TDRefinement | | | 93.16 1 | 95.57 1 | 90.36 1 | 88.79 52 | 93.57 1 | 97.27 1 | 78.23 22 | 95.55 1 | 93.00 1 | 93.98 15 | 96.01 38 | 87.53 1 | 97.69 1 | 96.81 1 | 97.33 1 | 95.34 3 |
|
COLMAP_ROB | | 85.66 2 | 91.85 2 | 95.01 2 | 88.16 12 | 88.98 51 | 92.86 2 | 95.51 20 | 72.17 58 | 94.95 4 | 91.27 3 | 94.11 14 | 97.77 11 | 84.22 8 | 96.49 4 | 95.27 5 | 96.79 2 | 93.60 11 |
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
LTVRE_ROB | | 86.82 1 | 91.55 3 | 94.43 3 | 88.19 11 | 83.19 107 | 86.35 65 | 93.60 36 | 78.79 19 | 95.48 3 | 91.79 2 | 93.08 24 | 97.21 20 | 86.34 3 | 97.06 2 | 96.27 3 | 95.46 23 | 95.56 2 |
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
WR-MVS | | | 89.79 23 | 93.66 4 | 85.27 37 | 91.32 23 | 88.27 44 | 93.49 37 | 79.86 10 | 92.75 8 | 75.37 96 | 96.86 1 | 98.38 5 | 75.10 68 | 95.93 8 | 94.07 15 | 96.46 5 | 89.39 57 |
|
WR-MVS_H | | | 88.99 35 | 93.28 5 | 83.99 53 | 91.92 11 | 89.13 38 | 91.95 45 | 83.23 1 | 90.14 28 | 71.92 119 | 95.85 4 | 98.01 10 | 71.83 94 | 95.82 9 | 93.19 23 | 93.07 56 | 90.83 48 |
|
PS-CasMVS | | | 89.07 32 | 93.23 6 | 84.21 50 | 92.44 8 | 88.23 46 | 90.54 61 | 82.95 3 | 90.50 23 | 75.31 97 | 95.80 5 | 98.37 6 | 71.16 97 | 96.30 5 | 93.32 22 | 92.88 58 | 90.11 51 |
|
ACMH+ | | 79.05 11 | 89.62 26 | 93.08 7 | 85.58 32 | 88.58 54 | 89.26 37 | 92.18 44 | 74.23 51 | 93.55 7 | 82.66 58 | 92.32 34 | 98.35 7 | 80.29 29 | 95.28 18 | 92.34 32 | 95.52 22 | 90.43 49 |
|
PEN-MVS | | | 88.86 38 | 92.92 8 | 84.11 52 | 92.92 5 | 88.05 49 | 90.83 53 | 82.67 5 | 91.04 17 | 74.83 99 | 95.97 3 | 98.47 3 | 70.38 104 | 95.70 13 | 92.43 31 | 93.05 57 | 88.78 63 |
|
APDe-MVS | | | 89.85 20 | 92.91 9 | 86.29 27 | 90.47 38 | 91.34 7 | 96.04 15 | 76.41 40 | 91.11 16 | 78.50 86 | 93.44 19 | 95.82 42 | 81.55 24 | 93.16 38 | 91.90 39 | 94.77 33 | 93.58 14 |
|
ACMMPR | | | 91.30 4 | 92.88 10 | 89.46 4 | 91.92 11 | 91.61 5 | 96.60 5 | 79.46 14 | 90.08 29 | 88.53 14 | 89.54 63 | 95.57 47 | 84.25 7 | 95.24 20 | 94.27 13 | 95.97 11 | 93.85 7 |
|
DTE-MVSNet | | | 88.99 35 | 92.77 11 | 84.59 42 | 93.31 2 | 88.10 47 | 90.96 51 | 83.09 2 | 91.38 13 | 76.21 91 | 96.03 2 | 98.04 8 | 70.78 103 | 95.65 14 | 92.32 33 | 93.18 53 | 87.84 70 |
|
MSP-MVS | | | 89.40 27 | 92.69 12 | 85.56 34 | 89.01 50 | 89.85 32 | 93.72 34 | 75.42 44 | 92.28 10 | 80.49 72 | 94.36 12 | 94.87 65 | 81.46 25 | 92.49 48 | 91.42 42 | 93.27 50 | 93.54 16 |
|
PMVS | | 79.51 9 | 90.23 14 | 92.67 13 | 87.39 21 | 90.16 39 | 88.75 40 | 93.64 35 | 75.78 43 | 90.00 31 | 83.70 47 | 92.97 26 | 92.22 100 | 86.13 4 | 97.01 3 | 96.79 2 | 94.94 29 | 90.96 46 |
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
CP-MVSNet | | | 88.71 40 | 92.63 14 | 84.13 51 | 92.39 9 | 88.09 48 | 90.47 66 | 82.86 4 | 88.79 41 | 75.16 98 | 94.87 8 | 97.68 14 | 71.05 99 | 96.16 6 | 93.18 24 | 92.85 59 | 89.64 55 |
|
ACMH | | 78.40 12 | 88.94 37 | 92.62 15 | 84.65 41 | 86.45 73 | 87.16 58 | 91.47 47 | 68.79 83 | 95.49 2 | 89.74 6 | 93.55 17 | 98.50 2 | 77.96 44 | 94.14 32 | 89.57 61 | 93.49 46 | 89.94 53 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
RPSCF | | | 88.05 45 | 92.61 16 | 82.73 65 | 84.24 92 | 88.40 42 | 90.04 72 | 66.29 103 | 91.46 12 | 82.29 60 | 88.93 73 | 96.01 38 | 79.38 32 | 95.15 21 | 94.90 6 | 94.15 39 | 93.40 20 |
|
DeepC-MVS | | 83.59 4 | 90.37 12 | 92.56 17 | 87.82 15 | 91.26 27 | 92.33 3 | 94.72 29 | 80.04 9 | 90.01 30 | 84.61 42 | 93.33 20 | 94.22 77 | 80.59 28 | 92.90 42 | 92.52 29 | 95.69 21 | 92.57 27 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
ACMM | | 80.67 7 | 90.67 7 | 92.46 18 | 88.57 8 | 91.35 22 | 89.93 31 | 96.34 12 | 77.36 31 | 90.17 27 | 86.88 29 | 87.32 87 | 96.63 23 | 83.32 13 | 95.79 10 | 94.49 10 | 96.19 9 | 92.91 25 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
ACMMP | | | 90.63 8 | 92.40 19 | 88.56 9 | 91.24 28 | 91.60 6 | 96.49 9 | 77.53 27 | 87.89 47 | 86.87 30 | 87.24 89 | 96.46 25 | 82.87 16 | 95.59 15 | 94.50 9 | 96.35 6 | 93.51 17 |
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
LGP-MVS_train | | | 90.56 9 | 92.38 20 | 88.43 10 | 90.88 32 | 91.15 11 | 95.35 22 | 77.65 26 | 86.26 63 | 87.23 24 | 90.45 52 | 97.35 17 | 83.20 14 | 95.44 16 | 93.41 21 | 96.28 8 | 92.63 26 |
|
HFP-MVS | | | 90.32 13 | 92.37 21 | 87.94 14 | 91.46 21 | 90.91 18 | 95.69 18 | 79.49 12 | 89.94 32 | 83.50 50 | 89.06 70 | 94.44 74 | 81.68 23 | 94.17 31 | 94.19 14 | 95.81 17 | 93.87 6 |
|
DPE-MVS | | | 89.81 22 | 92.34 22 | 86.86 24 | 89.69 44 | 91.00 16 | 95.53 19 | 76.91 34 | 88.18 45 | 83.43 53 | 93.48 18 | 95.19 56 | 81.07 27 | 92.75 44 | 92.07 37 | 94.55 36 | 93.74 10 |
|
CP-MVS | | | 91.09 5 | 92.33 23 | 89.65 2 | 92.16 10 | 90.41 27 | 96.46 10 | 80.38 8 | 88.26 44 | 89.17 11 | 87.00 92 | 96.34 30 | 83.95 10 | 95.77 11 | 94.72 8 | 95.81 17 | 93.78 9 |
|
ACMP | | 80.00 8 | 90.12 16 | 92.30 24 | 87.58 19 | 90.83 34 | 91.10 12 | 94.96 27 | 76.06 41 | 87.47 51 | 85.33 39 | 88.91 74 | 97.65 15 | 82.13 20 | 95.31 17 | 93.44 20 | 96.14 10 | 92.22 33 |
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
SMA-MVS | | | 90.13 15 | 92.26 25 | 87.64 18 | 91.68 16 | 90.44 26 | 95.22 24 | 77.34 33 | 90.79 21 | 87.80 17 | 90.42 53 | 92.05 105 | 79.05 35 | 93.89 33 | 93.59 19 | 94.77 33 | 94.62 4 |
|
TSAR-MVS + MP. | | | 89.67 24 | 92.25 26 | 86.65 26 | 91.53 18 | 90.98 17 | 96.15 14 | 73.30 55 | 87.88 48 | 81.83 66 | 92.92 27 | 95.15 59 | 82.23 19 | 93.58 35 | 92.25 34 | 94.87 30 | 93.01 24 |
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
OPM-MVS | | | 89.82 21 | 92.24 27 | 86.99 23 | 90.86 33 | 89.35 36 | 95.07 26 | 75.91 42 | 91.16 15 | 86.87 30 | 91.07 48 | 97.29 18 | 79.13 34 | 93.32 36 | 91.99 38 | 94.12 40 | 91.49 41 |
|
SD-MVS | | | 89.91 18 | 92.23 28 | 87.19 22 | 91.31 24 | 89.79 34 | 94.31 31 | 75.34 46 | 89.26 36 | 81.79 67 | 92.68 29 | 95.08 61 | 83.88 11 | 93.10 39 | 92.69 26 | 96.54 4 | 93.02 23 |
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
SixPastTwentyTwo | | | 89.14 29 | 92.19 29 | 85.58 32 | 84.62 87 | 82.56 90 | 90.53 62 | 71.93 59 | 91.95 11 | 85.89 35 | 94.22 13 | 97.25 19 | 85.42 5 | 95.73 12 | 91.71 41 | 95.08 28 | 91.89 37 |
|
TSAR-MVS + ACMM | | | 89.14 29 | 92.11 30 | 85.67 31 | 89.27 47 | 90.61 24 | 90.98 50 | 79.48 13 | 88.86 39 | 79.80 78 | 93.01 25 | 93.53 86 | 83.17 15 | 92.75 44 | 92.45 30 | 91.32 80 | 93.59 12 |
|
ACMMP_NAP | | | 89.86 19 | 91.96 31 | 87.42 20 | 91.00 30 | 90.08 29 | 96.00 16 | 76.61 37 | 89.28 33 | 87.73 18 | 90.04 55 | 91.80 108 | 78.71 38 | 94.36 29 | 93.82 18 | 94.48 37 | 94.32 5 |
|
MP-MVS | | | 90.84 6 | 91.95 32 | 89.55 3 | 92.92 5 | 90.90 19 | 96.56 6 | 79.60 11 | 86.83 58 | 88.75 13 | 89.00 71 | 94.38 76 | 84.01 9 | 94.94 25 | 94.34 11 | 95.45 24 | 93.24 22 |
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
SteuartSystems-ACMMP | | | 90.00 17 | 91.73 33 | 87.97 13 | 91.21 29 | 90.29 28 | 96.51 7 | 78.00 24 | 86.33 61 | 85.32 40 | 88.23 79 | 94.67 69 | 82.08 21 | 95.13 22 | 93.88 17 | 94.72 35 | 93.59 12 |
Skip Steuart: Steuart Systems R&D Blog. |
LS3D | | | 89.02 33 | 91.69 34 | 85.91 30 | 89.72 43 | 90.81 20 | 92.56 43 | 71.69 62 | 90.83 20 | 87.24 23 | 89.71 61 | 92.07 103 | 78.37 41 | 94.43 28 | 92.59 28 | 95.86 13 | 91.35 42 |
|
PGM-MVS | | | 90.42 10 | 91.58 35 | 89.05 6 | 91.77 14 | 91.06 13 | 96.51 7 | 78.94 17 | 85.41 70 | 87.67 19 | 87.02 91 | 95.26 55 | 83.62 12 | 95.01 24 | 93.94 16 | 95.79 19 | 93.40 20 |
|
CSCG | | | 88.12 44 | 91.45 36 | 84.23 47 | 88.12 61 | 90.59 25 | 90.57 59 | 68.60 85 | 91.37 14 | 83.45 52 | 89.94 56 | 95.14 60 | 78.71 38 | 91.45 57 | 88.21 72 | 95.96 12 | 93.44 19 |
|
UA-Net | | | 89.02 33 | 91.44 37 | 86.20 28 | 94.88 1 | 89.84 33 | 94.76 28 | 77.45 29 | 85.41 70 | 74.79 100 | 88.83 75 | 88.90 131 | 78.67 40 | 96.06 7 | 95.45 4 | 96.66 3 | 95.58 1 |
|
DVP-MVS | | | 88.51 41 | 91.36 38 | 85.19 39 | 90.63 36 | 92.01 4 | 95.29 23 | 77.52 28 | 90.48 24 | 80.21 77 | 90.21 54 | 96.08 34 | 76.38 56 | 88.30 91 | 91.42 42 | 91.12 85 | 91.01 45 |
|
zzz-MVS | | | 90.38 11 | 91.35 39 | 89.25 5 | 93.08 3 | 86.59 62 | 96.45 11 | 79.00 16 | 90.23 26 | 89.30 10 | 85.87 103 | 94.97 64 | 82.54 18 | 95.05 23 | 94.83 7 | 95.14 27 | 91.94 36 |
|
OMC-MVS | | | 88.16 42 | 91.34 40 | 84.46 45 | 86.85 69 | 90.63 23 | 93.01 40 | 67.00 98 | 90.35 25 | 87.40 22 | 86.86 94 | 96.35 29 | 77.66 48 | 92.63 46 | 90.84 45 | 94.84 31 | 91.68 39 |
|
xxxxxxxxxxxxxcwj | | | 88.03 46 | 91.29 41 | 84.22 48 | 88.17 59 | 87.90 51 | 90.80 54 | 71.80 60 | 89.28 33 | 82.70 56 | 89.90 57 | 97.72 12 | 77.91 45 | 91.69 52 | 90.04 53 | 93.95 43 | 92.47 28 |
|
APD-MVS | | | 89.14 29 | 91.25 42 | 86.67 25 | 91.73 15 | 91.02 15 | 95.50 21 | 77.74 25 | 84.04 81 | 79.47 81 | 91.48 42 | 94.85 66 | 81.14 26 | 92.94 41 | 92.20 36 | 94.47 38 | 92.24 32 |
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
UniMVSNet_ETH3D | | | 85.39 62 | 91.12 43 | 78.71 97 | 90.48 37 | 83.72 80 | 81.76 135 | 82.41 6 | 93.84 5 | 64.43 153 | 95.41 6 | 98.76 1 | 63.72 137 | 93.63 34 | 89.74 57 | 89.47 102 | 82.74 109 |
|
SF-MVS | | | 87.85 48 | 90.95 44 | 84.22 48 | 88.17 59 | 87.90 51 | 90.80 54 | 71.80 60 | 89.28 33 | 82.70 56 | 89.90 57 | 95.37 53 | 77.91 45 | 91.69 52 | 90.04 53 | 93.95 43 | 92.47 28 |
|
X-MVS | | | 89.36 28 | 90.73 45 | 87.77 17 | 91.50 20 | 91.23 8 | 96.76 4 | 78.88 18 | 87.29 53 | 87.14 26 | 78.98 137 | 94.53 71 | 76.47 54 | 95.25 19 | 94.28 12 | 95.85 14 | 93.55 15 |
|
anonymousdsp | | | 85.62 59 | 90.53 46 | 79.88 90 | 64.64 199 | 76.35 136 | 96.28 13 | 53.53 185 | 85.63 67 | 81.59 69 | 92.81 28 | 97.71 13 | 86.88 2 | 94.56 26 | 92.83 25 | 96.35 6 | 93.84 8 |
|
CPTT-MVS | | | 89.63 25 | 90.52 47 | 88.59 7 | 90.95 31 | 90.74 21 | 95.71 17 | 79.13 15 | 87.70 49 | 85.68 38 | 80.05 132 | 95.74 45 | 84.77 6 | 94.28 30 | 92.68 27 | 95.28 26 | 92.45 31 |
|
v7n | | | 87.11 50 | 90.46 48 | 83.19 56 | 85.22 83 | 83.69 81 | 90.03 73 | 68.20 91 | 91.01 18 | 86.71 33 | 94.80 9 | 98.46 4 | 77.69 47 | 91.10 64 | 85.98 87 | 91.30 81 | 88.19 66 |
|
DeepPCF-MVS | | 81.61 6 | 87.95 47 | 90.29 49 | 85.22 38 | 87.48 65 | 90.01 30 | 93.79 33 | 73.54 53 | 88.93 38 | 83.89 45 | 89.40 65 | 90.84 117 | 80.26 31 | 90.62 71 | 90.19 52 | 92.36 68 | 92.03 35 |
|
3Dnovator+ | | 83.71 3 | 88.13 43 | 90.00 50 | 85.94 29 | 86.82 70 | 91.06 13 | 94.26 32 | 75.39 45 | 88.85 40 | 85.76 37 | 85.74 105 | 86.92 140 | 78.02 43 | 93.03 40 | 92.21 35 | 95.39 25 | 92.21 34 |
|
DeepC-MVS_fast | | 81.78 5 | 87.38 49 | 89.64 51 | 84.75 40 | 89.89 42 | 90.70 22 | 92.74 42 | 74.45 49 | 86.02 64 | 82.16 64 | 86.05 101 | 91.99 107 | 75.84 62 | 91.16 62 | 90.44 48 | 93.41 48 | 91.09 44 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
HPM-MVS++ | | | 88.74 39 | 89.54 52 | 87.80 16 | 92.58 7 | 85.69 70 | 95.10 25 | 78.01 23 | 87.08 55 | 87.66 20 | 87.89 82 | 92.07 103 | 80.28 30 | 90.97 68 | 91.41 44 | 93.17 54 | 91.69 38 |
|
TranMVSNet+NR-MVSNet | | | 85.23 65 | 89.38 53 | 80.39 88 | 88.78 53 | 83.77 79 | 87.40 95 | 76.75 35 | 85.47 68 | 68.99 135 | 95.18 7 | 97.55 16 | 67.13 122 | 91.61 55 | 89.13 65 | 93.26 51 | 82.95 106 |
|
Gipuma | | | 86.47 55 | 89.25 54 | 83.23 55 | 83.88 99 | 78.78 117 | 85.35 112 | 68.42 87 | 92.69 9 | 89.03 12 | 91.94 35 | 96.32 32 | 81.80 22 | 94.45 27 | 86.86 80 | 90.91 86 | 83.69 97 |
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
MSLP-MVS++ | | | 86.29 57 | 89.10 55 | 83.01 58 | 85.71 80 | 89.79 34 | 87.04 102 | 74.39 50 | 85.17 72 | 78.92 84 | 77.59 146 | 93.57 84 | 82.60 17 | 93.23 37 | 91.88 40 | 89.42 103 | 92.46 30 |
|
CNVR-MVS | | | 86.93 51 | 88.98 56 | 84.54 43 | 90.11 40 | 87.41 56 | 93.23 39 | 73.47 54 | 86.31 62 | 82.25 61 | 82.96 120 | 92.15 101 | 76.04 59 | 91.69 52 | 90.69 46 | 92.17 71 | 91.64 40 |
|
CNLPA | | | 85.50 61 | 88.58 57 | 81.91 68 | 84.55 89 | 87.52 55 | 90.89 52 | 63.56 133 | 88.18 45 | 84.06 44 | 83.85 117 | 91.34 114 | 76.46 55 | 91.27 59 | 89.00 66 | 91.96 72 | 88.88 62 |
|
UniMVSNet (Re) | | | 84.95 67 | 88.53 58 | 80.78 79 | 87.82 63 | 84.21 76 | 88.03 88 | 76.50 38 | 81.18 107 | 69.29 133 | 92.63 32 | 96.83 22 | 69.07 111 | 91.23 61 | 89.60 60 | 93.97 42 | 84.00 96 |
|
CDPH-MVS | | | 86.66 54 | 88.52 59 | 84.48 44 | 89.61 45 | 88.27 44 | 92.86 41 | 72.69 57 | 80.55 114 | 82.71 55 | 86.92 93 | 93.32 88 | 75.55 64 | 91.00 67 | 89.85 56 | 93.47 47 | 89.71 54 |
|
ambc | | | | 88.38 60 | | 91.62 17 | 87.97 50 | 84.48 119 | | 88.64 43 | 87.93 16 | 87.38 86 | 94.82 68 | 74.53 73 | 89.14 82 | 83.86 110 | 85.94 143 | 86.84 75 |
|
TAPA-MVS | | 78.00 13 | 85.88 58 | 88.37 61 | 82.96 60 | 84.69 86 | 88.62 41 | 90.62 57 | 64.22 123 | 89.15 37 | 88.05 15 | 78.83 139 | 93.71 81 | 76.20 58 | 90.11 76 | 88.22 71 | 94.00 41 | 89.97 52 |
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
TSAR-MVS + COLMAP | | | 85.51 60 | 88.36 62 | 82.19 66 | 86.05 77 | 87.69 53 | 90.50 64 | 70.60 68 | 86.40 60 | 82.33 59 | 89.69 62 | 92.52 96 | 74.01 78 | 87.53 95 | 86.84 81 | 89.63 98 | 87.80 71 |
|
pmmvs6 | | | 80.46 105 | 88.34 63 | 71.26 139 | 81.96 118 | 77.51 125 | 77.54 159 | 68.83 82 | 93.72 6 | 55.92 172 | 93.94 16 | 98.03 9 | 55.94 162 | 89.21 81 | 85.61 91 | 87.36 127 | 80.38 127 |
|
DU-MVS | | | 84.88 68 | 88.27 64 | 80.92 77 | 88.30 56 | 83.59 82 | 87.06 100 | 78.35 20 | 80.64 112 | 70.49 127 | 92.67 30 | 96.91 21 | 68.13 115 | 91.79 49 | 89.29 64 | 93.20 52 | 83.02 103 |
|
PHI-MVS | | | 86.37 56 | 88.14 65 | 84.30 46 | 86.65 72 | 87.56 54 | 90.76 56 | 70.16 69 | 82.55 88 | 89.65 7 | 84.89 112 | 92.40 97 | 75.97 60 | 90.88 69 | 89.70 58 | 92.58 63 | 89.03 61 |
|
Vis-MVSNet | | | 83.32 81 | 88.12 66 | 77.71 104 | 77.91 150 | 83.44 84 | 90.58 58 | 69.49 74 | 81.11 108 | 67.10 147 | 89.85 59 | 91.48 112 | 71.71 95 | 91.34 58 | 89.37 62 | 89.48 101 | 90.26 50 |
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
UniMVSNet_NR-MVSNet | | | 84.62 71 | 88.00 67 | 80.68 83 | 88.18 58 | 83.83 78 | 87.06 100 | 76.47 39 | 81.46 103 | 70.49 127 | 93.24 21 | 95.56 48 | 68.13 115 | 90.43 72 | 88.47 68 | 93.78 45 | 83.02 103 |
|
NCCC | | | 86.74 52 | 87.97 68 | 85.31 36 | 90.64 35 | 87.25 57 | 93.27 38 | 74.59 48 | 86.50 59 | 83.72 46 | 75.92 162 | 92.39 98 | 77.08 52 | 91.72 51 | 90.68 47 | 92.57 65 | 91.30 43 |
|
train_agg | | | 86.67 53 | 87.73 69 | 85.43 35 | 91.51 19 | 82.72 87 | 94.47 30 | 74.22 52 | 81.71 96 | 81.54 70 | 89.20 69 | 92.87 92 | 78.33 42 | 90.12 75 | 88.47 68 | 92.51 67 | 89.04 60 |
|
EG-PatchMatch MVS | | | 84.35 72 | 87.55 70 | 80.62 84 | 86.38 74 | 82.24 92 | 86.75 103 | 64.02 128 | 84.24 77 | 78.17 88 | 89.38 66 | 95.03 63 | 78.78 37 | 89.95 77 | 86.33 84 | 89.59 99 | 85.65 84 |
|
PLC | | 76.06 15 | 85.38 63 | 87.46 71 | 82.95 61 | 85.79 79 | 88.84 39 | 88.86 82 | 68.70 84 | 87.06 56 | 83.60 48 | 79.02 135 | 90.05 122 | 77.37 51 | 90.88 69 | 89.66 59 | 93.37 49 | 86.74 76 |
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
NR-MVSNet | | | 82.89 86 | 87.43 72 | 77.59 106 | 83.91 98 | 83.59 82 | 87.10 99 | 78.35 20 | 80.64 112 | 68.85 136 | 92.67 30 | 96.50 24 | 54.19 172 | 87.19 101 | 88.68 67 | 93.16 55 | 82.75 108 |
|
TSAR-MVS + GP. | | | 85.32 64 | 87.41 73 | 82.89 62 | 90.07 41 | 85.69 70 | 89.07 80 | 72.99 56 | 82.45 89 | 74.52 103 | 85.09 110 | 87.67 137 | 79.24 33 | 91.11 63 | 90.41 49 | 91.45 77 | 89.45 56 |
|
CLD-MVS | | | 82.75 90 | 87.22 74 | 77.54 107 | 88.01 62 | 85.76 69 | 90.23 69 | 54.52 179 | 82.28 92 | 82.11 65 | 88.48 78 | 95.27 54 | 63.95 135 | 89.41 79 | 88.29 70 | 86.45 136 | 81.01 123 |
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
TransMVSNet (Re) | | | 79.05 120 | 86.66 75 | 70.18 149 | 83.32 105 | 75.99 139 | 77.54 159 | 63.98 129 | 90.68 22 | 55.84 173 | 94.80 9 | 96.06 35 | 53.73 175 | 86.27 107 | 83.22 117 | 86.65 131 | 79.61 136 |
|
Baseline_NR-MVSNet | | | 82.79 88 | 86.51 76 | 78.44 101 | 88.30 56 | 75.62 144 | 87.81 90 | 74.97 47 | 81.53 100 | 66.84 148 | 94.71 11 | 96.46 25 | 66.90 123 | 91.79 49 | 83.37 116 | 85.83 145 | 82.09 114 |
|
MCST-MVS | | | 84.79 69 | 86.48 77 | 82.83 63 | 87.30 66 | 87.03 60 | 90.46 67 | 69.33 77 | 83.14 84 | 82.21 63 | 81.69 128 | 92.14 102 | 75.09 69 | 87.27 98 | 84.78 100 | 92.58 63 | 89.30 58 |
|
EPP-MVSNet | | | 82.76 89 | 86.47 78 | 78.45 100 | 86.00 78 | 84.47 75 | 85.39 111 | 68.42 87 | 84.17 78 | 62.97 157 | 89.26 68 | 76.84 174 | 72.13 92 | 92.56 47 | 90.40 50 | 95.76 20 | 87.56 73 |
|
HQP-MVS | | | 85.02 66 | 86.41 79 | 83.40 54 | 89.19 48 | 86.59 62 | 91.28 48 | 71.60 63 | 82.79 87 | 83.48 51 | 78.65 141 | 93.54 85 | 72.55 87 | 86.49 105 | 85.89 90 | 92.28 70 | 90.95 47 |
|
FC-MVSNet-train | | | 79.20 119 | 86.29 80 | 70.94 143 | 84.06 93 | 77.67 124 | 85.68 108 | 64.11 125 | 82.90 86 | 52.22 186 | 92.57 33 | 93.69 82 | 49.52 187 | 88.30 91 | 86.93 78 | 90.03 93 | 81.95 116 |
|
MVS_0304 | | | 84.73 70 | 86.19 81 | 83.02 57 | 88.32 55 | 86.71 61 | 91.55 46 | 70.87 66 | 73.79 141 | 82.88 54 | 85.13 109 | 93.35 87 | 72.55 87 | 88.62 85 | 87.69 74 | 91.93 73 | 88.05 69 |
|
TinyColmap | | | 83.79 76 | 86.12 82 | 81.07 76 | 83.42 104 | 81.44 97 | 85.42 110 | 68.55 86 | 88.71 42 | 89.46 8 | 87.60 84 | 92.72 93 | 70.34 105 | 89.29 80 | 81.94 125 | 89.20 104 | 81.12 122 |
|
MVS_111021_HR | | | 83.95 75 | 86.10 83 | 81.44 73 | 84.62 87 | 80.29 105 | 90.51 63 | 68.05 92 | 84.07 80 | 80.38 75 | 84.74 113 | 91.37 113 | 74.23 74 | 90.37 73 | 87.25 76 | 90.86 87 | 84.59 89 |
|
3Dnovator | | 79.41 10 | 82.21 92 | 86.07 84 | 77.71 104 | 79.31 135 | 84.61 74 | 87.18 97 | 61.02 153 | 85.65 66 | 76.11 92 | 85.07 111 | 85.38 147 | 70.96 101 | 87.22 99 | 86.47 83 | 91.66 75 | 88.12 68 |
|
canonicalmvs | | | 81.22 103 | 86.04 85 | 75.60 115 | 83.17 108 | 83.18 85 | 80.29 144 | 65.82 111 | 85.97 65 | 67.98 143 | 77.74 145 | 91.51 111 | 65.17 131 | 88.62 85 | 86.15 86 | 91.17 84 | 89.09 59 |
|
UGNet | | | 79.62 113 | 85.91 86 | 72.28 136 | 73.52 171 | 83.91 77 | 86.64 104 | 69.51 73 | 79.85 119 | 62.57 159 | 85.82 104 | 89.63 123 | 53.18 176 | 88.39 89 | 87.35 75 | 88.28 118 | 86.43 78 |
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
Anonymous20231211 | | | 79.37 115 | 85.78 87 | 71.89 137 | 82.87 112 | 79.66 111 | 78.77 156 | 63.93 131 | 83.36 82 | 59.39 164 | 90.54 50 | 94.66 70 | 56.46 160 | 87.38 96 | 84.12 106 | 89.92 95 | 80.74 124 |
|
pm-mvs1 | | | 78.21 124 | 85.68 88 | 69.50 154 | 80.38 127 | 75.73 142 | 76.25 167 | 65.04 116 | 87.59 50 | 54.47 177 | 93.16 23 | 95.99 40 | 54.20 171 | 86.37 106 | 82.98 120 | 86.64 132 | 77.96 145 |
|
DCV-MVSNet | | | 80.04 108 | 85.67 89 | 73.48 130 | 82.91 110 | 81.11 102 | 80.44 143 | 66.06 106 | 85.01 73 | 62.53 160 | 78.84 138 | 94.43 75 | 58.51 153 | 88.66 84 | 85.91 88 | 90.41 89 | 85.73 83 |
|
MVS_111021_LR | | | 83.20 83 | 85.33 90 | 80.73 82 | 82.88 111 | 78.23 121 | 89.61 74 | 65.23 115 | 82.08 93 | 81.19 71 | 85.31 107 | 92.04 106 | 75.22 66 | 89.50 78 | 85.90 89 | 90.24 90 | 84.23 92 |
|
PCF-MVS | | 76.59 14 | 84.11 74 | 85.27 91 | 82.76 64 | 86.12 76 | 88.30 43 | 91.24 49 | 69.10 78 | 82.36 91 | 84.45 43 | 77.56 147 | 90.40 121 | 72.91 86 | 85.88 110 | 83.88 108 | 92.72 61 | 88.53 64 |
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
v1192 | | | 83.61 77 | 85.23 92 | 81.72 70 | 84.05 94 | 82.15 93 | 89.54 75 | 66.20 104 | 81.38 105 | 86.76 32 | 91.79 39 | 96.03 36 | 74.88 71 | 81.81 143 | 80.92 132 | 88.91 109 | 82.50 111 |
|
v10 | | | 83.17 84 | 85.22 93 | 80.78 79 | 83.26 106 | 82.99 86 | 88.66 85 | 66.49 102 | 79.24 123 | 83.60 48 | 91.46 43 | 95.47 50 | 74.12 75 | 82.60 138 | 80.66 133 | 88.53 115 | 84.11 95 |
|
AdaColmap | | | 84.15 73 | 85.14 94 | 83.00 59 | 89.08 49 | 87.14 59 | 90.56 60 | 70.90 65 | 82.40 90 | 80.41 73 | 73.82 173 | 84.69 149 | 75.19 67 | 91.58 56 | 89.90 55 | 91.87 74 | 86.48 77 |
|
v1144 | | | 83.22 82 | 85.01 95 | 81.14 75 | 83.76 101 | 81.60 96 | 88.95 81 | 65.58 113 | 81.89 95 | 85.80 36 | 91.68 41 | 95.84 41 | 74.04 77 | 82.12 140 | 80.56 135 | 88.70 112 | 81.41 119 |
|
IS_MVSNet | | | 81.72 97 | 85.01 95 | 77.90 103 | 86.19 75 | 82.64 89 | 85.56 109 | 70.02 70 | 80.11 117 | 63.52 155 | 87.28 88 | 81.18 159 | 67.26 120 | 91.08 66 | 89.33 63 | 94.82 32 | 83.42 100 |
|
v144192 | | | 83.43 80 | 84.97 97 | 81.63 72 | 83.43 103 | 81.23 100 | 89.42 78 | 66.04 108 | 81.45 104 | 86.40 34 | 91.46 43 | 95.70 46 | 75.76 63 | 82.14 139 | 80.23 139 | 88.74 110 | 82.57 110 |
|
v1921920 | | | 83.49 79 | 84.94 98 | 81.80 69 | 83.78 100 | 81.20 101 | 89.50 76 | 65.91 109 | 81.64 98 | 87.18 25 | 91.70 40 | 95.39 52 | 75.85 61 | 81.56 146 | 80.27 138 | 88.60 113 | 82.80 107 |
|
v1240 | | | 83.57 78 | 84.94 98 | 81.97 67 | 84.05 94 | 81.27 99 | 89.46 77 | 66.06 106 | 81.31 106 | 87.50 21 | 91.88 38 | 95.46 51 | 76.25 57 | 81.16 148 | 80.51 136 | 88.52 116 | 82.98 105 |
|
FMVSNet1 | | | 78.20 125 | 84.83 100 | 70.46 147 | 78.62 142 | 79.03 114 | 77.90 158 | 67.53 97 | 83.02 85 | 55.10 175 | 87.19 90 | 93.18 90 | 55.65 165 | 85.57 111 | 83.39 113 | 87.98 120 | 82.40 112 |
|
Anonymous202405211 | | | | 84.68 101 | | 83.92 97 | 79.45 112 | 79.03 154 | 67.79 94 | 82.01 94 | | 88.77 77 | 92.58 95 | 55.93 163 | 86.68 103 | 84.26 105 | 88.92 108 | 78.98 138 |
|
CANet | | | 82.84 87 | 84.60 102 | 80.78 79 | 87.30 66 | 85.20 73 | 90.23 69 | 69.00 79 | 72.16 149 | 78.73 85 | 84.49 114 | 90.70 119 | 69.54 109 | 87.65 94 | 86.17 85 | 89.87 96 | 85.84 82 |
|
v8 | | | 82.20 93 | 84.56 103 | 79.45 92 | 82.42 114 | 81.65 95 | 87.26 96 | 64.27 122 | 79.36 122 | 81.70 68 | 91.04 49 | 95.75 44 | 73.30 84 | 82.82 134 | 79.18 145 | 87.74 123 | 82.09 114 |
|
QAPM | | | 80.43 106 | 84.34 104 | 75.86 113 | 79.40 134 | 82.06 94 | 79.86 149 | 61.94 147 | 83.28 83 | 74.73 102 | 81.74 127 | 85.44 146 | 70.97 100 | 84.99 122 | 84.71 102 | 88.29 117 | 88.14 67 |
|
thisisatest0515 | | | 81.18 104 | 84.32 105 | 77.52 108 | 76.73 161 | 74.84 150 | 85.06 115 | 61.37 150 | 81.05 109 | 73.95 106 | 88.79 76 | 89.25 128 | 75.49 65 | 85.98 109 | 84.78 100 | 92.53 66 | 85.56 85 |
|
tfpnnormal | | | 77.16 128 | 84.26 106 | 68.88 157 | 81.02 124 | 75.02 147 | 76.52 166 | 63.30 136 | 87.29 53 | 52.40 184 | 91.24 47 | 93.97 78 | 54.85 169 | 85.46 114 | 81.08 130 | 85.18 151 | 75.76 152 |
|
v2v482 | | | 82.20 93 | 84.26 106 | 79.81 91 | 82.67 113 | 80.18 106 | 87.67 92 | 63.96 130 | 81.69 97 | 84.73 41 | 91.27 46 | 96.33 31 | 72.05 93 | 81.94 142 | 79.56 142 | 87.79 122 | 78.84 139 |
|
MSDG | | | 81.39 101 | 84.23 108 | 78.09 102 | 82.40 115 | 82.47 91 | 85.31 114 | 60.91 154 | 79.73 120 | 80.26 76 | 86.30 97 | 88.27 135 | 69.67 107 | 87.20 100 | 84.98 97 | 89.97 94 | 80.67 125 |
|
PVSNet_Blended_VisFu | | | 83.00 85 | 84.16 109 | 81.65 71 | 82.17 117 | 86.01 66 | 88.03 88 | 71.23 64 | 76.05 134 | 79.54 80 | 83.88 116 | 83.44 150 | 77.49 50 | 87.38 96 | 84.93 98 | 91.41 78 | 87.40 74 |
|
casdiffmvs | | | 79.93 109 | 84.11 110 | 75.05 120 | 81.41 123 | 78.99 115 | 82.95 127 | 62.90 141 | 81.53 100 | 68.60 140 | 91.94 35 | 96.03 36 | 65.84 129 | 82.89 133 | 77.07 156 | 88.59 114 | 80.34 131 |
|
FPMVS | | | 81.56 98 | 84.04 111 | 78.66 98 | 82.92 109 | 75.96 140 | 86.48 106 | 65.66 112 | 84.67 76 | 71.47 122 | 77.78 144 | 83.22 153 | 77.57 49 | 91.24 60 | 90.21 51 | 87.84 121 | 85.21 86 |
|
Effi-MVS+ | | | 82.33 91 | 83.87 112 | 80.52 86 | 84.51 90 | 81.32 98 | 87.53 93 | 68.05 92 | 74.94 139 | 79.67 79 | 82.37 125 | 92.31 99 | 72.21 89 | 85.06 117 | 86.91 79 | 91.18 83 | 84.20 93 |
|
Fast-Effi-MVS+ | | | 81.42 99 | 83.82 113 | 78.62 99 | 82.24 116 | 80.62 104 | 87.72 91 | 63.51 134 | 73.01 143 | 74.75 101 | 83.80 118 | 92.70 94 | 73.44 83 | 88.15 93 | 85.26 94 | 90.05 92 | 83.17 101 |
|
DELS-MVS | | | 79.71 111 | 83.74 114 | 75.01 122 | 79.31 135 | 82.68 88 | 84.79 117 | 60.06 160 | 75.43 137 | 69.09 134 | 86.13 99 | 89.38 125 | 67.16 121 | 85.12 116 | 83.87 109 | 89.65 97 | 83.57 98 |
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
PM-MVS | | | 80.42 107 | 83.63 115 | 76.67 110 | 78.04 147 | 72.37 160 | 87.14 98 | 60.18 159 | 80.13 116 | 71.75 120 | 86.12 100 | 93.92 80 | 77.08 52 | 86.56 104 | 85.12 96 | 85.83 145 | 81.18 120 |
|
FC-MVSNet-test | | | 75.91 139 | 83.59 116 | 66.95 168 | 76.63 163 | 69.07 170 | 85.33 113 | 64.97 117 | 84.87 75 | 41.95 199 | 93.17 22 | 87.04 139 | 47.78 190 | 91.09 65 | 85.56 92 | 85.06 152 | 74.34 155 |
|
V42 | | | 79.59 114 | 83.59 116 | 74.93 125 | 69.61 184 | 77.05 132 | 86.59 105 | 55.84 174 | 78.42 126 | 77.29 89 | 89.84 60 | 95.08 61 | 74.12 75 | 83.05 131 | 80.11 140 | 86.12 139 | 81.59 118 |
|
Effi-MVS+-dtu | | | 82.04 95 | 83.39 118 | 80.48 87 | 85.48 82 | 86.57 64 | 88.40 86 | 68.28 89 | 69.04 163 | 73.13 113 | 76.26 157 | 91.11 116 | 74.74 72 | 88.40 88 | 87.76 73 | 92.84 60 | 84.57 90 |
|
USDC | | | 81.39 101 | 83.07 119 | 79.43 93 | 81.48 121 | 78.95 116 | 82.62 130 | 66.17 105 | 87.45 52 | 90.73 4 | 82.40 124 | 93.65 83 | 66.57 125 | 83.63 130 | 77.97 148 | 89.00 107 | 77.45 147 |
|
MAR-MVS | | | 81.98 96 | 82.92 120 | 80.88 78 | 85.18 84 | 85.85 67 | 89.13 79 | 69.52 72 | 71.21 153 | 82.25 61 | 71.28 184 | 88.89 132 | 69.69 106 | 88.71 83 | 86.96 77 | 89.52 100 | 87.57 72 |
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
MDA-MVSNet-bldmvs | | | 76.51 132 | 82.87 121 | 69.09 156 | 50.71 210 | 74.72 152 | 84.05 121 | 60.27 158 | 81.62 99 | 71.16 124 | 88.21 80 | 91.58 109 | 69.62 108 | 92.78 43 | 77.48 153 | 78.75 173 | 73.69 160 |
|
IterMVS-LS | | | 79.79 110 | 82.56 122 | 76.56 112 | 81.83 119 | 77.85 123 | 79.90 148 | 69.42 76 | 78.93 124 | 71.21 123 | 90.47 51 | 85.20 148 | 70.86 102 | 80.54 153 | 80.57 134 | 86.15 138 | 84.36 91 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
v148 | | | 79.33 118 | 82.32 123 | 75.84 114 | 80.14 128 | 75.74 141 | 81.98 134 | 57.06 171 | 81.51 102 | 79.36 82 | 89.42 64 | 96.42 27 | 71.32 96 | 81.54 147 | 75.29 165 | 85.20 150 | 76.32 148 |
|
DPM-MVS | | | 81.42 99 | 82.11 124 | 80.62 84 | 87.54 64 | 85.30 72 | 90.18 71 | 68.96 80 | 81.00 110 | 79.15 83 | 70.45 190 | 83.29 152 | 67.67 119 | 82.81 135 | 83.46 111 | 90.19 91 | 88.48 65 |
|
pmmvs-eth3d | | | 79.64 112 | 82.06 125 | 76.83 109 | 80.05 129 | 72.64 158 | 87.47 94 | 66.59 101 | 80.83 111 | 73.50 109 | 89.32 67 | 93.20 89 | 67.78 117 | 80.78 151 | 81.64 128 | 85.58 148 | 76.01 149 |
|
MIMVSNet1 | | | 73.40 150 | 81.85 126 | 63.55 180 | 72.90 174 | 64.37 184 | 84.58 118 | 53.60 184 | 90.84 19 | 53.92 178 | 87.75 83 | 96.10 33 | 45.31 193 | 85.37 115 | 79.32 144 | 70.98 188 | 69.18 174 |
|
diffmvs | | | 76.74 130 | 81.61 127 | 71.06 141 | 75.64 166 | 74.45 153 | 80.68 142 | 57.57 170 | 77.48 127 | 67.62 146 | 88.95 72 | 93.94 79 | 61.98 144 | 79.74 156 | 76.18 160 | 82.85 163 | 80.50 126 |
|
OpenMVS | | 75.38 16 | 78.44 123 | 81.39 128 | 74.99 123 | 80.46 126 | 79.85 107 | 79.99 146 | 58.31 168 | 77.34 129 | 73.85 107 | 77.19 150 | 82.33 157 | 68.60 114 | 84.67 124 | 81.95 124 | 88.72 111 | 86.40 79 |
|
Vis-MVSNet (Re-imp) | | | 76.15 136 | 80.84 129 | 70.68 144 | 83.66 102 | 74.80 151 | 81.66 137 | 69.59 71 | 80.48 115 | 46.94 195 | 87.44 85 | 80.63 161 | 53.14 177 | 86.87 102 | 84.56 103 | 89.12 105 | 71.12 165 |
|
EU-MVSNet | | | 76.48 133 | 80.53 130 | 71.75 138 | 67.62 190 | 70.30 165 | 81.74 136 | 54.06 182 | 75.47 136 | 71.01 125 | 80.10 130 | 93.17 91 | 73.67 80 | 83.73 129 | 77.85 149 | 82.40 164 | 83.07 102 |
|
FMVSNet2 | | | 74.43 147 | 79.70 131 | 68.27 160 | 76.76 155 | 77.36 127 | 75.77 171 | 65.36 114 | 72.28 147 | 52.97 181 | 81.92 126 | 85.61 145 | 52.73 180 | 80.66 152 | 79.73 141 | 86.04 140 | 80.37 128 |
|
DI_MVS_plusplus_trai | | | 77.64 126 | 79.64 132 | 75.31 118 | 79.87 131 | 76.89 133 | 81.55 138 | 63.64 132 | 76.21 133 | 72.03 118 | 85.59 106 | 82.97 154 | 66.63 124 | 79.27 159 | 77.78 150 | 88.14 119 | 78.76 141 |
|
EPNet | | | 79.36 116 | 79.44 133 | 79.27 96 | 89.51 46 | 77.20 130 | 88.35 87 | 77.35 32 | 68.27 165 | 74.29 104 | 76.31 155 | 79.22 164 | 59.63 149 | 85.02 121 | 85.45 93 | 86.49 135 | 84.61 88 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
MVS_Test | | | 76.72 131 | 79.40 134 | 73.60 129 | 78.85 141 | 74.99 148 | 79.91 147 | 61.56 149 | 69.67 157 | 72.44 114 | 85.98 102 | 90.78 118 | 63.50 140 | 78.30 161 | 75.74 163 | 85.33 149 | 80.31 132 |
|
IterMVS-SCA-FT | | | 77.23 127 | 79.18 135 | 74.96 124 | 76.67 162 | 79.85 107 | 75.58 176 | 61.34 151 | 73.10 142 | 73.79 108 | 86.23 98 | 79.61 163 | 79.00 36 | 80.28 155 | 75.50 164 | 83.41 162 | 79.70 135 |
|
CANet_DTU | | | 75.04 144 | 78.45 136 | 71.07 140 | 77.27 152 | 77.96 122 | 83.88 122 | 58.00 169 | 64.11 183 | 68.67 139 | 75.65 164 | 88.37 134 | 53.92 174 | 82.05 141 | 81.11 129 | 84.67 153 | 79.88 134 |
|
thres600view7 | | | 74.34 148 | 78.43 137 | 69.56 153 | 80.47 125 | 76.28 137 | 78.65 157 | 62.56 143 | 77.39 128 | 52.53 182 | 74.03 171 | 76.78 175 | 55.90 164 | 85.06 117 | 85.19 95 | 87.25 128 | 74.29 156 |
|
PVSNet_BlendedMVS | | | 76.45 134 | 78.12 138 | 74.49 126 | 76.76 155 | 78.46 118 | 79.65 150 | 63.26 137 | 65.42 178 | 73.15 111 | 75.05 167 | 88.96 129 | 66.51 126 | 82.73 136 | 77.66 151 | 87.61 124 | 78.60 142 |
|
PVSNet_Blended | | | 76.45 134 | 78.12 138 | 74.49 126 | 76.76 155 | 78.46 118 | 79.65 150 | 63.26 137 | 65.42 178 | 73.15 111 | 75.05 167 | 88.96 129 | 66.51 126 | 82.73 136 | 77.66 151 | 87.61 124 | 78.60 142 |
|
ETV-MVS | | | 79.01 121 | 77.98 140 | 80.22 89 | 86.69 71 | 79.73 110 | 88.80 83 | 68.27 90 | 63.22 187 | 71.56 121 | 70.25 192 | 73.63 185 | 73.66 81 | 90.30 74 | 86.77 82 | 92.33 69 | 81.95 116 |
|
EIA-MVS | | | 78.57 122 | 77.90 141 | 79.35 94 | 87.24 68 | 80.71 103 | 86.16 107 | 64.03 127 | 62.63 192 | 73.49 110 | 73.60 174 | 76.12 178 | 73.83 79 | 88.49 87 | 84.93 98 | 91.36 79 | 78.78 140 |
|
CS-MVS | | | 79.35 117 | 77.74 142 | 81.22 74 | 85.59 81 | 79.85 107 | 88.78 84 | 66.61 100 | 67.63 166 | 80.41 73 | 67.82 196 | 75.07 183 | 73.27 85 | 88.31 90 | 84.36 104 | 92.63 62 | 81.18 120 |
|
GBi-Net | | | 73.17 152 | 77.64 143 | 67.95 163 | 76.76 155 | 77.36 127 | 75.77 171 | 64.57 119 | 62.99 189 | 51.83 187 | 76.05 158 | 77.76 170 | 52.73 180 | 85.57 111 | 83.39 113 | 86.04 140 | 80.37 128 |
|
test1 | | | 73.17 152 | 77.64 143 | 67.95 163 | 76.76 155 | 77.36 127 | 75.77 171 | 64.57 119 | 62.99 189 | 51.83 187 | 76.05 158 | 77.76 170 | 52.73 180 | 85.57 111 | 83.39 113 | 86.04 140 | 80.37 128 |
|
CVMVSNet | | | 75.65 141 | 77.62 145 | 73.35 133 | 71.95 177 | 69.89 167 | 83.04 126 | 60.84 155 | 69.12 161 | 68.76 137 | 79.92 133 | 78.93 166 | 73.64 82 | 81.02 149 | 81.01 131 | 81.86 167 | 83.43 99 |
|
pmmvs4 | | | 75.92 138 | 77.48 146 | 74.10 128 | 78.21 146 | 70.94 162 | 84.06 120 | 64.78 118 | 75.13 138 | 68.47 141 | 84.12 115 | 83.32 151 | 64.74 134 | 75.93 173 | 79.14 146 | 84.31 155 | 73.77 159 |
|
Fast-Effi-MVS+-dtu | | | 76.92 129 | 77.18 147 | 76.62 111 | 79.55 132 | 79.17 113 | 84.80 116 | 77.40 30 | 64.46 182 | 68.75 138 | 70.81 188 | 86.57 141 | 63.36 142 | 81.74 144 | 81.76 126 | 85.86 144 | 75.78 151 |
|
CDS-MVSNet | | | 73.07 155 | 77.02 148 | 68.46 159 | 81.62 120 | 72.89 157 | 79.56 152 | 70.78 67 | 69.56 158 | 52.52 183 | 77.37 149 | 81.12 160 | 42.60 195 | 84.20 127 | 83.93 107 | 83.65 158 | 70.07 170 |
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
IB-MVS | | 71.28 17 | 75.21 143 | 77.00 149 | 73.12 134 | 76.76 155 | 77.45 126 | 83.05 125 | 58.92 165 | 63.01 188 | 64.31 154 | 59.99 206 | 87.57 138 | 68.64 113 | 86.26 108 | 82.34 123 | 87.05 130 | 82.36 113 |
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
thres400 | | | 73.13 154 | 76.99 150 | 68.62 158 | 79.46 133 | 74.93 149 | 77.23 161 | 61.23 152 | 75.54 135 | 52.31 185 | 72.20 179 | 77.10 173 | 54.89 167 | 82.92 132 | 82.62 122 | 86.57 134 | 73.66 161 |
|
PatchMatch-RL | | | 76.05 137 | 76.64 151 | 75.36 117 | 77.84 151 | 69.87 168 | 81.09 140 | 63.43 135 | 71.66 151 | 68.34 142 | 71.70 180 | 81.76 158 | 74.98 70 | 84.83 123 | 83.44 112 | 86.45 136 | 73.22 162 |
|
IterMVS | | | 73.62 149 | 76.53 152 | 70.23 148 | 71.83 178 | 77.18 131 | 80.69 141 | 53.22 186 | 72.23 148 | 66.62 149 | 85.21 108 | 78.96 165 | 69.54 109 | 76.28 172 | 71.63 175 | 79.45 170 | 74.25 157 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
GA-MVS | | | 75.01 145 | 76.39 153 | 73.39 131 | 78.37 143 | 75.66 143 | 80.03 145 | 58.40 167 | 70.51 155 | 75.85 94 | 83.24 119 | 76.14 177 | 63.75 136 | 77.28 165 | 76.62 159 | 83.97 157 | 75.30 154 |
|
CMPMVS | | 55.74 18 | 71.56 161 | 76.26 154 | 66.08 173 | 68.11 188 | 63.91 186 | 63.17 202 | 50.52 194 | 68.79 164 | 75.49 95 | 70.78 189 | 85.67 144 | 63.54 139 | 81.58 145 | 77.20 155 | 75.63 175 | 85.86 81 |
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
tttt0517 | | | 75.86 140 | 76.23 155 | 75.42 116 | 75.55 167 | 74.06 154 | 82.73 128 | 60.31 156 | 69.24 159 | 70.24 129 | 79.18 134 | 58.79 203 | 72.17 90 | 84.49 125 | 83.08 118 | 91.54 76 | 84.80 87 |
|
test20.03 | | | 69.91 165 | 76.20 156 | 62.58 181 | 84.01 96 | 67.34 176 | 75.67 175 | 65.88 110 | 79.98 118 | 40.28 203 | 82.65 121 | 89.31 127 | 39.63 199 | 77.41 164 | 73.28 169 | 69.98 189 | 63.40 185 |
|
testgi | | | 68.20 174 | 76.05 157 | 59.04 187 | 79.99 130 | 67.32 177 | 81.16 139 | 51.78 190 | 84.91 74 | 39.36 204 | 73.42 175 | 95.19 56 | 32.79 205 | 76.54 170 | 70.40 178 | 69.14 192 | 64.55 181 |
|
thres200 | | | 72.41 158 | 76.00 158 | 68.21 161 | 78.28 144 | 76.28 137 | 74.94 177 | 62.56 143 | 72.14 150 | 51.35 190 | 69.59 194 | 76.51 176 | 54.89 167 | 85.06 117 | 80.51 136 | 87.25 128 | 71.92 164 |
|
thisisatest0530 | | | 75.54 142 | 75.95 159 | 75.05 120 | 75.08 168 | 73.56 155 | 82.15 133 | 60.31 156 | 69.17 160 | 69.32 132 | 79.02 135 | 58.78 204 | 72.17 90 | 83.88 128 | 83.08 118 | 91.30 81 | 84.20 93 |
|
MDTV_nov1_ep13_2view | | | 72.96 156 | 75.59 160 | 69.88 150 | 71.15 181 | 64.86 183 | 82.31 132 | 54.45 180 | 76.30 132 | 78.32 87 | 86.52 95 | 91.58 109 | 61.35 145 | 76.80 166 | 66.83 186 | 71.70 181 | 66.26 178 |
|
tfpn200view9 | | | 72.01 159 | 75.40 161 | 68.06 162 | 77.97 148 | 76.44 135 | 77.04 163 | 62.67 142 | 66.81 169 | 50.82 191 | 67.30 197 | 75.67 180 | 52.46 183 | 85.06 117 | 82.64 121 | 87.41 126 | 73.86 158 |
|
baseline | | | 69.33 169 | 75.37 162 | 62.28 183 | 66.54 195 | 66.67 179 | 73.95 180 | 48.07 195 | 66.10 172 | 59.26 165 | 82.45 122 | 86.30 142 | 54.44 170 | 74.42 176 | 73.25 170 | 71.42 184 | 78.43 144 |
|
gg-mvs-nofinetune | | | 72.68 157 | 75.21 163 | 69.73 151 | 81.48 121 | 69.04 171 | 70.48 188 | 76.67 36 | 86.92 57 | 67.80 145 | 88.06 81 | 64.67 193 | 42.12 197 | 77.60 163 | 73.65 168 | 79.81 169 | 66.57 177 |
|
FMVSNet3 | | | 71.40 163 | 75.20 164 | 66.97 167 | 75.00 169 | 76.59 134 | 74.29 178 | 64.57 119 | 62.99 189 | 51.83 187 | 76.05 158 | 77.76 170 | 51.49 185 | 76.58 169 | 77.03 157 | 84.62 154 | 79.43 137 |
|
pmmvs5 | | | 68.91 170 | 74.35 165 | 62.56 182 | 67.45 192 | 66.78 178 | 71.70 184 | 51.47 191 | 67.17 168 | 56.25 171 | 82.41 123 | 88.59 133 | 47.21 192 | 73.21 183 | 74.23 166 | 81.30 168 | 68.03 176 |
|
ET-MVSNet_ETH3D | | | 74.71 146 | 74.19 166 | 75.31 118 | 79.22 137 | 75.29 145 | 82.70 129 | 64.05 126 | 65.45 177 | 70.96 126 | 77.15 151 | 57.70 205 | 65.89 128 | 84.40 126 | 81.65 127 | 89.03 106 | 77.67 146 |
|
HyFIR lowres test | | | 73.29 151 | 74.14 167 | 72.30 135 | 73.08 173 | 78.33 120 | 83.12 124 | 62.41 145 | 63.81 184 | 62.13 161 | 76.67 154 | 78.50 167 | 71.09 98 | 74.13 177 | 77.47 154 | 81.98 166 | 70.10 169 |
|
MS-PatchMatch | | | 71.18 164 | 73.99 168 | 67.89 165 | 77.16 153 | 71.76 161 | 77.18 162 | 56.38 173 | 67.35 167 | 55.04 176 | 74.63 169 | 75.70 179 | 62.38 143 | 76.62 168 | 75.97 162 | 79.22 171 | 75.90 150 |
|
new-patchmatchnet | | | 62.59 188 | 73.79 169 | 49.53 202 | 76.98 154 | 53.57 199 | 53.46 210 | 54.64 178 | 85.43 69 | 28.81 208 | 91.94 35 | 96.41 28 | 25.28 207 | 76.80 166 | 53.66 205 | 57.99 203 | 58.69 197 |
|
baseline1 | | | 69.62 167 | 73.55 170 | 65.02 179 | 78.95 140 | 70.39 164 | 71.38 187 | 62.03 146 | 70.97 154 | 47.95 194 | 78.47 142 | 68.19 191 | 47.77 191 | 79.65 158 | 76.94 158 | 82.05 165 | 70.27 168 |
|
Anonymous20231206 | | | 67.28 176 | 73.41 171 | 60.12 186 | 76.45 164 | 63.61 187 | 74.21 179 | 56.52 172 | 76.35 131 | 42.23 198 | 75.81 163 | 90.47 120 | 41.51 198 | 74.52 174 | 69.97 180 | 69.83 190 | 63.17 186 |
|
EPNet_dtu | | | 71.90 160 | 73.03 172 | 70.59 145 | 78.28 144 | 61.64 189 | 82.44 131 | 64.12 124 | 63.26 186 | 69.74 130 | 71.47 182 | 82.41 155 | 51.89 184 | 78.83 160 | 78.01 147 | 77.07 174 | 75.60 153 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
thres100view900 | | | 69.86 166 | 72.97 173 | 66.24 170 | 77.97 148 | 72.49 159 | 73.29 181 | 59.12 163 | 66.81 169 | 50.82 191 | 67.30 197 | 75.67 180 | 50.54 186 | 78.24 162 | 79.40 143 | 85.71 147 | 70.88 166 |
|
CHOSEN 1792x2688 | | | 68.80 171 | 71.09 174 | 66.13 172 | 69.11 186 | 68.89 172 | 78.98 155 | 54.68 177 | 61.63 194 | 56.69 169 | 71.56 181 | 78.39 168 | 67.69 118 | 72.13 184 | 72.01 174 | 69.63 191 | 73.02 163 |
|
gm-plane-assit | | | 71.56 161 | 69.99 175 | 73.39 131 | 84.43 91 | 73.21 156 | 90.42 68 | 51.36 192 | 84.08 79 | 76.00 93 | 91.30 45 | 37.09 216 | 59.01 151 | 73.65 180 | 70.24 179 | 79.09 172 | 60.37 194 |
|
MVSTER | | | 68.08 175 | 69.73 176 | 66.16 171 | 66.33 197 | 70.06 166 | 75.71 174 | 52.36 188 | 55.18 206 | 58.64 166 | 70.23 193 | 56.72 208 | 57.34 157 | 79.68 157 | 76.03 161 | 86.61 133 | 80.20 133 |
|
TAMVS | | | 63.02 184 | 69.30 177 | 55.70 194 | 70.12 182 | 56.89 195 | 69.63 192 | 45.13 197 | 70.23 156 | 38.00 205 | 77.79 143 | 75.15 182 | 42.60 195 | 74.48 175 | 72.81 173 | 68.70 193 | 57.75 200 |
|
MIMVSNet | | | 63.02 184 | 69.02 178 | 56.01 192 | 68.20 187 | 59.26 192 | 70.01 191 | 53.79 183 | 71.56 152 | 41.26 202 | 71.38 183 | 82.38 156 | 36.38 201 | 71.43 187 | 67.32 185 | 66.45 197 | 59.83 195 |
|
pmmvs3 | | | 62.72 187 | 68.71 179 | 55.74 193 | 50.74 209 | 57.10 194 | 70.05 190 | 28.82 207 | 61.57 196 | 57.39 168 | 71.19 186 | 85.73 143 | 53.96 173 | 73.36 182 | 69.43 182 | 73.47 179 | 62.55 188 |
|
baseline2 | | | 68.71 172 | 68.34 180 | 69.14 155 | 75.69 165 | 69.70 169 | 76.60 165 | 55.53 176 | 60.13 197 | 62.07 162 | 66.76 199 | 60.35 198 | 60.77 146 | 76.53 171 | 74.03 167 | 84.19 156 | 70.88 166 |
|
CR-MVSNet | | | 69.56 168 | 68.34 180 | 70.99 142 | 72.78 176 | 67.63 174 | 64.47 200 | 67.74 95 | 59.93 198 | 72.30 115 | 80.10 130 | 56.77 207 | 65.04 132 | 71.64 185 | 72.91 171 | 83.61 160 | 69.40 172 |
|
SCA | | | 68.54 173 | 67.52 182 | 69.73 151 | 67.79 189 | 75.04 146 | 76.96 164 | 68.94 81 | 66.41 171 | 67.86 144 | 74.03 171 | 60.96 196 | 65.55 130 | 68.99 192 | 65.67 187 | 71.30 186 | 61.54 193 |
|
CostFormer | | | 66.81 178 | 66.94 183 | 66.67 169 | 72.79 175 | 68.25 173 | 79.55 153 | 55.57 175 | 65.52 176 | 62.77 158 | 76.98 152 | 60.09 199 | 56.73 159 | 65.69 200 | 62.35 190 | 72.59 180 | 69.71 171 |
|
PatchT | | | 66.25 179 | 66.76 184 | 65.67 176 | 55.87 205 | 60.75 190 | 70.17 189 | 59.00 164 | 59.80 200 | 72.30 115 | 78.68 140 | 54.12 212 | 65.04 132 | 71.64 185 | 72.91 171 | 71.63 183 | 69.40 172 |
|
N_pmnet | | | 54.95 202 | 65.90 185 | 42.18 203 | 66.37 196 | 43.86 210 | 57.92 207 | 39.79 202 | 79.54 121 | 17.24 212 | 86.31 96 | 87.91 136 | 25.44 206 | 64.68 201 | 51.76 207 | 46.33 209 | 47.23 207 |
|
PMMVS | | | 61.98 190 | 65.61 186 | 57.74 189 | 45.03 211 | 51.76 203 | 69.54 193 | 35.05 204 | 55.49 205 | 55.32 174 | 68.23 195 | 78.39 168 | 58.09 154 | 70.21 190 | 71.56 176 | 83.42 161 | 63.66 183 |
|
test0.0.03 1 | | | 61.79 191 | 65.33 187 | 57.65 190 | 79.07 138 | 64.09 185 | 68.51 197 | 62.93 139 | 61.59 195 | 33.71 207 | 61.58 205 | 71.58 189 | 33.43 204 | 70.95 188 | 68.68 183 | 68.26 194 | 58.82 196 |
|
MDTV_nov1_ep13 | | | 64.96 181 | 64.77 188 | 65.18 178 | 67.08 193 | 62.46 188 | 75.80 170 | 51.10 193 | 62.27 193 | 69.74 130 | 74.12 170 | 62.65 194 | 55.64 166 | 68.19 194 | 62.16 194 | 71.70 181 | 61.57 192 |
|
dps | | | 65.14 180 | 64.50 189 | 65.89 175 | 71.41 180 | 65.81 182 | 71.44 186 | 61.59 148 | 58.56 201 | 61.43 163 | 75.45 165 | 52.70 214 | 58.06 155 | 69.57 191 | 64.65 188 | 71.39 185 | 64.77 180 |
|
PMMVS2 | | | 48.13 205 | 64.06 190 | 29.55 206 | 44.06 212 | 36.69 212 | 51.95 211 | 29.97 206 | 74.75 140 | 8.90 214 | 76.02 161 | 91.24 115 | 7.53 209 | 73.78 179 | 55.91 200 | 34.87 211 | 40.01 211 |
|
RPMNet | | | 67.02 177 | 63.99 191 | 70.56 146 | 71.55 179 | 67.63 174 | 75.81 169 | 69.44 75 | 59.93 198 | 63.24 156 | 64.32 201 | 47.51 215 | 59.68 148 | 70.37 189 | 69.64 181 | 83.64 159 | 68.49 175 |
|
PatchmatchNet | | | 64.81 182 | 63.74 192 | 66.06 174 | 69.21 185 | 58.62 193 | 73.16 182 | 60.01 161 | 65.92 173 | 66.19 151 | 76.27 156 | 59.09 200 | 60.45 147 | 66.58 197 | 61.47 196 | 67.33 195 | 58.24 198 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
tpm | | | 62.79 186 | 63.25 193 | 62.26 184 | 70.09 183 | 53.78 198 | 71.65 185 | 47.31 196 | 65.72 175 | 76.70 90 | 80.62 129 | 56.40 210 | 48.11 189 | 64.20 202 | 58.54 197 | 59.70 201 | 63.47 184 |
|
new_pmnet | | | 52.29 203 | 63.16 194 | 39.61 205 | 58.89 203 | 44.70 209 | 48.78 212 | 34.73 205 | 65.88 174 | 17.85 211 | 73.42 175 | 80.00 162 | 23.06 208 | 67.00 196 | 62.28 193 | 54.36 205 | 48.81 206 |
|
E-PMN | | | 59.07 195 | 62.79 195 | 54.72 195 | 67.01 194 | 47.81 207 | 60.44 205 | 43.40 198 | 72.95 144 | 44.63 197 | 70.42 191 | 73.17 186 | 58.73 152 | 80.97 150 | 51.98 206 | 54.14 206 | 42.26 209 |
|
tpm cat1 | | | 64.79 183 | 62.74 196 | 67.17 166 | 74.61 170 | 65.91 181 | 76.18 168 | 59.32 162 | 64.88 181 | 66.41 150 | 71.21 185 | 53.56 213 | 59.17 150 | 61.53 204 | 58.16 199 | 67.33 195 | 63.95 182 |
|
EMVS | | | 58.97 196 | 62.63 197 | 54.70 196 | 66.26 198 | 48.71 205 | 61.74 203 | 42.71 199 | 72.80 146 | 46.00 196 | 73.01 178 | 71.66 187 | 57.91 156 | 80.41 154 | 50.68 208 | 53.55 207 | 41.11 210 |
|
test-mter | | | 59.39 194 | 61.59 198 | 56.82 191 | 53.21 206 | 54.82 197 | 73.12 183 | 26.57 209 | 53.19 207 | 56.31 170 | 64.71 200 | 60.47 197 | 56.36 161 | 68.69 193 | 64.27 189 | 75.38 176 | 65.00 179 |
|
ADS-MVSNet | | | 56.89 198 | 61.09 199 | 52.00 200 | 59.48 202 | 48.10 206 | 58.02 206 | 54.37 181 | 72.82 145 | 49.19 193 | 75.32 166 | 65.97 192 | 37.96 200 | 59.34 207 | 54.66 203 | 52.99 208 | 51.42 205 |
|
MVE | | 41.12 19 | 51.80 204 | 60.92 200 | 41.16 204 | 35.21 213 | 34.14 213 | 48.45 213 | 41.39 201 | 69.11 162 | 19.53 210 | 63.33 202 | 73.80 184 | 63.56 138 | 67.19 195 | 61.51 195 | 38.85 210 | 57.38 201 |
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
GG-mvs-BLEND | | | 41.63 206 | 60.36 201 | 19.78 207 | 0.14 217 | 66.04 180 | 55.66 209 | 0.17 214 | 57.64 202 | 2.42 215 | 51.82 207 | 69.42 190 | 0.28 213 | 64.11 203 | 58.29 198 | 60.02 200 | 55.18 202 |
|
FMVSNet5 | | | 56.37 200 | 60.14 202 | 51.98 201 | 60.83 201 | 59.58 191 | 66.85 199 | 42.37 200 | 52.68 208 | 41.33 201 | 47.09 209 | 54.68 211 | 35.28 202 | 73.88 178 | 70.77 177 | 65.24 198 | 62.26 189 |
|
tpmrst | | | 59.42 193 | 60.02 203 | 58.71 188 | 67.56 191 | 53.10 200 | 66.99 198 | 51.88 189 | 63.80 185 | 57.68 167 | 76.73 153 | 56.49 209 | 48.73 188 | 56.47 208 | 55.55 201 | 59.43 202 | 58.02 199 |
|
EPMVS | | | 56.62 199 | 59.77 204 | 52.94 199 | 62.41 200 | 50.55 204 | 60.66 204 | 52.83 187 | 65.15 180 | 41.80 200 | 77.46 148 | 57.28 206 | 42.68 194 | 59.81 206 | 54.82 202 | 57.23 204 | 53.35 203 |
|
test-LLR | | | 62.15 189 | 59.46 205 | 65.29 177 | 79.07 138 | 52.66 201 | 69.46 194 | 62.93 139 | 50.76 209 | 53.81 179 | 63.11 203 | 58.91 201 | 52.87 178 | 66.54 198 | 62.34 191 | 73.59 177 | 61.87 190 |
|
TESTMET0.1,1 | | | 57.21 197 | 59.46 205 | 54.60 197 | 50.95 208 | 52.66 201 | 69.46 194 | 26.91 208 | 50.76 209 | 53.81 179 | 63.11 203 | 58.91 201 | 52.87 178 | 66.54 198 | 62.34 191 | 73.59 177 | 61.87 190 |
|
CHOSEN 280x420 | | | 56.32 201 | 58.85 207 | 53.36 198 | 51.63 207 | 39.91 211 | 69.12 196 | 38.61 203 | 56.29 203 | 36.79 206 | 48.84 208 | 62.59 195 | 63.39 141 | 73.61 181 | 67.66 184 | 60.61 199 | 63.07 187 |
|
MVS-HIRNet | | | 59.74 192 | 58.74 208 | 60.92 185 | 57.74 204 | 45.81 208 | 56.02 208 | 58.69 166 | 55.69 204 | 65.17 152 | 70.86 187 | 71.66 187 | 56.75 158 | 61.11 205 | 53.74 204 | 71.17 187 | 52.28 204 |
|
test123 | | | 1.06 207 | 1.41 209 | 0.64 209 | 0.39 215 | 0.48 216 | 0.52 218 | 0.25 213 | 1.11 214 | 1.37 216 | 2.01 213 | 1.98 219 | 0.87 211 | 1.43 211 | 1.27 210 | 0.46 215 | 1.62 213 |
|
testmvs | | | 0.93 208 | 1.37 210 | 0.41 210 | 0.36 216 | 0.36 217 | 0.62 217 | 0.39 212 | 1.48 213 | 0.18 217 | 2.41 212 | 1.31 220 | 0.41 212 | 1.25 212 | 1.08 211 | 0.48 214 | 1.68 212 |
|
uanet_test | | | 0.00 209 | 0.00 211 | 0.00 211 | 0.00 218 | 0.00 218 | 0.00 219 | 0.00 215 | 0.00 215 | 0.00 218 | 0.00 214 | 0.00 221 | 0.00 214 | 0.00 213 | 0.00 212 | 0.00 216 | 0.00 214 |
|
sosnet-low-res | | | 0.00 209 | 0.00 211 | 0.00 211 | 0.00 218 | 0.00 218 | 0.00 219 | 0.00 215 | 0.00 215 | 0.00 218 | 0.00 214 | 0.00 221 | 0.00 214 | 0.00 213 | 0.00 212 | 0.00 216 | 0.00 214 |
|
sosnet | | | 0.00 209 | 0.00 211 | 0.00 211 | 0.00 218 | 0.00 218 | 0.00 219 | 0.00 215 | 0.00 215 | 0.00 218 | 0.00 214 | 0.00 221 | 0.00 214 | 0.00 213 | 0.00 212 | 0.00 216 | 0.00 214 |
|
9.14 | | | | | | | | | | | | | 89.43 124 | | | | | |
|
SR-MVS | | | | | | 91.82 13 | | | 80.80 7 | | | | 95.53 49 | | | | | |
|
our_test_3 | | | | | | 73.27 172 | 70.91 163 | 83.26 123 | | | | | | | | | | |
|
test_part1 | | | | | | | | | | | | | | | | | | 93.49 18 |
|
MTAPA | | | | | | | | | | | 89.37 9 | | 94.85 66 | | | | | |
|
MTMP | | | | | | | | | | | 90.54 5 | | 95.16 58 | | | | | |
|
Patchmatch-RL test | | | | | | | | 4.13 216 | | | | | | | | | | |
|
tmp_tt | | | | | 13.54 208 | 16.73 214 | 6.42 215 | 8.49 215 | 2.36 211 | 28.69 212 | 27.44 209 | 18.40 211 | 13.51 218 | 3.70 210 | 33.23 209 | 36.26 209 | 22.54 213 | |
|
XVS | | | | | | 91.28 25 | 91.23 8 | 96.89 2 | | | 87.14 26 | | 94.53 71 | | | | 95.84 15 | |
|
X-MVStestdata | | | | | | 91.28 25 | 91.23 8 | 96.89 2 | | | 87.14 26 | | 94.53 71 | | | | 95.84 15 | |
|
abl_6 | | | | | 79.30 95 | 84.98 85 | 85.78 68 | 90.50 64 | 66.88 99 | 77.08 130 | 74.02 105 | 73.29 177 | 89.34 126 | 68.94 112 | | | 90.49 88 | 85.98 80 |
|
mPP-MVS | | | | | | 93.05 4 | | | | | | | 95.77 43 | | | | | |
|
NP-MVS | | | | | | | | | | 78.65 125 | | | | | | | | |
|
Patchmtry | | | | | | | 56.88 196 | 64.47 200 | 67.74 95 | | 72.30 115 | | | | | | | |
|
DeepMVS_CX | | | | | | | 17.78 214 | 20.40 214 | 6.69 210 | 31.41 211 | 9.80 213 | 38.61 210 | 34.88 217 | 33.78 203 | 28.41 210 | | 23.59 212 | 45.77 208 |
|