This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorcourty.delive.electrofacadekickermeadowofficepipesplaygr.reliefrelief.terraceterrai.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort by
gg-mvs-nofinetune98.40 17998.26 17298.57 19699.83 8998.86 17298.77 19799.97 199.57 2599.99 199.99 193.81 19793.50 21798.91 15598.20 17299.33 17198.52 183
RE-MVS-def99.96 2
Gipumacopyleft99.55 5599.23 8899.91 599.87 5599.52 6999.86 1099.93 2799.87 199.96 296.72 20999.55 13099.97 199.77 3499.46 4999.87 3999.74 35
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
SixPastTwentyTwo99.89 299.85 699.93 199.97 299.88 399.92 299.97 199.66 1399.94 499.94 1199.74 10799.81 799.97 199.89 199.96 399.89 5
test_part199.88 499.89 199.88 1299.96 799.90 299.83 1999.97 199.84 299.93 599.91 2399.83 8799.63 4399.89 1199.88 399.96 399.95 1
WR-MVS99.79 1099.68 1499.91 599.95 1199.83 599.87 999.96 1299.39 4699.93 599.87 3699.29 15199.77 1499.83 2299.72 2199.97 199.82 15
EG-PatchMatch MVS99.59 4499.49 4599.70 6599.82 9499.26 12399.39 12299.83 8398.99 9599.93 599.54 8899.92 5199.51 6299.78 3299.50 4299.73 8599.41 120
MIMVSNet199.79 1099.75 1199.84 2199.89 4399.83 599.84 1699.89 5299.31 5499.93 599.92 1699.97 999.68 3199.89 1199.64 2899.82 5599.66 54
LTVRE_ROB99.39 199.90 199.87 299.93 199.97 299.82 999.91 399.92 3999.75 599.93 599.89 31100.00 199.87 299.93 399.82 1199.96 399.90 3
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
ambc98.83 14699.72 13998.52 19398.84 19198.96 10099.92 1099.34 11699.74 10799.04 12598.68 18097.57 19299.46 15298.99 171
TransMVSNet (Re)99.72 2299.59 2999.88 1299.95 1199.76 2299.88 799.94 2499.58 2499.92 1099.90 2898.55 17099.65 3799.89 1199.76 1899.95 899.70 48
DTE-MVSNet99.75 1699.61 2499.92 499.95 1199.81 1399.86 1099.96 1299.18 7199.92 1099.66 7099.45 13699.85 399.80 2899.56 3499.96 399.79 26
Anonymous2023120699.48 6499.31 7599.69 6799.79 10499.57 5299.63 6999.79 10998.88 11199.91 1399.72 6099.93 4399.59 4899.24 10798.63 14799.43 15999.18 147
PVSNet_Blended_VisFu99.66 3199.64 1899.67 7099.91 3699.71 3399.61 7199.79 10999.41 4299.91 1399.85 4199.61 12399.00 12799.67 4699.42 5499.81 5899.81 18
CS-MVS99.59 4499.38 6599.82 2699.93 2899.87 499.83 1999.93 2798.82 12199.90 1598.99 15298.57 16999.45 7999.83 2299.79 1499.91 2399.81 18
pmmvs699.88 499.87 299.89 999.97 299.76 2299.89 599.96 1299.82 399.90 1599.92 1699.95 2699.68 3199.93 399.88 399.95 899.86 11
DeepC-MVS99.05 599.74 1799.64 1899.84 2199.90 4099.39 9399.79 3099.81 9899.69 899.90 1599.87 3699.98 599.81 799.62 5599.32 6099.83 5299.65 57
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
v7n99.89 299.86 499.93 199.97 299.83 599.93 199.96 1299.77 499.89 1899.99 199.86 7799.84 599.89 1199.81 1299.97 199.88 7
UniMVSNet_NR-MVSNet99.41 8299.12 11299.76 4899.86 6999.48 7699.50 10099.81 9898.84 11799.89 1899.45 10598.32 17699.59 4899.22 11198.89 11799.90 2899.63 61
PEN-MVS99.77 1299.65 1799.91 599.95 1199.80 1699.86 1099.97 199.08 8399.89 1899.69 6799.68 11799.84 599.81 2799.64 2899.95 899.81 18
DU-MVS99.48 6499.26 8299.75 5299.85 7799.38 9699.50 10099.81 9898.86 11499.89 1899.51 9898.98 15999.59 4899.46 6798.97 10899.87 3999.63 61
UniMVSNet (Re)99.50 6099.29 7899.75 5299.86 6999.47 7899.51 9699.82 9098.90 10999.89 1899.64 7499.00 15899.55 5599.32 8999.08 9099.90 2899.59 69
thisisatest051599.73 1999.67 1599.81 3299.93 2899.74 3099.68 5799.91 4499.59 2299.88 2399.73 5699.81 9299.55 5599.59 5699.53 3999.89 3199.70 48
tfpnnormal99.74 1799.63 2099.86 1699.93 2899.75 2899.80 2999.89 5299.31 5499.88 2399.43 10699.66 12099.77 1499.80 2899.71 2299.92 2199.76 31
test20.0399.68 2999.60 2799.76 4899.91 3699.70 3699.68 5799.87 5799.05 9099.88 2399.92 1699.88 6999.50 6799.77 3499.42 5499.75 7699.49 102
Baseline_NR-MVSNet99.62 3699.48 4699.78 4299.85 7799.76 2299.59 7699.82 9098.84 11799.88 2399.91 2399.04 15799.61 4599.46 6799.78 1699.94 1699.60 67
TranMVSNet+NR-MVSNet99.59 4499.42 5799.80 3799.87 5599.55 5699.64 6599.86 6199.05 9099.88 2399.72 6099.33 14999.64 4199.47 6699.14 7499.91 2399.67 53
TDRefinement99.81 899.76 1099.86 1699.83 8999.53 6299.89 599.91 4499.73 699.88 2399.83 4699.96 1499.76 1699.91 999.81 1299.86 4199.59 69
UniMVSNet_ETH3D99.81 899.79 899.85 1999.98 199.76 2299.73 4899.96 1299.68 1099.87 2999.59 8399.91 5799.58 5199.90 1099.85 799.96 399.81 18
pm-mvs199.77 1299.69 1399.86 1699.94 2599.68 3799.84 1699.93 2799.59 2299.87 2999.92 1699.21 15499.65 3799.88 1599.77 1799.93 2099.78 27
v2v48299.56 5399.35 6999.81 3299.87 5599.35 10699.75 4099.85 6899.56 2699.87 2999.95 699.44 13899.66 3598.91 15598.76 13199.86 4199.45 110
NR-MVSNet99.52 5799.29 7899.80 3799.96 799.38 9699.55 8499.81 9898.86 11499.87 2999.51 9898.81 16599.72 2699.86 1899.04 9799.89 3199.54 91
USDC99.29 11198.98 13099.65 7499.72 13998.87 17199.47 10999.66 15499.35 5199.87 2999.58 8499.87 7699.51 6298.85 16697.93 18499.65 10198.38 186
ACMH99.11 499.72 2299.63 2099.84 2199.87 5599.59 4999.83 1999.88 5699.46 3799.87 2999.66 7099.95 2699.76 1699.73 3999.47 4799.84 4799.52 99
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
pmnet_mix0298.28 18197.48 18799.22 15299.78 10999.12 15199.68 5799.39 19499.49 3499.86 3599.82 4899.89 6399.23 10395.54 21192.36 20997.38 20596.14 210
new-patchmatchnet98.49 17597.60 18499.53 9999.90 4099.55 5699.77 3399.48 18299.67 1199.86 3599.98 399.98 599.50 6796.90 20891.52 21298.67 19495.62 212
v14419299.58 4899.39 6299.80 3799.87 5599.44 8299.77 3399.84 7799.64 1699.86 3599.93 1499.35 14699.72 2698.92 15298.82 12599.74 8199.66 54
v192192099.59 4499.40 6199.82 2699.88 4999.45 8099.81 2799.83 8399.65 1499.86 3599.95 699.29 15199.75 1898.98 14698.86 12199.78 6799.59 69
v124099.58 4899.38 6599.82 2699.89 4399.49 7599.82 2599.83 8399.63 1899.86 3599.96 498.92 16399.75 1899.15 12798.96 11099.76 7399.56 84
PS-CasMVS99.73 1999.59 2999.90 899.95 1199.80 1699.85 1399.97 198.95 10199.86 3599.73 5699.36 14399.81 799.83 2299.67 2499.95 899.83 14
CLD-MVS99.30 10799.01 12799.63 8099.75 12698.89 16899.35 13099.60 16098.53 14999.86 3599.57 8599.94 3699.52 6198.96 14798.10 17899.70 9399.08 160
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
pmmvs-eth3d99.61 3799.48 4699.75 5299.87 5599.30 11699.75 4099.89 5299.23 6299.85 4299.88 3599.97 999.49 7299.46 6799.01 10199.68 9599.52 99
v119299.60 4299.41 5899.82 2699.89 4399.43 8599.81 2799.84 7799.63 1899.85 4299.95 699.35 14699.72 2699.01 14098.90 11699.82 5599.58 77
MDA-MVSNet-bldmvs99.11 13399.11 11499.12 16599.91 3699.38 9699.77 3398.72 21199.31 5499.85 4299.43 10698.26 17799.48 7599.85 1998.47 15696.99 20899.08 160
Vis-MVSNetpermissive99.76 1499.78 999.75 5299.92 3299.77 2199.83 1999.85 6899.43 4099.85 4299.84 43100.00 199.13 11799.83 2299.66 2599.90 2899.90 3
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
CS-MVS-test99.72 2299.63 2099.83 2599.95 1199.95 199.85 1399.93 2798.83 11999.84 4699.50 10099.76 10599.51 6299.79 3099.79 1499.91 2399.80 25
gm-plane-assit96.82 20694.84 21499.13 16399.95 1199.78 1899.69 5699.92 3999.19 6999.84 4699.92 1672.93 22896.44 20598.21 19397.01 19898.92 18996.87 208
v114499.61 3799.43 5499.82 2699.88 4999.41 9099.76 3699.86 6199.64 1699.84 4699.95 699.49 13499.74 2199.00 14298.93 11399.84 4799.58 77
CP-MVSNet99.68 2999.51 4199.89 999.95 1199.76 2299.83 1999.96 1298.83 11999.84 4699.65 7399.09 15699.80 1099.78 3299.62 3299.95 899.82 15
WR-MVS_H99.73 1999.61 2499.88 1299.95 1199.82 999.83 1999.96 1299.01 9399.84 4699.71 6499.41 14299.74 2199.77 3499.70 2399.95 899.82 15
MDTV_nov1_ep13_2view98.73 16798.31 17199.22 15299.75 12699.24 13199.75 4099.93 2799.31 5499.84 4699.86 3999.81 9299.31 9697.40 20694.77 20596.73 21097.81 199
ETV-MVS99.45 7499.32 7399.60 8599.79 10499.60 4699.40 12199.78 11497.88 19099.83 5299.33 11799.70 11598.97 13099.74 3799.43 5399.84 4799.58 77
anonymousdsp99.87 699.86 499.88 1299.95 1199.75 2899.90 499.96 1299.69 899.83 5299.96 499.99 399.74 2199.95 299.83 899.91 2399.88 7
v14899.58 4899.43 5499.76 4899.87 5599.40 9299.76 3699.85 6899.48 3599.83 5299.82 4899.83 8799.51 6299.20 11798.82 12599.75 7699.45 110
IterMVS-SCA-FT99.15 13098.96 13399.38 12699.87 5599.54 5999.53 8999.79 10998.94 10399.82 5599.92 1697.65 18398.82 14198.95 14998.26 16898.45 19799.47 108
TinyColmap99.21 11998.89 14199.59 8699.61 16498.61 18999.47 10999.67 15199.02 9299.82 5599.15 13799.74 10799.35 8699.17 12598.33 16699.63 11398.22 192
COLMAP_ROBcopyleft99.18 299.70 2599.60 2799.81 3299.84 8399.37 10099.76 3699.84 7799.54 3099.82 5599.64 7499.95 2699.75 1899.79 3099.56 3499.83 5299.37 130
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
APDe-MVS99.60 4299.48 4699.73 6099.85 7799.51 7399.75 4099.85 6899.17 7299.81 5899.56 8699.94 3699.44 8099.42 7799.22 6499.67 9799.54 91
ECVR-MVScopyleft99.24 11498.74 15399.82 2699.95 1199.78 1899.67 6199.93 2799.45 3899.80 5999.86 3992.58 20799.65 3799.93 399.88 399.94 1699.71 46
SteuartSystems-ACMMP99.47 6799.22 9199.76 4899.88 4999.36 10299.65 6499.84 7798.47 15199.80 5998.68 16899.96 1499.68 3199.37 8099.06 9299.72 8899.66 54
Skip Steuart: Steuart Systems R&D Blog.
ACMH+98.94 699.69 2899.59 2999.81 3299.88 4999.41 9099.75 4099.86 6199.43 4099.80 5999.54 8899.97 999.73 2499.82 2699.52 4199.85 4499.43 116
3Dnovator99.16 399.42 8099.22 9199.65 7499.78 10999.13 14899.50 10099.85 6899.40 4499.80 5998.59 17599.79 10199.30 9799.20 11799.06 9299.71 9199.35 133
LGP-MVS_train99.46 7199.18 10099.78 4299.87 5599.25 12699.71 5599.87 5798.02 18499.79 6398.90 15599.96 1499.66 3599.49 6299.17 7099.79 6599.49 102
PVSNet_BlendedMVS99.20 12299.17 10499.23 14999.69 14499.33 10999.04 16899.13 20498.41 16199.79 6399.33 11799.36 14398.10 16799.29 9698.87 11999.65 10199.56 84
PVSNet_Blended99.20 12299.17 10499.23 14999.69 14499.33 10999.04 16899.13 20498.41 16199.79 6399.33 11799.36 14398.10 16799.29 9698.87 11999.65 10199.56 84
ACMP98.32 1399.44 7699.18 10099.75 5299.83 8999.18 13999.64 6599.83 8398.81 12399.79 6398.42 18699.96 1499.64 4199.46 6798.98 10799.74 8199.44 113
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
test111199.21 11998.67 15799.84 2199.96 799.82 999.72 5299.94 2499.54 3099.78 6799.89 3191.89 21099.69 3099.93 399.89 199.95 899.75 33
PHI-MVS99.33 9999.19 9899.49 10899.69 14499.25 12699.27 14499.59 16398.44 15599.78 6799.15 13799.92 5198.95 13499.39 7899.04 9799.64 11099.18 147
FC-MVSNet-test99.84 799.80 799.89 999.96 799.83 599.84 1699.95 2399.37 4899.77 6999.95 699.96 1499.85 399.93 399.83 899.95 899.72 40
v899.61 3799.45 5299.79 4199.80 10099.59 4999.73 4899.93 2799.48 3599.77 6999.90 2899.48 13599.67 3499.11 13198.89 11799.84 4799.73 37
DeepC-MVS_fast98.69 999.32 10199.13 11099.53 9999.63 15998.78 17699.53 8999.33 19999.08 8399.77 6999.18 13599.89 6399.29 9899.00 14298.70 14099.65 10199.30 138
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
v1099.65 3299.51 4199.81 3299.83 8999.61 4599.75 4099.94 2499.56 2699.76 7299.94 1199.60 12599.73 2499.11 13199.01 10199.85 4499.74 35
pmmvs398.85 15998.60 15999.13 16399.66 15298.72 18299.37 12699.06 20798.44 15599.76 7299.74 5499.55 13099.15 11399.04 13696.00 20397.80 20298.72 180
DROMVSNet99.70 2599.57 3299.85 1999.95 1199.81 1399.85 1399.93 2798.39 16599.76 7299.48 10399.94 3699.70 2999.85 1999.66 2599.91 2399.87 10
OpenMVScopyleft98.82 899.17 12598.85 14599.53 9999.75 12699.06 15699.36 12799.82 9098.28 17099.76 7298.47 18199.61 12398.91 13698.80 17498.70 14099.60 12499.04 167
MVS_030499.36 9299.35 6999.37 13299.85 7799.36 10299.39 12299.56 16999.36 5099.75 7699.23 12899.90 6097.97 17899.00 14298.83 12499.69 9499.77 28
V4299.57 5299.41 5899.75 5299.84 8399.37 10099.73 4899.83 8399.41 4299.75 7699.89 3199.42 14099.60 4799.15 12798.96 11099.76 7399.65 57
EU-MVSNet99.76 1499.74 1299.78 4299.82 9499.81 1399.88 799.87 5799.31 5499.75 7699.91 2399.76 10599.78 1299.84 2199.74 2099.56 13599.81 18
PGM-MVS99.32 10198.99 12899.71 6299.86 6999.31 11499.59 7699.86 6197.51 19999.75 7698.23 18999.94 3699.53 5899.29 9699.08 9099.65 10199.54 91
PM-MVS99.49 6399.43 5499.57 9199.76 12299.34 10899.53 8999.77 12198.93 10599.75 7699.46 10499.83 8799.11 11999.72 4099.29 6299.49 14999.46 109
IterMVS99.08 13698.90 14099.29 14199.87 5599.53 6299.52 9399.77 12198.94 10399.75 7699.91 2397.52 18798.72 14998.86 16498.14 17598.09 20099.43 116
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
CANet99.36 9299.39 6299.34 13799.80 10099.35 10699.41 12099.47 18399.20 6699.74 8299.54 8899.68 11798.05 17199.23 10998.97 10899.57 13299.73 37
CANet_DTU99.03 14299.18 10098.87 18499.58 17599.03 15799.18 15399.41 19098.65 13599.74 8299.55 8799.71 11296.13 20799.19 12098.92 11499.17 18299.18 147
TSAR-MVS + GP.99.33 9999.17 10499.51 10599.71 14299.00 16098.84 19199.71 13998.23 17399.74 8299.53 9499.90 6099.35 8699.38 7998.85 12299.72 8899.31 136
EPNet_dtu98.09 18498.25 17497.91 21099.58 17598.02 21298.19 21599.67 15197.94 18899.74 8299.07 14798.71 16793.40 21897.50 20397.09 19696.89 20999.44 113
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
CHOSEN 1792x268899.65 3299.55 3599.77 4799.93 2899.60 4699.79 3099.92 3999.73 699.74 8299.93 1499.98 599.80 1098.83 17299.01 10199.45 15499.76 31
CP-MVS99.41 8299.20 9699.65 7499.80 10099.23 13399.44 11399.75 13498.60 14499.74 8298.66 16999.93 4399.48 7599.33 8799.16 7199.73 8599.48 105
pmmvs599.58 4899.47 4999.70 6599.84 8399.50 7499.58 8099.80 10698.98 9899.73 8899.92 1699.81 9299.49 7299.28 10199.05 9599.77 7199.73 37
pmmvs499.34 9799.15 10799.57 9199.77 11798.90 16599.51 9699.77 12199.07 8599.73 8899.72 6099.84 8599.07 12198.85 16698.39 16299.55 13899.27 141
ACMMPR99.51 5899.32 7399.72 6199.87 5599.33 10999.61 7199.85 6899.19 6999.73 8898.73 16599.95 2699.61 4599.35 8399.14 7499.66 9999.58 77
GeoE99.63 3599.51 4199.78 4299.91 3699.57 5299.78 3299.97 199.23 6299.72 9199.72 6099.80 9899.50 6799.45 7499.10 8899.79 6599.71 46
DELS-MVS99.42 8099.53 3999.29 14199.52 17999.43 8599.42 11699.28 20199.16 7699.72 9199.82 4899.97 998.17 16399.56 5899.16 7199.65 10199.59 69
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
QAPM99.41 8299.21 9599.64 7999.78 10999.16 14199.51 9699.85 6899.20 6699.72 9199.43 10699.81 9299.25 10198.87 16198.71 13999.71 9199.30 138
ACMMPcopyleft99.36 9299.06 11999.71 6299.86 6999.36 10299.63 6999.85 6898.33 16799.72 9197.73 19999.94 3699.53 5899.37 8099.13 8299.65 10199.56 84
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
3Dnovator+98.92 799.31 10599.03 12399.63 8099.77 11798.90 16599.52 9399.81 9899.37 4899.72 9198.03 19499.73 11099.32 9398.99 14598.81 12899.67 9799.36 131
MSDG99.32 10199.09 11799.58 8899.75 12698.74 18099.36 12799.54 17299.14 7999.72 9199.24 12699.89 6399.51 6299.30 9398.76 13199.62 11998.54 182
IterMVS-LS99.16 12898.82 14999.57 9199.87 5599.71 3399.58 8099.92 3999.24 6199.71 9799.73 5695.79 19298.91 13698.82 17398.66 14499.43 15999.77 28
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
ACMM98.37 1299.47 6799.23 8899.74 5899.86 6999.19 13899.68 5799.86 6199.16 7699.71 9798.52 17999.95 2699.62 4499.35 8399.02 9999.74 8199.42 119
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
N_pmnet98.64 17098.23 17799.11 16899.78 10999.25 12699.75 4099.39 19499.65 1499.70 9999.78 5399.89 6398.81 14397.60 20194.28 20697.24 20797.15 206
SCA97.25 20596.05 20798.64 19499.36 20299.02 15899.27 14499.96 1298.25 17199.69 10098.71 16794.66 19697.95 17993.95 21492.35 21095.64 21495.40 214
XVS99.86 6999.30 11699.72 5299.69 10099.93 4399.60 124
X-MVStestdata99.86 6999.30 11699.72 5299.69 10099.93 4399.60 124
X-MVS99.30 10798.99 12899.66 7299.85 7799.30 11699.49 10799.82 9098.32 16899.69 10097.31 20699.93 4399.50 6799.37 8099.16 7199.60 12499.53 94
tpm96.56 21094.68 21598.74 19099.12 21297.90 21598.79 19699.93 2796.79 21799.69 10099.19 13481.48 22797.56 18595.46 21293.97 20797.37 20697.99 195
CSCG99.61 3799.52 4099.71 6299.89 4399.62 4399.52 9399.76 12999.61 2099.69 10099.73 5699.96 1499.57 5399.27 10498.62 14899.81 5899.85 13
PMVScopyleft94.32 1799.27 11299.55 3598.94 17999.60 16899.43 8599.39 12299.54 17298.99 9599.69 10099.60 8199.81 9295.68 20999.88 1599.83 899.73 8599.31 136
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
DCV-MVSNet99.43 7799.23 8899.67 7099.92 3299.76 2299.64 6599.93 2799.06 8799.68 10797.77 19798.97 16098.97 13099.72 4099.54 3899.88 3399.81 18
MP-MVScopyleft99.35 9599.09 11799.65 7499.84 8399.22 13499.59 7699.78 11498.13 17699.67 10898.44 18399.93 4399.43 8299.31 9199.09 8999.60 12499.49 102
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
MVS-HIRNet98.45 17798.25 17498.69 19199.12 21297.81 21898.55 20599.85 6898.58 14699.67 10899.61 7899.86 7797.46 18797.95 19996.37 20197.49 20497.56 203
CPTT-MVS99.21 11998.89 14199.58 8899.72 13999.12 15199.30 14099.76 12998.62 14099.66 11097.51 20299.89 6399.48 7599.01 14098.64 14699.58 13199.40 125
MVS_111021_HR99.30 10799.14 10899.48 10999.58 17599.25 12699.27 14499.61 15898.74 12899.66 11099.02 15199.84 8599.33 9099.20 11798.76 13199.44 15699.18 147
EIA-MVS99.23 11699.03 12399.47 11099.83 8999.64 4199.16 15599.81 9897.11 20699.65 11298.44 18399.78 10498.61 15599.46 6799.22 6499.75 7699.59 69
PatchmatchNetpermissive96.81 20795.41 21198.43 20199.43 19698.30 20299.23 14999.93 2798.19 17499.64 11398.81 16193.50 19897.43 18892.89 21690.78 21594.94 21995.41 213
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
LS3D99.39 8899.28 8099.52 10399.77 11799.39 9399.55 8499.82 9098.93 10599.64 11398.52 17999.67 11998.58 15699.74 3799.63 3099.75 7699.06 163
UGNet99.40 8699.61 2499.16 16199.88 4999.64 4199.61 7199.77 12199.31 5499.63 11599.33 11799.93 4396.46 20499.63 5299.53 3999.63 11399.89 5
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
Anonymous2023121199.47 6799.39 6299.57 9199.89 4399.60 4699.50 10099.69 14298.91 10899.62 11699.17 13699.35 14698.86 14099.63 5299.46 4999.84 4799.62 64
MTAPA99.62 11699.95 26
casdiffmvs99.61 3799.55 3599.68 6899.89 4399.53 6299.64 6599.68 14899.51 3299.62 11699.90 2899.96 1499.37 8499.28 10199.25 6399.88 3399.44 113
Fast-Effi-MVS+99.39 8899.18 10099.63 8099.86 6999.28 12199.45 11299.91 4498.47 15199.61 11999.50 10099.57 12799.17 10699.24 10798.66 14499.78 6799.59 69
abl_699.21 15599.49 18898.62 18898.90 18699.44 18897.08 20799.61 11997.19 20799.73 11098.35 16199.45 15498.84 173
MVS_111021_LR99.25 11399.13 11099.39 12299.50 18799.14 14499.23 14999.50 18098.67 13399.61 11999.12 14199.81 9299.16 10999.28 10198.67 14399.35 16999.21 146
Effi-MVS+99.20 12298.93 13699.50 10799.79 10499.26 12398.82 19499.96 1298.37 16699.60 12299.12 14198.36 17499.05 12498.93 15098.82 12599.78 6799.68 50
TAPA-MVS98.54 1099.30 10799.24 8799.36 13699.44 19498.77 17899.00 17599.41 19099.23 6299.60 12299.50 10099.86 7799.15 11399.29 9698.95 11299.56 13599.08 160
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
zzz-MVS99.51 5899.36 6799.68 6899.88 4999.38 9699.53 8999.84 7799.11 8299.59 12498.93 15499.95 2699.58 5199.44 7599.21 6699.65 10199.52 99
MCST-MVS99.17 12598.82 14999.57 9199.75 12698.70 18499.25 14899.69 14298.62 14099.59 12498.54 17799.79 10199.53 5898.48 18898.15 17499.64 11099.43 116
PLCcopyleft97.83 1698.88 15798.52 16599.30 14099.45 19298.60 19098.65 20099.49 18198.66 13499.59 12496.33 21099.59 12699.17 10698.87 16198.53 15399.46 15299.05 165
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
PCF-MVS97.86 1598.95 15198.53 16399.44 11699.70 14398.80 17598.96 17799.69 14298.65 13599.59 12499.33 11799.94 3699.12 11898.01 19897.11 19599.59 13097.83 198
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
HFP-MVS99.46 7199.30 7699.65 7499.82 9499.25 12699.50 10099.82 9099.23 6299.58 12898.86 15699.94 3699.56 5499.14 12999.12 8699.63 11399.56 84
OMC-MVS99.11 13398.95 13499.29 14199.37 20098.57 19199.19 15299.20 20398.87 11399.58 12899.13 13999.88 6999.00 12799.19 12098.46 15799.43 15998.57 181
ADS-MVSNet97.29 20496.17 20698.59 19599.59 17298.70 18499.32 13399.86 6198.47 15199.56 13099.08 14598.16 17897.34 18992.92 21591.17 21395.91 21394.72 215
HyFIR lowres test99.50 6099.26 8299.80 3799.95 1199.62 4399.76 3699.97 199.67 1199.56 13099.94 1198.40 17399.78 1298.84 17198.59 15199.76 7399.72 40
CNLPA98.82 16098.52 16599.18 15999.21 21098.50 19598.73 19899.34 19898.73 13099.56 13097.55 20199.42 14099.06 12398.93 15098.10 17899.21 18198.38 186
test250697.57 20095.67 20999.78 4299.95 1199.78 1899.67 6199.93 2799.45 3899.55 13399.20 13271.73 22999.65 3799.93 399.88 399.94 1699.72 40
OPM-MVS99.39 8899.22 9199.59 8699.76 12298.82 17399.51 9699.79 10999.17 7299.53 13499.31 12299.95 2699.35 8699.22 11198.79 13099.60 12499.27 141
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
MTMP99.53 13499.92 51
FC-MVSNet-train99.70 2599.67 1599.74 5899.94 2599.71 3399.82 2599.91 4499.14 7999.53 13499.70 6599.88 6999.33 9099.88 1599.61 3399.94 1699.77 28
testgi99.43 7799.47 4999.38 12699.90 4099.67 3999.30 14099.73 13798.64 13999.53 13499.52 9699.90 6098.08 16999.65 5099.40 5799.75 7699.55 89
NCCC98.88 15798.42 16999.42 11799.62 16098.81 17499.10 16399.54 17298.76 12599.53 13495.97 21299.80 9899.16 10998.49 18798.06 18199.55 13899.05 165
HQP-MVS98.70 16998.19 17899.28 14599.61 16498.52 19398.71 19999.35 19697.97 18799.53 13497.38 20599.85 8399.14 11597.53 20296.85 19999.36 16799.26 144
UA-Net99.64 3499.62 2399.66 7299.97 299.82 999.14 15899.96 1298.95 10199.52 14099.38 11499.86 7799.55 5599.72 4099.66 2599.80 6299.94 2
HPM-MVS++copyleft99.23 11698.98 13099.53 9999.75 12699.02 15899.44 11399.77 12198.65 13599.52 14098.72 16699.92 5199.33 9098.77 17798.40 16199.40 16399.36 131
EPMVS96.76 20895.30 21398.46 20099.42 19798.47 19699.32 13399.91 4498.42 15899.51 14299.07 14792.81 20497.12 19292.39 21791.71 21195.51 21594.20 217
DeepMVS_CXcopyleft96.39 22197.15 22388.89 22097.94 18899.51 14295.71 21397.88 18198.19 16298.92 15297.73 20397.75 201
MS-PatchMatch98.94 15298.71 15599.21 15599.52 17998.22 20798.97 17699.53 17798.76 12599.50 14498.59 17599.56 12998.68 15098.63 18298.45 15999.05 18598.73 178
diffmvs99.38 9199.33 7199.45 11499.87 5599.39 9399.28 14399.58 16699.55 2899.50 14499.85 4199.85 8398.94 13598.58 18498.68 14299.51 14699.39 127
baseline99.24 11499.30 7699.17 16099.78 10999.14 14499.10 16399.69 14298.97 9999.49 14699.84 4399.88 6997.99 17798.85 16698.73 13798.98 18899.72 40
RPMNet97.70 19496.54 19999.06 17299.57 17898.23 20498.95 18099.97 196.89 21499.49 14699.13 13989.63 21597.09 19396.68 20997.02 19799.26 17698.19 193
ACMMP_NAP99.47 6799.33 7199.63 8099.85 7799.28 12199.56 8399.83 8398.75 12799.48 14899.03 15099.95 2699.47 7899.48 6399.19 6799.57 13299.59 69
APD-MVScopyleft99.17 12598.92 13799.46 11299.78 10999.24 13199.34 13199.78 11497.79 19399.48 14898.25 18899.88 6998.77 14599.18 12398.92 11499.63 11399.18 147
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
new_pmnet98.91 15598.89 14198.94 17999.51 18598.27 20399.15 15698.66 21299.17 7299.48 14899.79 5299.80 9898.49 15899.23 10998.20 17298.34 19897.74 202
RPSCF99.48 6499.45 5299.52 10399.73 13799.33 10999.13 15999.77 12199.33 5299.47 15199.39 11399.92 5199.36 8599.63 5299.13 8299.63 11399.41 120
DI_MVS_plusplus_trai98.74 16598.08 18299.51 10599.79 10499.29 12099.61 7199.60 16099.20 6699.46 15299.09 14492.93 20098.97 13098.27 19298.35 16499.65 10199.45 110
tpm cat195.52 21593.49 21797.88 21199.28 20897.87 21798.65 20099.77 12197.27 20399.46 15298.04 19390.99 21195.46 21088.57 22188.14 22094.64 22293.54 219
IB-MVS98.10 1497.76 19297.40 19098.18 20499.62 16099.11 15398.24 21398.35 21596.56 21899.44 15491.28 22298.96 16293.84 21598.09 19498.62 14899.56 13599.18 147
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
AdaColmapbinary98.93 15398.53 16399.39 12299.52 17998.65 18799.11 16299.59 16398.08 18099.44 15497.46 20499.45 13699.24 10298.92 15298.44 16099.44 15698.73 178
CR-MVSNet97.91 18696.80 19699.22 15299.60 16898.23 20498.91 18399.97 196.89 21499.43 15699.10 14389.24 21798.15 16498.04 19597.78 18599.26 17698.30 189
Patchmtry98.19 20998.91 18399.97 199.43 156
PatchT98.11 18297.12 19399.26 14799.65 15698.34 20199.57 8299.97 197.48 20099.43 15699.04 14990.84 21298.15 16498.04 19597.78 18598.82 19198.30 189
thisisatest053098.78 16398.26 17299.39 12299.78 10999.43 8599.07 16599.64 15698.44 15599.42 15999.22 12992.68 20698.63 15399.30 9399.14 7499.80 6299.60 67
CostFormer95.61 21393.35 21998.24 20399.48 18998.03 21198.65 20099.83 8396.93 21299.42 15998.83 15883.65 22697.08 19490.39 22089.54 21894.94 21996.11 211
DPE-MVScopyleft99.41 8299.36 6799.47 11099.66 15299.48 7699.46 11199.75 13498.65 13599.41 16199.67 6899.95 2698.82 14199.21 11499.14 7499.72 8899.40 125
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
MVSTER97.55 20196.75 19798.48 19999.46 19199.54 5998.24 21399.77 12197.56 19899.41 16199.31 12284.86 22494.66 21498.86 16497.75 18799.34 17099.38 128
CDS-MVSNet99.15 13099.10 11599.21 15599.59 17299.22 13499.48 10899.47 18398.89 11099.41 16199.84 4398.11 17997.76 18199.26 10699.01 10199.57 13299.38 128
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
FMVSNet199.50 6099.57 3299.42 11799.67 15199.65 4099.60 7599.91 4499.40 4499.39 16499.83 4699.27 15398.14 16699.68 4399.50 4299.81 5899.68 50
SED-MVS99.45 7499.46 5199.42 11799.77 11799.57 5299.42 11699.80 10699.06 8799.38 16599.66 7099.96 1498.65 15299.31 9199.14 7499.53 14099.55 89
tttt051798.77 16498.25 17499.38 12699.79 10499.46 7999.07 16599.64 15698.40 16499.38 16599.21 13192.54 20898.63 15399.34 8699.14 7499.80 6299.62 64
MSLP-MVS++98.92 15498.73 15499.14 16299.44 19499.00 16098.36 21099.35 19698.82 12199.38 16596.06 21199.79 10199.07 12198.88 16099.05 9599.27 17599.53 94
MVS_Test99.09 13598.92 13799.29 14199.61 16499.07 15599.04 16899.81 9898.58 14699.37 16899.74 5498.87 16498.41 16098.61 18398.01 18299.50 14899.57 83
CDPH-MVS99.05 14098.63 15899.54 9899.75 12698.78 17699.59 7699.68 14897.79 19399.37 16898.20 19099.86 7799.14 11598.58 18498.01 18299.68 9599.16 153
CNVR-MVS99.08 13698.83 14699.37 13299.61 16498.74 18099.15 15699.54 17298.59 14599.37 16898.15 19199.88 6999.08 12098.91 15598.46 15799.48 15099.06 163
TSAR-MVS + MP.99.56 5399.54 3899.58 8899.69 14499.14 14499.73 4899.45 18599.50 3399.35 17199.60 8199.93 4399.50 6799.56 5899.37 5899.77 7199.64 60
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
SD-MVS99.35 9599.26 8299.46 11299.66 15299.15 14398.92 18299.67 15199.55 2899.35 17198.83 15899.91 5799.35 8699.19 12098.53 15399.78 6799.68 50
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
GA-MVS98.59 17398.15 17999.09 16999.59 17299.13 14898.84 19199.52 17998.61 14399.35 17199.67 6893.03 19997.73 18398.90 15998.26 16899.51 14699.48 105
SMA-MVScopyleft99.43 7799.41 5899.45 11499.82 9499.31 11499.02 17399.59 16399.06 8799.34 17499.53 9499.96 1499.38 8399.29 9699.13 8299.53 14099.59 69
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
PatchMatch-RL98.80 16298.52 16599.12 16599.38 19998.70 18498.56 20399.55 17197.81 19299.34 17497.57 20099.31 15098.67 15199.27 10498.62 14899.22 18098.35 188
MAR-MVS98.54 17498.15 17998.98 17499.37 20098.09 21098.56 20399.65 15596.11 22199.27 17697.16 20899.50 13398.03 17598.87 16198.23 17099.01 18699.13 156
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
CMPMVSbinary76.62 1998.64 17098.60 15998.68 19299.33 20497.07 21998.11 21898.50 21397.69 19699.26 17798.35 18799.66 12097.62 18499.43 7699.02 9999.24 17899.01 168
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
ET-MVSNet_ETH3D97.44 20296.29 20498.78 18897.93 22398.95 16498.91 18399.09 20698.00 18599.24 17898.83 15884.62 22598.02 17697.43 20597.38 19499.48 15098.84 173
MDTV_nov1_ep1397.41 20396.26 20598.76 18999.47 19098.43 19899.26 14799.82 9098.06 18299.23 17999.22 12992.86 20398.05 17195.33 21393.66 20896.73 21096.26 209
FPMVS98.48 17698.83 14698.07 20899.09 21497.98 21399.07 16598.04 21998.99 9599.22 18098.85 15799.43 13993.79 21699.66 4899.11 8799.24 17897.76 200
DVP-MVScopyleft99.53 5699.51 4199.55 9699.82 9499.58 5199.54 8899.78 11499.28 6099.21 18199.70 6599.97 999.32 9399.32 8999.14 7499.64 11099.58 77
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
TSAR-MVS + ACMM99.31 10599.26 8299.37 13299.66 15298.97 16399.20 15199.56 16999.33 5299.19 18299.54 8899.91 5799.32 9399.12 13098.34 16599.29 17399.65 57
tpmrst96.18 21294.47 21698.18 20499.52 17997.89 21698.96 17799.79 10998.07 18199.16 18399.30 12592.69 20596.69 20190.76 21988.85 21994.96 21893.69 218
Vis-MVSNet (Re-imp)99.40 8699.28 8099.55 9699.92 3299.68 3799.31 13599.87 5798.69 13299.16 18399.08 14598.64 16899.20 10599.65 5099.46 4999.83 5299.72 40
PMMVS98.71 16898.55 16298.90 18399.28 20898.45 19798.53 20699.45 18597.67 19799.15 18598.76 16299.54 13297.79 18098.77 17798.23 17099.16 18398.46 185
Fast-Effi-MVS+-dtu98.82 16098.80 15198.84 18799.51 18598.90 16598.96 17799.91 4498.29 16999.11 18698.47 18199.63 12296.03 20899.21 11498.12 17699.52 14299.01 168
xxxxxxxxxxxxxcwj98.97 14798.97 13298.98 17499.64 15798.89 16898.00 22099.58 16698.42 15899.08 18798.63 17199.96 1498.04 17399.02 13898.76 13199.52 14299.13 156
SF-MVS98.96 14898.95 13498.98 17499.64 15798.89 16898.00 22099.58 16698.42 15899.08 18798.63 17199.83 8798.04 17399.02 13898.76 13199.52 14299.13 156
Effi-MVS+-dtu99.01 14399.05 12098.98 17499.60 16899.13 14899.03 17299.61 15898.52 15099.01 18998.53 17899.83 8796.95 19799.48 6398.59 15199.66 9999.25 145
canonicalmvs99.00 14498.68 15699.37 13299.68 15099.42 8998.94 18199.89 5299.00 9498.99 19098.43 18595.69 19398.96 13399.18 12399.18 6899.74 8199.88 7
train_agg98.89 15698.48 16899.38 12699.69 14498.76 17999.31 13599.60 16097.71 19598.98 19197.89 19599.89 6399.29 9898.32 18997.59 19199.42 16299.16 153
TAMVS99.05 14099.02 12699.08 17099.69 14499.22 13499.33 13299.32 20099.16 7698.97 19299.87 3697.36 18897.76 18199.21 11499.00 10599.44 15699.33 134
DeepPCF-MVS98.38 1199.16 12899.20 9699.12 16599.20 21198.71 18398.85 19099.06 20799.17 7298.96 19399.61 7899.86 7799.29 9899.17 12598.72 13899.36 16799.15 155
EPP-MVSNet99.34 9799.10 11599.62 8499.94 2599.74 3099.66 6399.80 10699.07 8598.93 19499.61 7896.13 19199.49 7299.67 4699.63 3099.92 2199.86 11
DPM-MVS98.10 18397.32 19199.01 17399.52 17997.92 21498.47 20899.45 18598.25 17198.91 19593.99 21699.69 11698.73 14896.29 21096.32 20299.00 18798.77 177
EMVS96.47 21195.38 21297.74 21599.42 19795.37 22398.07 21998.27 21897.85 19198.90 19697.48 20398.73 16697.20 19097.21 20790.39 21694.59 22390.65 221
FMVSNet299.07 13899.19 9898.93 18199.02 21699.53 6299.31 13599.84 7798.86 11498.88 19799.64 7498.44 17296.92 19899.35 8399.00 10599.61 12199.53 94
baseline198.39 18097.59 18599.31 13999.78 10999.45 8099.13 15999.53 17798.06 18298.87 19898.63 17190.04 21498.76 14698.85 16698.84 12399.81 5899.28 140
dps95.59 21493.46 21898.08 20699.33 20498.22 20798.87 18899.70 14096.17 22098.87 19897.75 19886.85 22396.60 20291.24 21889.62 21795.10 21794.34 216
EPNet98.06 18598.11 18198.00 20999.60 16898.99 16298.38 20999.68 14898.18 17598.85 20097.89 19595.60 19492.72 21998.30 19098.10 17898.76 19299.72 40
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
MSP-MVS99.32 10199.26 8299.38 12699.76 12299.54 5999.42 11699.72 13898.92 10798.84 20198.96 15399.96 1498.91 13698.72 17999.14 7499.63 11399.58 77
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
baseline297.87 18797.18 19298.67 19399.34 20399.17 14098.48 20798.82 21097.08 20798.83 20298.75 16389.47 21697.03 19698.67 18198.27 16799.52 14298.83 175
TSAR-MVS + COLMAP98.74 16598.58 16198.93 18199.29 20798.23 20499.04 16899.24 20298.79 12498.80 20399.37 11599.71 11298.06 17098.02 19797.46 19399.16 18398.48 184
MIMVSNet99.00 14499.03 12398.97 17899.32 20699.32 11399.39 12299.91 4498.41 16198.76 20499.24 12699.17 15597.13 19199.30 9398.80 12999.29 17399.01 168
E-PMN96.72 20995.78 20897.81 21299.45 19295.46 22298.14 21798.33 21797.99 18698.73 20598.09 19298.97 16097.54 18697.45 20491.09 21494.70 22191.40 220
thres100view90097.69 19596.37 20399.23 14999.74 13599.21 13798.81 19599.43 18996.10 22298.70 20692.99 21889.10 21898.88 13998.58 18499.31 6199.82 5599.27 141
tfpn200view997.85 19096.54 19999.38 12699.74 13599.52 6999.17 15499.76 12996.10 22298.70 20692.99 21889.10 21899.00 12799.11 13199.56 3499.88 3399.41 120
CHOSEN 280x42098.99 14698.91 13999.07 17199.77 11799.26 12399.55 8499.92 3998.62 14098.67 20899.62 7797.20 18998.44 15999.50 6199.18 6898.08 20198.99 171
thres20097.87 18796.56 19899.39 12299.76 12299.52 6999.13 15999.76 12996.88 21698.66 20992.87 22088.77 22099.16 10999.11 13199.42 5499.88 3399.33 134
thres40097.82 19196.47 20299.40 12199.81 9999.44 8299.29 14299.69 14297.15 20498.57 21092.82 22187.96 22199.16 10998.96 14799.55 3799.86 4199.41 120
DVP-MVS++99.46 7199.57 3299.33 13899.75 12699.57 5299.44 11399.81 9899.38 4798.56 21199.81 5199.99 398.79 14499.33 8799.13 8299.62 11999.81 18
GBi-Net98.96 14899.05 12098.85 18599.02 21699.53 6299.31 13599.78 11498.13 17698.48 21299.43 10697.58 18496.92 19899.68 4399.50 4299.61 12199.53 94
test198.96 14899.05 12098.85 18599.02 21699.53 6299.31 13599.78 11498.13 17698.48 21299.43 10697.58 18496.92 19899.68 4399.50 4299.61 12199.53 94
FMVSNet398.63 17298.75 15298.49 19898.10 22299.44 8299.02 17399.78 11498.13 17698.48 21299.43 10697.58 18496.16 20698.85 16698.39 16299.40 16399.41 120
FMVSNet597.69 19596.98 19498.53 19798.53 22099.36 10298.90 18699.54 17296.38 21998.44 21595.38 21490.08 21397.05 19599.46 6799.06 9298.73 19399.12 159
PMMVS299.23 11699.22 9199.24 14899.80 10099.14 14499.50 10099.82 9099.12 8198.41 21699.91 2399.98 598.51 15799.48 6398.76 13199.38 16598.14 194
thres600view797.86 18996.53 20199.41 12099.84 8399.52 6999.36 12799.76 12997.32 20298.38 21793.24 21787.25 22299.23 10399.11 13199.75 1999.88 3399.48 105
CVMVSNet99.06 13998.88 14499.28 14599.52 17999.53 6299.42 11699.69 14298.74 12898.27 21899.89 3195.48 19599.44 8099.46 6799.33 5999.32 17299.75 33
MVEpermissive91.08 1897.68 19797.65 18397.71 21698.46 22191.62 22597.92 22298.86 20998.73 13097.99 21998.64 17099.96 1499.17 10699.59 5697.75 18793.87 22497.27 204
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
test-LLR97.74 19397.46 18898.08 20699.62 16098.37 19998.26 21199.41 19097.03 20997.38 22099.54 8892.89 20195.12 21298.78 17597.68 18998.65 19597.90 196
TESTMET0.1,197.62 19997.46 18897.81 21299.07 21598.37 19998.26 21198.35 21597.03 20997.38 22099.54 8892.89 20195.12 21298.78 17597.68 18998.65 19597.90 196
IS_MVSNet99.15 13099.12 11299.19 15899.92 3299.73 3299.55 8499.86 6198.45 15496.91 22298.74 16498.33 17599.02 12699.54 6099.47 4799.88 3399.61 66
test-mter97.65 19897.57 18697.75 21498.90 21998.56 19298.15 21698.45 21496.92 21396.84 22399.52 9692.53 20995.24 21199.04 13698.12 17698.90 19098.29 191
test0.0.03 198.41 17898.41 17098.40 20299.62 16099.16 14198.87 18899.41 19097.15 20496.60 22499.31 12297.00 19096.55 20398.91 15598.51 15599.37 16698.82 176
test_method91.96 21695.51 21087.82 21870.84 22582.79 22692.13 22587.74 22198.88 11195.40 22599.20 13298.04 18085.65 22197.71 20094.95 20495.13 21697.00 207
tmp_tt88.14 21796.68 22491.91 22493.70 22461.38 22299.61 2090.51 22699.40 11299.71 11290.32 22099.22 11199.44 5296.25 212
GG-mvs-BLEND70.44 21796.91 19539.57 2193.32 22896.51 22091.01 2264.05 22597.03 20933.20 22794.67 21597.75 1827.59 22498.28 19196.85 19998.24 19997.26 205
testmvs22.33 21829.66 22013.79 2208.97 22610.35 22715.53 2298.09 22432.51 22419.87 22845.18 22330.56 23117.05 22329.96 22224.74 22113.21 22534.30 222
test12321.52 21928.47 22113.42 2217.29 22710.12 22815.70 2288.31 22331.54 22519.34 22936.33 22437.40 23017.14 22227.45 22323.17 22212.73 22633.30 223
uanet_test0.00 2200.00 2220.00 2220.00 2290.00 2290.00 2300.00 2260.00 2260.00 2300.00 2250.00 2320.00 2250.00 2240.00 2230.00 2270.00 224
sosnet-low-res0.00 2200.00 2220.00 2220.00 2290.00 2290.00 2300.00 2260.00 2260.00 2300.00 2250.00 2320.00 2250.00 2240.00 2230.00 2270.00 224
sosnet0.00 2200.00 2220.00 2220.00 2290.00 2290.00 2300.00 2260.00 2260.00 2300.00 2250.00 2320.00 2250.00 2240.00 2230.00 2270.00 224
9.1499.57 127
SR-MVS99.73 13799.74 13699.88 69
Anonymous20240521199.14 10899.87 5599.55 5699.50 10099.70 14098.55 14898.61 17498.46 17198.76 14699.66 4899.50 4299.85 4499.63 61
our_test_399.75 12699.11 15399.74 47
Patchmatch-RL test65.75 227
mPP-MVS99.84 8399.92 51
NP-MVS97.37 201