This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorcourty.delive.electrofacadekickermeadowofficepipesplaygr.reliefrelief.terraceterrai.
sort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
v7n99.89 299.86 499.93 199.97 299.83 599.93 199.96 1299.77 499.89 1799.99 199.86 7899.84 599.89 1199.81 1299.97 199.88 7
SixPastTwentyTwo99.89 299.85 699.93 199.97 299.88 399.92 299.97 199.66 1399.94 499.94 1199.74 10899.81 799.97 199.89 199.96 399.89 5
LTVRE_ROB99.39 199.90 199.87 299.93 199.97 299.82 999.91 399.92 3899.75 599.93 599.89 31100.00 199.87 299.93 399.82 1199.96 399.90 3
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
anonymousdsp99.87 699.86 499.88 1299.95 1199.75 2899.90 499.96 1299.69 899.83 5199.96 499.99 399.74 2199.95 299.83 899.91 2499.88 7
pmmvs699.88 499.87 299.89 999.97 299.76 2299.89 599.96 1299.82 399.90 1599.92 1699.95 2699.68 3299.93 399.88 399.95 899.86 12
TDRefinement99.81 899.76 1099.86 1799.83 8999.53 6299.89 599.91 4399.73 699.88 2299.83 4699.96 1499.76 1699.91 999.81 1299.86 4199.59 69
EU-MVSNet99.76 1499.74 1299.78 4299.82 9499.81 1399.88 799.87 5699.31 5499.75 7699.91 2399.76 10799.78 1299.84 2199.74 1999.56 13599.81 20
TransMVSNet (Re)99.72 2499.59 3099.88 1299.95 1199.76 2299.88 799.94 2499.58 2499.92 1099.90 2898.55 17099.65 3899.89 1199.76 1799.95 899.70 48
WR-MVS99.79 1099.68 1499.91 599.95 1199.83 599.87 999.96 1299.39 4699.93 599.87 3699.29 15299.77 1499.83 2299.72 2099.97 199.82 16
CS-MVS99.73 2099.65 1799.83 2699.91 3599.85 499.86 1099.85 6798.83 11999.82 5499.57 8599.84 8699.61 4699.79 3099.80 1499.94 1699.87 10
PEN-MVS99.77 1299.65 1799.91 599.95 1199.80 1699.86 1099.97 199.08 8399.89 1799.69 6799.68 11899.84 599.81 2699.64 2899.95 899.81 20
DTE-MVSNet99.75 1699.61 2599.92 499.95 1199.81 1399.86 1099.96 1299.18 7199.92 1099.66 7099.45 13799.85 399.80 2899.56 3499.96 399.79 26
Gipumacopyleft99.55 5599.23 8899.91 599.87 5599.52 6999.86 1099.93 2799.87 199.96 296.72 20999.55 13199.97 199.77 3499.46 4999.87 3999.74 35
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
CS-MVS-test99.75 1699.65 1799.87 1699.95 1199.95 199.85 1499.93 2798.83 11999.84 4599.50 10199.95 2699.70 2999.81 2699.71 2199.91 2499.82 16
PS-CasMVS99.73 2099.59 3099.90 899.95 1199.80 1699.85 1499.97 198.95 10199.86 3499.73 5699.36 14499.81 799.83 2299.67 2499.95 899.83 15
DROMVSNet99.70 2699.57 3399.85 2099.95 1199.81 1399.85 1499.93 2798.39 16599.76 7299.48 10499.94 3799.70 2999.85 1999.66 2599.91 2499.87 10
FC-MVSNet-test99.84 799.80 799.89 999.96 799.83 599.84 1799.95 2399.37 4899.77 6999.95 699.96 1499.85 399.93 399.83 899.95 899.72 40
pm-mvs199.77 1299.69 1399.86 1799.94 2599.68 3799.84 1799.93 2799.59 2299.87 2899.92 1699.21 15599.65 3899.88 1599.77 1699.93 2199.78 27
MIMVSNet199.79 1099.75 1199.84 2299.89 4399.83 599.84 1799.89 5199.31 5499.93 599.92 1699.97 999.68 3299.89 1199.64 2899.82 5599.66 54
test_part199.88 499.89 199.88 1299.96 799.90 299.83 2099.97 199.84 299.93 599.91 2399.83 8999.63 4499.89 1199.88 399.96 399.95 1
CP-MVSNet99.68 3099.51 4299.89 999.95 1199.76 2299.83 2099.96 1298.83 11999.84 4599.65 7399.09 15799.80 1099.78 3299.62 3299.95 899.82 16
WR-MVS_H99.73 2099.61 2599.88 1299.95 1199.82 999.83 2099.96 1299.01 9399.84 4599.71 6499.41 14399.74 2199.77 3499.70 2399.95 899.82 16
Vis-MVSNetpermissive99.76 1499.78 999.75 5299.92 3199.77 2199.83 2099.85 6799.43 4099.85 4199.84 43100.00 199.13 11799.83 2299.66 2599.90 2899.90 3
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
ACMH99.11 499.72 2499.63 2299.84 2299.87 5599.59 4999.83 2099.88 5599.46 3799.87 2899.66 7099.95 2699.76 1699.73 3999.47 4799.84 4799.52 99
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
FC-MVSNet-train99.70 2699.67 1599.74 5899.94 2599.71 3399.82 2599.91 4399.14 7999.53 13499.70 6599.88 7099.33 9099.88 1599.61 3399.94 1699.77 28
v124099.58 4899.38 6699.82 2799.89 4399.49 7599.82 2599.83 8399.63 1899.86 3499.96 498.92 16499.75 1899.15 12798.96 11099.76 7399.56 84
v192192099.59 4599.40 6299.82 2799.88 4999.45 8099.81 2799.83 8399.65 1499.86 3499.95 699.29 15299.75 1898.98 14698.86 12199.78 6799.59 69
v119299.60 4399.41 5999.82 2799.89 4399.43 8599.81 2799.84 7799.63 1899.85 4199.95 699.35 14799.72 2699.01 14098.90 11699.82 5599.58 77
tfpnnormal99.74 1899.63 2299.86 1799.93 2899.75 2899.80 2999.89 5199.31 5499.88 2299.43 10799.66 12199.77 1499.80 2899.71 2199.92 2299.76 31
CHOSEN 1792x268899.65 3399.55 3699.77 4799.93 2899.60 4699.79 3099.92 3899.73 699.74 8299.93 1499.98 599.80 1098.83 17299.01 10199.45 15499.76 31
DeepC-MVS99.05 599.74 1899.64 2099.84 2299.90 4099.39 9399.79 3099.81 9899.69 899.90 1599.87 3699.98 599.81 799.62 5599.32 6099.83 5299.65 57
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
GeoE99.63 3699.51 4299.78 4299.91 3599.57 5299.78 3299.97 199.23 6299.72 9199.72 6099.80 10099.50 6899.45 7499.10 8899.79 6599.71 46
new-patchmatchnet98.49 17597.60 18499.53 9999.90 4099.55 5699.77 3399.48 18299.67 1199.86 3499.98 399.98 599.50 6896.90 20891.52 21298.67 19495.62 212
v14419299.58 4899.39 6399.80 3799.87 5599.44 8299.77 3399.84 7799.64 1699.86 3499.93 1499.35 14799.72 2698.92 15298.82 12599.74 8199.66 54
MDA-MVSNet-bldmvs99.11 13399.11 11499.12 16599.91 3599.38 9699.77 3398.72 21199.31 5499.85 4199.43 10798.26 17799.48 7699.85 1998.47 15696.99 20899.08 160
v114499.61 3899.43 5599.82 2799.88 4999.41 9099.76 3699.86 6099.64 1699.84 4599.95 699.49 13599.74 2199.00 14298.93 11399.84 4799.58 77
v14899.58 4899.43 5599.76 4899.87 5599.40 9299.76 3699.85 6799.48 3599.83 5199.82 4899.83 8999.51 6499.20 11798.82 12599.75 7699.45 110
HyFIR lowres test99.50 6099.26 8299.80 3799.95 1199.62 4399.76 3699.97 199.67 1199.56 13099.94 1198.40 17399.78 1298.84 17198.59 15199.76 7399.72 40
COLMAP_ROBcopyleft99.18 299.70 2699.60 2899.81 3299.84 8399.37 10099.76 3699.84 7799.54 3099.82 5499.64 7499.95 2699.75 1899.79 3099.56 3499.83 5299.37 130
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
pmmvs-eth3d99.61 3899.48 4799.75 5299.87 5599.30 11699.75 4099.89 5199.23 6299.85 4199.88 3599.97 999.49 7399.46 6799.01 10199.68 9599.52 99
v1099.65 3399.51 4299.81 3299.83 8999.61 4599.75 4099.94 2499.56 2699.76 7299.94 1199.60 12699.73 2499.11 13199.01 10199.85 4499.74 35
v2v48299.56 5399.35 6999.81 3299.87 5599.35 10699.75 4099.85 6799.56 2699.87 2899.95 699.44 13999.66 3698.91 15598.76 13199.86 4199.45 110
APDe-MVS99.60 4399.48 4799.73 6099.85 7799.51 7399.75 4099.85 6799.17 7299.81 5899.56 8799.94 3799.44 8099.42 7799.22 6499.67 9799.54 91
N_pmnet98.64 17098.23 17799.11 16899.78 10999.25 12699.75 4099.39 19499.65 1499.70 9999.78 5399.89 6498.81 14397.60 20194.28 20697.24 20797.15 206
MDTV_nov1_ep13_2view98.73 16798.31 17199.22 15299.75 12699.24 13199.75 4099.93 2799.31 5499.84 4599.86 3999.81 9499.31 9697.40 20694.77 20596.73 21097.81 199
ACMH+98.94 699.69 2999.59 3099.81 3299.88 4999.41 9099.75 4099.86 6099.43 4099.80 5999.54 8999.97 999.73 2499.82 2599.52 4199.85 4499.43 116
our_test_399.75 12699.11 15399.74 47
UniMVSNet_ETH3D99.81 899.79 899.85 2099.98 199.76 2299.73 4899.96 1299.68 1099.87 2899.59 8399.91 5899.58 5399.90 1099.85 799.96 399.81 20
TSAR-MVS + MP.99.56 5399.54 3999.58 8899.69 14499.14 14499.73 4899.45 18599.50 3399.35 17199.60 8199.93 4499.50 6899.56 5899.37 5899.77 7199.64 60
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
v899.61 3899.45 5399.79 4199.80 10099.59 4999.73 4899.93 2799.48 3599.77 6999.90 2899.48 13699.67 3599.11 13198.89 11799.84 4799.73 37
V4299.57 5299.41 5999.75 5299.84 8399.37 10099.73 4899.83 8399.41 4299.75 7699.89 3199.42 14199.60 4999.15 12798.96 11099.76 7399.65 57
test111199.21 11998.67 15799.84 2299.96 799.82 999.72 5299.94 2499.54 3099.78 6799.89 3191.89 21099.69 3199.93 399.89 199.95 899.75 33
XVS99.86 6999.30 11699.72 5299.69 10099.93 4499.60 124
X-MVStestdata99.86 6999.30 11699.72 5299.69 10099.93 4499.60 124
LGP-MVS_train99.46 7199.18 10099.78 4299.87 5599.25 12699.71 5599.87 5698.02 18499.79 6398.90 15599.96 1499.66 3699.49 6299.17 7099.79 6599.49 102
gm-plane-assit96.82 20694.84 21499.13 16399.95 1199.78 1899.69 5699.92 3899.19 6999.84 4599.92 1672.93 22896.44 20598.21 19397.01 19898.92 18996.87 208
pmnet_mix0298.28 18197.48 18799.22 15299.78 10999.12 15199.68 5799.39 19499.49 3499.86 3499.82 4899.89 6499.23 10395.54 21192.36 20997.38 20596.14 210
thisisatest051599.73 2099.67 1599.81 3299.93 2899.74 3099.68 5799.91 4399.59 2299.88 2299.73 5699.81 9499.55 5799.59 5699.53 3999.89 3199.70 48
test20.0399.68 3099.60 2899.76 4899.91 3599.70 3699.68 5799.87 5699.05 9099.88 2299.92 1699.88 7099.50 6899.77 3499.42 5499.75 7699.49 102
ACMM98.37 1299.47 6799.23 8899.74 5899.86 6999.19 13899.68 5799.86 6099.16 7699.71 9798.52 17999.95 2699.62 4599.35 8399.02 9999.74 8199.42 119
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
test250697.57 20095.67 20999.78 4299.95 1199.78 1899.67 6199.93 2799.45 3899.55 13399.20 13371.73 22999.65 3899.93 399.88 399.94 1699.72 40
ECVR-MVScopyleft99.24 11498.74 15399.82 2799.95 1199.78 1899.67 6199.93 2799.45 3899.80 5999.86 3992.58 20799.65 3899.93 399.88 399.94 1699.71 46
EPP-MVSNet99.34 9799.10 11599.62 8499.94 2599.74 3099.66 6399.80 10699.07 8598.93 19499.61 7896.13 19199.49 7399.67 4699.63 3099.92 2299.86 12
SteuartSystems-ACMMP99.47 6799.22 9199.76 4899.88 4999.36 10299.65 6499.84 7798.47 15199.80 5998.68 16899.96 1499.68 3299.37 8099.06 9299.72 8899.66 54
Skip Steuart: Steuart Systems R&D Blog.
DCV-MVSNet99.43 7799.23 8899.67 7099.92 3199.76 2299.64 6599.93 2799.06 8799.68 10797.77 19798.97 16198.97 13099.72 4099.54 3899.88 3399.81 20
casdiffmvs99.61 3899.55 3699.68 6899.89 4399.53 6299.64 6599.68 14899.51 3299.62 11699.90 2899.96 1499.37 8499.28 10199.25 6399.88 3399.44 113
TranMVSNet+NR-MVSNet99.59 4599.42 5899.80 3799.87 5599.55 5699.64 6599.86 6099.05 9099.88 2299.72 6099.33 15099.64 4299.47 6699.14 7499.91 2499.67 53
ACMP98.32 1399.44 7699.18 10099.75 5299.83 8999.18 13999.64 6599.83 8398.81 12399.79 6398.42 18699.96 1499.64 4299.46 6798.98 10799.74 8199.44 113
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
Anonymous2023120699.48 6499.31 7599.69 6799.79 10499.57 5299.63 6999.79 10998.88 11199.91 1399.72 6099.93 4499.59 5099.24 10798.63 14799.43 15999.18 147
ACMMPcopyleft99.36 9299.06 11999.71 6299.86 6999.36 10299.63 6999.85 6798.33 16799.72 9197.73 19999.94 3799.53 6099.37 8099.13 8299.65 10199.56 84
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
DI_MVS_plusplus_trai98.74 16598.08 18299.51 10599.79 10499.29 12099.61 7199.60 16099.20 6699.46 15299.09 14592.93 20098.97 13098.27 19298.35 16499.65 10199.45 110
ACMMPR99.51 5899.32 7399.72 6199.87 5599.33 10999.61 7199.85 6799.19 6999.73 8898.73 16599.95 2699.61 4699.35 8399.14 7499.66 9999.58 77
PVSNet_Blended_VisFu99.66 3299.64 2099.67 7099.91 3599.71 3399.61 7199.79 10999.41 4299.91 1399.85 4199.61 12499.00 12799.67 4699.42 5499.81 5899.81 20
UGNet99.40 8699.61 2599.16 16199.88 4999.64 4199.61 7199.77 12199.31 5499.63 11599.33 11899.93 4496.46 20499.63 5299.53 3999.63 11399.89 5
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
FMVSNet199.50 6099.57 3399.42 11799.67 15199.65 4099.60 7599.91 4399.40 4499.39 16499.83 4699.27 15498.14 16699.68 4399.50 4299.81 5899.68 50
MP-MVScopyleft99.35 9599.09 11799.65 7499.84 8399.22 13499.59 7699.78 11498.13 17699.67 10898.44 18399.93 4499.43 8299.31 9199.09 8999.60 12499.49 102
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
PGM-MVS99.32 10198.99 12899.71 6299.86 6999.31 11499.59 7699.86 6097.51 19999.75 7698.23 18999.94 3799.53 6099.29 9699.08 9099.65 10199.54 91
CDPH-MVS99.05 14098.63 15899.54 9899.75 12698.78 17699.59 7699.68 14897.79 19399.37 16898.20 19099.86 7899.14 11598.58 18498.01 18299.68 9599.16 153
Baseline_NR-MVSNet99.62 3799.48 4799.78 4299.85 7799.76 2299.59 7699.82 9098.84 11799.88 2299.91 2399.04 15899.61 4699.46 6799.78 1599.94 1699.60 67
pmmvs599.58 4899.47 5099.70 6599.84 8399.50 7499.58 8099.80 10698.98 9899.73 8899.92 1699.81 9499.49 7399.28 10199.05 9599.77 7199.73 37
IterMVS-LS99.16 12898.82 14999.57 9199.87 5599.71 3399.58 8099.92 3899.24 6199.71 9799.73 5695.79 19298.91 13698.82 17398.66 14499.43 15999.77 28
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
PatchT98.11 18297.12 19399.26 14799.65 15698.34 20199.57 8299.97 197.48 20099.43 15699.04 15090.84 21298.15 16498.04 19597.78 18598.82 19198.30 189
ACMMP_NAP99.47 6799.33 7199.63 8099.85 7799.28 12199.56 8399.83 8398.75 12799.48 14899.03 15199.95 2699.47 7999.48 6399.19 6799.57 13299.59 69
CHOSEN 280x42098.99 14698.91 13999.07 17199.77 11799.26 12399.55 8499.92 3898.62 14098.67 20899.62 7797.20 18998.44 15999.50 6199.18 6898.08 20198.99 171
NR-MVSNet99.52 5799.29 7899.80 3799.96 799.38 9699.55 8499.81 9898.86 11499.87 2899.51 9998.81 16699.72 2699.86 1899.04 9799.89 3199.54 91
IS_MVSNet99.15 13099.12 11299.19 15899.92 3199.73 3299.55 8499.86 6098.45 15496.91 22298.74 16498.33 17599.02 12699.54 6099.47 4799.88 3399.61 66
LS3D99.39 8899.28 8099.52 10399.77 11799.39 9399.55 8499.82 9098.93 10599.64 11398.52 17999.67 12098.58 15699.74 3799.63 3099.75 7699.06 163
DVP-MVScopyleft99.53 5699.51 4299.55 9699.82 9499.58 5199.54 8899.78 11499.28 6099.21 18199.70 6599.97 999.32 9399.32 8999.14 7499.64 11099.58 77
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
IterMVS-SCA-FT99.15 13098.96 13399.38 12699.87 5599.54 5999.53 8999.79 10998.94 10399.82 5499.92 1697.65 18398.82 14198.95 14998.26 16898.45 19799.47 108
zzz-MVS99.51 5899.36 6799.68 6899.88 4999.38 9699.53 8999.84 7799.11 8299.59 12498.93 15499.95 2699.58 5399.44 7599.21 6699.65 10199.52 99
PM-MVS99.49 6399.43 5599.57 9199.76 12299.34 10899.53 8999.77 12198.93 10599.75 7699.46 10599.83 8999.11 11999.72 4099.29 6299.49 14999.46 109
DeepC-MVS_fast98.69 999.32 10199.13 11099.53 9999.63 15998.78 17699.53 8999.33 19999.08 8399.77 6999.18 13699.89 6499.29 9899.00 14298.70 14099.65 10199.30 138
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
IterMVS99.08 13698.90 14099.29 14199.87 5599.53 6299.52 9399.77 12198.94 10399.75 7699.91 2397.52 18798.72 14998.86 16498.14 17598.09 20099.43 116
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
CSCG99.61 3899.52 4199.71 6299.89 4399.62 4399.52 9399.76 12999.61 2099.69 10099.73 5699.96 1499.57 5599.27 10498.62 14899.81 5899.85 14
3Dnovator+98.92 799.31 10599.03 12399.63 8099.77 11798.90 16599.52 9399.81 9899.37 4899.72 9198.03 19499.73 11199.32 9398.99 14598.81 12899.67 9799.36 131
OPM-MVS99.39 8899.22 9199.59 8699.76 12298.82 17399.51 9699.79 10999.17 7299.53 13499.31 12399.95 2699.35 8699.22 11198.79 13099.60 12499.27 141
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
pmmvs499.34 9799.15 10799.57 9199.77 11798.90 16599.51 9699.77 12199.07 8599.73 8899.72 6099.84 8699.07 12198.85 16698.39 16299.55 13899.27 141
UniMVSNet (Re)99.50 6099.29 7899.75 5299.86 6999.47 7899.51 9699.82 9098.90 10999.89 1799.64 7499.00 15999.55 5799.32 8999.08 9099.90 2899.59 69
QAPM99.41 8299.21 9599.64 7999.78 10999.16 14199.51 9699.85 6799.20 6699.72 9199.43 10799.81 9499.25 10198.87 16198.71 13999.71 9199.30 138
Anonymous20240521199.14 10899.87 5599.55 5699.50 10099.70 14098.55 14898.61 17498.46 17198.76 14699.66 4899.50 4299.85 4499.63 61
Anonymous2023121199.47 6799.39 6399.57 9199.89 4399.60 4699.50 10099.69 14298.91 10899.62 11699.17 13799.35 14798.86 14099.63 5299.46 4999.84 4799.62 64
HFP-MVS99.46 7199.30 7699.65 7499.82 9499.25 12699.50 10099.82 9099.23 6299.58 12898.86 15699.94 3799.56 5699.14 12999.12 8699.63 11399.56 84
PMMVS299.23 11699.22 9199.24 14899.80 10099.14 14499.50 10099.82 9099.12 8198.41 21699.91 2399.98 598.51 15799.48 6398.76 13199.38 16598.14 194
UniMVSNet_NR-MVSNet99.41 8299.12 11299.76 4899.86 6999.48 7699.50 10099.81 9898.84 11799.89 1799.45 10698.32 17699.59 5099.22 11198.89 11799.90 2899.63 61
DU-MVS99.48 6499.26 8299.75 5299.85 7799.38 9699.50 10099.81 9898.86 11499.89 1799.51 9998.98 16099.59 5099.46 6798.97 10899.87 3999.63 61
3Dnovator99.16 399.42 8099.22 9199.65 7499.78 10999.13 14899.50 10099.85 6799.40 4499.80 5998.59 17599.79 10399.30 9799.20 11799.06 9299.71 9199.35 133
X-MVS99.30 10798.99 12899.66 7299.85 7799.30 11699.49 10799.82 9098.32 16899.69 10097.31 20699.93 4499.50 6899.37 8099.16 7199.60 12499.53 94
CDS-MVSNet99.15 13099.10 11599.21 15599.59 17299.22 13499.48 10899.47 18398.89 11099.41 16199.84 4398.11 17997.76 18199.26 10699.01 10199.57 13299.38 128
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
USDC99.29 11198.98 13099.65 7499.72 13998.87 17199.47 10999.66 15499.35 5199.87 2899.58 8499.87 7799.51 6498.85 16697.93 18499.65 10198.38 186
TinyColmap99.21 11998.89 14199.59 8699.61 16498.61 18999.47 10999.67 15199.02 9299.82 5499.15 13899.74 10899.35 8699.17 12598.33 16699.63 11398.22 192
DPE-MVScopyleft99.41 8299.36 6799.47 11099.66 15299.48 7699.46 11199.75 13498.65 13599.41 16199.67 6899.95 2698.82 14199.21 11499.14 7499.72 8899.40 125
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
Fast-Effi-MVS+99.39 8899.18 10099.63 8099.86 6999.28 12199.45 11299.91 4398.47 15199.61 11999.50 10199.57 12899.17 10699.24 10798.66 14499.78 6799.59 69
DVP-MVS++99.46 7199.57 3399.33 13899.75 12699.57 5299.44 11399.81 9899.38 4798.56 21199.81 5199.99 398.79 14499.33 8799.13 8299.62 11999.81 20
HPM-MVS++copyleft99.23 11698.98 13099.53 9999.75 12699.02 15899.44 11399.77 12198.65 13599.52 14098.72 16699.92 5299.33 9098.77 17798.40 16199.40 16399.36 131
CP-MVS99.41 8299.20 9699.65 7499.80 10099.23 13399.44 11399.75 13498.60 14499.74 8298.66 16999.93 4499.48 7699.33 8799.16 7199.73 8599.48 105
SED-MVS99.45 7499.46 5299.42 11799.77 11799.57 5299.42 11699.80 10699.06 8799.38 16599.66 7099.96 1498.65 15299.31 9199.14 7499.53 14099.55 89
MSP-MVS99.32 10199.26 8299.38 12699.76 12299.54 5999.42 11699.72 13898.92 10798.84 20198.96 15399.96 1498.91 13698.72 17999.14 7499.63 11399.58 77
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
CVMVSNet99.06 13998.88 14499.28 14599.52 17999.53 6299.42 11699.69 14298.74 12898.27 21899.89 3195.48 19599.44 8099.46 6799.33 5999.32 17299.75 33
DELS-MVS99.42 8099.53 4099.29 14199.52 17999.43 8599.42 11699.28 20199.16 7699.72 9199.82 4899.97 998.17 16399.56 5899.16 7199.65 10199.59 69
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
CANet99.36 9299.39 6399.34 13799.80 10099.35 10699.41 12099.47 18399.20 6699.74 8299.54 8999.68 11898.05 17199.23 10998.97 10899.57 13299.73 37
ETV-MVS99.45 7499.32 7399.60 8599.79 10499.60 4699.40 12199.78 11497.88 19099.83 5199.33 11899.70 11698.97 13099.74 3799.43 5399.84 4799.58 77
MVS_030499.36 9299.35 6999.37 13299.85 7799.36 10299.39 12299.56 16999.36 5099.75 7699.23 12999.90 6197.97 17899.00 14298.83 12499.69 9499.77 28
EG-PatchMatch MVS99.59 4599.49 4699.70 6599.82 9499.26 12399.39 12299.83 8398.99 9599.93 599.54 8999.92 5299.51 6499.78 3299.50 4299.73 8599.41 120
MIMVSNet99.00 14499.03 12398.97 17899.32 20699.32 11399.39 12299.91 4398.41 16198.76 20499.24 12799.17 15697.13 19199.30 9398.80 12999.29 17399.01 168
PMVScopyleft94.32 1799.27 11299.55 3698.94 17999.60 16899.43 8599.39 12299.54 17298.99 9599.69 10099.60 8199.81 9495.68 20999.88 1599.83 899.73 8599.31 136
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
pmmvs398.85 15998.60 15999.13 16399.66 15298.72 18299.37 12699.06 20798.44 15599.76 7299.74 5499.55 13199.15 11399.04 13696.00 20397.80 20298.72 180
thres600view797.86 18996.53 20199.41 12099.84 8399.52 6999.36 12799.76 12997.32 20298.38 21793.24 21787.25 22299.23 10399.11 13199.75 1899.88 3399.48 105
OpenMVScopyleft98.82 899.17 12598.85 14599.53 9999.75 12699.06 15699.36 12799.82 9098.28 17099.76 7298.47 18199.61 12498.91 13698.80 17498.70 14099.60 12499.04 167
MSDG99.32 10199.09 11799.58 8899.75 12698.74 18099.36 12799.54 17299.14 7999.72 9199.24 12799.89 6499.51 6499.30 9398.76 13199.62 11998.54 182
CLD-MVS99.30 10799.01 12799.63 8099.75 12698.89 16899.35 13099.60 16098.53 14999.86 3499.57 8599.94 3799.52 6398.96 14798.10 17899.70 9399.08 160
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
APD-MVScopyleft99.17 12598.92 13799.46 11299.78 10999.24 13199.34 13199.78 11497.79 19399.48 14898.25 18899.88 7098.77 14599.18 12398.92 11499.63 11399.18 147
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
TAMVS99.05 14099.02 12699.08 17099.69 14499.22 13499.33 13299.32 20099.16 7698.97 19299.87 3697.36 18897.76 18199.21 11499.00 10599.44 15699.33 134
ADS-MVSNet97.29 20496.17 20698.59 19599.59 17298.70 18499.32 13399.86 6098.47 15199.56 13099.08 14698.16 17897.34 18992.92 21591.17 21395.91 21394.72 215
EPMVS96.76 20895.30 21398.46 20099.42 19798.47 19699.32 13399.91 4398.42 15899.51 14299.07 14892.81 20497.12 19292.39 21791.71 21195.51 21594.20 217
train_agg98.89 15698.48 16899.38 12699.69 14498.76 17999.31 13599.60 16097.71 19598.98 19197.89 19599.89 6499.29 9898.32 18997.59 19199.42 16299.16 153
GBi-Net98.96 14899.05 12098.85 18599.02 21699.53 6299.31 13599.78 11498.13 17698.48 21299.43 10797.58 18496.92 19899.68 4399.50 4299.61 12199.53 94
test198.96 14899.05 12098.85 18599.02 21699.53 6299.31 13599.78 11498.13 17698.48 21299.43 10797.58 18496.92 19899.68 4399.50 4299.61 12199.53 94
FMVSNet299.07 13899.19 9898.93 18199.02 21699.53 6299.31 13599.84 7798.86 11498.88 19799.64 7498.44 17296.92 19899.35 8399.00 10599.61 12199.53 94
Vis-MVSNet (Re-imp)99.40 8699.28 8099.55 9699.92 3199.68 3799.31 13599.87 5698.69 13299.16 18399.08 14698.64 16999.20 10599.65 5099.46 4999.83 5299.72 40
testgi99.43 7799.47 5099.38 12699.90 4099.67 3999.30 14099.73 13798.64 13999.53 13499.52 9799.90 6198.08 16999.65 5099.40 5799.75 7699.55 89
CPTT-MVS99.21 11998.89 14199.58 8899.72 13999.12 15199.30 14099.76 12998.62 14099.66 11097.51 20299.89 6499.48 7699.01 14098.64 14699.58 13199.40 125
thres40097.82 19196.47 20299.40 12199.81 9999.44 8299.29 14299.69 14297.15 20498.57 21092.82 22187.96 22199.16 10998.96 14799.55 3799.86 4199.41 120
diffmvs99.38 9199.33 7199.45 11499.87 5599.39 9399.28 14399.58 16699.55 2899.50 14499.85 4199.85 8498.94 13598.58 18498.68 14299.51 14699.39 127
SCA97.25 20596.05 20798.64 19499.36 20299.02 15899.27 14499.96 1298.25 17199.69 10098.71 16794.66 19697.95 17993.95 21492.35 21095.64 21495.40 214
MVS_111021_HR99.30 10799.14 10899.48 10999.58 17599.25 12699.27 14499.61 15898.74 12899.66 11099.02 15299.84 8699.33 9099.20 11798.76 13199.44 15699.18 147
PHI-MVS99.33 9999.19 9899.49 10899.69 14499.25 12699.27 14499.59 16398.44 15599.78 6799.15 13899.92 5298.95 13499.39 7899.04 9799.64 11099.18 147
MDTV_nov1_ep1397.41 20396.26 20598.76 18999.47 19098.43 19899.26 14799.82 9098.06 18299.23 17999.22 13092.86 20398.05 17195.33 21393.66 20896.73 21096.26 209
MCST-MVS99.17 12598.82 14999.57 9199.75 12698.70 18499.25 14899.69 14298.62 14099.59 12498.54 17799.79 10399.53 6098.48 18898.15 17499.64 11099.43 116
MVS_111021_LR99.25 11399.13 11099.39 12299.50 18799.14 14499.23 14999.50 18098.67 13399.61 11999.12 14299.81 9499.16 10999.28 10198.67 14399.35 16999.21 146
PatchmatchNetpermissive96.81 20795.41 21198.43 20199.43 19698.30 20299.23 14999.93 2798.19 17499.64 11398.81 16193.50 19897.43 18892.89 21690.78 21594.94 21995.41 213
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
TSAR-MVS + ACMM99.31 10599.26 8299.37 13299.66 15298.97 16399.20 15199.56 16999.33 5299.19 18299.54 8999.91 5899.32 9399.12 13098.34 16599.29 17399.65 57
OMC-MVS99.11 13398.95 13499.29 14199.37 20098.57 19199.19 15299.20 20398.87 11399.58 12899.13 14099.88 7099.00 12799.19 12098.46 15799.43 15998.57 181
CANet_DTU99.03 14299.18 10098.87 18499.58 17599.03 15799.18 15399.41 19098.65 13599.74 8299.55 8899.71 11396.13 20799.19 12098.92 11499.17 18299.18 147
tfpn200view997.85 19096.54 19999.38 12699.74 13599.52 6999.17 15499.76 12996.10 22298.70 20692.99 21889.10 21899.00 12799.11 13199.56 3499.88 3399.41 120
EIA-MVS99.23 11699.03 12399.47 11099.83 8999.64 4199.16 15599.81 9897.11 20699.65 11298.44 18399.78 10698.61 15599.46 6799.22 6499.75 7699.59 69
CNVR-MVS99.08 13698.83 14699.37 13299.61 16498.74 18099.15 15699.54 17298.59 14599.37 16898.15 19199.88 7099.08 12098.91 15598.46 15799.48 15099.06 163
new_pmnet98.91 15598.89 14198.94 17999.51 18598.27 20399.15 15698.66 21299.17 7299.48 14899.79 5299.80 10098.49 15899.23 10998.20 17298.34 19897.74 202
UA-Net99.64 3599.62 2499.66 7299.97 299.82 999.14 15899.96 1298.95 10199.52 14099.38 11599.86 7899.55 5799.72 4099.66 2599.80 6299.94 2
thres20097.87 18796.56 19899.39 12299.76 12299.52 6999.13 15999.76 12996.88 21698.66 20992.87 22088.77 22099.16 10999.11 13199.42 5499.88 3399.33 134
baseline198.39 18097.59 18599.31 13999.78 10999.45 8099.13 15999.53 17798.06 18298.87 19898.63 17190.04 21498.76 14698.85 16698.84 12399.81 5899.28 140
RPSCF99.48 6499.45 5399.52 10399.73 13799.33 10999.13 15999.77 12199.33 5299.47 15199.39 11499.92 5299.36 8599.63 5299.13 8299.63 11399.41 120
AdaColmapbinary98.93 15398.53 16399.39 12299.52 17998.65 18799.11 16299.59 16398.08 18099.44 15497.46 20499.45 13799.24 10298.92 15298.44 16099.44 15698.73 178
baseline99.24 11499.30 7699.17 16099.78 10999.14 14499.10 16399.69 14298.97 9999.49 14699.84 4399.88 7097.99 17798.85 16698.73 13798.98 18899.72 40
NCCC98.88 15798.42 16999.42 11799.62 16098.81 17499.10 16399.54 17298.76 12599.53 13495.97 21299.80 10099.16 10998.49 18798.06 18199.55 13899.05 165
thisisatest053098.78 16398.26 17299.39 12299.78 10999.43 8599.07 16599.64 15698.44 15599.42 15999.22 13092.68 20698.63 15399.30 9399.14 7499.80 6299.60 67
tttt051798.77 16498.25 17499.38 12699.79 10499.46 7999.07 16599.64 15698.40 16499.38 16599.21 13292.54 20898.63 15399.34 8699.14 7499.80 6299.62 64
FPMVS98.48 17698.83 14698.07 20899.09 21497.98 21399.07 16598.04 21998.99 9599.22 18098.85 15799.43 14093.79 21699.66 4899.11 8799.24 17897.76 200
TSAR-MVS + COLMAP98.74 16598.58 16198.93 18199.29 20798.23 20499.04 16899.24 20298.79 12498.80 20399.37 11699.71 11398.06 17098.02 19797.46 19399.16 18398.48 184
MVS_Test99.09 13598.92 13799.29 14199.61 16499.07 15599.04 16899.81 9898.58 14699.37 16899.74 5498.87 16598.41 16098.61 18398.01 18299.50 14899.57 83
PVSNet_BlendedMVS99.20 12299.17 10499.23 14999.69 14499.33 10999.04 16899.13 20498.41 16199.79 6399.33 11899.36 14498.10 16799.29 9698.87 11999.65 10199.56 84
PVSNet_Blended99.20 12299.17 10499.23 14999.69 14499.33 10999.04 16899.13 20498.41 16199.79 6399.33 11899.36 14498.10 16799.29 9698.87 11999.65 10199.56 84
Effi-MVS+-dtu99.01 14399.05 12098.98 17499.60 16899.13 14899.03 17299.61 15898.52 15099.01 18998.53 17899.83 8996.95 19799.48 6398.59 15199.66 9999.25 145
SMA-MVScopyleft99.43 7799.41 5999.45 11499.82 9499.31 11499.02 17399.59 16399.06 8799.34 17499.53 9599.96 1499.38 8399.29 9699.13 8299.53 14099.59 69
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
FMVSNet398.63 17298.75 15298.49 19898.10 22299.44 8299.02 17399.78 11498.13 17698.48 21299.43 10797.58 18496.16 20698.85 16698.39 16299.40 16399.41 120
TAPA-MVS98.54 1099.30 10799.24 8799.36 13699.44 19498.77 17899.00 17599.41 19099.23 6299.60 12299.50 10199.86 7899.15 11399.29 9698.95 11299.56 13599.08 160
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
MS-PatchMatch98.94 15298.71 15599.21 15599.52 17998.22 20798.97 17699.53 17798.76 12599.50 14498.59 17599.56 13098.68 15098.63 18298.45 15999.05 18598.73 178
Fast-Effi-MVS+-dtu98.82 16098.80 15198.84 18799.51 18598.90 16598.96 17799.91 4398.29 16999.11 18698.47 18199.63 12396.03 20899.21 11498.12 17699.52 14299.01 168
tpmrst96.18 21294.47 21698.18 20499.52 17997.89 21698.96 17799.79 10998.07 18199.16 18399.30 12692.69 20596.69 20190.76 21988.85 21994.96 21893.69 218
PCF-MVS97.86 1598.95 15198.53 16399.44 11699.70 14398.80 17598.96 17799.69 14298.65 13599.59 12499.33 11899.94 3799.12 11898.01 19897.11 19599.59 13097.83 198
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
RPMNet97.70 19496.54 19999.06 17299.57 17898.23 20498.95 18099.97 196.89 21499.49 14699.13 14089.63 21597.09 19396.68 20997.02 19799.26 17698.19 193
canonicalmvs99.00 14498.68 15699.37 13299.68 15099.42 8998.94 18199.89 5199.00 9498.99 19098.43 18595.69 19398.96 13399.18 12399.18 6899.74 8199.88 7
SD-MVS99.35 9599.26 8299.46 11299.66 15299.15 14398.92 18299.67 15199.55 2899.35 17198.83 15899.91 5899.35 8699.19 12098.53 15399.78 6799.68 50
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
ET-MVSNet_ETH3D97.44 20296.29 20498.78 18897.93 22398.95 16498.91 18399.09 20698.00 18599.24 17898.83 15884.62 22598.02 17697.43 20597.38 19499.48 15098.84 173
CR-MVSNet97.91 18696.80 19699.22 15299.60 16898.23 20498.91 18399.97 196.89 21499.43 15699.10 14489.24 21798.15 16498.04 19597.78 18599.26 17698.30 189
Patchmtry98.19 20998.91 18399.97 199.43 156
abl_699.21 15599.49 18898.62 18898.90 18699.44 18897.08 20799.61 11997.19 20799.73 11198.35 16199.45 15498.84 173
FMVSNet597.69 19596.98 19498.53 19798.53 22099.36 10298.90 18699.54 17296.38 21998.44 21595.38 21490.08 21397.05 19599.46 6799.06 9298.73 19399.12 159
test0.0.03 198.41 17898.41 17098.40 20299.62 16099.16 14198.87 18899.41 19097.15 20496.60 22499.31 12397.00 19096.55 20398.91 15598.51 15599.37 16698.82 176
dps95.59 21493.46 21898.08 20699.33 20498.22 20798.87 18899.70 14096.17 22098.87 19897.75 19886.85 22396.60 20291.24 21889.62 21795.10 21794.34 216
DeepPCF-MVS98.38 1199.16 12899.20 9699.12 16599.20 21198.71 18398.85 19099.06 20799.17 7298.96 19399.61 7899.86 7899.29 9899.17 12598.72 13899.36 16799.15 155
ambc98.83 14699.72 13998.52 19398.84 19198.96 10099.92 1099.34 11799.74 10899.04 12598.68 18097.57 19299.46 15298.99 171
GA-MVS98.59 17398.15 17999.09 16999.59 17299.13 14898.84 19199.52 17998.61 14399.35 17199.67 6893.03 19997.73 18398.90 15998.26 16899.51 14699.48 105
TSAR-MVS + GP.99.33 9999.17 10499.51 10599.71 14299.00 16098.84 19199.71 13998.23 17399.74 8299.53 9599.90 6199.35 8699.38 7998.85 12299.72 8899.31 136
Effi-MVS+99.20 12298.93 13699.50 10799.79 10499.26 12398.82 19499.96 1298.37 16699.60 12299.12 14298.36 17499.05 12498.93 15098.82 12599.78 6799.68 50
thres100view90097.69 19596.37 20399.23 14999.74 13599.21 13798.81 19599.43 18996.10 22298.70 20692.99 21889.10 21898.88 13998.58 18499.31 6199.82 5599.27 141
tpm96.56 21094.68 21598.74 19099.12 21297.90 21598.79 19699.93 2796.79 21799.69 10099.19 13581.48 22797.56 18595.46 21293.97 20797.37 20697.99 195
gg-mvs-nofinetune98.40 17998.26 17298.57 19699.83 8998.86 17298.77 19799.97 199.57 2599.99 199.99 193.81 19793.50 21798.91 15598.20 17299.33 17198.52 183
CNLPA98.82 16098.52 16599.18 15999.21 21098.50 19598.73 19899.34 19898.73 13099.56 13097.55 20199.42 14199.06 12398.93 15098.10 17899.21 18198.38 186
HQP-MVS98.70 16998.19 17899.28 14599.61 16498.52 19398.71 19999.35 19697.97 18799.53 13497.38 20599.85 8499.14 11597.53 20296.85 19999.36 16799.26 144
tpm cat195.52 21593.49 21797.88 21199.28 20897.87 21798.65 20099.77 12197.27 20399.46 15298.04 19390.99 21195.46 21088.57 22188.14 22094.64 22293.54 219
CostFormer95.61 21393.35 21998.24 20399.48 18998.03 21198.65 20099.83 8396.93 21299.42 15998.83 15883.65 22697.08 19490.39 22089.54 21894.94 21996.11 211
PLCcopyleft97.83 1698.88 15798.52 16599.30 14099.45 19298.60 19098.65 20099.49 18198.66 13499.59 12496.33 21099.59 12799.17 10698.87 16198.53 15399.46 15299.05 165
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
PatchMatch-RL98.80 16298.52 16599.12 16599.38 19998.70 18498.56 20399.55 17197.81 19299.34 17497.57 20099.31 15198.67 15199.27 10498.62 14899.22 18098.35 188
MAR-MVS98.54 17498.15 17998.98 17499.37 20098.09 21098.56 20399.65 15596.11 22199.27 17697.16 20899.50 13498.03 17598.87 16198.23 17099.01 18699.13 156
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
MVS-HIRNet98.45 17798.25 17498.69 19199.12 21297.81 21898.55 20599.85 6798.58 14699.67 10899.61 7899.86 7897.46 18797.95 19996.37 20197.49 20497.56 203
PMMVS98.71 16898.55 16298.90 18399.28 20898.45 19798.53 20699.45 18597.67 19799.15 18598.76 16299.54 13397.79 18098.77 17798.23 17099.16 18398.46 185
baseline297.87 18797.18 19298.67 19399.34 20399.17 14098.48 20798.82 21097.08 20798.83 20298.75 16389.47 21697.03 19698.67 18198.27 16799.52 14298.83 175
DPM-MVS98.10 18397.32 19199.01 17399.52 17997.92 21498.47 20899.45 18598.25 17198.91 19593.99 21699.69 11798.73 14896.29 21096.32 20299.00 18798.77 177
EPNet98.06 18598.11 18198.00 20999.60 16898.99 16298.38 20999.68 14898.18 17598.85 20097.89 19595.60 19492.72 21998.30 19098.10 17898.76 19299.72 40
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
MSLP-MVS++98.92 15498.73 15499.14 16299.44 19499.00 16098.36 21099.35 19698.82 12299.38 16596.06 21199.79 10399.07 12198.88 16099.05 9599.27 17599.53 94
test-LLR97.74 19397.46 18898.08 20699.62 16098.37 19998.26 21199.41 19097.03 20997.38 22099.54 8992.89 20195.12 21298.78 17597.68 18998.65 19597.90 196
TESTMET0.1,197.62 19997.46 18897.81 21299.07 21598.37 19998.26 21198.35 21597.03 20997.38 22099.54 8992.89 20195.12 21298.78 17597.68 18998.65 19597.90 196
MVSTER97.55 20196.75 19798.48 19999.46 19199.54 5998.24 21399.77 12197.56 19899.41 16199.31 12384.86 22494.66 21498.86 16497.75 18799.34 17099.38 128
IB-MVS98.10 1497.76 19297.40 19098.18 20499.62 16099.11 15398.24 21398.35 21596.56 21899.44 15491.28 22298.96 16393.84 21598.09 19498.62 14899.56 13599.18 147
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
EPNet_dtu98.09 18498.25 17497.91 21099.58 17598.02 21298.19 21599.67 15197.94 18899.74 8299.07 14898.71 16893.40 21897.50 20397.09 19696.89 20999.44 113
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
test-mter97.65 19897.57 18697.75 21498.90 21998.56 19298.15 21698.45 21496.92 21396.84 22399.52 9792.53 20995.24 21199.04 13698.12 17698.90 19098.29 191
E-PMN96.72 20995.78 20897.81 21299.45 19295.46 22298.14 21798.33 21797.99 18698.73 20598.09 19298.97 16197.54 18697.45 20491.09 21494.70 22191.40 220
CMPMVSbinary76.62 1998.64 17098.60 15998.68 19299.33 20497.07 21998.11 21898.50 21397.69 19699.26 17798.35 18799.66 12197.62 18499.43 7699.02 9999.24 17899.01 168
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
EMVS96.47 21195.38 21297.74 21599.42 19795.37 22398.07 21998.27 21897.85 19198.90 19697.48 20398.73 16797.20 19097.21 20790.39 21694.59 22390.65 221
xxxxxxxxxxxxxcwj98.97 14798.97 13298.98 17499.64 15798.89 16898.00 22099.58 16698.42 15899.08 18798.63 17199.96 1498.04 17399.02 13898.76 13199.52 14299.13 156
SF-MVS98.96 14898.95 13498.98 17499.64 15798.89 16898.00 22099.58 16698.42 15899.08 18798.63 17199.83 8998.04 17399.02 13898.76 13199.52 14299.13 156
MVEpermissive91.08 1897.68 19797.65 18397.71 21698.46 22191.62 22597.92 22298.86 20998.73 13097.99 21998.64 17099.96 1499.17 10699.59 5697.75 18793.87 22497.27 204
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
DeepMVS_CXcopyleft96.39 22197.15 22388.89 22097.94 18899.51 14295.71 21397.88 18198.19 16298.92 15297.73 20397.75 201
tmp_tt88.14 21796.68 22491.91 22493.70 22461.38 22299.61 2090.51 22699.40 11399.71 11390.32 22099.22 11199.44 5296.25 212
test_method91.96 21695.51 21087.82 21870.84 22582.79 22692.13 22587.74 22198.88 11195.40 22599.20 13398.04 18085.65 22197.71 20094.95 20495.13 21697.00 207
GG-mvs-BLEND70.44 21796.91 19539.57 2193.32 22896.51 22091.01 2264.05 22597.03 20933.20 22794.67 21597.75 1827.59 22498.28 19196.85 19998.24 19997.26 205
Patchmatch-RL test65.75 227
test12321.52 21928.47 22113.42 2217.29 22710.12 22815.70 2288.31 22331.54 22519.34 22936.33 22437.40 23017.14 22227.45 22323.17 22212.73 22633.30 223
testmvs22.33 21829.66 22013.79 2208.97 22610.35 22715.53 2298.09 22432.51 22419.87 22845.18 22330.56 23117.05 22329.96 22224.74 22113.21 22534.30 222
uanet_test0.00 2200.00 2220.00 2220.00 2290.00 2290.00 2300.00 2260.00 2260.00 2300.00 2250.00 2320.00 2250.00 2240.00 2230.00 2270.00 224
sosnet-low-res0.00 2200.00 2220.00 2220.00 2290.00 2290.00 2300.00 2260.00 2260.00 2300.00 2250.00 2320.00 2250.00 2240.00 2230.00 2270.00 224
sosnet0.00 2200.00 2220.00 2220.00 2290.00 2290.00 2300.00 2260.00 2260.00 2300.00 2250.00 2320.00 2250.00 2240.00 2230.00 2270.00 224
RE-MVS-def99.96 2
9.1499.57 128
SR-MVS99.73 13799.74 13699.88 70
MTAPA99.62 11699.95 26
MTMP99.53 13499.92 52
mPP-MVS99.84 8399.92 52
NP-MVS97.37 201