This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorcourty.delive.electrofacadekickermeadowofficepipesplaygr.reliefrelief.terraceterrai.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort by
Gipumacopyleft98.43 2098.15 3298.76 1499.00 6098.29 6797.91 9998.06 6299.02 399.50 196.33 11998.67 7199.22 199.02 2498.02 6998.88 5697.66 64
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
ambc96.78 9699.01 5997.11 13795.73 17995.91 4599.25 298.56 6897.17 12797.04 6696.76 11395.22 14596.72 16096.73 105
v7n99.03 699.03 799.02 999.09 5399.11 1199.57 998.82 1898.21 999.25 299.84 299.59 598.76 699.23 1698.83 2798.63 6698.40 32
LTVRE_ROB97.71 199.33 199.47 199.16 799.16 4199.11 1199.39 1299.16 1199.26 299.22 499.51 1899.75 398.54 1599.71 199.47 399.52 1299.46 1
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
SixPastTwentyTwo99.25 299.20 399.32 199.53 1599.32 899.64 299.19 1098.05 1099.19 599.74 498.96 4799.03 299.69 299.58 199.32 2499.06 5
USDC96.30 11395.64 12397.07 10097.62 14896.35 16197.17 14095.71 16595.52 6199.17 698.11 8297.46 12095.67 10895.44 14693.60 16697.09 14692.99 171
v124097.43 7596.87 9298.09 4098.25 10197.92 9899.02 2897.06 12394.77 8699.09 799.68 698.51 8397.78 4195.25 14895.81 13397.32 13796.13 122
v192192097.50 6997.00 8598.07 4798.20 10697.94 9799.03 2797.06 12395.29 6799.01 899.62 1198.73 7097.74 4395.52 14395.78 13597.39 13396.12 123
anonymousdsp98.85 1298.88 1198.83 1198.69 7998.20 7099.68 197.35 11597.09 2198.98 999.86 199.43 898.94 399.28 1499.19 1399.33 2299.08 4
TinyColmap96.64 10796.07 11397.32 8997.84 13596.40 15697.63 11596.25 14795.86 4698.98 997.94 8496.34 14296.17 9597.30 9595.38 14397.04 14893.24 167
v119297.52 6697.03 8498.09 4098.31 9898.01 8998.96 3997.25 11895.22 6898.89 1199.64 998.83 5997.68 4695.63 14095.91 13097.47 12795.97 127
v14419297.49 7096.99 8798.07 4798.11 11497.95 9499.02 2897.21 11994.90 8398.88 1299.53 1798.89 5397.75 4295.59 14195.90 13197.43 13096.16 121
PS-CasMVS99.08 498.90 1099.28 399.65 399.56 499.59 699.39 396.36 3398.83 1399.46 2199.09 3198.62 1099.51 799.36 899.63 398.97 6
EG-PatchMatch MVS97.98 4597.92 4098.04 5198.84 6998.04 8797.90 10096.83 13395.07 7498.79 1499.07 4199.37 1297.88 3898.74 3398.16 6198.01 10696.96 95
CP-MVSNet98.91 1198.61 1899.25 499.63 599.50 699.55 1099.36 595.53 6098.77 1599.11 4098.64 7498.57 1399.42 1199.28 1199.61 498.78 11
PEN-MVS99.08 498.95 899.23 599.65 399.59 299.64 299.34 696.68 2698.65 1699.43 2399.33 1498.47 1799.50 899.32 999.60 598.79 10
v114497.51 6797.05 8398.04 5198.26 10097.98 9198.88 4597.42 10995.38 6598.56 1799.59 1499.01 4197.65 4795.77 13796.06 12797.47 12795.56 139
DTE-MVSNet99.03 698.88 1199.21 699.66 299.59 299.62 599.34 696.92 2298.52 1899.36 2998.98 4398.57 1399.49 999.23 1299.56 998.55 23
UniMVSNet_NR-MVSNet98.12 3597.56 6098.78 1399.13 4798.89 2298.76 5298.78 1993.81 11798.50 1998.81 5597.64 11697.99 3398.18 6697.92 7299.53 1097.64 65
DU-MVS98.23 2597.74 5398.81 1299.23 3498.77 3398.76 5298.88 1594.10 10998.50 1998.87 5198.32 9397.99 3398.40 5598.08 6799.49 1697.64 65
WR-MVS99.22 399.15 599.30 299.54 1199.62 199.63 499.45 197.75 1498.47 2199.71 599.05 3898.88 499.54 599.49 299.81 198.87 8
PMVScopyleft90.51 1797.77 5497.98 3997.53 7998.68 8098.14 7897.67 11097.03 12596.43 2998.38 2298.72 6297.03 13194.44 13099.37 1299.30 1098.98 4296.86 101
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
WR-MVS_H98.97 998.82 1399.14 899.56 999.56 499.54 1199.42 296.07 3898.37 2399.34 3099.09 3198.43 1899.45 1099.41 599.53 1098.86 9
gm-plane-assit91.85 17987.91 19096.44 13299.14 4598.25 6899.02 2897.38 11195.57 5698.31 2499.34 3051.00 21988.93 18493.16 17691.57 18095.85 17286.50 198
pmmvs-eth3d96.84 9796.22 10897.56 7697.63 14796.38 15998.74 5596.91 12994.63 9298.26 2599.43 2398.28 9496.58 8194.52 15895.54 13897.24 13994.75 147
DeepC-MVS96.08 598.58 1798.49 2398.68 1799.37 2798.52 5899.01 3298.17 5497.17 2098.25 2699.56 1599.62 498.29 2298.40 5598.09 6498.97 4398.08 44
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
v1097.64 5897.26 6998.08 4498.07 11598.56 5598.86 4798.18 5294.48 10098.24 2799.56 1598.98 4397.72 4496.05 13396.26 12097.42 13196.93 96
v2v48297.33 7796.84 9397.90 5998.19 10797.83 10098.74 5597.44 10695.42 6498.23 2899.46 2198.84 5897.46 5295.51 14496.10 12597.36 13594.72 148
PM-MVS96.85 9696.62 10197.11 9897.13 16796.51 15298.29 7794.65 18794.84 8498.12 2998.59 6697.20 12697.41 5496.24 12896.41 11597.09 14696.56 110
EIA-MVS96.23 11894.85 14097.84 6499.08 5498.21 6997.69 10998.03 6785.68 19898.09 3091.75 18597.07 13095.66 11097.58 8697.72 7998.47 7995.91 128
MVS_030497.18 8596.84 9397.58 7599.15 4298.19 7198.11 8797.81 8392.36 13798.06 3197.43 9699.06 3594.24 13496.80 11296.54 11198.12 10197.52 74
Effi-MVS+96.46 11195.28 12797.85 6398.64 8297.16 13297.15 14298.75 2090.27 16098.03 3293.93 16496.21 14396.55 8396.34 12496.69 10697.97 10996.33 117
PHI-MVS97.44 7397.17 7497.74 7198.14 11198.41 6398.03 9297.50 9892.07 14198.01 3397.33 10098.62 7796.02 9898.34 6298.21 5798.76 6397.24 90
TDRefinement99.00 899.13 698.86 1098.99 6199.05 1699.58 798.29 4298.96 497.96 3499.40 2698.67 7198.87 599.60 399.46 499.46 1898.74 13
UniMVSNet (Re)98.23 2597.85 4598.67 1899.15 4298.87 2398.74 5598.84 1794.27 10797.94 3599.01 4298.39 8997.82 4098.35 6098.29 5599.51 1597.78 56
UniMVSNet_ETH3D98.93 1099.20 398.63 2099.54 1199.33 798.73 5899.37 498.87 597.86 3699.27 3499.78 296.59 7999.52 699.40 699.67 298.21 39
DeepC-MVS_fast95.38 697.53 6597.30 6897.79 6898.83 7097.64 11098.18 8297.14 12195.57 5697.83 3797.10 10798.80 6396.53 8497.41 9197.32 8998.24 9497.26 87
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
COLMAP_ROBcopyleft96.84 298.75 1498.82 1398.66 1999.14 4598.79 3199.30 1597.67 8798.33 897.82 3899.20 3799.18 2998.76 699.27 1598.96 1999.29 2698.03 45
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
CS-MVS96.24 11694.67 14398.08 4499.10 5198.62 4898.25 8098.12 5787.70 18397.76 3988.13 19996.08 14696.39 8897.64 8498.10 6398.84 6096.39 115
CANet96.81 9896.50 10297.17 9799.10 5197.96 9397.86 10497.51 9691.30 14697.75 4097.64 9097.89 10993.39 14796.98 10896.73 10497.40 13296.99 94
thisisatest051597.82 5297.67 5597.99 5798.49 8598.07 8398.48 6998.06 6295.35 6697.74 4198.83 5497.61 11796.74 7397.53 8798.30 5498.43 8498.01 47
PVSNet_Blended_VisFu97.44 7397.14 7797.79 6899.15 4298.44 6298.32 7697.66 8893.74 11997.73 4298.79 5696.93 13495.64 11297.69 7896.91 9998.25 9397.50 76
v897.51 6797.16 7597.91 5897.99 12198.48 6198.76 5298.17 5494.54 9897.69 4399.48 2098.76 6897.63 4996.10 13296.14 12297.20 14196.64 107
EU-MVSNet96.03 12296.23 10795.80 14695.48 19894.18 18098.99 3391.51 19797.22 1997.66 4499.15 3998.51 8398.08 2895.92 13592.88 17393.09 18695.72 136
MTMP97.63 4599.03 39
ETV-MVS96.54 11095.27 12898.02 5499.07 5697.48 12198.16 8598.19 5087.33 18897.58 4692.67 17595.93 14996.22 9298.49 5398.46 3998.91 5096.50 113
Fast-Effi-MVS+96.80 9995.92 11997.84 6498.57 8397.46 12298.06 8998.24 4589.64 16897.57 4796.45 11797.35 12396.73 7497.22 9796.64 10897.86 11296.65 106
TranMVSNet+NR-MVSNet98.45 1898.22 2998.72 1699.32 3299.06 1498.99 3398.89 1495.52 6197.53 4899.42 2598.83 5998.01 3298.55 4798.34 5099.57 897.80 55
DeepPCF-MVS94.55 1097.05 8997.13 8096.95 10896.06 18597.12 13698.01 9495.44 17095.18 7097.50 4997.86 8698.08 10297.31 6097.23 9697.00 9697.36 13597.45 78
MDTV_nov1_ep13_2view94.39 15593.34 16195.63 15097.23 16695.33 17397.76 10696.84 13294.55 9597.47 5098.96 4497.70 11393.88 13992.27 18386.81 19390.56 19587.73 194
MVS_111021_LR96.86 9596.72 9897.03 10597.80 13997.06 13997.04 14495.51 16994.55 9597.47 5097.35 9997.68 11496.66 7597.11 10196.73 10497.69 11996.57 108
NR-MVSNet98.00 4197.88 4398.13 3898.33 9398.77 3398.83 4998.88 1594.10 10997.46 5298.87 5198.58 7995.78 10299.13 2298.16 6199.52 1297.53 73
MTAPA97.43 5399.27 20
zzz-MVS98.14 3297.78 5098.55 2399.58 698.58 5298.98 3598.48 2695.98 4297.39 5494.73 14899.27 2097.98 3598.81 3198.64 3698.90 5198.46 28
EPNet_dtu93.45 16992.51 17094.55 17298.39 9191.67 19795.46 18797.50 9886.56 19397.38 5593.52 16794.20 16485.82 19993.31 17492.53 17592.72 18895.76 134
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
CSCG98.45 1898.61 1898.26 3599.11 4999.06 1498.17 8497.49 10097.93 1297.37 5698.88 4999.29 1698.10 2798.40 5597.51 8199.32 2499.16 3
IterMVS-SCA-FT95.16 14193.95 15396.56 12797.89 12896.69 14996.94 14796.05 15293.06 13197.35 5798.79 5691.45 17595.93 10192.78 17991.00 18395.22 17693.91 162
V4297.10 8796.97 8897.26 9197.64 14597.60 11298.45 7295.99 15394.44 10197.35 5799.40 2698.63 7697.34 5896.33 12696.38 11796.82 15896.00 125
ACMH95.26 798.75 1498.93 998.54 2498.86 6699.01 1899.58 798.10 6098.67 697.30 5999.18 3899.42 998.40 1999.19 1898.86 2598.99 4198.19 40
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
pmmvs495.37 13794.25 14996.67 12197.01 17095.28 17497.60 11696.07 15093.11 12897.29 6098.09 8394.23 16395.21 11691.56 18993.91 16396.82 15893.59 165
CANet_DTU94.96 14494.62 14595.35 15698.03 11696.11 16496.92 14995.60 16788.59 17597.27 6195.27 13796.50 13988.77 18695.53 14295.59 13795.54 17494.78 146
HPM-MVS++copyleft97.56 6197.11 8198.09 4099.18 3997.95 9498.57 6498.20 4894.08 11197.25 6295.96 12998.81 6297.13 6397.51 8897.30 9198.21 9598.15 42
3Dnovator+96.20 497.58 6097.14 7798.10 3998.98 6297.85 9998.60 6398.33 3996.41 3197.23 6394.66 15197.26 12596.91 7097.91 6897.87 7498.53 7598.03 45
SCA91.15 18587.65 19295.23 16296.15 18395.68 17096.68 15698.18 5290.46 15797.21 6492.44 17980.17 19793.51 14686.04 20383.58 19989.68 20085.21 200
MP-MVScopyleft97.98 4597.53 6198.50 2599.56 998.58 5298.97 3698.39 3493.49 12097.14 6596.08 12599.23 2698.06 2998.50 5298.38 4798.90 5198.44 30
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
3Dnovator96.31 397.22 8497.19 7397.25 9498.14 11197.95 9498.03 9296.77 13696.42 3097.14 6595.11 13997.59 11895.14 11997.79 7497.72 7998.26 9197.76 61
MVS_111021_HR97.27 7997.11 8197.46 8498.46 8797.82 10497.50 12196.86 13194.97 7997.13 6796.99 10898.39 8996.82 7297.65 8397.38 8498.02 10596.56 110
UA-Net98.66 1698.60 2198.73 1599.83 199.28 998.56 6699.24 896.04 3997.12 6898.44 7298.95 4898.17 2699.15 2199.00 1899.48 1799.33 2
v14896.99 9396.70 9997.34 8797.89 12897.23 12898.33 7596.96 12695.57 5697.12 6898.99 4399.40 1097.23 6196.22 12995.45 14096.50 16394.02 160
OMC-MVS97.23 8397.21 7297.25 9497.85 13097.52 11997.92 9895.77 16495.83 4897.09 7097.86 8698.52 8296.62 7797.51 8896.65 10798.26 9196.57 108
Vis-MVSNetpermissive98.01 3998.42 2497.54 7896.89 17298.82 2999.14 2297.59 9096.30 3497.04 7199.26 3598.83 5996.01 9998.73 3498.21 5798.58 7298.75 12
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
ACMMPR98.31 2298.07 3698.60 2199.58 698.83 2799.09 2498.48 2696.25 3597.03 7296.81 10999.09 3198.39 2098.55 4798.45 4299.01 3898.53 26
CP-MVS98.00 4197.57 5998.50 2599.47 2198.56 5598.91 4298.38 3594.71 8897.01 7395.20 13899.06 3598.20 2498.61 4498.46 3999.02 3698.40 32
LS3D97.93 4997.80 4798.08 4499.20 3798.77 3398.89 4497.92 7496.59 2896.99 7496.71 11297.14 12996.39 8899.04 2398.96 1999.10 3597.39 81
Baseline_NR-MVSNet98.17 2997.90 4298.48 2799.23 3498.59 5098.83 4998.73 2193.97 11496.95 7599.66 798.23 9897.90 3798.40 5599.06 1699.25 2797.42 80
ACMMP_NAP98.12 3598.08 3598.18 3699.34 2998.74 4198.97 3698.00 6995.13 7296.90 7697.54 9499.27 2097.18 6298.72 3698.45 4298.68 6598.69 15
ACMM94.29 1198.12 3597.71 5498.59 2299.51 1798.58 5299.24 1798.25 4496.22 3796.90 7695.01 14298.89 5398.52 1698.66 4198.32 5399.13 3198.28 38
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
pmmvs595.70 13095.22 12996.26 13596.55 18097.24 12797.50 12194.99 18090.95 15296.87 7898.47 7197.40 12194.45 12992.86 17894.98 14797.23 14094.64 150
MDA-MVSNet-bldmvs95.45 13495.20 13095.74 14794.24 20496.38 15997.93 9794.80 18295.56 5996.87 7898.29 7695.24 15496.50 8598.65 4290.38 18594.09 18091.93 175
PatchmatchNetpermissive89.98 18986.23 20294.36 17596.56 17991.90 19696.07 17196.72 13790.18 16196.87 7893.36 17178.06 20191.46 15884.71 20781.40 20588.45 20383.97 206
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
pmmvs698.77 1399.35 298.09 4098.32 9598.92 2098.57 6499.03 1299.36 196.86 8199.77 399.86 196.20 9499.56 499.39 799.59 698.61 20
PGM-MVS97.82 5297.25 7098.48 2799.54 1198.75 4099.02 2898.35 3892.41 13696.84 8295.39 13598.99 4298.24 2398.43 5498.34 5098.90 5198.41 31
SMA-MVS98.13 3498.22 2998.02 5499.44 2498.73 4298.24 8197.87 7895.22 6896.76 8398.66 6599.35 1397.03 6798.53 5098.39 4698.80 6198.69 15
TSAR-MVS + MP.98.15 3198.23 2898.06 4998.47 8698.16 7699.23 1896.87 13095.58 5596.72 8498.41 7399.06 3598.05 3098.99 2598.90 2299.00 3998.51 27
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
SD-MVS97.84 5097.78 5097.90 5998.33 9398.06 8497.95 9697.80 8496.03 4196.72 8497.57 9299.18 2997.50 5197.88 6997.08 9499.11 3398.68 17
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
MAR-MVS95.51 13294.49 14896.71 11897.92 12696.40 15696.72 15498.04 6686.74 19296.72 8492.52 17895.14 15594.02 13896.81 11196.54 11196.85 15397.25 88
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
IterMVS-LS96.35 11295.85 12096.93 11097.53 15198.00 9097.37 12897.97 7195.49 6396.71 8798.94 4593.23 16794.82 12493.15 17795.05 14697.17 14397.12 92
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
OPM-MVS98.01 3998.01 3898.00 5699.11 4998.12 7998.68 5997.72 8596.65 2796.68 8898.40 7499.28 1997.44 5398.20 6397.82 7898.40 8597.58 70
TAPA-MVS93.96 1396.79 10096.70 9996.90 11297.64 14597.58 11397.54 11994.50 18995.14 7196.64 8996.76 11197.90 10896.63 7695.98 13496.14 12298.45 8097.39 81
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
MIMVSNet198.22 2898.51 2297.87 6199.40 2698.82 2999.31 1498.53 2497.39 1796.59 9099.31 3299.23 2694.76 12598.93 2898.67 3398.63 6697.25 88
tpm89.84 19186.81 19893.36 18196.60 17891.92 19595.02 19497.39 11086.79 19196.54 9195.03 14069.70 21487.66 19188.79 19786.19 19486.95 20889.27 188
HFP-MVS98.17 2998.02 3798.35 3399.36 2898.62 4898.79 5198.46 3096.24 3696.53 9297.13 10698.98 4398.02 3198.20 6398.42 4498.95 4798.54 24
EPNet94.33 15893.52 15995.27 15998.81 7194.71 17896.77 15298.20 4888.12 18196.53 9292.53 17791.19 17685.25 20495.22 14995.26 14496.09 17197.63 69
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
OpenMVScopyleft94.63 995.75 12995.04 13696.58 12597.85 13097.55 11796.71 15596.07 15090.15 16396.47 9490.77 19495.95 14894.41 13197.01 10796.95 9798.00 10796.90 97
CR-MVSNet91.94 17888.50 18895.94 14296.14 18492.08 19195.23 19298.47 2884.30 20496.44 9594.58 15275.57 20592.92 15090.22 19592.22 17696.43 16690.56 181
Patchmtry92.70 18695.23 19298.47 2896.44 95
PatchT91.40 18288.54 18794.74 16891.48 21292.18 19097.42 12697.51 9684.96 20096.44 9594.16 15975.47 20692.92 15090.22 19592.22 17692.66 19190.56 181
IterMVS94.48 15393.46 16095.66 14997.52 15296.43 15397.20 13894.73 18592.91 13496.44 9598.75 6191.10 17794.53 12892.10 18590.10 18793.51 18392.84 173
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
XVS99.48 1998.76 3699.22 1996.40 9998.78 6598.94 48
X-MVStestdata99.48 1998.76 3699.22 1996.40 9998.78 6598.94 48
X-MVS97.60 5997.00 8598.29 3499.50 1898.76 3698.90 4398.37 3694.67 9196.40 9991.47 18798.78 6597.60 5098.55 4798.50 3798.96 4598.29 35
TransMVSNet (Re)98.23 2598.72 1597.66 7298.22 10498.73 4298.66 6098.03 6798.60 796.40 9999.60 1298.24 9695.26 11599.19 1899.05 1799.36 1997.64 65
ACMMPcopyleft97.99 4397.60 5898.45 2999.53 1598.83 2799.13 2398.30 4094.57 9496.39 10395.32 13698.95 4898.37 2198.61 4498.47 3899.00 3998.45 29
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
CLD-MVS96.73 10396.92 8996.51 12898.70 7697.57 11597.64 11392.07 19593.10 13096.31 10498.29 7699.02 4095.99 10097.20 9896.47 11398.37 8796.81 103
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
PVSNet_BlendedMVS95.44 13595.09 13295.86 14497.31 16297.13 13496.31 16695.01 17888.55 17696.23 10594.55 15597.75 11192.56 15696.42 12195.44 14197.71 11695.81 130
PVSNet_Blended95.44 13595.09 13295.86 14497.31 16297.13 13496.31 16695.01 17888.55 17696.23 10594.55 15597.75 11192.56 15696.42 12195.44 14197.71 11695.81 130
QAPM97.04 9097.14 7796.93 11097.78 14298.02 8897.36 13096.72 13794.68 9096.23 10597.21 10297.68 11495.70 10697.37 9297.24 9397.78 11597.77 59
CNLPA96.24 11695.97 11696.57 12697.48 15697.10 13896.75 15394.95 18194.92 8296.20 10894.81 14796.61 13796.25 9096.94 10995.64 13697.79 11495.74 135
MSLP-MVS++96.66 10696.46 10596.89 11398.02 11797.71 10895.57 18196.96 12694.36 10496.19 10991.37 18898.24 9697.07 6597.69 7897.89 7397.52 12597.95 48
pm-mvs198.14 3298.66 1797.53 7997.93 12598.49 6098.14 8698.19 5097.95 1196.17 11099.63 1098.85 5695.41 11398.91 2998.89 2399.34 2197.86 53
tfpnnormal97.66 5697.79 4897.52 8198.32 9598.53 5798.45 7297.69 8697.59 1696.12 11197.79 8896.70 13595.69 10798.35 6098.34 5098.85 5897.22 91
NCCC96.56 10995.68 12197.59 7499.04 5897.54 11897.67 11097.56 9494.84 8496.10 11287.91 20098.09 10196.98 6997.20 9896.80 10398.21 9597.38 84
ACMP94.03 1297.97 4797.61 5798.39 3199.43 2598.51 5998.97 3698.06 6294.63 9296.10 11296.12 12499.20 2898.63 998.68 3998.20 6099.14 3097.93 50
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
LGP-MVS_train97.96 4897.53 6198.45 2999.45 2298.64 4799.09 2498.27 4392.99 13296.04 11496.57 11599.29 1698.66 898.73 3498.42 4499.19 2998.09 43
Effi-MVS+-dtu95.94 12595.08 13496.94 10998.54 8497.38 12396.66 15797.89 7688.68 17395.92 11592.90 17497.28 12494.18 13696.68 11796.13 12498.45 8096.51 112
AdaColmapbinary95.85 12794.65 14497.26 9198.70 7697.20 12997.33 13197.30 11791.28 14895.90 11688.16 19896.17 14496.60 7897.34 9396.82 10197.71 11695.60 138
CPTT-MVS97.08 8896.25 10698.05 5099.21 3698.30 6698.54 6797.98 7094.28 10595.89 11789.57 19698.54 8198.18 2597.82 7397.32 8998.54 7397.91 52
SteuartSystems-ACMMP98.06 3897.78 5098.39 3199.54 1198.79 3198.94 4098.42 3293.98 11395.85 11896.66 11499.25 2498.61 1198.71 3898.38 4798.97 4398.67 18
Skip Steuart: Steuart Systems R&D Blog.
MCST-MVS96.79 10096.08 11297.62 7398.78 7497.52 11998.01 9497.32 11693.20 12495.84 11993.97 16398.12 10097.34 5896.34 12495.88 13298.45 8097.51 75
RPSCF97.83 5198.27 2697.31 9098.23 10298.06 8497.44 12595.79 16396.90 2395.81 12098.76 6098.61 7897.70 4598.90 3098.36 4998.90 5198.29 35
thisisatest053094.81 14893.06 16496.85 11598.01 11897.18 13196.93 14897.36 11389.73 16795.80 12194.98 14377.88 20294.89 12196.73 11497.35 8598.13 10097.54 72
PatchMatch-RL94.79 15193.75 15796.00 13996.80 17495.00 17695.47 18695.25 17490.68 15595.80 12192.97 17393.64 16595.67 10896.13 13195.81 13396.99 15192.01 174
HQP-MVS95.97 12495.01 13797.08 9998.72 7597.19 13097.07 14396.69 14091.49 14495.77 12392.19 18197.93 10796.15 9694.66 15594.16 15798.10 10397.45 78
xxxxxxxxxxxxxcwj97.26 8097.43 6397.05 10298.80 7297.83 10096.02 17297.44 10694.98 7795.74 12497.16 10398.45 8795.72 10497.85 7097.97 7098.60 6997.78 56
xxxxxxxxxxxx97.26 8097.43 6397.05 10298.80 7297.83 10096.02 17297.44 10694.98 7795.74 12497.16 10398.45 8795.72 10497.85 7097.97 7098.60 6997.78 56
tttt051794.81 14893.04 16596.88 11498.15 11097.37 12496.99 14597.36 11389.51 16995.74 12494.89 14577.53 20494.89 12196.94 10997.35 8598.17 9897.70 62
new-patchmatchnet94.48 15394.02 15195.02 16697.51 15595.00 17695.68 18094.26 19197.32 1895.73 12799.60 1298.22 9991.30 15994.13 16584.41 19595.65 17389.45 187
abl_696.45 13197.79 14197.28 12697.16 14196.16 14989.92 16695.72 12891.59 18697.16 12894.37 13297.51 12695.49 140
PLCcopyleft92.55 1596.10 11995.36 12496.96 10798.13 11396.88 14396.49 16196.67 14194.07 11295.71 12991.14 18996.09 14596.84 7196.70 11596.58 11097.92 11196.03 124
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
CNVR-MVS97.03 9196.77 9797.34 8798.89 6497.67 10997.64 11397.17 12094.40 10395.70 13094.02 16198.76 6896.49 8697.78 7597.29 9298.12 10197.47 77
PCF-MVS92.69 1495.98 12395.05 13597.06 10198.43 8997.56 11697.76 10696.65 14289.95 16595.70 13096.18 12398.48 8595.74 10393.64 16993.35 17098.09 10496.18 120
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
ET-MVSNet_ETH3D93.18 17190.80 18295.95 14196.05 18696.07 16696.92 14996.51 14489.34 17095.63 13294.08 16072.31 21393.13 14894.33 16294.83 15097.44 12994.65 149
MSDG96.27 11596.17 11196.38 13497.85 13096.27 16296.55 16094.41 19094.55 9595.62 13397.56 9397.80 11096.22 9297.17 10096.27 11997.67 12193.60 164
DCV-MVSNet97.56 6197.63 5697.47 8398.41 9099.12 1098.63 6198.57 2295.71 5195.60 13493.79 16698.01 10694.25 13399.16 2098.88 2499.35 2098.74 13
RPMNet90.52 18786.27 20195.48 15495.95 18992.08 19195.55 18598.12 5784.30 20495.60 13487.49 20172.78 21091.24 16087.93 19889.34 18896.41 16789.98 184
TSAR-MVS + ACMM97.54 6397.79 4897.26 9198.23 10298.10 8297.71 10897.88 7795.97 4395.57 13698.71 6398.57 8097.36 5697.74 7696.81 10296.83 15698.59 21
DPE-MVS97.99 4398.12 3397.84 6498.65 8198.86 2498.86 4798.05 6594.18 10895.49 13798.90 4799.33 1497.11 6498.53 5098.65 3598.86 5798.39 34
MDTV_nov1_ep1390.30 18887.32 19693.78 17896.00 18892.97 18595.46 18795.39 17188.61 17495.41 13894.45 15780.39 19689.87 17886.58 20183.54 20090.56 19584.71 202
DELS-MVS96.90 9497.24 7196.50 12997.85 13098.18 7297.88 10395.92 15693.48 12195.34 13998.86 5398.94 5094.03 13797.33 9497.04 9598.00 10796.85 102
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
TSAR-MVS + COLMAP96.05 12195.94 11796.18 13797.46 15796.41 15597.26 13695.83 16094.69 8995.30 14098.31 7596.52 13894.71 12695.48 14594.87 14896.54 16295.33 142
TSAR-MVS + GP.97.26 8097.33 6797.18 9698.21 10598.06 8496.38 16397.66 8893.92 11695.23 14198.48 7098.33 9297.41 5497.63 8597.35 8598.18 9797.57 71
APD-MVScopyleft97.47 7297.16 7597.84 6499.32 3298.39 6498.47 7198.21 4792.08 14095.23 14196.68 11398.90 5196.99 6898.20 6398.21 5798.80 6197.67 63
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
train_agg96.68 10495.93 11897.56 7699.08 5497.16 13298.44 7497.37 11291.12 15095.18 14395.43 13498.48 8597.36 5696.48 12095.52 13997.95 11097.34 85
APDe-MVS98.29 2398.42 2498.14 3799.45 2298.90 2199.18 2198.30 4095.96 4495.13 14498.79 5699.25 2497.92 3698.80 3298.71 3098.85 5898.54 24
CDPH-MVS96.68 10495.99 11597.48 8299.13 4797.64 11098.08 8897.46 10290.56 15695.13 14494.87 14698.27 9596.56 8297.09 10296.45 11498.54 7397.08 93
gg-mvs-nofinetune94.13 16093.93 15494.37 17397.99 12195.86 16895.45 18999.22 997.61 1595.10 14699.50 1984.50 18681.73 20795.31 14794.12 15996.71 16190.59 180
DI_MVS_plusplus_trai95.48 13394.51 14696.61 12297.13 16797.30 12598.05 9196.79 13593.75 11895.08 14796.38 11889.76 18194.95 12093.97 16894.82 15297.64 12395.63 137
GA-MVS94.18 15992.98 16695.58 15297.36 15996.42 15496.21 16995.86 15790.29 15995.08 14796.19 12285.37 18592.82 15394.01 16794.14 15896.16 17094.41 155
canonicalmvs97.11 8696.88 9097.38 8698.34 9298.72 4497.52 12097.94 7295.60 5395.01 14994.58 15294.50 16096.59 7997.84 7298.03 6898.90 5198.91 7
HyFIR lowres test95.05 14293.54 15896.81 11697.81 13896.88 14398.18 8297.46 10294.28 10594.98 15096.57 11592.89 16996.15 9690.90 19491.87 17996.28 16891.35 176
MVS-HIRNet88.72 19786.49 19991.33 19891.81 21085.66 21087.02 21396.25 14781.48 21194.82 15196.31 12192.14 17390.32 17287.60 19983.82 19787.74 20578.42 210
Anonymous2023121197.49 7097.91 4197.00 10698.31 9898.72 4498.27 7897.84 8194.76 8794.77 15298.14 8198.38 9193.60 14398.96 2798.66 3499.22 2897.77 59
UGNet96.79 10097.82 4695.58 15297.57 15098.39 6498.48 6997.84 8195.85 4794.68 15397.91 8599.07 3487.12 19497.71 7797.51 8197.80 11398.29 35
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
FPMVS94.70 15294.99 13894.37 17395.84 19193.20 18496.00 17491.93 19695.03 7594.64 15494.68 14993.29 16690.95 16498.07 6797.34 8896.85 15393.29 166
DPM-MVS94.86 14693.90 15595.99 14098.19 10796.52 15196.29 16895.95 15493.11 12894.61 15588.17 19796.44 14093.77 14293.33 17293.54 16897.11 14596.22 119
pmmvs391.20 18391.40 18090.96 19991.71 21191.08 19895.41 19081.34 21087.36 18794.57 15695.02 14194.30 16290.42 17094.28 16389.26 18992.30 19288.49 192
DWT-MVSNet_training86.69 20381.24 20993.05 18595.31 20092.06 19395.75 17891.51 19784.32 20394.49 15783.46 20455.37 21890.81 16682.76 20983.19 20290.45 19787.52 195
FC-MVSNet-train97.65 5798.16 3197.05 10298.85 6798.85 2599.34 1398.08 6194.50 9994.41 15899.21 3698.80 6392.66 15498.98 2698.85 2698.96 4597.94 49
tpm cat187.19 20182.78 20892.33 19295.66 19390.61 20194.19 20295.27 17386.97 18994.38 15990.91 19169.40 21587.21 19379.57 21177.82 20887.25 20784.18 204
DVP-MVS98.27 2498.61 1897.87 6199.17 4099.03 1799.07 2698.17 5496.75 2594.35 16098.92 4699.58 697.86 3998.67 4098.70 3198.63 6698.63 19
CMPMVSbinary71.81 1992.34 17592.85 16791.75 19592.70 20890.43 20288.84 21188.56 20185.87 19794.35 16090.98 19095.89 15091.14 16196.14 13094.83 15094.93 17995.78 133
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
baseline292.06 17689.82 18594.68 17097.32 16095.72 16994.97 19695.08 17684.75 20194.34 16290.68 19577.75 20390.13 17493.38 17093.58 16796.25 16992.90 172
CHOSEN 280x42091.55 18190.27 18493.05 18594.61 20288.01 20996.56 15994.62 18888.04 18294.20 16392.66 17686.60 18390.82 16595.06 15291.89 17887.49 20689.61 186
thres40094.04 16391.94 17596.50 12997.98 12397.82 10497.66 11296.96 12690.96 15194.20 16383.24 20582.82 19193.80 14096.50 11998.09 6498.38 8694.15 157
ACMH+94.90 898.40 2198.71 1698.04 5198.93 6398.84 2699.30 1597.86 7997.78 1394.19 16598.77 5999.39 1198.61 1199.33 1399.07 1499.33 2297.81 54
MSP-MVS97.67 5597.88 4397.43 8599.34 2998.99 1998.87 4698.12 5795.63 5294.16 16697.45 9599.50 796.44 8796.35 12398.70 3197.65 12298.57 22
MVS_Test95.34 13894.88 13995.89 14396.93 17196.84 14796.66 15797.08 12290.06 16494.02 16797.61 9196.64 13693.59 14492.73 18194.02 16197.03 14996.24 118
baseline94.07 16194.50 14793.57 18096.34 18293.40 18395.56 18492.39 19492.07 14194.00 16898.24 7997.51 11989.19 18191.75 18792.72 17493.96 18295.79 132
thres600view794.34 15692.31 17296.70 11998.19 10798.12 7997.85 10597.45 10491.49 14493.98 16984.27 20382.02 19394.24 13497.04 10398.76 2998.49 7794.47 153
thres20093.98 16591.90 17696.40 13397.66 14398.12 7997.20 13897.45 10490.16 16293.82 17083.08 20683.74 18993.80 14097.04 10397.48 8398.49 7793.70 163
MS-PatchMatch94.84 14794.76 14194.94 16796.38 18194.69 17995.90 17594.03 19292.49 13593.81 17195.79 13196.38 14194.54 12794.70 15494.85 14994.97 17894.43 154
PMMVS91.67 18091.47 17991.91 19489.43 21388.61 20894.99 19585.67 20687.50 18693.80 17294.42 15894.88 15690.71 16892.26 18492.96 17296.83 15689.65 185
CHOSEN 1792x268894.98 14394.69 14295.31 15797.27 16495.58 17197.90 10095.56 16895.03 7593.77 17395.65 13299.29 1695.30 11491.51 19091.28 18292.05 19394.50 152
Anonymous2023120695.69 13195.68 12195.70 14898.32 9596.95 14197.37 12896.65 14293.33 12293.61 17498.70 6498.03 10491.04 16395.07 15194.59 15597.20 14193.09 170
IB-MVS92.44 1693.33 17092.15 17494.70 16997.42 15896.39 15895.57 18194.67 18686.40 19693.59 17578.28 21095.76 15189.59 18095.88 13695.98 12897.39 13396.34 116
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
thres100view90092.93 17290.89 18195.31 15797.52 15296.82 14896.41 16295.08 17687.65 18493.56 17683.03 20784.12 18791.12 16294.53 15696.91 9998.17 9893.21 168
tfpn200view993.80 16791.75 17796.20 13697.52 15298.15 7797.48 12397.47 10187.65 18493.56 17683.03 20784.12 18792.62 15597.04 10398.09 6498.52 7694.17 156
CDS-MVSNet94.91 14595.17 13194.60 17197.85 13096.21 16396.90 15196.39 14590.81 15393.40 17897.24 10194.54 15985.78 20096.25 12796.15 12197.26 13895.01 145
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
Fast-Effi-MVS+-dtu94.34 15693.26 16395.62 15197.82 13695.97 16795.86 17699.01 1386.88 19093.39 17990.83 19295.46 15290.61 16994.46 16094.68 15397.01 15094.51 151
EPP-MVSNet97.29 7896.88 9097.76 7098.70 7699.10 1398.92 4198.36 3795.12 7393.36 18097.39 9791.00 17897.65 4798.72 3698.91 2199.58 797.92 51
tpmrst87.60 20084.13 20791.66 19695.65 19489.73 20693.77 20394.74 18488.85 17293.35 18195.60 13372.37 21287.40 19281.24 21078.19 20785.02 21182.90 209
dps88.36 19984.32 20693.07 18493.86 20692.29 18994.89 19795.93 15583.50 20693.13 18291.87 18467.79 21690.32 17285.99 20483.22 20190.28 19885.56 199
FMVSNet197.40 7698.09 3496.60 12397.80 13998.76 3698.26 7998.50 2596.79 2493.13 18299.28 3398.64 7492.90 15297.67 8097.86 7599.02 3697.64 65
CostFormer89.06 19685.65 20393.03 18795.88 19092.40 18895.30 19195.86 15786.49 19593.12 18493.40 17074.18 20888.25 18882.99 20881.46 20489.77 19988.66 191
CVMVSNet94.01 16494.25 14993.73 17994.36 20392.44 18797.45 12488.56 20195.59 5493.06 18598.88 4990.03 18094.84 12394.08 16693.45 16994.09 18095.31 143
MVSTER91.97 17790.31 18393.91 17796.81 17396.91 14294.22 20095.64 16684.98 19992.98 18693.42 16872.56 21186.64 19895.11 15093.89 16497.16 14495.31 143
diffmvs95.86 12696.21 10995.44 15597.25 16596.85 14696.99 14595.23 17594.96 8092.82 18798.89 4898.85 5693.52 14594.21 16494.25 15696.84 15595.49 140
casdiffmvs97.00 9297.36 6696.59 12497.65 14497.98 9198.06 8996.81 13495.78 4992.77 18899.40 2699.26 2395.65 11196.70 11596.39 11698.59 7195.99 126
test20.0396.08 12096.80 9595.25 16199.19 3897.58 11397.24 13797.56 9494.95 8191.91 18998.58 6798.03 10487.88 19097.43 9096.94 9897.69 11994.05 159
baseline193.89 16692.82 16895.14 16397.62 14896.97 14096.12 17096.36 14691.30 14691.53 19094.68 14980.72 19590.80 16795.71 13896.29 11898.44 8394.09 158
FMVSNet295.77 12896.20 11095.27 15996.77 17598.18 7297.28 13397.90 7593.12 12791.37 19198.25 7896.05 14790.04 17594.96 15395.94 12998.28 8896.90 97
ADS-MVSNet89.89 19087.70 19192.43 19195.52 19690.91 20095.57 18195.33 17293.19 12591.21 19293.41 16982.12 19289.05 18286.21 20283.77 19887.92 20484.31 203
EPMVS89.28 19486.28 20092.79 18896.01 18792.00 19495.83 17795.85 15990.78 15491.00 19394.58 15274.65 20788.93 18485.00 20582.88 20389.09 20284.09 205
FC-MVSNet-test97.54 6398.26 2796.70 11998.87 6597.79 10798.49 6898.56 2396.04 3990.39 19499.65 898.67 7195.15 11799.23 1699.07 1498.73 6497.39 81
GBi-Net95.21 13995.35 12595.04 16496.77 17598.18 7297.28 13397.58 9188.43 17890.28 19596.01 12692.43 17090.04 17597.67 8097.86 7598.28 8896.90 97
test195.21 13995.35 12595.04 16496.77 17598.18 7297.28 13397.58 9188.43 17890.28 19596.01 12692.43 17090.04 17597.67 8097.86 7598.28 8896.90 97
FMVSNet394.06 16293.85 15694.31 17695.46 19997.80 10696.34 16497.58 9188.43 17890.28 19596.01 12692.43 17088.67 18791.82 18693.96 16297.53 12496.50 113
IS_MVSNet96.62 10896.48 10496.78 11798.46 8798.68 4698.61 6298.24 4592.23 13889.63 19895.90 13094.40 16196.23 9198.65 4298.77 2899.52 1296.76 104
test-LLR89.77 19287.47 19492.45 19098.01 11889.77 20493.25 20695.80 16181.56 20989.19 19992.08 18279.59 19885.77 20291.47 19189.04 19192.69 18988.75 189
TESTMET0.1,188.60 19887.47 19489.93 20294.23 20589.77 20493.25 20684.47 20881.56 20989.19 19992.08 18279.59 19885.77 20291.47 19189.04 19192.69 18988.75 189
Vis-MVSNet (Re-imp)96.29 11496.50 10296.05 13897.96 12497.83 10097.30 13297.86 7993.14 12688.90 20196.80 11095.28 15395.15 11798.37 5998.25 5699.12 3295.84 129
EMVS86.63 20484.48 20589.15 20495.51 19783.66 21290.19 20986.14 20591.78 14388.68 20293.83 16581.97 19489.05 18292.76 18076.09 21085.31 21071.28 212
testgi94.81 14896.05 11493.35 18299.06 5796.87 14597.57 11896.70 13995.77 5088.60 20393.19 17298.87 5581.21 20897.03 10696.64 10896.97 15293.99 161
N_pmnet92.46 17392.38 17192.55 18997.91 12793.47 18297.42 12694.01 19396.40 3288.48 20498.50 6998.07 10388.14 18991.04 19384.30 19689.35 20184.85 201
test-mter89.16 19588.14 18990.37 20194.79 20191.05 19993.60 20585.26 20781.65 20888.32 20592.22 18079.35 20087.03 19592.28 18290.12 18693.19 18590.29 183
FMVSNet589.65 19387.60 19392.04 19395.63 19596.61 15094.82 19894.75 18380.11 21287.72 20677.73 21173.81 20983.81 20695.64 13996.08 12695.49 17593.21 168
E-PMN86.94 20285.10 20489.09 20595.77 19283.54 21389.89 21086.55 20392.18 13987.34 20794.02 16183.42 19089.63 17993.32 17377.11 20985.33 20972.09 211
MIMVSNet93.68 16893.96 15293.35 18297.82 13696.08 16596.34 16498.46 3091.28 14886.67 20894.95 14494.87 15784.39 20594.53 15694.65 15496.45 16591.34 177
TAMVS92.46 17393.34 16191.44 19797.03 16993.84 18194.68 19990.60 19990.44 15885.31 20997.14 10593.03 16885.78 20094.34 16193.67 16595.22 17690.93 179
new_pmnet90.85 18692.26 17389.21 20393.68 20789.05 20793.20 20884.16 20992.99 13284.25 21097.72 8994.60 15886.80 19793.20 17591.30 18193.21 18486.94 197
test0.0.03 191.17 18491.50 17890.80 20098.01 11895.46 17294.22 20095.80 16186.55 19481.75 21190.83 19287.93 18278.48 20994.51 15994.11 16096.50 16391.08 178
tmp_tt45.72 20860.00 21538.74 21645.50 21612.18 21279.58 21368.42 21267.62 21265.04 21722.12 21184.83 20678.72 20666.08 214
MVEpermissive72.99 1885.37 20689.43 18680.63 20674.43 21471.94 21588.25 21289.81 20093.27 12367.32 21396.32 12091.83 17490.40 17193.36 17190.79 18473.55 21388.49 192
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
DeepMVS_CXcopyleft72.99 21480.14 21437.34 21183.46 20760.13 21484.40 20285.48 18486.93 19687.22 20079.61 21287.32 196
PMMVS286.47 20592.62 16979.29 20792.01 20985.63 21193.74 20486.37 20493.95 11554.18 21598.19 8097.39 12258.46 21096.57 11893.07 17190.99 19483.55 208
GG-mvs-BLEND61.03 20787.02 19730.71 2090.74 21890.01 20378.90 2150.74 21584.56 2029.46 21679.17 20990.69 1791.37 21491.74 18889.13 19093.04 18783.83 207
test1234.41 2095.71 2112.88 2101.28 2172.21 2173.09 2191.65 2146.35 2154.98 2178.53 2143.88 2213.46 2125.79 2135.71 2112.85 2167.50 214
testmvs4.99 2086.88 2102.78 2111.73 2162.04 2183.10 2181.71 2137.27 2143.92 21812.18 2136.71 2203.31 2136.94 2125.51 2122.94 2157.51 213
uanet_test0.00 2100.00 2120.00 2120.00 2190.00 2190.00 2200.00 2160.00 2160.00 2190.00 2150.00 2220.00 2150.00 2140.00 2130.00 2170.00 215
sosnet-low-res0.00 2100.00 2120.00 2120.00 2190.00 2190.00 2200.00 2160.00 2160.00 2190.00 2150.00 2220.00 2150.00 2140.00 2130.00 2170.00 215
sosnet0.00 2100.00 2120.00 2120.00 2190.00 2190.00 2200.00 2160.00 2160.00 2190.00 2150.00 2220.00 2150.00 2140.00 2130.00 2170.00 215
9.1496.98 133
SR-MVS99.33 3198.40 3398.90 51
Anonymous20240521197.39 6598.85 6798.59 5097.89 10297.93 7394.41 10297.37 9896.99 13293.09 14998.61 4498.46 3999.11 3397.27 86
our_test_397.32 16095.13 17597.59 117
test_part198.16 41
Patchmatch-RL test17.42 217
mPP-MVS99.58 698.98 43
NP-MVS89.27 171