This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorcourty.delive.electrofacadekickermeadowofficepipesplaygr.reliefrelief.terraceterrai.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort by
TDRefinement93.16 195.57 190.36 188.79 5293.57 197.27 178.23 2295.55 293.00 193.98 1796.01 3987.53 197.69 196.81 197.33 195.34 3
LTVRE_ROB86.82 191.55 394.43 388.19 1183.19 11186.35 6793.60 3778.79 1995.48 491.79 293.08 2697.21 2186.34 397.06 296.27 395.46 2395.56 2
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
COLMAP_ROBcopyleft85.66 291.85 295.01 288.16 1288.98 5192.86 295.51 2072.17 5994.95 591.27 394.11 1697.77 1284.22 896.49 495.27 596.79 293.60 11
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
USDC81.39 10683.07 12479.43 9681.48 12678.95 12082.62 13566.17 10687.45 5490.73 482.40 13093.65 8566.57 13083.63 13577.97 15389.00 11277.45 151
MTMP90.54 595.16 59
ACMH78.40 1288.94 3892.62 1684.65 4286.45 7587.16 5991.47 4868.79 8595.49 389.74 693.55 1998.50 377.96 4494.14 3289.57 6393.49 4889.94 54
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
PHI-MVS86.37 5888.14 6784.30 4786.65 7487.56 5590.76 5870.16 7082.55 9089.65 784.89 11692.40 10175.97 6290.88 7289.70 6092.58 6589.03 62
TinyColmap83.79 7986.12 8581.07 7883.42 10881.44 10085.42 11568.55 8888.71 4489.46 887.60 8792.72 9670.34 10989.29 8381.94 13089.20 10981.12 125
MTAPA89.37 994.85 67
zzz-MVS90.38 1191.35 4189.25 593.08 386.59 6496.45 1179.00 1690.23 2889.30 1085.87 10794.97 6582.54 1895.05 2394.83 795.14 2791.94 36
CP-MVS91.09 592.33 2589.65 292.16 1090.41 2796.46 1080.38 888.26 4689.17 1187.00 9696.34 3183.95 1095.77 1194.72 895.81 1793.78 9
Gipumacopyleft86.47 5789.25 5683.23 5683.88 10378.78 12185.35 11768.42 8992.69 1089.03 1291.94 3796.32 3381.80 2294.45 2786.86 8390.91 8983.69 100
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
MP-MVScopyleft90.84 691.95 3489.55 392.92 590.90 1996.56 679.60 1186.83 6088.75 1389.00 7494.38 7884.01 994.94 2594.34 1195.45 2493.24 22
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
ACMMPR91.30 492.88 1189.46 491.92 1191.61 596.60 579.46 1490.08 3188.53 1489.54 6595.57 4884.25 795.24 2094.27 1395.97 1193.85 7
TAPA-MVS78.00 1385.88 6088.37 6382.96 6184.69 8888.62 4290.62 5964.22 12589.15 3988.05 1578.83 14593.71 8376.20 6090.11 7988.22 7494.00 4389.97 53
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
ambc88.38 6291.62 1787.97 5184.48 12488.64 4587.93 1687.38 9094.82 6974.53 7589.14 8583.86 11485.94 14886.84 76
SMA-MVScopyleft90.13 1592.26 2787.64 1891.68 1690.44 2695.22 2477.34 3390.79 2287.80 1790.42 5592.05 11079.05 3593.89 3393.59 1994.77 3494.62 4
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
ACMMP_NAP89.86 1991.96 3387.42 2091.00 3090.08 2996.00 1676.61 3789.28 3587.73 1890.04 5791.80 11378.71 3894.36 2993.82 1894.48 3994.32 5
PGM-MVS90.42 1091.58 3789.05 691.77 1491.06 1396.51 778.94 1785.41 7287.67 1987.02 9595.26 5683.62 1295.01 2493.94 1695.79 1993.40 19
HPM-MVS++copyleft88.74 4089.54 5487.80 1692.58 785.69 7295.10 2678.01 2387.08 5787.66 2087.89 8592.07 10880.28 3090.97 7191.41 4493.17 5791.69 38
v124083.57 8184.94 10181.97 6984.05 9881.27 10289.46 8066.06 10781.31 10887.50 2191.88 4095.46 5276.25 5981.16 15380.51 14188.52 12182.98 109
OMC-MVS88.16 4391.34 4284.46 4686.85 7190.63 2393.01 4167.00 10090.35 2787.40 2286.86 9896.35 3077.66 4892.63 4890.84 4794.84 3291.68 39
LS3D89.02 3391.69 3685.91 3089.72 4390.81 2092.56 4471.69 6390.83 2187.24 2389.71 6392.07 10878.37 4194.43 2892.59 2895.86 1391.35 42
LGP-MVS_train90.56 992.38 2188.43 1090.88 3291.15 1195.35 2277.65 2686.26 6587.23 2490.45 5497.35 1883.20 1495.44 1693.41 2196.28 892.63 26
v192192083.49 8284.94 10181.80 7183.78 10481.20 10489.50 7965.91 11081.64 10087.18 2591.70 4295.39 5375.85 6381.56 15180.27 14388.60 11882.80 111
XVS91.28 2591.23 896.89 287.14 2694.53 7295.84 15
X-MVStestdata91.28 2591.23 896.89 287.14 2694.53 7295.84 15
X-MVS89.36 2890.73 4787.77 1791.50 2091.23 896.76 478.88 1887.29 5587.14 2678.98 14394.53 7276.47 5695.25 1994.28 1295.85 1493.55 15
RE-MVS-def87.10 29
ACMM80.67 790.67 792.46 1988.57 891.35 2289.93 3196.34 1277.36 3190.17 2986.88 3087.32 9196.63 2483.32 1395.79 1094.49 1096.19 992.91 25
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
OPM-MVS89.82 2192.24 2986.99 2390.86 3389.35 3795.07 2775.91 4391.16 1686.87 3191.07 5097.29 1979.13 3493.32 3691.99 3894.12 4291.49 41
ACMMPcopyleft90.63 892.40 2088.56 991.24 2891.60 696.49 977.53 2787.89 4986.87 3187.24 9396.46 2682.87 1695.59 1594.50 996.35 693.51 17
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
v119283.61 8085.23 9581.72 7284.05 9882.15 9589.54 7866.20 10581.38 10786.76 3391.79 4196.03 3774.88 7381.81 14880.92 13788.91 11482.50 115
v7n87.11 5290.46 5083.19 5785.22 8583.69 8390.03 7568.20 9391.01 1986.71 3494.80 1098.46 577.69 4791.10 6785.98 9091.30 8488.19 67
v14419283.43 8384.97 10081.63 7483.43 10781.23 10389.42 8166.04 10981.45 10686.40 3591.46 4595.70 4775.76 6582.14 14480.23 14488.74 11582.57 114
SixPastTwentyTwo89.14 2992.19 3185.58 3284.62 9082.56 9290.53 6471.93 6091.95 1285.89 3694.22 1497.25 2085.42 595.73 1291.71 4195.08 2891.89 37
v114483.22 8585.01 9881.14 7783.76 10581.60 9888.95 8465.58 11581.89 9785.80 3791.68 4395.84 4274.04 7982.12 14580.56 14088.70 11781.41 123
3Dnovator+83.71 388.13 4490.00 5285.94 2986.82 7291.06 1394.26 3375.39 4688.85 4285.76 3885.74 10986.92 14778.02 4393.03 4092.21 3595.39 2592.21 34
CPTT-MVS89.63 2590.52 4988.59 790.95 3190.74 2195.71 1779.13 1587.70 5185.68 3980.05 13895.74 4684.77 694.28 3092.68 2795.28 2692.45 31
ACMP80.00 890.12 1692.30 2687.58 1990.83 3491.10 1294.96 2876.06 4187.47 5385.33 4088.91 7797.65 1682.13 2095.31 1793.44 2096.14 1092.22 33
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
SteuartSystems-ACMMP90.00 1791.73 3587.97 1391.21 2990.29 2896.51 778.00 2486.33 6385.32 4188.23 8294.67 7082.08 2195.13 2293.88 1794.72 3693.59 12
Skip Steuart: Steuart Systems R&D Blog.
v2v48282.20 9684.26 10979.81 9382.67 11780.18 11087.67 9663.96 13281.69 9984.73 4291.27 4896.33 3272.05 9681.94 14779.56 14787.79 12778.84 143
DeepC-MVS83.59 490.37 1292.56 1887.82 1591.26 2792.33 394.72 3080.04 990.01 3284.61 4393.33 2294.22 7980.59 2892.90 4492.52 2995.69 2192.57 27
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
PCF-MVS76.59 1484.11 7785.27 9482.76 6586.12 7888.30 4491.24 5069.10 8082.36 9384.45 4477.56 15490.40 12772.91 8885.88 11583.88 11292.72 6488.53 65
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
CNLPA85.50 6388.58 5981.91 7084.55 9287.52 5690.89 5463.56 13688.18 4784.06 4583.85 12291.34 11976.46 5791.27 6289.00 6891.96 7588.88 63
DeepPCF-MVS81.61 687.95 4890.29 5185.22 3887.48 6690.01 3093.79 3473.54 5488.93 4083.89 4689.40 6890.84 12280.26 3190.62 7490.19 5492.36 7092.03 35
NCCC86.74 5487.97 7085.31 3690.64 3587.25 5893.27 3974.59 4986.50 6183.72 4775.92 16992.39 10277.08 5291.72 5490.68 4992.57 6791.30 43
PMVScopyleft79.51 990.23 1492.67 1487.39 2190.16 3988.75 4193.64 3675.78 4490.00 3383.70 4892.97 2892.22 10586.13 497.01 396.79 294.94 3090.96 46
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
v1083.17 8785.22 9680.78 8183.26 11082.99 8888.66 8766.49 10379.24 12683.60 4991.46 4595.47 5174.12 7782.60 14380.66 13888.53 12084.11 97
PLCcopyleft76.06 1585.38 6587.46 7382.95 6285.79 8288.84 4088.86 8568.70 8687.06 5883.60 4979.02 14190.05 12877.37 5190.88 7289.66 6193.37 5286.74 77
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
HFP-MVS90.32 1392.37 2287.94 1491.46 2190.91 1895.69 1879.49 1289.94 3483.50 5189.06 7394.44 7681.68 2394.17 3194.19 1495.81 1793.87 6
CS-MVS-test84.94 7087.32 7682.17 6885.81 8181.60 9888.59 8863.65 13480.19 11883.48 5289.54 6592.96 9476.74 5492.10 5188.42 7294.72 3686.44 79
HQP-MVS85.02 6886.41 8283.40 5589.19 4886.59 6491.28 4971.60 6482.79 8983.48 5278.65 14793.54 8772.55 8986.49 11085.89 9392.28 7390.95 47
CSCG88.12 4591.45 3884.23 4888.12 6290.59 2590.57 6168.60 8791.37 1583.45 5489.94 5895.14 6178.71 3891.45 6088.21 7595.96 1293.44 18
DPE-MVScopyleft89.81 2292.34 2486.86 2489.69 4491.00 1695.53 1976.91 3488.18 4783.43 5593.48 2095.19 5781.07 2792.75 4692.07 3794.55 3893.74 10
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
MVS_030484.73 7386.19 8483.02 5888.32 5686.71 6391.55 4770.87 6773.79 14682.88 5685.13 11393.35 8972.55 8988.62 8887.69 7791.93 7688.05 70
CDPH-MVS86.66 5688.52 6184.48 4589.61 4588.27 4592.86 4272.69 5880.55 11682.71 5786.92 9793.32 9075.55 6691.00 7089.85 5893.47 4989.71 55
xxxxxxxxxxxxxcwj88.03 4791.29 4384.22 4988.17 6087.90 5290.80 5671.80 6189.28 3582.70 5889.90 5997.72 1377.91 4591.69 5590.04 5593.95 4592.47 28
SF-MVS87.85 5090.95 4684.22 4988.17 6087.90 5290.80 5671.80 6189.28 3582.70 5889.90 5995.37 5477.91 4591.69 5590.04 5593.95 4592.47 28
ACMH+79.05 1189.62 2693.08 885.58 3288.58 5589.26 3892.18 4574.23 5293.55 882.66 6092.32 3698.35 880.29 2995.28 1892.34 3295.52 2290.43 50
TSAR-MVS + COLMAP85.51 6288.36 6482.19 6786.05 7987.69 5490.50 6670.60 6986.40 6282.33 6189.69 6492.52 10074.01 8087.53 9986.84 8489.63 10387.80 72
RPSCF88.05 4692.61 1782.73 6684.24 9588.40 4390.04 7466.29 10491.46 1382.29 6288.93 7696.01 3979.38 3295.15 2194.90 694.15 4193.40 19
CNVR-MVS86.93 5388.98 5884.54 4490.11 4087.41 5793.23 4073.47 5586.31 6482.25 6382.96 12692.15 10676.04 6191.69 5590.69 4892.17 7491.64 40
MAR-MVS81.98 9982.92 12580.88 8085.18 8685.85 6989.13 8269.52 7471.21 15982.25 6371.28 19188.89 13969.69 11088.71 8686.96 8089.52 10587.57 73
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
MCST-MVS84.79 7286.48 8082.83 6487.30 6787.03 6190.46 6969.33 7983.14 8682.21 6581.69 13492.14 10775.09 7187.27 10284.78 10492.58 6589.30 59
DeepC-MVS_fast81.78 587.38 5189.64 5384.75 4189.89 4290.70 2292.74 4374.45 5086.02 6682.16 6686.05 10591.99 11275.84 6491.16 6590.44 5093.41 5191.09 44
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
CLD-MVS82.75 9387.22 7777.54 11288.01 6385.76 7190.23 7154.52 18482.28 9482.11 6788.48 8195.27 5563.95 14089.41 8288.29 7386.45 14181.01 127
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
TSAR-MVS + MP.89.67 2492.25 2886.65 2691.53 1890.98 1796.15 1473.30 5687.88 5081.83 6892.92 2995.15 6082.23 1993.58 3592.25 3494.87 3193.01 24
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
SD-MVS89.91 1892.23 3087.19 2291.31 2489.79 3494.31 3275.34 4789.26 3881.79 6992.68 3195.08 6283.88 1193.10 3992.69 2696.54 493.02 23
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
v882.20 9684.56 10679.45 9582.42 11881.65 9787.26 10064.27 12479.36 12581.70 7091.04 5195.75 4573.30 8782.82 13979.18 15087.74 12882.09 118
anonymousdsp85.62 6190.53 4879.88 9264.64 20576.35 14196.28 1353.53 19085.63 6981.59 7192.81 3097.71 1486.88 294.56 2692.83 2596.35 693.84 8
train_agg86.67 5587.73 7185.43 3591.51 1982.72 8994.47 3174.22 5381.71 9881.54 7289.20 7292.87 9578.33 4290.12 7888.47 7092.51 6989.04 61
MVS_111021_LR83.20 8685.33 9380.73 8482.88 11578.23 12689.61 7765.23 11782.08 9581.19 7385.31 11192.04 11175.22 6889.50 8185.90 9290.24 9384.23 94
DVP-MVS89.40 2792.69 1385.56 3489.01 5089.85 3293.72 3575.42 4592.28 1180.49 7494.36 1394.87 6681.46 2592.49 5091.42 4293.27 5393.54 16
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
AdaColmapbinary84.15 7685.14 9783.00 6089.08 4987.14 6090.56 6270.90 6682.40 9280.41 7573.82 18084.69 15675.19 6991.58 5989.90 5791.87 7786.48 78
MVS_111021_HR83.95 7886.10 8681.44 7684.62 9080.29 10990.51 6568.05 9484.07 8280.38 7684.74 11791.37 11874.23 7690.37 7687.25 7990.86 9084.59 91
MSDG81.39 10684.23 11178.09 10782.40 11982.47 9385.31 11960.91 15879.73 12380.26 7786.30 10188.27 14269.67 11187.20 10484.98 10189.97 9880.67 129
MSP-MVS88.51 4291.36 4085.19 3990.63 3692.01 495.29 2377.52 2890.48 2680.21 7890.21 5696.08 3576.38 5888.30 9391.42 4291.12 8891.01 45
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
SED-MVS88.96 3792.37 2284.99 4088.64 5489.65 3695.11 2575.98 4290.73 2380.15 7994.21 1594.51 7576.59 5592.94 4191.17 4593.46 5093.37 21
TSAR-MVS + ACMM89.14 2992.11 3285.67 3189.27 4790.61 2490.98 5179.48 1388.86 4179.80 8093.01 2793.53 8883.17 1592.75 4692.45 3091.32 8393.59 12
Effi-MVS+82.33 9483.87 11580.52 8884.51 9381.32 10187.53 9768.05 9474.94 14479.67 8182.37 13192.31 10372.21 9285.06 12286.91 8291.18 8684.20 95
PVSNet_Blended_VisFu83.00 8884.16 11281.65 7382.17 12286.01 6888.03 9171.23 6576.05 13979.54 8283.88 12183.44 15777.49 5087.38 10084.93 10291.41 8187.40 75
APD-MVScopyleft89.14 2991.25 4486.67 2591.73 1591.02 1595.50 2177.74 2584.04 8379.47 8391.48 4494.85 6781.14 2692.94 4192.20 3694.47 4092.24 32
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
v14879.33 12382.32 12875.84 11980.14 13375.74 14681.98 13957.06 17681.51 10479.36 8489.42 6796.42 2871.32 10081.54 15275.29 17085.20 15576.32 152
DPM-MVS81.42 10382.11 12980.62 8687.54 6585.30 7490.18 7368.96 8281.00 11279.15 8570.45 19783.29 15967.67 12482.81 14083.46 11690.19 9488.48 66
MSLP-MVS++86.29 5989.10 5783.01 5985.71 8389.79 3487.04 10674.39 5185.17 7478.92 8677.59 15393.57 8682.60 1793.23 3791.88 4089.42 10892.46 30
CANet82.84 9084.60 10580.78 8187.30 6785.20 7590.23 7169.00 8172.16 15578.73 8784.49 11990.70 12569.54 11387.65 9886.17 8889.87 10085.84 84
APDe-MVS89.85 2092.91 1086.29 2790.47 3891.34 796.04 1576.41 4091.11 1778.50 8893.44 2195.82 4381.55 2493.16 3891.90 3994.77 3493.58 14
MDTV_nov1_ep13_2view72.96 16175.59 16569.88 15571.15 18664.86 18882.31 13754.45 18576.30 13678.32 8986.52 9991.58 11461.35 15076.80 17166.83 19171.70 18666.26 182
EG-PatchMatch MVS84.35 7587.55 7280.62 8686.38 7682.24 9486.75 10764.02 13084.24 7978.17 9089.38 6995.03 6478.78 3789.95 8086.33 8789.59 10485.65 86
CS-MVS79.80 11580.83 13578.60 10484.11 9678.49 12285.82 11258.91 17065.79 18077.94 9178.53 14889.70 12972.51 9187.89 9784.32 10892.34 7181.12 125
V4279.59 12083.59 12174.93 13069.61 18977.05 13786.59 10955.84 17978.42 13077.29 9289.84 6295.08 6274.12 7783.05 13680.11 14586.12 14481.59 122
test_part187.86 4993.26 681.56 7587.23 7086.76 6290.91 5370.06 7196.50 176.74 9396.63 298.62 269.45 11592.93 4390.92 4694.98 2990.46 49
tpm62.79 19163.25 19962.26 18970.09 18853.78 20371.65 19047.31 20165.72 18176.70 9480.62 13556.40 21648.11 19464.20 20858.54 20259.70 20663.47 188
DTE-MVSNet88.99 3592.77 1284.59 4393.31 288.10 4890.96 5283.09 291.38 1476.21 9596.03 398.04 970.78 10795.65 1492.32 3393.18 5687.84 71
3Dnovator79.41 1082.21 9586.07 8777.71 10979.31 14084.61 7687.18 10161.02 15785.65 6876.11 9685.07 11585.38 15470.96 10587.22 10386.47 8691.66 7888.12 69
gm-plane-assit71.56 16669.99 18173.39 13684.43 9473.21 16190.42 7051.36 19784.08 8176.00 9791.30 4737.09 22359.01 15673.65 18570.24 18479.09 17760.37 198
GeoE81.92 10083.87 11579.66 9484.64 8979.87 11189.75 7665.90 11176.12 13875.87 9884.62 11892.23 10471.96 9786.83 10783.60 11589.83 10183.81 99
GA-MVS75.01 15076.39 15873.39 13678.37 14875.66 14880.03 15058.40 17270.51 16175.85 9983.24 12576.14 18463.75 14177.28 17076.62 16483.97 16275.30 158
CMPMVSbinary55.74 1871.56 16676.26 15966.08 17868.11 19363.91 19163.17 20750.52 19968.79 17075.49 10070.78 19685.67 15163.54 14481.58 15077.20 16075.63 18085.86 83
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
WR-MVS89.79 2393.66 485.27 3791.32 2388.27 4593.49 3879.86 1092.75 975.37 10196.86 198.38 675.10 7095.93 894.07 1596.46 589.39 58
PS-CasMVS89.07 3293.23 784.21 5192.44 888.23 4790.54 6382.95 390.50 2575.31 10295.80 698.37 771.16 10196.30 593.32 2292.88 6190.11 52
CP-MVSNet88.71 4192.63 1584.13 5292.39 988.09 4990.47 6882.86 488.79 4375.16 10394.87 997.68 1571.05 10396.16 693.18 2492.85 6289.64 56
PEN-MVS88.86 3992.92 984.11 5392.92 588.05 5090.83 5582.67 591.04 1874.83 10495.97 498.47 470.38 10895.70 1392.43 3193.05 6088.78 64
UA-Net89.02 3391.44 3986.20 2894.88 189.84 3394.76 2977.45 2985.41 7274.79 10588.83 7888.90 13878.67 4096.06 795.45 496.66 395.58 1
Fast-Effi-MVS+81.42 10383.82 11778.62 10282.24 12080.62 10787.72 9463.51 13773.01 14874.75 10683.80 12392.70 9773.44 8588.15 9585.26 9790.05 9583.17 104
DROMVSNet81.42 10383.82 11778.62 10282.24 12080.62 10787.72 9463.51 13773.01 14874.75 10683.80 12392.70 9773.44 8588.15 9585.26 9790.05 9583.17 104
QAPM80.43 11184.34 10775.86 11879.40 13982.06 9679.86 15461.94 15183.28 8574.73 10881.74 13385.44 15370.97 10484.99 12784.71 10688.29 12288.14 68
TSAR-MVS + GP.85.32 6687.41 7582.89 6390.07 4185.69 7289.07 8372.99 5782.45 9174.52 10985.09 11487.67 14479.24 3391.11 6690.41 5191.45 8089.45 57
EPNet79.36 12279.44 13979.27 9989.51 4677.20 13588.35 9077.35 3268.27 17174.29 11076.31 16279.22 17159.63 15485.02 12685.45 9686.49 14084.61 90
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
abl_679.30 9884.98 8785.78 7090.50 6666.88 10177.08 13474.02 11173.29 18489.34 13368.94 11790.49 9185.98 82
thisisatest051581.18 10984.32 10877.52 11376.73 16674.84 15585.06 12061.37 15481.05 11173.95 11288.79 7989.25 13575.49 6785.98 11484.78 10492.53 6885.56 87
OpenMVScopyleft75.38 1678.44 12881.39 13374.99 12880.46 13179.85 11279.99 15158.31 17377.34 13373.85 11377.19 15782.33 16468.60 11984.67 12981.95 12988.72 11686.40 81
IterMVS-SCA-FT77.23 13279.18 14174.96 12976.67 16779.85 11275.58 18161.34 15573.10 14773.79 11486.23 10279.61 17079.00 3680.28 16075.50 16983.41 16779.70 139
pmmvs-eth3d79.64 11882.06 13076.83 11480.05 13472.64 16387.47 9866.59 10280.83 11373.50 11589.32 7093.20 9167.78 12280.78 15681.64 13385.58 15376.01 153
EIA-MVS78.57 12777.90 14779.35 9787.24 6980.71 10686.16 11164.03 12962.63 19873.49 11673.60 18176.12 18573.83 8188.49 9084.93 10291.36 8278.78 144
PVSNet_BlendedMVS76.45 13978.12 14474.49 13176.76 16078.46 12379.65 15563.26 14165.42 18473.15 11775.05 17488.96 13666.51 13182.73 14177.66 15687.61 12978.60 146
PVSNet_Blended76.45 13978.12 14474.49 13176.76 16078.46 12379.65 15563.26 14165.42 18473.15 11775.05 17488.96 13666.51 13182.73 14177.66 15687.61 12978.60 146
Effi-MVS+-dtu82.04 9883.39 12380.48 8985.48 8486.57 6688.40 8968.28 9169.04 16973.13 11976.26 16491.11 12174.74 7488.40 9187.76 7692.84 6384.57 92
MVS_Test76.72 13679.40 14073.60 13478.85 14674.99 15379.91 15261.56 15369.67 16372.44 12085.98 10690.78 12363.50 14578.30 16675.74 16885.33 15480.31 136
CR-MVSNet69.56 17368.34 18670.99 14772.78 18167.63 17964.47 20567.74 9759.93 20472.30 12180.10 13656.77 21365.04 13771.64 19072.91 17683.61 16569.40 176
Patchmtry56.88 20164.47 20567.74 9772.30 121
PatchT66.25 18466.76 19065.67 18155.87 21160.75 19570.17 19459.00 16859.80 20672.30 12178.68 14654.12 21865.04 13771.64 19072.91 17671.63 18869.40 176
DI_MVS_plusplus_trai77.64 13179.64 13875.31 12379.87 13676.89 13881.55 14363.64 13576.21 13772.03 12485.59 11082.97 16166.63 12979.27 16477.78 15588.14 12478.76 145
WR-MVS_H88.99 3593.28 583.99 5491.92 1189.13 3991.95 4683.23 190.14 3071.92 12595.85 598.01 1171.83 9895.82 993.19 2393.07 5990.83 48
PM-MVS80.42 11283.63 12076.67 11578.04 15272.37 16587.14 10260.18 16380.13 11971.75 12686.12 10493.92 8277.08 5286.56 10985.12 10085.83 15081.18 124
ETV-MVS79.01 12677.98 14680.22 9186.69 7379.73 11488.80 8668.27 9263.22 19371.56 12770.25 19973.63 19173.66 8390.30 7786.77 8592.33 7281.95 120
FPMVS81.56 10284.04 11478.66 10182.92 11375.96 14586.48 11065.66 11484.67 7871.47 12877.78 15183.22 16077.57 4991.24 6390.21 5387.84 12685.21 88
IterMVS-LS79.79 11682.56 12776.56 11781.83 12477.85 12879.90 15369.42 7878.93 12871.21 12990.47 5385.20 15570.86 10680.54 15880.57 13986.15 14384.36 93
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
MDA-MVSNet-bldmvs76.51 13782.87 12669.09 16150.71 21674.72 15784.05 12660.27 16281.62 10171.16 13088.21 8391.58 11469.62 11292.78 4577.48 15878.75 17873.69 164
EU-MVSNet76.48 13880.53 13671.75 14367.62 19570.30 17081.74 14154.06 18775.47 14171.01 13180.10 13693.17 9373.67 8283.73 13477.85 15482.40 16983.07 106
ET-MVSNet_ETH3D74.71 15174.19 17175.31 12379.22 14275.29 15082.70 13464.05 12865.45 18370.96 13277.15 15857.70 21165.89 13384.40 13181.65 13289.03 11177.67 150
UniMVSNet_NR-MVSNet84.62 7488.00 6980.68 8588.18 5983.83 8087.06 10476.47 3981.46 10570.49 13393.24 2395.56 4968.13 12090.43 7588.47 7093.78 4783.02 107
DU-MVS84.88 7188.27 6680.92 7988.30 5783.59 8487.06 10478.35 2080.64 11470.49 13392.67 3296.91 2268.13 12091.79 5289.29 6693.20 5583.02 107
tttt051775.86 14576.23 16075.42 12175.55 17274.06 15982.73 13360.31 16069.24 16570.24 13579.18 14058.79 20972.17 9384.49 13083.08 12391.54 7984.80 89
EPNet_dtu71.90 16573.03 17770.59 15078.28 14961.64 19482.44 13664.12 12663.26 19269.74 13671.47 18982.41 16251.89 18978.83 16578.01 15277.07 17975.60 157
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
MDTV_nov1_ep1364.96 18664.77 19465.18 18367.08 19862.46 19375.80 17551.10 19862.27 19969.74 13674.12 17762.65 20055.64 17168.19 20062.16 19971.70 18661.57 196
thisisatest053075.54 14775.95 16475.05 12575.08 17373.56 16082.15 13860.31 16069.17 16669.32 13879.02 14158.78 21072.17 9383.88 13383.08 12391.30 8484.20 95
UniMVSNet (Re)84.95 6988.53 6080.78 8187.82 6484.21 7888.03 9176.50 3881.18 10969.29 13992.63 3496.83 2369.07 11691.23 6489.60 6293.97 4484.00 98
DELS-MVS79.71 11783.74 11975.01 12779.31 14082.68 9084.79 12260.06 16475.43 14269.09 14086.13 10389.38 13267.16 12685.12 12183.87 11389.65 10283.57 101
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
TranMVSNet+NR-MVSNet85.23 6789.38 5580.39 9088.78 5383.77 8187.40 9976.75 3585.47 7068.99 14195.18 897.55 1767.13 12791.61 5889.13 6793.26 5482.95 110
NR-MVSNet82.89 8987.43 7477.59 11183.91 10283.59 8487.10 10378.35 2080.64 11468.85 14292.67 3296.50 2554.19 17787.19 10588.68 6993.16 5882.75 112
CVMVSNet75.65 14677.62 15073.35 13871.95 18269.89 17283.04 13160.84 15969.12 16768.76 14379.92 13978.93 17373.64 8481.02 15481.01 13681.86 17283.43 102
Fast-Effi-MVS+-dtu76.92 13477.18 15276.62 11679.55 13779.17 11784.80 12177.40 3064.46 18868.75 14470.81 19586.57 14863.36 14781.74 14981.76 13185.86 14975.78 155
CANet_DTU75.04 14978.45 14271.07 14577.27 15777.96 12783.88 12758.00 17464.11 18968.67 14575.65 17188.37 14153.92 17982.05 14681.11 13484.67 15879.88 138
casdiffmvs79.93 11484.11 11375.05 12581.41 12878.99 11982.95 13262.90 14581.53 10268.60 14691.94 3796.03 3765.84 13482.89 13877.07 16188.59 11980.34 135
pmmvs475.92 14377.48 15174.10 13378.21 15170.94 16784.06 12564.78 12075.13 14368.47 14784.12 12083.32 15864.74 13975.93 17879.14 15184.31 16073.77 163
PatchMatch-RL76.05 14276.64 15675.36 12277.84 15669.87 17381.09 14563.43 13971.66 15768.34 14871.70 18781.76 16574.98 7284.83 12883.44 11786.45 14173.22 166
canonicalmvs81.22 10886.04 8875.60 12083.17 11283.18 8780.29 14965.82 11385.97 6767.98 14977.74 15291.51 11665.17 13688.62 8886.15 8991.17 8789.09 60
SCA68.54 17867.52 18869.73 15667.79 19475.04 15176.96 16968.94 8366.41 17667.86 15074.03 17860.96 20265.55 13568.99 19865.67 19271.30 19161.54 197
gg-mvs-nofinetune72.68 16275.21 16869.73 15681.48 12669.04 17670.48 19376.67 3686.92 5967.80 15188.06 8464.67 19942.12 20277.60 16873.65 17379.81 17466.57 181
diffmvs76.74 13581.61 13271.06 14675.64 17174.45 15880.68 14757.57 17577.48 13167.62 15288.95 7593.94 8161.98 14979.74 16176.18 16582.85 16880.50 130
Vis-MVSNetpermissive83.32 8488.12 6877.71 10977.91 15583.44 8690.58 6069.49 7681.11 11067.10 15389.85 6191.48 11771.71 9991.34 6189.37 6489.48 10690.26 51
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
Baseline_NR-MVSNet82.79 9186.51 7978.44 10688.30 5775.62 14987.81 9374.97 4881.53 10266.84 15494.71 1296.46 2666.90 12891.79 5283.37 12185.83 15082.09 118
IterMVS73.62 15476.53 15770.23 15371.83 18377.18 13680.69 14653.22 19172.23 15466.62 15585.21 11278.96 17269.54 11376.28 17771.63 18079.45 17574.25 161
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
tpm cat164.79 18862.74 20267.17 17174.61 17565.91 18676.18 17359.32 16664.88 18766.41 15671.21 19253.56 21959.17 15561.53 21058.16 20467.33 20063.95 186
PatchmatchNetpermissive64.81 18763.74 19866.06 17969.21 19058.62 19873.16 18760.01 16565.92 17866.19 15776.27 16359.09 20660.45 15266.58 20361.47 20167.33 20058.24 203
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
MVS-HIRNet59.74 19858.74 21460.92 19057.74 21045.81 21456.02 21458.69 17155.69 21065.17 15870.86 19471.66 19356.75 16361.11 21153.74 21071.17 19252.28 209
UniMVSNet_ETH3D85.39 6491.12 4578.71 10090.48 3783.72 8281.76 14082.41 693.84 664.43 15995.41 798.76 163.72 14293.63 3489.74 5989.47 10782.74 113
IB-MVS71.28 1775.21 14877.00 15473.12 13976.76 16077.45 13183.05 13058.92 16963.01 19464.31 16059.99 21287.57 14568.64 11886.26 11382.34 12887.05 13582.36 117
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
IS_MVSNet81.72 10185.01 9877.90 10886.19 7782.64 9185.56 11470.02 7280.11 12063.52 16187.28 9281.18 16667.26 12591.08 6989.33 6594.82 3383.42 103
RPMNet67.02 18263.99 19770.56 15171.55 18467.63 17975.81 17469.44 7759.93 20463.24 16264.32 20747.51 22259.68 15370.37 19569.64 18683.64 16468.49 179
EPP-MVSNet82.76 9286.47 8178.45 10586.00 8084.47 7785.39 11668.42 8984.17 8062.97 16389.26 7176.84 18172.13 9592.56 4990.40 5295.76 2087.56 74
CostFormer66.81 18366.94 18966.67 17472.79 18068.25 17879.55 15855.57 18065.52 18262.77 16476.98 15960.09 20556.73 16465.69 20662.35 19572.59 18569.71 175
UGNet79.62 11985.91 8972.28 14173.52 17683.91 7986.64 10869.51 7579.85 12262.57 16585.82 10889.63 13053.18 18188.39 9287.35 7888.28 12386.43 80
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
DCV-MVSNet80.04 11385.67 9273.48 13582.91 11481.11 10580.44 14866.06 10785.01 7562.53 16678.84 14494.43 7758.51 15888.66 8785.91 9190.41 9285.73 85
HyFIR lowres test73.29 15674.14 17272.30 14073.08 17878.33 12583.12 12962.41 14963.81 19062.13 16776.67 16178.50 17471.09 10274.13 18277.47 15981.98 17170.10 173
baseline268.71 17768.34 18669.14 16075.69 17069.70 17476.60 17055.53 18160.13 20362.07 16866.76 20560.35 20460.77 15176.53 17674.03 17284.19 16170.88 170
dps65.14 18564.50 19565.89 18071.41 18565.81 18771.44 19161.59 15258.56 20761.43 16975.45 17252.70 22058.06 16069.57 19764.65 19371.39 19064.77 184
Anonymous2023121179.37 12185.78 9071.89 14282.87 11679.66 11578.77 16163.93 13383.36 8459.39 17090.54 5294.66 7156.46 16587.38 10084.12 11089.92 9980.74 128
baseline69.33 17475.37 16762.28 18866.54 20166.67 18473.95 18548.07 20066.10 17759.26 17182.45 12886.30 14954.44 17574.42 18173.25 17571.42 18978.43 148
MVSTER68.08 18069.73 18266.16 17666.33 20370.06 17175.71 17952.36 19355.18 21258.64 17270.23 20056.72 21457.34 16279.68 16276.03 16686.61 13880.20 137
tpmrst59.42 19960.02 20958.71 19367.56 19653.10 20566.99 20351.88 19463.80 19157.68 17376.73 16056.49 21548.73 19356.47 21455.55 20759.43 20758.02 204
pmmvs362.72 19268.71 18555.74 19850.74 21557.10 19970.05 19528.82 21361.57 20257.39 17471.19 19385.73 15053.96 17873.36 18769.43 18773.47 18462.55 192
CHOSEN 1792x268868.80 17671.09 17966.13 17769.11 19168.89 17778.98 16054.68 18261.63 20056.69 17571.56 18878.39 17567.69 12372.13 18972.01 17969.63 19673.02 167
test-mter59.39 20061.59 20456.82 19653.21 21254.82 20273.12 18826.57 21553.19 21356.31 17664.71 20660.47 20356.36 16668.69 19964.27 19475.38 18165.00 183
pmmvs568.91 17574.35 17062.56 18767.45 19766.78 18371.70 18951.47 19667.17 17356.25 17782.41 12988.59 14047.21 19773.21 18874.23 17181.30 17368.03 180
pmmvs680.46 11088.34 6571.26 14481.96 12377.51 13077.54 16468.83 8493.72 755.92 17893.94 1898.03 1055.94 16789.21 8485.61 9487.36 13280.38 131
TransMVSNet (Re)79.05 12586.66 7870.18 15483.32 10975.99 14477.54 16463.98 13190.68 2455.84 17994.80 1096.06 3653.73 18086.27 11283.22 12286.65 13679.61 140
PMMVS61.98 19665.61 19257.74 19445.03 21751.76 20869.54 19835.05 21055.49 21155.32 18068.23 20278.39 17558.09 15970.21 19671.56 18183.42 16663.66 187
FMVSNet178.20 13084.83 10370.46 15278.62 14779.03 11877.90 16367.53 9983.02 8755.10 18187.19 9493.18 9255.65 17085.57 11683.39 11887.98 12582.40 116
MS-PatchMatch71.18 16973.99 17367.89 17077.16 15871.76 16677.18 16756.38 17867.35 17255.04 18274.63 17675.70 18662.38 14876.62 17375.97 16779.22 17675.90 154
pm-mvs178.21 12985.68 9169.50 15980.38 13275.73 14776.25 17265.04 11887.59 5254.47 18393.16 2595.99 4154.20 17686.37 11182.98 12586.64 13777.96 149
MIMVSNet173.40 15581.85 13163.55 18572.90 17964.37 18984.58 12353.60 18990.84 2053.92 18487.75 8696.10 3445.31 19885.37 12079.32 14970.98 19369.18 178
test-LLR62.15 19559.46 21165.29 18279.07 14352.66 20669.46 19962.93 14350.76 21553.81 18563.11 20958.91 20752.87 18366.54 20462.34 19673.59 18261.87 194
TESTMET0.1,157.21 20359.46 21154.60 20250.95 21452.66 20669.46 19926.91 21450.76 21553.81 18563.11 20958.91 20752.87 18366.54 20462.34 19673.59 18261.87 194
FMVSNet274.43 15279.70 13768.27 16576.76 16077.36 13275.77 17665.36 11672.28 15352.97 18781.92 13285.61 15252.73 18580.66 15779.73 14686.04 14580.37 132
thres600view774.34 15378.43 14369.56 15880.47 13076.28 14278.65 16262.56 14777.39 13252.53 18874.03 17876.78 18255.90 16985.06 12285.19 9987.25 13374.29 160
CDS-MVSNet73.07 16077.02 15368.46 16481.62 12572.89 16279.56 15770.78 6869.56 16452.52 18977.37 15681.12 16742.60 20084.20 13283.93 11183.65 16370.07 174
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
tfpnnormal77.16 13384.26 10968.88 16281.02 12975.02 15276.52 17163.30 14087.29 5552.40 19091.24 4993.97 8054.85 17485.46 11981.08 13585.18 15675.76 156
thres40073.13 15976.99 15568.62 16379.46 13874.93 15477.23 16661.23 15675.54 14052.31 19172.20 18677.10 18054.89 17282.92 13782.62 12786.57 13973.66 165
FC-MVSNet-train79.20 12486.29 8370.94 14884.06 9777.67 12985.68 11364.11 12782.90 8852.22 19292.57 3593.69 8449.52 19288.30 9386.93 8190.03 9781.95 120
GBi-Net73.17 15777.64 14867.95 16876.76 16077.36 13275.77 17664.57 12162.99 19551.83 19376.05 16577.76 17752.73 18585.57 11683.39 11886.04 14580.37 132
test173.17 15777.64 14867.95 16876.76 16077.36 13275.77 17664.57 12162.99 19551.83 19376.05 16577.76 17752.73 18585.57 11683.39 11886.04 14580.37 132
FMVSNet371.40 16875.20 16966.97 17275.00 17476.59 13974.29 18364.57 12162.99 19551.83 19376.05 16577.76 17751.49 19076.58 17477.03 16284.62 15979.43 141
thres20072.41 16376.00 16368.21 16678.28 14976.28 14274.94 18262.56 14772.14 15651.35 19669.59 20176.51 18354.89 17285.06 12280.51 14187.25 13371.92 168
thres100view90069.86 17172.97 17866.24 17577.97 15372.49 16473.29 18659.12 16766.81 17450.82 19767.30 20375.67 18750.54 19178.24 16779.40 14885.71 15270.88 170
tfpn200view972.01 16475.40 16668.06 16777.97 15376.44 14077.04 16862.67 14666.81 17450.82 19767.30 20375.67 18752.46 18885.06 12282.64 12687.41 13173.86 162
ADS-MVSNet56.89 20461.09 20552.00 20659.48 20848.10 21258.02 21254.37 18672.82 15149.19 19975.32 17365.97 19837.96 20659.34 21354.66 20952.99 21451.42 210
baseline169.62 17273.55 17565.02 18478.95 14570.39 16971.38 19262.03 15070.97 16047.95 20078.47 14968.19 19747.77 19679.65 16376.94 16382.05 17070.27 172
Vis-MVSNet (Re-imp)76.15 14180.84 13470.68 14983.66 10674.80 15681.66 14269.59 7380.48 11746.94 20187.44 8980.63 16853.14 18286.87 10684.56 10789.12 11071.12 169
EMVS58.97 20262.63 20354.70 20166.26 20448.71 21161.74 20942.71 20572.80 15246.00 20273.01 18571.66 19357.91 16180.41 15950.68 21453.55 21341.11 215
E-PMN59.07 20162.79 20154.72 20067.01 19947.81 21360.44 21143.40 20472.95 15044.63 20370.42 19873.17 19258.73 15780.97 15551.98 21254.14 21242.26 214
pmnet_mix0262.60 19370.81 18053.02 20466.56 20050.44 21062.81 20846.84 20279.13 12743.76 20487.45 8890.75 12439.85 20470.48 19457.09 20558.27 20860.32 199
Anonymous2023120667.28 18173.41 17660.12 19176.45 16963.61 19274.21 18456.52 17776.35 13542.23 20575.81 17090.47 12641.51 20374.52 17969.97 18569.83 19563.17 190
FC-MVSNet-test75.91 14483.59 12166.95 17376.63 16869.07 17585.33 11864.97 11984.87 7741.95 20693.17 2487.04 14647.78 19591.09 6885.56 9585.06 15774.34 159
EPMVS56.62 20559.77 21052.94 20562.41 20650.55 20960.66 21052.83 19265.15 18641.80 20777.46 15557.28 21242.68 19959.81 21254.82 20857.23 21053.35 208
FMVSNet556.37 20660.14 20851.98 20760.83 20759.58 19666.85 20442.37 20652.68 21441.33 20847.09 21554.68 21735.28 20873.88 18370.77 18265.24 20362.26 193
MIMVSNet63.02 18969.02 18456.01 19768.20 19259.26 19770.01 19653.79 18871.56 15841.26 20971.38 19082.38 16336.38 20771.43 19267.32 19066.45 20259.83 200
test20.0369.91 17076.20 16162.58 18684.01 10067.34 18175.67 18065.88 11279.98 12140.28 21082.65 12789.31 13439.63 20577.41 16973.28 17469.98 19463.40 189
testgi68.20 17976.05 16259.04 19279.99 13567.32 18281.16 14451.78 19584.91 7639.36 21173.42 18295.19 5732.79 21176.54 17570.40 18369.14 19764.55 185
TAMVS63.02 18969.30 18355.70 19970.12 18756.89 20069.63 19745.13 20370.23 16238.00 21277.79 15075.15 18942.60 20074.48 18072.81 17868.70 19857.75 205
CHOSEN 280x42056.32 20758.85 21353.36 20351.63 21339.91 21769.12 20138.61 20956.29 20936.79 21348.84 21462.59 20163.39 14673.61 18667.66 18960.61 20463.07 191
test0.0.03 161.79 19765.33 19357.65 19579.07 14364.09 19068.51 20262.93 14361.59 20133.71 21461.58 21171.58 19533.43 21070.95 19368.68 18868.26 19958.82 201
new-patchmatchnet62.59 19473.79 17449.53 20876.98 15953.57 20453.46 21654.64 18385.43 7128.81 21591.94 3796.41 2925.28 21376.80 17153.66 21157.99 20958.69 202
tmp_tt13.54 21516.73 2206.42 2218.49 2222.36 21828.69 21927.44 21618.40 21813.51 2253.70 21733.23 21536.26 21522.54 220
test_method22.69 21326.99 21517.67 2142.13 2214.31 22227.50 2204.53 21737.94 21724.52 21736.20 21751.40 22115.26 21529.86 21617.09 21632.07 21812.16 217
MVEpermissive41.12 1951.80 21060.92 20641.16 21035.21 21934.14 21948.45 21941.39 20769.11 16819.53 21863.33 20873.80 19063.56 14367.19 20161.51 20038.85 21657.38 206
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
new_pmnet52.29 20963.16 20039.61 21158.89 20944.70 21548.78 21834.73 21165.88 17917.85 21973.42 18280.00 16923.06 21467.00 20262.28 19854.36 21148.81 211
N_pmnet54.95 20865.90 19142.18 20966.37 20243.86 21657.92 21339.79 20879.54 12417.24 22086.31 10087.91 14325.44 21264.68 20751.76 21346.33 21547.23 212
DeepMVS_CXcopyleft17.78 22020.40 2216.69 21631.41 2189.80 22138.61 21634.88 22433.78 20928.41 21723.59 21945.77 213
PMMVS248.13 21164.06 19629.55 21244.06 21836.69 21851.95 21729.97 21274.75 1458.90 22276.02 16891.24 1207.53 21673.78 18455.91 20634.87 21740.01 216
GG-mvs-BLEND41.63 21260.36 20719.78 2130.14 22466.04 18555.66 2150.17 22157.64 2082.42 22351.82 21369.42 1960.28 22064.11 20958.29 20360.02 20555.18 207
test1231.06 2141.41 2160.64 2160.39 2220.48 2230.52 2250.25 2201.11 2211.37 2242.01 2201.98 2260.87 2181.43 2181.27 2170.46 2221.62 219
testmvs0.93 2151.37 2170.41 2170.36 2230.36 2240.62 2240.39 2191.48 2200.18 2252.41 2191.31 2270.41 2191.25 2191.08 2180.48 2211.68 218
uanet_test0.00 2160.00 2180.00 2180.00 2250.00 2250.00 2260.00 2220.00 2220.00 2260.00 2210.00 2280.00 2210.00 2200.00 2190.00 2230.00 220
sosnet-low-res0.00 2160.00 2180.00 2180.00 2250.00 2250.00 2260.00 2220.00 2220.00 2260.00 2210.00 2280.00 2210.00 2200.00 2190.00 2230.00 220
sosnet0.00 2160.00 2180.00 2180.00 2250.00 2250.00 2260.00 2220.00 2220.00 2260.00 2210.00 2280.00 2210.00 2200.00 2190.00 2230.00 220
9.1489.43 131
SR-MVS91.82 1380.80 795.53 50
Anonymous20240521184.68 10483.92 10179.45 11679.03 15967.79 9682.01 9688.77 8092.58 9955.93 16886.68 10884.26 10988.92 11378.98 142
our_test_373.27 17770.91 16883.26 128
Patchmatch-RL test4.13 223
mPP-MVS93.05 495.77 44
NP-MVS78.65 129