 15372.20 17167.34 13448.56 17647.48 14237.86 15447.07 11348.27 13154.08 14572.12 13773.71 12484.30 12983.99 131
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
DU-MVS60.87 14861.82 14559.76 14666.69 15575.87 15164.07 14861.96 8749.31 13431.17 17842.76 12536.95 16951.37 15269.67 16173.20 13683.30 14384.95 124
EG-PatchMatch MVS58.73 16158.03 16859.55 14772.32 12180.49 11263.44 15655.55 14532.49 19438.31 15028.87 19037.22 16842.84 17874.30 11375.70 10184.84 11577.14 164
CR-MVSNet62.31 13464.75 12259.47 14868.63 14371.29 17767.53 13143.18 19355.83 11041.40 13441.04 14055.85 10657.29 13672.76 13073.27 13378.77 18383.23 139
UniMVSNet_ETH3D57.83 16456.46 17459.43 14963.24 17473.22 16867.70 12855.58 14436.17 18536.84 15732.64 17935.14 18151.50 15165.81 17269.81 16581.73 16482.44 146
TranMVSNet+NR-MVSNet60.38 15161.30 14959.30 15068.34 14475.57 15763.38 15763.78 7146.74 14527.73 18442.56 12936.84 17047.66 16270.36 15574.59 11484.91 11282.46 144
USDC59.69 15460.03 15959.28 15164.04 17071.84 17263.15 15955.36 14854.90 11835.02 16748.34 10129.79 19858.16 12770.60 15171.33 15579.99 17673.42 176
pmmvs559.72 15360.24 15759.11 15262.77 17777.33 14363.17 15854.00 15940.21 17337.23 15540.41 14335.99 17651.75 15072.55 13472.74 14185.72 9282.45 145
TransMVSNet (Re)57.83 16456.90 17158.91 15372.26 12274.69 16263.57 15561.42 9532.30 19532.65 17433.97 17635.96 17739.17 18473.84 11872.84 14084.37 12874.69 170
pm-mvs159.21 15759.58 16258.77 15467.97 14777.07 14564.12 14657.20 12934.73 19036.86 15635.34 17140.54 15743.34 17774.32 11273.30 13283.13 14881.77 150
Baseline_NR-MVSNet59.47 15560.28 15658.54 15566.69 15573.90 16561.63 16462.90 8249.15 13826.87 18535.18 17337.62 16548.20 16069.67 16173.61 12584.92 11082.82 142
test-mter64.06 12269.24 9458.01 15659.07 18977.40 14159.13 17248.11 17855.64 11339.18 14651.56 9358.54 9155.38 14173.52 12176.00 9887.22 5992.05 58
UniMVSNet (Re)60.62 14962.93 13657.92 15767.64 15077.90 13561.75 16361.24 9649.83 13329.80 18242.57 12840.62 15643.36 17670.49 15473.27 13383.76 13685.81 119
gg-mvs-nofinetune62.34 13366.19 11657.86 15876.15 10288.61 3971.18 10741.24 20325.74 20513.16 20722.91 20063.97 6854.52 14485.06 1585.25 1090.92 391.78 60
thisisatest051559.37 15660.68 15457.84 15964.39 16975.65 15658.56 17453.86 16041.55 16742.12 13340.40 14439.59 15947.09 16571.69 14373.79 12381.02 17082.08 148
COLMAP_ROBcopyleft51.17 1555.13 17152.90 18457.73 16073.47 11867.21 18762.13 16155.82 14047.83 14034.39 16931.60 18334.24 18444.90 17463.88 18362.52 19175.67 19163.02 199
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
v7n57.04 16956.64 17257.52 16162.85 17674.75 16161.76 16251.80 17035.58 18936.02 16332.33 18133.61 18850.16 15767.73 16870.34 16382.51 15482.12 147
ADS-MVSNet58.40 16359.16 16457.52 16165.80 16474.57 16360.26 16740.17 20450.51 12938.01 15240.11 14644.72 14059.36 12164.91 17666.55 17681.53 16672.72 180
FMVSNet558.86 15960.24 15757.25 16352.66 20166.25 18963.77 15352.86 16757.85 10137.92 15336.12 16752.22 12451.37 15270.88 14871.43 15284.92 11066.91 192
CHOSEN 280x42062.23 13866.57 11257.17 16459.88 18668.92 18361.20 16642.28 19754.17 12139.57 14247.78 10564.97 6462.68 9873.85 11769.52 16777.43 18786.75 109
IterMVS-SCA-FT60.21 15262.97 13457.00 16566.64 15771.84 17267.53 13146.93 18347.56 14136.77 15946.85 11748.21 13252.51 14870.36 15572.40 14471.63 20183.53 135
pmmvs-eth3d55.20 17053.95 17956.65 16657.34 19567.77 18557.54 17653.74 16140.93 17041.09 13831.19 18529.10 20049.07 15865.54 17367.28 17281.14 16875.81 165
PatchT60.46 15063.85 12756.51 16765.95 16275.68 15547.34 19241.39 20053.89 12341.40 13437.84 15650.30 12957.29 13672.76 13073.27 13385.67 9483.23 139
TAMVS58.86 15960.91 15256.47 16862.38 17977.57 13958.97 17352.98 16538.76 17836.17 16142.26 13347.94 13346.45 16770.23 15770.79 15981.86 16378.82 160
TinyColmap52.66 18250.09 19355.65 16959.72 18764.02 19757.15 17752.96 16640.28 17232.51 17532.42 18020.97 20956.65 13863.95 18265.15 18374.91 19463.87 197
MIMVSNet57.78 16659.71 16155.53 17054.79 19777.10 14463.89 15245.02 18746.59 14736.79 15828.36 19140.77 15445.84 17174.97 10376.58 9086.87 6673.60 175
pmmvs654.20 17853.54 18054.97 17163.22 17572.98 16960.17 16852.32 16926.77 20434.30 17023.29 19936.23 17440.33 18368.77 16568.76 16879.47 18178.00 162
MVS-HIRNet53.86 18053.02 18254.85 17260.30 18572.36 17044.63 20042.20 19839.45 17643.47 12421.66 20334.00 18655.47 14065.42 17467.16 17483.02 14971.08 186
Vis-MVSNet (Re-imp)62.25 13668.74 9854.68 17373.70 11478.74 12656.51 17857.49 12655.22 11426.86 18654.56 8161.35 7831.06 18873.10 12474.90 10882.49 15583.31 136
TDRefinement52.70 18151.02 19054.66 17457.41 19465.06 19361.47 16554.94 15044.03 15733.93 17130.13 18827.57 20146.17 16961.86 18562.48 19274.01 19766.06 193
pmnet_mix0253.92 17953.30 18154.65 17561.89 18071.33 17654.54 18254.17 15840.38 17134.65 16834.76 17530.68 19740.44 18260.97 18663.71 18682.19 16071.24 185
test0.0.03 157.35 16859.89 16054.38 17671.37 12773.45 16752.71 18461.03 9746.11 14926.33 18741.73 13644.08 14229.72 19071.43 14570.90 15785.10 10671.56 183
MDTV_nov1_ep13_2view54.47 17754.61 17654.30 17760.50 18473.82 16657.92 17543.38 19239.43 17732.51 17533.23 17734.05 18547.26 16462.36 18466.21 17984.24 13073.19 178
RPMNet58.63 16262.80 13853.76 17867.59 15171.29 17754.60 18138.13 20555.83 11035.70 16441.58 13753.04 12247.89 16166.10 17167.38 17178.65 18584.40 128
anonymousdsp54.99 17357.24 17052.36 17953.82 19971.75 17551.49 18548.14 17733.74 19133.66 17238.34 15236.13 17547.54 16364.53 18070.60 16179.53 18085.59 122
RPSCF55.07 17258.06 16751.57 18048.87 20558.95 20253.68 18341.26 20262.42 8445.88 11154.38 8454.26 11553.75 14657.15 19353.53 20366.01 20365.75 194
Anonymous2023120652.23 18352.80 18551.56 18164.70 16869.41 18151.01 18658.60 11336.63 18222.44 19321.80 20231.42 19330.52 18966.79 17067.83 17082.10 16175.73 166
gm-plane-assit54.99 17357.99 16951.49 18269.27 14154.42 20632.32 20942.59 19621.18 20913.71 20523.61 19743.84 14360.21 11587.09 586.55 590.81 489.28 87
CVMVSNet54.92 17558.16 16651.13 18362.61 17868.44 18455.45 18052.38 16842.28 16321.45 19447.10 11246.10 13737.96 18564.42 18163.81 18576.92 18975.01 169
PM-MVS50.11 18850.38 19249.80 18447.23 20762.08 20050.91 18744.84 18941.90 16436.10 16235.22 17226.05 20546.83 16657.64 19155.42 20272.90 19874.32 171
SixPastTwentyTwo49.11 19249.22 19548.99 18558.54 19364.14 19647.18 19347.75 17931.15 19724.42 18941.01 14126.55 20344.04 17554.76 20058.70 19771.99 20068.21 188
PEN-MVS51.04 18452.94 18348.82 18661.45 18266.00 19048.68 18957.20 12936.87 18115.36 20136.98 16132.72 18928.77 19457.63 19266.37 17781.44 16774.00 173
LTVRE_ROB47.26 1649.41 19149.91 19448.82 18664.76 16769.79 18049.05 18847.12 18220.36 21116.52 19936.65 16526.96 20250.76 15560.47 18763.16 18964.73 20472.00 181
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
N_pmnet47.67 19447.00 19848.45 18854.72 19862.78 19846.95 19451.25 17136.01 18726.09 18826.59 19525.93 20635.50 18755.67 19959.01 19576.22 19063.04 198
CP-MVSNet50.57 18652.60 18748.21 18958.77 19165.82 19148.17 19056.29 13537.41 18016.59 19837.14 15931.95 19129.21 19156.60 19563.71 18680.22 17475.56 167
PS-CasMVS50.17 18752.02 18848.02 19058.60 19265.54 19248.04 19156.19 13836.42 18416.42 20035.68 17031.33 19428.85 19356.42 19763.54 18880.01 17575.18 168
DTE-MVSNet49.82 18951.92 18947.37 19161.75 18164.38 19545.89 19857.33 12836.11 18612.79 20836.87 16231.93 19225.73 19758.01 19065.22 18280.75 17370.93 187
WR-MVS51.02 18554.56 17746.90 19263.84 17169.23 18244.78 19956.38 13438.19 17914.19 20337.38 15736.82 17122.39 19960.14 18866.20 18079.81 17773.95 174
MDA-MVSNet-bldmvs44.15 19842.27 20346.34 19338.34 20962.31 19946.28 19555.74 14229.83 19820.98 19527.11 19416.45 21441.98 17941.11 20757.47 19874.72 19561.65 202
testgi48.51 19350.53 19146.16 19464.78 16667.15 18841.54 20254.81 15429.12 20017.03 19732.07 18231.98 19020.15 20365.26 17567.00 17578.67 18461.10 203
WR-MVS_H49.62 19052.63 18646.11 19558.80 19067.58 18646.14 19754.94 15036.51 18313.63 20636.75 16435.67 17922.10 20056.43 19662.76 19081.06 16972.73 179
test20.0347.23 19648.69 19645.53 19663.28 17364.39 19441.01 20356.93 13229.16 19915.21 20223.90 19630.76 19617.51 20664.63 17965.26 18179.21 18262.71 200
FPMVS39.11 20236.39 20442.28 19755.97 19645.94 20946.23 19641.57 19935.73 18822.61 19123.46 19819.82 21128.32 19543.57 20440.67 20658.96 20745.54 206
pmmvs341.86 20042.29 20241.36 19839.80 20852.66 20738.93 20635.85 20923.40 20820.22 19619.30 20420.84 21040.56 18155.98 19858.79 19672.80 19965.03 195
new-patchmatchnet42.21 19942.97 20041.33 19953.05 20059.89 20139.38 20449.61 17328.26 20212.10 20922.17 20121.54 20819.22 20450.96 20256.04 20074.61 19661.92 201
EU-MVSNet44.84 19747.85 19741.32 20049.26 20456.59 20543.07 20147.64 18133.03 19213.82 20436.78 16330.99 19524.37 19853.80 20155.57 20169.78 20268.21 188
FC-MVSNet-test47.24 19554.37 17838.93 20159.49 18858.25 20434.48 20853.36 16345.66 1516.66 21350.62 9442.02 14516.62 20758.39 18961.21 19362.99 20564.40 196
MIMVSNet140.84 20143.46 19937.79 20232.14 21058.92 20339.24 20550.83 17227.00 20311.29 21016.76 20926.53 20417.75 20557.14 19461.12 19475.46 19256.78 204
PMVScopyleft27.44 1832.08 20429.07 20635.60 20348.33 20624.79 21226.97 21141.34 20120.45 21022.50 19217.11 20818.64 21220.44 20241.99 20638.06 20754.02 20942.44 207
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
new_pmnet33.19 20335.52 20530.47 20427.55 21445.31 21029.29 21030.92 21029.00 2019.88 21218.77 20517.64 21326.77 19644.07 20345.98 20558.41 20847.87 205
GG-mvs-BLEND54.54 17677.58 4927.67 2050.03 21890.09 2977.20 660.02 21566.83 720.05 21959.90 6773.33 360.04 21478.40 7579.30 6888.65 2295.20 26
Gipumacopyleft24.91 20524.61 20725.26 20631.47 21121.59 21318.06 21237.53 20625.43 20610.03 2114.18 2144.25 21814.85 20843.20 20547.03 20439.62 21126.55 211
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
E-PMN15.08 20711.65 21019.08 20728.73 21212.31 2166.95 21736.87 20810.71 2143.63 2165.13 2112.22 22113.81 21011.34 21218.50 21124.49 21321.32 212
EMVS14.40 20810.71 21118.70 20828.15 21312.09 2177.06 21636.89 20711.00 2133.56 2174.95 2122.27 22013.91 20910.13 21316.06 21222.63 21418.51 213
PMMVS220.45 20622.31 20818.27 20920.52 21526.73 21114.85 21428.43 21213.69 2120.79 21810.35 2109.10 2153.83 21327.64 20932.87 20841.17 21035.81 208
tmp_tt16.09 21013.07 2168.12 21813.61 2152.08 21455.09 11530.10 18140.26 14522.83 2075.35 21229.91 20825.25 21032.33 212
MVEpermissive15.98 1914.37 20916.36 20912.04 2117.72 21720.24 2145.90 21829.05 2118.28 2153.92 2154.72 2132.42 2199.57 21118.89 21131.46 20916.07 21628.53 210
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
testmvs0.05 2100.08 2120.01 2120.00 2190.01 2190.03 2200.01 2160.05 2160.00 2200.14 2160.01 2220.03 2160.05 2140.05 2130.01 2170.24 215
test1230.05 2100.08 2120.01 2120.00 2190.01 2190.01 2210.00 2170.05 2160.00 2200.16 2150.00 2230.04 2140.02 2150.05 2130.00 2180.26 214
uanet_test0.00 2120.00 2140.00 2140.00 2190.00 2210.00 2220.00 2170.00 2180.00 2200.00 2170.00 2230.00 2170.00 2160.00 2150.00 2180.00 216
sosnet-low-res0.00 2120.00 2140.00 2140.00 2190.00 2210.00 2220.00 2170.00 2180.00 2200.00 2170.00 2230.00 2170.00 2160.00 2150.00 2180.00 216
sosnet0.00 2120.00 2140.00 2140.00 2190.00 2210.00 2220.00 2170.00 2180.00 2200.00 2170.00 2230.00 2170.00 2160.00 2150.00 2180.00 216
RE-MVS-def31.47 177
9.1484.47 6
SR-MVS86.33 4767.54 4680.78 19
Anonymous20240521166.35 11578.00 8584.41 8074.85 7963.18 7651.00 12831.37 18453.73 11969.67 6376.28 9076.84 8783.21 14690.85 68
our_test_363.32 17271.07 17955.90 179
ambc42.30 20150.36 20349.51 20835.47 20732.04 19623.53 19017.36 2068.95 21629.06 19264.88 17756.26 19961.29 20667.12 191
MTAPA78.32 1179.42 24
MTMP76.04 1676.65 29
Patchmatch-RL test2.17 219
XVS82.43 5686.27 6675.70 6961.07 6072.27 3985.67 94
X-MVStestdata82.43 5686.27 6675.70 6961.07 6072.27 3985.67 94
mPP-MVS86.96 4270.61 49
NP-MVS81.60 36
Patchmtry78.06 13467.53 13143.18 19341.40 134
DeepMVS_CXcopyleft19.81 21517.01 21310.02 21323.61 2075.85 21417.21 2078.03 21721.13 20122.60 21021.42 21530.01 209