Gipuma | | | 98.43 20 | 98.15 32 | 98.76 14 | 99.00 60 | 98.29 67 | 97.91 99 | 98.06 62 | 99.02 3 | 99.50 1 | 96.33 119 | 98.67 71 | 99.22 1 | 99.02 24 | 98.02 69 | 98.88 56 | 97.66 64 |
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
ambc | | | | 96.78 96 | | 99.01 59 | 97.11 137 | 95.73 179 | | 95.91 45 | 99.25 2 | 98.56 68 | 97.17 127 | 97.04 66 | 96.76 113 | 95.22 145 | 96.72 160 | 96.73 105 |
|
v7n | | | 99.03 6 | 99.03 7 | 99.02 9 | 99.09 53 | 99.11 11 | 99.57 9 | 98.82 18 | 98.21 9 | 99.25 2 | 99.84 2 | 99.59 5 | 98.76 6 | 99.23 16 | 98.83 27 | 98.63 66 | 98.40 32 |
|
LTVRE_ROB | | 97.71 1 | 99.33 1 | 99.47 1 | 99.16 7 | 99.16 41 | 99.11 11 | 99.39 12 | 99.16 11 | 99.26 2 | 99.22 4 | 99.51 18 | 99.75 3 | 98.54 15 | 99.71 1 | 99.47 3 | 99.52 12 | 99.46 1 |
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
SixPastTwentyTwo | | | 99.25 2 | 99.20 3 | 99.32 1 | 99.53 15 | 99.32 8 | 99.64 2 | 99.19 10 | 98.05 10 | 99.19 5 | 99.74 4 | 98.96 47 | 99.03 2 | 99.69 2 | 99.58 1 | 99.32 24 | 99.06 5 |
|
USDC | | | 96.30 113 | 95.64 123 | 97.07 100 | 97.62 148 | 96.35 161 | 97.17 140 | 95.71 165 | 95.52 61 | 99.17 6 | 98.11 82 | 97.46 120 | 95.67 108 | 95.44 146 | 93.60 166 | 97.09 146 | 92.99 171 |
|
v1240 | | | 97.43 75 | 96.87 92 | 98.09 40 | 98.25 101 | 97.92 98 | 99.02 28 | 97.06 123 | 94.77 86 | 99.09 7 | 99.68 6 | 98.51 83 | 97.78 41 | 95.25 148 | 95.81 133 | 97.32 137 | 96.13 122 |
|
v1921920 | | | 97.50 69 | 97.00 85 | 98.07 47 | 98.20 106 | 97.94 97 | 99.03 27 | 97.06 123 | 95.29 67 | 99.01 8 | 99.62 11 | 98.73 70 | 97.74 43 | 95.52 143 | 95.78 135 | 97.39 133 | 96.12 123 |
|
anonymousdsp | | | 98.85 12 | 98.88 11 | 98.83 11 | 98.69 79 | 98.20 70 | 99.68 1 | 97.35 115 | 97.09 21 | 98.98 9 | 99.86 1 | 99.43 8 | 98.94 3 | 99.28 14 | 99.19 13 | 99.33 22 | 99.08 4 |
|
TinyColmap | | | 96.64 107 | 96.07 113 | 97.32 89 | 97.84 135 | 96.40 156 | 97.63 115 | 96.25 147 | 95.86 46 | 98.98 9 | 97.94 84 | 96.34 142 | 96.17 95 | 97.30 95 | 95.38 143 | 97.04 148 | 93.24 167 |
|
v1192 | | | 97.52 66 | 97.03 84 | 98.09 40 | 98.31 98 | 98.01 89 | 98.96 39 | 97.25 118 | 95.22 68 | 98.89 11 | 99.64 9 | 98.83 59 | 97.68 46 | 95.63 140 | 95.91 130 | 97.47 127 | 95.97 127 |
|
v144192 | | | 97.49 70 | 96.99 87 | 98.07 47 | 98.11 114 | 97.95 94 | 99.02 28 | 97.21 119 | 94.90 83 | 98.88 12 | 99.53 17 | 98.89 53 | 97.75 42 | 95.59 141 | 95.90 131 | 97.43 130 | 96.16 121 |
|
PS-CasMVS | | | 99.08 4 | 98.90 10 | 99.28 3 | 99.65 3 | 99.56 4 | 99.59 6 | 99.39 3 | 96.36 33 | 98.83 13 | 99.46 21 | 99.09 31 | 98.62 10 | 99.51 7 | 99.36 8 | 99.63 3 | 98.97 6 |
|
EG-PatchMatch MVS | | | 97.98 45 | 97.92 40 | 98.04 51 | 98.84 69 | 98.04 87 | 97.90 100 | 96.83 133 | 95.07 74 | 98.79 14 | 99.07 41 | 99.37 12 | 97.88 38 | 98.74 33 | 98.16 61 | 98.01 106 | 96.96 95 |
|
CP-MVSNet | | | 98.91 11 | 98.61 18 | 99.25 4 | 99.63 5 | 99.50 6 | 99.55 10 | 99.36 5 | 95.53 60 | 98.77 15 | 99.11 40 | 98.64 74 | 98.57 13 | 99.42 11 | 99.28 11 | 99.61 4 | 98.78 11 |
|
PEN-MVS | | | 99.08 4 | 98.95 8 | 99.23 5 | 99.65 3 | 99.59 2 | 99.64 2 | 99.34 6 | 96.68 26 | 98.65 16 | 99.43 23 | 99.33 14 | 98.47 17 | 99.50 8 | 99.32 9 | 99.60 5 | 98.79 10 |
|
v1144 | | | 97.51 67 | 97.05 83 | 98.04 51 | 98.26 100 | 97.98 91 | 98.88 45 | 97.42 109 | 95.38 65 | 98.56 17 | 99.59 14 | 99.01 41 | 97.65 47 | 95.77 137 | 96.06 127 | 97.47 127 | 95.56 139 |
|
DTE-MVSNet | | | 99.03 6 | 98.88 11 | 99.21 6 | 99.66 2 | 99.59 2 | 99.62 5 | 99.34 6 | 96.92 22 | 98.52 18 | 99.36 29 | 98.98 43 | 98.57 13 | 99.49 9 | 99.23 12 | 99.56 9 | 98.55 23 |
|
UniMVSNet_NR-MVSNet | | | 98.12 35 | 97.56 60 | 98.78 13 | 99.13 47 | 98.89 22 | 98.76 52 | 98.78 19 | 93.81 117 | 98.50 19 | 98.81 55 | 97.64 116 | 97.99 33 | 98.18 66 | 97.92 72 | 99.53 10 | 97.64 65 |
|
DU-MVS | | | 98.23 25 | 97.74 53 | 98.81 12 | 99.23 34 | 98.77 33 | 98.76 52 | 98.88 15 | 94.10 109 | 98.50 19 | 98.87 51 | 98.32 93 | 97.99 33 | 98.40 55 | 98.08 67 | 99.49 16 | 97.64 65 |
|
WR-MVS | | | 99.22 3 | 99.15 5 | 99.30 2 | 99.54 11 | 99.62 1 | 99.63 4 | 99.45 1 | 97.75 14 | 98.47 21 | 99.71 5 | 99.05 38 | 98.88 4 | 99.54 5 | 99.49 2 | 99.81 1 | 98.87 8 |
|
PMVS | | 90.51 17 | 97.77 54 | 97.98 39 | 97.53 79 | 98.68 80 | 98.14 78 | 97.67 110 | 97.03 125 | 96.43 29 | 98.38 22 | 98.72 62 | 97.03 131 | 94.44 130 | 99.37 12 | 99.30 10 | 98.98 42 | 96.86 101 |
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
WR-MVS_H | | | 98.97 9 | 98.82 13 | 99.14 8 | 99.56 9 | 99.56 4 | 99.54 11 | 99.42 2 | 96.07 38 | 98.37 23 | 99.34 30 | 99.09 31 | 98.43 18 | 99.45 10 | 99.41 5 | 99.53 10 | 98.86 9 |
|
gm-plane-assit | | | 91.85 179 | 87.91 190 | 96.44 132 | 99.14 45 | 98.25 68 | 99.02 28 | 97.38 111 | 95.57 56 | 98.31 24 | 99.34 30 | 51.00 219 | 88.93 184 | 93.16 176 | 91.57 180 | 95.85 172 | 86.50 198 |
|
pmmvs-eth3d | | | 96.84 97 | 96.22 108 | 97.56 76 | 97.63 147 | 96.38 159 | 98.74 55 | 96.91 129 | 94.63 92 | 98.26 25 | 99.43 23 | 98.28 94 | 96.58 81 | 94.52 158 | 95.54 138 | 97.24 139 | 94.75 147 |
|
DeepC-MVS | | 96.08 5 | 98.58 17 | 98.49 23 | 98.68 17 | 99.37 27 | 98.52 58 | 99.01 32 | 98.17 54 | 97.17 20 | 98.25 26 | 99.56 15 | 99.62 4 | 98.29 22 | 98.40 55 | 98.09 64 | 98.97 43 | 98.08 44 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
v10 | | | 97.64 58 | 97.26 69 | 98.08 44 | 98.07 115 | 98.56 55 | 98.86 47 | 98.18 52 | 94.48 100 | 98.24 27 | 99.56 15 | 98.98 43 | 97.72 44 | 96.05 133 | 96.26 120 | 97.42 131 | 96.93 96 |
|
v2v482 | | | 97.33 77 | 96.84 93 | 97.90 59 | 98.19 107 | 97.83 100 | 98.74 55 | 97.44 106 | 95.42 64 | 98.23 28 | 99.46 21 | 98.84 58 | 97.46 52 | 95.51 144 | 96.10 125 | 97.36 135 | 94.72 148 |
|
PM-MVS | | | 96.85 96 | 96.62 101 | 97.11 98 | 97.13 167 | 96.51 152 | 98.29 77 | 94.65 187 | 94.84 84 | 98.12 29 | 98.59 66 | 97.20 126 | 97.41 54 | 96.24 128 | 96.41 115 | 97.09 146 | 96.56 110 |
|
EIA-MVS | | | 96.23 118 | 94.85 140 | 97.84 64 | 99.08 54 | 98.21 69 | 97.69 109 | 98.03 67 | 85.68 198 | 98.09 30 | 91.75 185 | 97.07 130 | 95.66 110 | 97.58 86 | 97.72 79 | 98.47 79 | 95.91 128 |
|
MVS_0304 | | | 97.18 85 | 96.84 93 | 97.58 75 | 99.15 42 | 98.19 71 | 98.11 87 | 97.81 83 | 92.36 137 | 98.06 31 | 97.43 96 | 99.06 35 | 94.24 134 | 96.80 112 | 96.54 111 | 98.12 101 | 97.52 74 |
|
Effi-MVS+ | | | 96.46 111 | 95.28 127 | 97.85 63 | 98.64 82 | 97.16 132 | 97.15 142 | 98.75 20 | 90.27 160 | 98.03 32 | 93.93 164 | 96.21 143 | 96.55 83 | 96.34 124 | 96.69 106 | 97.97 109 | 96.33 117 |
|
PHI-MVS | | | 97.44 73 | 97.17 74 | 97.74 71 | 98.14 111 | 98.41 63 | 98.03 92 | 97.50 98 | 92.07 141 | 98.01 33 | 97.33 100 | 98.62 77 | 96.02 98 | 98.34 62 | 98.21 57 | 98.76 63 | 97.24 90 |
|
TDRefinement | | | 99.00 8 | 99.13 6 | 98.86 10 | 98.99 61 | 99.05 16 | 99.58 7 | 98.29 42 | 98.96 4 | 97.96 34 | 99.40 26 | 98.67 71 | 98.87 5 | 99.60 3 | 99.46 4 | 99.46 18 | 98.74 13 |
|
UniMVSNet (Re) | | | 98.23 25 | 97.85 45 | 98.67 18 | 99.15 42 | 98.87 23 | 98.74 55 | 98.84 17 | 94.27 107 | 97.94 35 | 99.01 42 | 98.39 89 | 97.82 40 | 98.35 60 | 98.29 55 | 99.51 15 | 97.78 56 |
|
UniMVSNet_ETH3D | | | 98.93 10 | 99.20 3 | 98.63 20 | 99.54 11 | 99.33 7 | 98.73 58 | 99.37 4 | 98.87 5 | 97.86 36 | 99.27 34 | 99.78 2 | 96.59 79 | 99.52 6 | 99.40 6 | 99.67 2 | 98.21 39 |
|
DeepC-MVS_fast | | 95.38 6 | 97.53 65 | 97.30 68 | 97.79 68 | 98.83 70 | 97.64 110 | 98.18 82 | 97.14 121 | 95.57 56 | 97.83 37 | 97.10 107 | 98.80 63 | 96.53 84 | 97.41 91 | 97.32 89 | 98.24 94 | 97.26 87 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
COLMAP_ROB | | 96.84 2 | 98.75 14 | 98.82 13 | 98.66 19 | 99.14 45 | 98.79 31 | 99.30 15 | 97.67 87 | 98.33 8 | 97.82 38 | 99.20 37 | 99.18 29 | 98.76 6 | 99.27 15 | 98.96 19 | 99.29 26 | 98.03 45 |
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
CS-MVS | | | 96.24 116 | 94.67 143 | 98.08 44 | 99.10 51 | 98.62 48 | 98.25 80 | 98.12 57 | 87.70 183 | 97.76 39 | 88.13 199 | 96.08 146 | 96.39 88 | 97.64 84 | 98.10 63 | 98.84 60 | 96.39 115 |
|
CANet | | | 96.81 98 | 96.50 102 | 97.17 97 | 99.10 51 | 97.96 93 | 97.86 104 | 97.51 96 | 91.30 146 | 97.75 40 | 97.64 90 | 97.89 109 | 93.39 147 | 96.98 108 | 96.73 104 | 97.40 132 | 96.99 94 |
|
thisisatest0515 | | | 97.82 52 | 97.67 55 | 97.99 57 | 98.49 85 | 98.07 83 | 98.48 69 | 98.06 62 | 95.35 66 | 97.74 41 | 98.83 54 | 97.61 117 | 96.74 73 | 97.53 87 | 98.30 54 | 98.43 84 | 98.01 47 |
|
PVSNet_Blended_VisFu | | | 97.44 73 | 97.14 77 | 97.79 68 | 99.15 42 | 98.44 62 | 98.32 76 | 97.66 88 | 93.74 119 | 97.73 42 | 98.79 56 | 96.93 134 | 95.64 112 | 97.69 78 | 96.91 99 | 98.25 93 | 97.50 76 |
|
v8 | | | 97.51 67 | 97.16 75 | 97.91 58 | 97.99 121 | 98.48 61 | 98.76 52 | 98.17 54 | 94.54 98 | 97.69 43 | 99.48 20 | 98.76 68 | 97.63 49 | 96.10 132 | 96.14 122 | 97.20 141 | 96.64 107 |
|
EU-MVSNet | | | 96.03 122 | 96.23 107 | 95.80 146 | 95.48 198 | 94.18 180 | 98.99 33 | 91.51 197 | 97.22 19 | 97.66 44 | 99.15 39 | 98.51 83 | 98.08 28 | 95.92 135 | 92.88 173 | 93.09 186 | 95.72 136 |
|
MTMP | | | | | | | | | | | 97.63 45 | | 99.03 39 | | | | | |
|
ETV-MVS | | | 96.54 110 | 95.27 128 | 98.02 54 | 99.07 56 | 97.48 121 | 98.16 85 | 98.19 50 | 87.33 188 | 97.58 46 | 92.67 175 | 95.93 149 | 96.22 92 | 98.49 53 | 98.46 39 | 98.91 50 | 96.50 113 |
|
Fast-Effi-MVS+ | | | 96.80 99 | 95.92 119 | 97.84 64 | 98.57 83 | 97.46 122 | 98.06 89 | 98.24 45 | 89.64 168 | 97.57 47 | 96.45 117 | 97.35 123 | 96.73 74 | 97.22 97 | 96.64 108 | 97.86 112 | 96.65 106 |
|
TranMVSNet+NR-MVSNet | | | 98.45 18 | 98.22 29 | 98.72 16 | 99.32 32 | 99.06 14 | 98.99 33 | 98.89 14 | 95.52 61 | 97.53 48 | 99.42 25 | 98.83 59 | 98.01 32 | 98.55 47 | 98.34 50 | 99.57 8 | 97.80 55 |
|
DeepPCF-MVS | | 94.55 10 | 97.05 89 | 97.13 80 | 96.95 108 | 96.06 185 | 97.12 136 | 98.01 94 | 95.44 170 | 95.18 70 | 97.50 49 | 97.86 86 | 98.08 102 | 97.31 60 | 97.23 96 | 97.00 96 | 97.36 135 | 97.45 78 |
|
MDTV_nov1_ep13_2view | | | 94.39 155 | 93.34 161 | 95.63 150 | 97.23 166 | 95.33 173 | 97.76 106 | 96.84 132 | 94.55 95 | 97.47 50 | 98.96 44 | 97.70 113 | 93.88 139 | 92.27 183 | 86.81 193 | 90.56 195 | 87.73 194 |
|
MVS_111021_LR | | | 96.86 95 | 96.72 98 | 97.03 105 | 97.80 139 | 97.06 139 | 97.04 144 | 95.51 169 | 94.55 95 | 97.47 50 | 97.35 99 | 97.68 114 | 96.66 75 | 97.11 101 | 96.73 104 | 97.69 119 | 96.57 108 |
|
NR-MVSNet | | | 98.00 41 | 97.88 43 | 98.13 38 | 98.33 93 | 98.77 33 | 98.83 49 | 98.88 15 | 94.10 109 | 97.46 52 | 98.87 51 | 98.58 79 | 95.78 102 | 99.13 22 | 98.16 61 | 99.52 12 | 97.53 73 |
|
MTAPA | | | | | | | | | | | 97.43 53 | | 99.27 20 | | | | | |
|
zzz-MVS | | | 98.14 32 | 97.78 50 | 98.55 23 | 99.58 6 | 98.58 52 | 98.98 35 | 98.48 26 | 95.98 42 | 97.39 54 | 94.73 148 | 99.27 20 | 97.98 35 | 98.81 31 | 98.64 36 | 98.90 51 | 98.46 28 |
|
EPNet_dtu | | | 93.45 169 | 92.51 170 | 94.55 172 | 98.39 91 | 91.67 197 | 95.46 187 | 97.50 98 | 86.56 193 | 97.38 55 | 93.52 167 | 94.20 164 | 85.82 199 | 93.31 174 | 92.53 175 | 92.72 188 | 95.76 134 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
CSCG | | | 98.45 18 | 98.61 18 | 98.26 35 | 99.11 49 | 99.06 14 | 98.17 84 | 97.49 100 | 97.93 12 | 97.37 56 | 98.88 49 | 99.29 16 | 98.10 27 | 98.40 55 | 97.51 81 | 99.32 24 | 99.16 3 |
|
IterMVS-SCA-FT | | | 95.16 141 | 93.95 153 | 96.56 127 | 97.89 128 | 96.69 149 | 96.94 147 | 96.05 152 | 93.06 131 | 97.35 57 | 98.79 56 | 91.45 175 | 95.93 101 | 92.78 179 | 91.00 183 | 95.22 176 | 93.91 162 |
|
V42 | | | 97.10 87 | 96.97 88 | 97.26 91 | 97.64 145 | 97.60 112 | 98.45 72 | 95.99 153 | 94.44 101 | 97.35 57 | 99.40 26 | 98.63 76 | 97.34 58 | 96.33 126 | 96.38 117 | 96.82 158 | 96.00 125 |
|
ACMH | | 95.26 7 | 98.75 14 | 98.93 9 | 98.54 24 | 98.86 66 | 99.01 18 | 99.58 7 | 98.10 60 | 98.67 6 | 97.30 59 | 99.18 38 | 99.42 9 | 98.40 19 | 99.19 18 | 98.86 25 | 98.99 41 | 98.19 40 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
pmmvs4 | | | 95.37 137 | 94.25 149 | 96.67 121 | 97.01 170 | 95.28 174 | 97.60 116 | 96.07 150 | 93.11 128 | 97.29 60 | 98.09 83 | 94.23 163 | 95.21 116 | 91.56 189 | 93.91 163 | 96.82 158 | 93.59 165 |
|
CANet_DTU | | | 94.96 144 | 94.62 145 | 95.35 156 | 98.03 116 | 96.11 164 | 96.92 149 | 95.60 167 | 88.59 175 | 97.27 61 | 95.27 137 | 96.50 139 | 88.77 186 | 95.53 142 | 95.59 137 | 95.54 174 | 94.78 146 |
|
HPM-MVS++ | | | 97.56 61 | 97.11 81 | 98.09 40 | 99.18 39 | 97.95 94 | 98.57 64 | 98.20 48 | 94.08 111 | 97.25 62 | 95.96 129 | 98.81 62 | 97.13 63 | 97.51 88 | 97.30 91 | 98.21 95 | 98.15 42 |
|
3Dnovator+ | | 96.20 4 | 97.58 60 | 97.14 77 | 98.10 39 | 98.98 62 | 97.85 99 | 98.60 63 | 98.33 39 | 96.41 31 | 97.23 63 | 94.66 151 | 97.26 125 | 96.91 70 | 97.91 68 | 97.87 74 | 98.53 75 | 98.03 45 |
|
SCA | | | 91.15 185 | 87.65 192 | 95.23 162 | 96.15 183 | 95.68 170 | 96.68 156 | 98.18 52 | 90.46 157 | 97.21 64 | 92.44 179 | 80.17 197 | 93.51 146 | 86.04 203 | 83.58 199 | 89.68 200 | 85.21 200 |
|
MP-MVS | | | 97.98 45 | 97.53 61 | 98.50 25 | 99.56 9 | 98.58 52 | 98.97 36 | 98.39 34 | 93.49 120 | 97.14 65 | 96.08 125 | 99.23 26 | 98.06 29 | 98.50 52 | 98.38 47 | 98.90 51 | 98.44 30 |
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
3Dnovator | | 96.31 3 | 97.22 84 | 97.19 73 | 97.25 94 | 98.14 111 | 97.95 94 | 98.03 92 | 96.77 136 | 96.42 30 | 97.14 65 | 95.11 139 | 97.59 118 | 95.14 119 | 97.79 74 | 97.72 79 | 98.26 91 | 97.76 61 |
|
MVS_111021_HR | | | 97.27 79 | 97.11 81 | 97.46 84 | 98.46 87 | 97.82 104 | 97.50 121 | 96.86 131 | 94.97 79 | 97.13 67 | 96.99 108 | 98.39 89 | 96.82 72 | 97.65 83 | 97.38 84 | 98.02 105 | 96.56 110 |
|
UA-Net | | | 98.66 16 | 98.60 21 | 98.73 15 | 99.83 1 | 99.28 9 | 98.56 66 | 99.24 8 | 96.04 39 | 97.12 68 | 98.44 72 | 98.95 48 | 98.17 26 | 99.15 21 | 99.00 18 | 99.48 17 | 99.33 2 |
|
v148 | | | 96.99 93 | 96.70 99 | 97.34 87 | 97.89 128 | 97.23 128 | 98.33 75 | 96.96 126 | 95.57 56 | 97.12 68 | 98.99 43 | 99.40 10 | 97.23 61 | 96.22 129 | 95.45 140 | 96.50 163 | 94.02 160 |
|
OMC-MVS | | | 97.23 83 | 97.21 72 | 97.25 94 | 97.85 130 | 97.52 119 | 97.92 98 | 95.77 164 | 95.83 48 | 97.09 70 | 97.86 86 | 98.52 82 | 96.62 77 | 97.51 88 | 96.65 107 | 98.26 91 | 96.57 108 |
|
Vis-MVSNet | | | 98.01 39 | 98.42 24 | 97.54 78 | 96.89 172 | 98.82 29 | 99.14 22 | 97.59 90 | 96.30 34 | 97.04 71 | 99.26 35 | 98.83 59 | 96.01 99 | 98.73 34 | 98.21 57 | 98.58 72 | 98.75 12 |
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
ACMMPR | | | 98.31 22 | 98.07 36 | 98.60 21 | 99.58 6 | 98.83 27 | 99.09 24 | 98.48 26 | 96.25 35 | 97.03 72 | 96.81 109 | 99.09 31 | 98.39 20 | 98.55 47 | 98.45 42 | 99.01 38 | 98.53 26 |
|
CP-MVS | | | 98.00 41 | 97.57 59 | 98.50 25 | 99.47 21 | 98.56 55 | 98.91 42 | 98.38 35 | 94.71 88 | 97.01 73 | 95.20 138 | 99.06 35 | 98.20 24 | 98.61 44 | 98.46 39 | 99.02 36 | 98.40 32 |
|
LS3D | | | 97.93 49 | 97.80 47 | 98.08 44 | 99.20 37 | 98.77 33 | 98.89 44 | 97.92 74 | 96.59 28 | 96.99 74 | 96.71 112 | 97.14 129 | 96.39 88 | 99.04 23 | 98.96 19 | 99.10 35 | 97.39 81 |
|
Baseline_NR-MVSNet | | | 98.17 29 | 97.90 42 | 98.48 27 | 99.23 34 | 98.59 50 | 98.83 49 | 98.73 21 | 93.97 114 | 96.95 75 | 99.66 7 | 98.23 98 | 97.90 37 | 98.40 55 | 99.06 16 | 99.25 27 | 97.42 80 |
|
ACMMP_NAP | | | 98.12 35 | 98.08 35 | 98.18 36 | 99.34 29 | 98.74 41 | 98.97 36 | 98.00 69 | 95.13 72 | 96.90 76 | 97.54 94 | 99.27 20 | 97.18 62 | 98.72 36 | 98.45 42 | 98.68 65 | 98.69 15 |
|
ACMM | | 94.29 11 | 98.12 35 | 97.71 54 | 98.59 22 | 99.51 17 | 98.58 52 | 99.24 17 | 98.25 44 | 96.22 37 | 96.90 76 | 95.01 142 | 98.89 53 | 98.52 16 | 98.66 41 | 98.32 53 | 99.13 31 | 98.28 38 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
pmmvs5 | | | 95.70 130 | 95.22 129 | 96.26 135 | 96.55 180 | 97.24 127 | 97.50 121 | 94.99 180 | 90.95 152 | 96.87 78 | 98.47 71 | 97.40 121 | 94.45 129 | 92.86 178 | 94.98 147 | 97.23 140 | 94.64 150 |
|
MDA-MVSNet-bldmvs | | | 95.45 134 | 95.20 130 | 95.74 147 | 94.24 204 | 96.38 159 | 97.93 97 | 94.80 182 | 95.56 59 | 96.87 78 | 98.29 76 | 95.24 154 | 96.50 85 | 98.65 42 | 90.38 185 | 94.09 180 | 91.93 175 |
|
PatchmatchNet | | | 89.98 189 | 86.23 202 | 94.36 175 | 96.56 179 | 91.90 196 | 96.07 171 | 96.72 137 | 90.18 161 | 96.87 78 | 93.36 171 | 78.06 201 | 91.46 158 | 84.71 207 | 81.40 205 | 88.45 203 | 83.97 206 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
pmmvs6 | | | 98.77 13 | 99.35 2 | 98.09 40 | 98.32 95 | 98.92 20 | 98.57 64 | 99.03 12 | 99.36 1 | 96.86 81 | 99.77 3 | 99.86 1 | 96.20 94 | 99.56 4 | 99.39 7 | 99.59 6 | 98.61 20 |
|
PGM-MVS | | | 97.82 52 | 97.25 70 | 98.48 27 | 99.54 11 | 98.75 40 | 99.02 28 | 98.35 38 | 92.41 136 | 96.84 82 | 95.39 135 | 98.99 42 | 98.24 23 | 98.43 54 | 98.34 50 | 98.90 51 | 98.41 31 |
|
SMA-MVS | | | 98.13 34 | 98.22 29 | 98.02 54 | 99.44 24 | 98.73 42 | 98.24 81 | 97.87 78 | 95.22 68 | 96.76 83 | 98.66 65 | 99.35 13 | 97.03 67 | 98.53 50 | 98.39 46 | 98.80 61 | 98.69 15 |
|
TSAR-MVS + MP. | | | 98.15 31 | 98.23 28 | 98.06 49 | 98.47 86 | 98.16 76 | 99.23 18 | 96.87 130 | 95.58 55 | 96.72 84 | 98.41 73 | 99.06 35 | 98.05 30 | 98.99 25 | 98.90 22 | 99.00 39 | 98.51 27 |
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
SD-MVS | | | 97.84 50 | 97.78 50 | 97.90 59 | 98.33 93 | 98.06 84 | 97.95 96 | 97.80 84 | 96.03 41 | 96.72 84 | 97.57 92 | 99.18 29 | 97.50 51 | 97.88 69 | 97.08 94 | 99.11 33 | 98.68 17 |
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
MAR-MVS | | | 95.51 132 | 94.49 148 | 96.71 118 | 97.92 126 | 96.40 156 | 96.72 154 | 98.04 66 | 86.74 192 | 96.72 84 | 92.52 178 | 95.14 155 | 94.02 138 | 96.81 111 | 96.54 111 | 96.85 153 | 97.25 88 |
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
IterMVS-LS | | | 96.35 112 | 95.85 120 | 96.93 110 | 97.53 151 | 98.00 90 | 97.37 128 | 97.97 71 | 95.49 63 | 96.71 87 | 98.94 45 | 93.23 167 | 94.82 124 | 93.15 177 | 95.05 146 | 97.17 143 | 97.12 92 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
OPM-MVS | | | 98.01 39 | 98.01 38 | 98.00 56 | 99.11 49 | 98.12 79 | 98.68 59 | 97.72 85 | 96.65 27 | 96.68 88 | 98.40 74 | 99.28 19 | 97.44 53 | 98.20 63 | 97.82 78 | 98.40 85 | 97.58 70 |
|
TAPA-MVS | | 93.96 13 | 96.79 100 | 96.70 99 | 96.90 112 | 97.64 145 | 97.58 113 | 97.54 119 | 94.50 189 | 95.14 71 | 96.64 89 | 96.76 111 | 97.90 108 | 96.63 76 | 95.98 134 | 96.14 122 | 98.45 80 | 97.39 81 |
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
MIMVSNet1 | | | 98.22 28 | 98.51 22 | 97.87 61 | 99.40 26 | 98.82 29 | 99.31 14 | 98.53 24 | 97.39 17 | 96.59 90 | 99.31 32 | 99.23 26 | 94.76 125 | 98.93 28 | 98.67 33 | 98.63 66 | 97.25 88 |
|
tpm | | | 89.84 191 | 86.81 198 | 93.36 181 | 96.60 178 | 91.92 195 | 95.02 194 | 97.39 110 | 86.79 191 | 96.54 91 | 95.03 140 | 69.70 214 | 87.66 191 | 88.79 197 | 86.19 194 | 86.95 208 | 89.27 188 |
|
HFP-MVS | | | 98.17 29 | 98.02 37 | 98.35 33 | 99.36 28 | 98.62 48 | 98.79 51 | 98.46 30 | 96.24 36 | 96.53 92 | 97.13 106 | 98.98 43 | 98.02 31 | 98.20 63 | 98.42 44 | 98.95 47 | 98.54 24 |
|
EPNet | | | 94.33 158 | 93.52 159 | 95.27 159 | 98.81 71 | 94.71 178 | 96.77 152 | 98.20 48 | 88.12 181 | 96.53 92 | 92.53 177 | 91.19 176 | 85.25 204 | 95.22 149 | 95.26 144 | 96.09 171 | 97.63 69 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
OpenMVS | | 94.63 9 | 95.75 129 | 95.04 136 | 96.58 125 | 97.85 130 | 97.55 117 | 96.71 155 | 96.07 150 | 90.15 163 | 96.47 94 | 90.77 194 | 95.95 148 | 94.41 131 | 97.01 107 | 96.95 97 | 98.00 107 | 96.90 97 |
|
CR-MVSNet | | | 91.94 178 | 88.50 188 | 95.94 142 | 96.14 184 | 92.08 191 | 95.23 192 | 98.47 28 | 84.30 204 | 96.44 95 | 94.58 152 | 75.57 205 | 92.92 150 | 90.22 195 | 92.22 176 | 96.43 166 | 90.56 181 |
|
Patchmtry | | | | | | | 92.70 186 | 95.23 192 | 98.47 28 | | 96.44 95 | | | | | | | |
|
PatchT | | | 91.40 182 | 88.54 187 | 94.74 168 | 91.48 212 | 92.18 190 | 97.42 126 | 97.51 96 | 84.96 200 | 96.44 95 | 94.16 159 | 75.47 206 | 92.92 150 | 90.22 195 | 92.22 176 | 92.66 191 | 90.56 181 |
|
IterMVS | | | 94.48 153 | 93.46 160 | 95.66 149 | 97.52 152 | 96.43 153 | 97.20 138 | 94.73 185 | 92.91 134 | 96.44 95 | 98.75 61 | 91.10 177 | 94.53 128 | 92.10 185 | 90.10 187 | 93.51 183 | 92.84 173 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
XVS | | | | | | 99.48 19 | 98.76 36 | 99.22 19 | | | 96.40 99 | | 98.78 65 | | | | 98.94 48 | |
|
X-MVStestdata | | | | | | 99.48 19 | 98.76 36 | 99.22 19 | | | 96.40 99 | | 98.78 65 | | | | 98.94 48 | |
|
X-MVS | | | 97.60 59 | 97.00 85 | 98.29 34 | 99.50 18 | 98.76 36 | 98.90 43 | 98.37 36 | 94.67 91 | 96.40 99 | 91.47 187 | 98.78 65 | 97.60 50 | 98.55 47 | 98.50 37 | 98.96 45 | 98.29 35 |
|
TransMVSNet (Re) | | | 98.23 25 | 98.72 15 | 97.66 72 | 98.22 104 | 98.73 42 | 98.66 60 | 98.03 67 | 98.60 7 | 96.40 99 | 99.60 12 | 98.24 96 | 95.26 115 | 99.19 18 | 99.05 17 | 99.36 19 | 97.64 65 |
|
ACMMP | | | 97.99 43 | 97.60 58 | 98.45 29 | 99.53 15 | 98.83 27 | 99.13 23 | 98.30 40 | 94.57 94 | 96.39 103 | 95.32 136 | 98.95 48 | 98.37 21 | 98.61 44 | 98.47 38 | 99.00 39 | 98.45 29 |
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
CLD-MVS | | | 96.73 103 | 96.92 89 | 96.51 128 | 98.70 76 | 97.57 115 | 97.64 113 | 92.07 195 | 93.10 130 | 96.31 104 | 98.29 76 | 99.02 40 | 95.99 100 | 97.20 98 | 96.47 113 | 98.37 87 | 96.81 103 |
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
PVSNet_BlendedMVS | | | 95.44 135 | 95.09 132 | 95.86 144 | 97.31 162 | 97.13 134 | 96.31 166 | 95.01 178 | 88.55 176 | 96.23 105 | 94.55 155 | 97.75 111 | 92.56 156 | 96.42 121 | 95.44 141 | 97.71 116 | 95.81 130 |
|
PVSNet_Blended | | | 95.44 135 | 95.09 132 | 95.86 144 | 97.31 162 | 97.13 134 | 96.31 166 | 95.01 178 | 88.55 176 | 96.23 105 | 94.55 155 | 97.75 111 | 92.56 156 | 96.42 121 | 95.44 141 | 97.71 116 | 95.81 130 |
|
QAPM | | | 97.04 90 | 97.14 77 | 96.93 110 | 97.78 142 | 98.02 88 | 97.36 130 | 96.72 137 | 94.68 90 | 96.23 105 | 97.21 102 | 97.68 114 | 95.70 106 | 97.37 92 | 97.24 93 | 97.78 115 | 97.77 59 |
|
CNLPA | | | 96.24 116 | 95.97 116 | 96.57 126 | 97.48 156 | 97.10 138 | 96.75 153 | 94.95 181 | 94.92 82 | 96.20 108 | 94.81 147 | 96.61 137 | 96.25 90 | 96.94 109 | 95.64 136 | 97.79 114 | 95.74 135 |
|
MSLP-MVS++ | | | 96.66 106 | 96.46 105 | 96.89 113 | 98.02 117 | 97.71 108 | 95.57 181 | 96.96 126 | 94.36 104 | 96.19 109 | 91.37 188 | 98.24 96 | 97.07 65 | 97.69 78 | 97.89 73 | 97.52 125 | 97.95 48 |
|
pm-mvs1 | | | 98.14 32 | 98.66 17 | 97.53 79 | 97.93 125 | 98.49 60 | 98.14 86 | 98.19 50 | 97.95 11 | 96.17 110 | 99.63 10 | 98.85 56 | 95.41 113 | 98.91 29 | 98.89 23 | 99.34 21 | 97.86 53 |
|
tfpnnormal | | | 97.66 56 | 97.79 48 | 97.52 81 | 98.32 95 | 98.53 57 | 98.45 72 | 97.69 86 | 97.59 16 | 96.12 111 | 97.79 88 | 96.70 135 | 95.69 107 | 98.35 60 | 98.34 50 | 98.85 58 | 97.22 91 |
|
NCCC | | | 96.56 109 | 95.68 121 | 97.59 74 | 99.04 58 | 97.54 118 | 97.67 110 | 97.56 94 | 94.84 84 | 96.10 112 | 87.91 200 | 98.09 101 | 96.98 69 | 97.20 98 | 96.80 103 | 98.21 95 | 97.38 84 |
|
ACMP | | 94.03 12 | 97.97 47 | 97.61 57 | 98.39 31 | 99.43 25 | 98.51 59 | 98.97 36 | 98.06 62 | 94.63 92 | 96.10 112 | 96.12 124 | 99.20 28 | 98.63 9 | 98.68 39 | 98.20 60 | 99.14 30 | 97.93 50 |
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
LGP-MVS_train | | | 97.96 48 | 97.53 61 | 98.45 29 | 99.45 22 | 98.64 47 | 99.09 24 | 98.27 43 | 92.99 132 | 96.04 114 | 96.57 115 | 99.29 16 | 98.66 8 | 98.73 34 | 98.42 44 | 99.19 29 | 98.09 43 |
|
Effi-MVS+-dtu | | | 95.94 125 | 95.08 134 | 96.94 109 | 98.54 84 | 97.38 123 | 96.66 157 | 97.89 76 | 88.68 173 | 95.92 115 | 92.90 174 | 97.28 124 | 94.18 136 | 96.68 117 | 96.13 124 | 98.45 80 | 96.51 112 |
|
AdaColmap | | | 95.85 127 | 94.65 144 | 97.26 91 | 98.70 76 | 97.20 129 | 97.33 131 | 97.30 117 | 91.28 148 | 95.90 116 | 88.16 198 | 96.17 144 | 96.60 78 | 97.34 93 | 96.82 101 | 97.71 116 | 95.60 138 |
|
CPTT-MVS | | | 97.08 88 | 96.25 106 | 98.05 50 | 99.21 36 | 98.30 66 | 98.54 67 | 97.98 70 | 94.28 105 | 95.89 117 | 89.57 196 | 98.54 81 | 98.18 25 | 97.82 73 | 97.32 89 | 98.54 73 | 97.91 52 |
|
SteuartSystems-ACMMP | | | 98.06 38 | 97.78 50 | 98.39 31 | 99.54 11 | 98.79 31 | 98.94 40 | 98.42 32 | 93.98 113 | 95.85 118 | 96.66 114 | 99.25 24 | 98.61 11 | 98.71 38 | 98.38 47 | 98.97 43 | 98.67 18 |
Skip Steuart: Steuart Systems R&D Blog. |
MCST-MVS | | | 96.79 100 | 96.08 112 | 97.62 73 | 98.78 74 | 97.52 119 | 98.01 94 | 97.32 116 | 93.20 124 | 95.84 119 | 93.97 163 | 98.12 100 | 97.34 58 | 96.34 124 | 95.88 132 | 98.45 80 | 97.51 75 |
|
RPSCF | | | 97.83 51 | 98.27 26 | 97.31 90 | 98.23 102 | 98.06 84 | 97.44 125 | 95.79 163 | 96.90 23 | 95.81 120 | 98.76 60 | 98.61 78 | 97.70 45 | 98.90 30 | 98.36 49 | 98.90 51 | 98.29 35 |
|
thisisatest0530 | | | 94.81 148 | 93.06 164 | 96.85 115 | 98.01 118 | 97.18 131 | 96.93 148 | 97.36 113 | 89.73 167 | 95.80 121 | 94.98 143 | 77.88 202 | 94.89 121 | 96.73 114 | 97.35 85 | 98.13 100 | 97.54 72 |
|
PatchMatch-RL | | | 94.79 151 | 93.75 157 | 96.00 139 | 96.80 174 | 95.00 176 | 95.47 186 | 95.25 174 | 90.68 155 | 95.80 121 | 92.97 173 | 93.64 165 | 95.67 108 | 96.13 131 | 95.81 133 | 96.99 151 | 92.01 174 |
|
HQP-MVS | | | 95.97 124 | 95.01 137 | 97.08 99 | 98.72 75 | 97.19 130 | 97.07 143 | 96.69 140 | 91.49 144 | 95.77 123 | 92.19 181 | 97.93 107 | 96.15 96 | 94.66 155 | 94.16 157 | 98.10 103 | 97.45 78 |
|
xxxxxxxxxxxxxcwj | | | 97.26 80 | 97.43 63 | 97.05 102 | 98.80 72 | 97.83 100 | 96.02 172 | 97.44 106 | 94.98 77 | 95.74 124 | 97.16 103 | 98.45 87 | 95.72 104 | 97.85 70 | 97.97 70 | 98.60 69 | 97.78 56 |
|
xxxxxxxxxxxx | | | 97.26 80 | 97.43 63 | 97.05 102 | 98.80 72 | 97.83 100 | 96.02 172 | 97.44 106 | 94.98 77 | 95.74 124 | 97.16 103 | 98.45 87 | 95.72 104 | 97.85 70 | 97.97 70 | 98.60 69 | 97.78 56 |
|
tttt0517 | | | 94.81 148 | 93.04 165 | 96.88 114 | 98.15 110 | 97.37 124 | 96.99 145 | 97.36 113 | 89.51 169 | 95.74 124 | 94.89 145 | 77.53 204 | 94.89 121 | 96.94 109 | 97.35 85 | 98.17 98 | 97.70 62 |
|
new-patchmatchnet | | | 94.48 153 | 94.02 151 | 95.02 166 | 97.51 155 | 95.00 176 | 95.68 180 | 94.26 191 | 97.32 18 | 95.73 127 | 99.60 12 | 98.22 99 | 91.30 159 | 94.13 165 | 84.41 195 | 95.65 173 | 89.45 187 |
|
abl_6 | | | | | 96.45 131 | 97.79 141 | 97.28 126 | 97.16 141 | 96.16 149 | 89.92 166 | 95.72 128 | 91.59 186 | 97.16 128 | 94.37 132 | | | 97.51 126 | 95.49 140 |
|
PLC | | 92.55 15 | 96.10 119 | 95.36 124 | 96.96 107 | 98.13 113 | 96.88 143 | 96.49 161 | 96.67 141 | 94.07 112 | 95.71 129 | 91.14 189 | 96.09 145 | 96.84 71 | 96.70 115 | 96.58 110 | 97.92 111 | 96.03 124 |
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
CNVR-MVS | | | 97.03 91 | 96.77 97 | 97.34 87 | 98.89 64 | 97.67 109 | 97.64 113 | 97.17 120 | 94.40 103 | 95.70 130 | 94.02 161 | 98.76 68 | 96.49 86 | 97.78 75 | 97.29 92 | 98.12 101 | 97.47 77 |
|
PCF-MVS | | 92.69 14 | 95.98 123 | 95.05 135 | 97.06 101 | 98.43 89 | 97.56 116 | 97.76 106 | 96.65 142 | 89.95 165 | 95.70 130 | 96.18 123 | 98.48 85 | 95.74 103 | 93.64 169 | 93.35 170 | 98.09 104 | 96.18 120 |
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
ET-MVSNet_ETH3D | | | 93.18 171 | 90.80 182 | 95.95 141 | 96.05 186 | 96.07 166 | 96.92 149 | 96.51 144 | 89.34 170 | 95.63 132 | 94.08 160 | 72.31 213 | 93.13 148 | 94.33 162 | 94.83 150 | 97.44 129 | 94.65 149 |
|
MSDG | | | 96.27 115 | 96.17 111 | 96.38 134 | 97.85 130 | 96.27 162 | 96.55 160 | 94.41 190 | 94.55 95 | 95.62 133 | 97.56 93 | 97.80 110 | 96.22 92 | 97.17 100 | 96.27 119 | 97.67 121 | 93.60 164 |
|
DCV-MVSNet | | | 97.56 61 | 97.63 56 | 97.47 83 | 98.41 90 | 99.12 10 | 98.63 61 | 98.57 22 | 95.71 51 | 95.60 134 | 93.79 166 | 98.01 106 | 94.25 133 | 99.16 20 | 98.88 24 | 99.35 20 | 98.74 13 |
|
RPMNet | | | 90.52 187 | 86.27 201 | 95.48 154 | 95.95 189 | 92.08 191 | 95.55 185 | 98.12 57 | 84.30 204 | 95.60 134 | 87.49 201 | 72.78 210 | 91.24 160 | 87.93 198 | 89.34 188 | 96.41 167 | 89.98 184 |
|
TSAR-MVS + ACMM | | | 97.54 63 | 97.79 48 | 97.26 91 | 98.23 102 | 98.10 82 | 97.71 108 | 97.88 77 | 95.97 43 | 95.57 136 | 98.71 63 | 98.57 80 | 97.36 56 | 97.74 76 | 96.81 102 | 96.83 156 | 98.59 21 |
|
DPE-MVS | | | 97.99 43 | 98.12 33 | 97.84 64 | 98.65 81 | 98.86 24 | 98.86 47 | 98.05 65 | 94.18 108 | 95.49 137 | 98.90 47 | 99.33 14 | 97.11 64 | 98.53 50 | 98.65 35 | 98.86 57 | 98.39 34 |
|
MDTV_nov1_ep13 | | | 90.30 188 | 87.32 196 | 93.78 178 | 96.00 188 | 92.97 185 | 95.46 187 | 95.39 171 | 88.61 174 | 95.41 138 | 94.45 157 | 80.39 196 | 89.87 178 | 86.58 201 | 83.54 200 | 90.56 195 | 84.71 202 |
|
DELS-MVS | | | 96.90 94 | 97.24 71 | 96.50 129 | 97.85 130 | 98.18 72 | 97.88 103 | 95.92 156 | 93.48 121 | 95.34 139 | 98.86 53 | 98.94 50 | 94.03 137 | 97.33 94 | 97.04 95 | 98.00 107 | 96.85 102 |
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
TSAR-MVS + COLMAP | | | 96.05 121 | 95.94 117 | 96.18 137 | 97.46 157 | 96.41 155 | 97.26 136 | 95.83 160 | 94.69 89 | 95.30 140 | 98.31 75 | 96.52 138 | 94.71 126 | 95.48 145 | 94.87 148 | 96.54 162 | 95.33 142 |
|
TSAR-MVS + GP. | | | 97.26 80 | 97.33 67 | 97.18 96 | 98.21 105 | 98.06 84 | 96.38 163 | 97.66 88 | 93.92 116 | 95.23 141 | 98.48 70 | 98.33 92 | 97.41 54 | 97.63 85 | 97.35 85 | 98.18 97 | 97.57 71 |
|
APD-MVS | | | 97.47 72 | 97.16 75 | 97.84 64 | 99.32 32 | 98.39 64 | 98.47 71 | 98.21 47 | 92.08 140 | 95.23 141 | 96.68 113 | 98.90 51 | 96.99 68 | 98.20 63 | 98.21 57 | 98.80 61 | 97.67 63 |
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
train_agg | | | 96.68 104 | 95.93 118 | 97.56 76 | 99.08 54 | 97.16 132 | 98.44 74 | 97.37 112 | 91.12 150 | 95.18 143 | 95.43 134 | 98.48 85 | 97.36 56 | 96.48 120 | 95.52 139 | 97.95 110 | 97.34 85 |
|
APDe-MVS | | | 98.29 23 | 98.42 24 | 98.14 37 | 99.45 22 | 98.90 21 | 99.18 21 | 98.30 40 | 95.96 44 | 95.13 144 | 98.79 56 | 99.25 24 | 97.92 36 | 98.80 32 | 98.71 30 | 98.85 58 | 98.54 24 |
|
CDPH-MVS | | | 96.68 104 | 95.99 115 | 97.48 82 | 99.13 47 | 97.64 110 | 98.08 88 | 97.46 102 | 90.56 156 | 95.13 144 | 94.87 146 | 98.27 95 | 96.56 82 | 97.09 102 | 96.45 114 | 98.54 73 | 97.08 93 |
|
gg-mvs-nofinetune | | | 94.13 160 | 93.93 154 | 94.37 173 | 97.99 121 | 95.86 168 | 95.45 189 | 99.22 9 | 97.61 15 | 95.10 146 | 99.50 19 | 84.50 186 | 81.73 207 | 95.31 147 | 94.12 159 | 96.71 161 | 90.59 180 |
|
DI_MVS_plusplus_trai | | | 95.48 133 | 94.51 146 | 96.61 122 | 97.13 167 | 97.30 125 | 98.05 91 | 96.79 135 | 93.75 118 | 95.08 147 | 96.38 118 | 89.76 181 | 94.95 120 | 93.97 168 | 94.82 152 | 97.64 123 | 95.63 137 |
|
GA-MVS | | | 94.18 159 | 92.98 166 | 95.58 152 | 97.36 159 | 96.42 154 | 96.21 169 | 95.86 157 | 90.29 159 | 95.08 147 | 96.19 122 | 85.37 185 | 92.82 153 | 94.01 167 | 94.14 158 | 96.16 170 | 94.41 155 |
|
canonicalmvs | | | 97.11 86 | 96.88 90 | 97.38 86 | 98.34 92 | 98.72 44 | 97.52 120 | 97.94 72 | 95.60 53 | 95.01 149 | 94.58 152 | 94.50 160 | 96.59 79 | 97.84 72 | 98.03 68 | 98.90 51 | 98.91 7 |
|
HyFIR lowres test | | | 95.05 142 | 93.54 158 | 96.81 116 | 97.81 138 | 96.88 143 | 98.18 82 | 97.46 102 | 94.28 105 | 94.98 150 | 96.57 115 | 92.89 169 | 96.15 96 | 90.90 194 | 91.87 179 | 96.28 168 | 91.35 176 |
|
MVS-HIRNet | | | 88.72 197 | 86.49 199 | 91.33 198 | 91.81 210 | 85.66 210 | 87.02 213 | 96.25 147 | 81.48 211 | 94.82 151 | 96.31 121 | 92.14 173 | 90.32 172 | 87.60 199 | 83.82 197 | 87.74 205 | 78.42 210 |
|
Anonymous20231211 | | | 97.49 70 | 97.91 41 | 97.00 106 | 98.31 98 | 98.72 44 | 98.27 78 | 97.84 81 | 94.76 87 | 94.77 152 | 98.14 81 | 98.38 91 | 93.60 143 | 98.96 27 | 98.66 34 | 99.22 28 | 97.77 59 |
|
UGNet | | | 96.79 100 | 97.82 46 | 95.58 152 | 97.57 150 | 98.39 64 | 98.48 69 | 97.84 81 | 95.85 47 | 94.68 153 | 97.91 85 | 99.07 34 | 87.12 194 | 97.71 77 | 97.51 81 | 97.80 113 | 98.29 35 |
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
FPMVS | | | 94.70 152 | 94.99 138 | 94.37 173 | 95.84 191 | 93.20 184 | 96.00 174 | 91.93 196 | 95.03 75 | 94.64 154 | 94.68 149 | 93.29 166 | 90.95 164 | 98.07 67 | 97.34 88 | 96.85 153 | 93.29 166 |
|
DPM-MVS | | | 94.86 146 | 93.90 155 | 95.99 140 | 98.19 107 | 96.52 151 | 96.29 168 | 95.95 154 | 93.11 128 | 94.61 155 | 88.17 197 | 96.44 140 | 93.77 142 | 93.33 172 | 93.54 168 | 97.11 145 | 96.22 119 |
|
pmmvs3 | | | 91.20 183 | 91.40 180 | 90.96 199 | 91.71 211 | 91.08 198 | 95.41 190 | 81.34 210 | 87.36 187 | 94.57 156 | 95.02 141 | 94.30 162 | 90.42 170 | 94.28 163 | 89.26 189 | 92.30 192 | 88.49 192 |
|
DWT-MVSNet_training | | | 86.69 203 | 81.24 209 | 93.05 185 | 95.31 200 | 92.06 193 | 95.75 178 | 91.51 197 | 84.32 203 | 94.49 157 | 83.46 204 | 55.37 218 | 90.81 166 | 82.76 209 | 83.19 202 | 90.45 197 | 87.52 195 |
|
FC-MVSNet-train | | | 97.65 57 | 98.16 31 | 97.05 102 | 98.85 67 | 98.85 25 | 99.34 13 | 98.08 61 | 94.50 99 | 94.41 158 | 99.21 36 | 98.80 63 | 92.66 154 | 98.98 26 | 98.85 26 | 98.96 45 | 97.94 49 |
|
tpm cat1 | | | 87.19 201 | 82.78 208 | 92.33 192 | 95.66 193 | 90.61 201 | 94.19 202 | 95.27 173 | 86.97 189 | 94.38 159 | 90.91 191 | 69.40 215 | 87.21 193 | 79.57 211 | 77.82 208 | 87.25 207 | 84.18 204 |
|
DVP-MVS | | | 98.27 24 | 98.61 18 | 97.87 61 | 99.17 40 | 99.03 17 | 99.07 26 | 98.17 54 | 96.75 25 | 94.35 160 | 98.92 46 | 99.58 6 | 97.86 39 | 98.67 40 | 98.70 31 | 98.63 66 | 98.63 19 |
|
CMPMVS | | 71.81 19 | 92.34 175 | 92.85 167 | 91.75 195 | 92.70 208 | 90.43 202 | 88.84 211 | 88.56 201 | 85.87 197 | 94.35 160 | 90.98 190 | 95.89 150 | 91.14 161 | 96.14 130 | 94.83 150 | 94.93 179 | 95.78 133 |
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
baseline2 | | | 92.06 176 | 89.82 185 | 94.68 170 | 97.32 160 | 95.72 169 | 94.97 196 | 95.08 176 | 84.75 201 | 94.34 162 | 90.68 195 | 77.75 203 | 90.13 174 | 93.38 170 | 93.58 167 | 96.25 169 | 92.90 172 |
|
CHOSEN 280x420 | | | 91.55 181 | 90.27 184 | 93.05 185 | 94.61 202 | 88.01 209 | 96.56 159 | 94.62 188 | 88.04 182 | 94.20 163 | 92.66 176 | 86.60 183 | 90.82 165 | 95.06 152 | 91.89 178 | 87.49 206 | 89.61 186 |
|
thres400 | | | 94.04 163 | 91.94 175 | 96.50 129 | 97.98 123 | 97.82 104 | 97.66 112 | 96.96 126 | 90.96 151 | 94.20 163 | 83.24 205 | 82.82 191 | 93.80 140 | 96.50 119 | 98.09 64 | 98.38 86 | 94.15 157 |
|
ACMH+ | | 94.90 8 | 98.40 21 | 98.71 16 | 98.04 51 | 98.93 63 | 98.84 26 | 99.30 15 | 97.86 79 | 97.78 13 | 94.19 165 | 98.77 59 | 99.39 11 | 98.61 11 | 99.33 13 | 99.07 14 | 99.33 22 | 97.81 54 |
|
MSP-MVS | | | 97.67 55 | 97.88 43 | 97.43 85 | 99.34 29 | 98.99 19 | 98.87 46 | 98.12 57 | 95.63 52 | 94.16 166 | 97.45 95 | 99.50 7 | 96.44 87 | 96.35 123 | 98.70 31 | 97.65 122 | 98.57 22 |
|
MVS_Test | | | 95.34 138 | 94.88 139 | 95.89 143 | 96.93 171 | 96.84 147 | 96.66 157 | 97.08 122 | 90.06 164 | 94.02 167 | 97.61 91 | 96.64 136 | 93.59 144 | 92.73 181 | 94.02 161 | 97.03 149 | 96.24 118 |
|
baseline | | | 94.07 161 | 94.50 147 | 93.57 180 | 96.34 182 | 93.40 183 | 95.56 184 | 92.39 194 | 92.07 141 | 94.00 168 | 98.24 79 | 97.51 119 | 89.19 181 | 91.75 187 | 92.72 174 | 93.96 182 | 95.79 132 |
|
thres600view7 | | | 94.34 156 | 92.31 172 | 96.70 119 | 98.19 107 | 98.12 79 | 97.85 105 | 97.45 104 | 91.49 144 | 93.98 169 | 84.27 203 | 82.02 193 | 94.24 134 | 97.04 103 | 98.76 29 | 98.49 77 | 94.47 153 |
|
thres200 | | | 93.98 165 | 91.90 176 | 96.40 133 | 97.66 143 | 98.12 79 | 97.20 138 | 97.45 104 | 90.16 162 | 93.82 170 | 83.08 206 | 83.74 189 | 93.80 140 | 97.04 103 | 97.48 83 | 98.49 77 | 93.70 163 |
|
MS-PatchMatch | | | 94.84 147 | 94.76 141 | 94.94 167 | 96.38 181 | 94.69 179 | 95.90 175 | 94.03 192 | 92.49 135 | 93.81 171 | 95.79 131 | 96.38 141 | 94.54 127 | 94.70 154 | 94.85 149 | 94.97 178 | 94.43 154 |
|
PMMVS | | | 91.67 180 | 91.47 179 | 91.91 194 | 89.43 213 | 88.61 208 | 94.99 195 | 85.67 206 | 87.50 186 | 93.80 172 | 94.42 158 | 94.88 156 | 90.71 168 | 92.26 184 | 92.96 172 | 96.83 156 | 89.65 185 |
|
CHOSEN 1792x2688 | | | 94.98 143 | 94.69 142 | 95.31 157 | 97.27 164 | 95.58 171 | 97.90 100 | 95.56 168 | 95.03 75 | 93.77 173 | 95.65 132 | 99.29 16 | 95.30 114 | 91.51 190 | 91.28 182 | 92.05 193 | 94.50 152 |
|
Anonymous20231206 | | | 95.69 131 | 95.68 121 | 95.70 148 | 98.32 95 | 96.95 141 | 97.37 128 | 96.65 142 | 93.33 122 | 93.61 174 | 98.70 64 | 98.03 104 | 91.04 163 | 95.07 151 | 94.59 155 | 97.20 141 | 93.09 170 |
|
IB-MVS | | 92.44 16 | 93.33 170 | 92.15 174 | 94.70 169 | 97.42 158 | 96.39 158 | 95.57 181 | 94.67 186 | 86.40 196 | 93.59 175 | 78.28 210 | 95.76 151 | 89.59 180 | 95.88 136 | 95.98 128 | 97.39 133 | 96.34 116 |
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
thres100view900 | | | 92.93 172 | 90.89 181 | 95.31 157 | 97.52 152 | 96.82 148 | 96.41 162 | 95.08 176 | 87.65 184 | 93.56 176 | 83.03 207 | 84.12 187 | 91.12 162 | 94.53 156 | 96.91 99 | 98.17 98 | 93.21 168 |
|
tfpn200view9 | | | 93.80 167 | 91.75 177 | 96.20 136 | 97.52 152 | 98.15 77 | 97.48 123 | 97.47 101 | 87.65 184 | 93.56 176 | 83.03 207 | 84.12 187 | 92.62 155 | 97.04 103 | 98.09 64 | 98.52 76 | 94.17 156 |
|
CDS-MVSNet | | | 94.91 145 | 95.17 131 | 94.60 171 | 97.85 130 | 96.21 163 | 96.90 151 | 96.39 145 | 90.81 153 | 93.40 178 | 97.24 101 | 94.54 159 | 85.78 200 | 96.25 127 | 96.15 121 | 97.26 138 | 95.01 145 |
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
Fast-Effi-MVS+-dtu | | | 94.34 156 | 93.26 163 | 95.62 151 | 97.82 136 | 95.97 167 | 95.86 176 | 99.01 13 | 86.88 190 | 93.39 179 | 90.83 192 | 95.46 152 | 90.61 169 | 94.46 160 | 94.68 153 | 97.01 150 | 94.51 151 |
|
EPP-MVSNet | | | 97.29 78 | 96.88 90 | 97.76 70 | 98.70 76 | 99.10 13 | 98.92 41 | 98.36 37 | 95.12 73 | 93.36 180 | 97.39 97 | 91.00 178 | 97.65 47 | 98.72 36 | 98.91 21 | 99.58 7 | 97.92 51 |
|
tpmrst | | | 87.60 200 | 84.13 207 | 91.66 196 | 95.65 194 | 89.73 206 | 93.77 203 | 94.74 184 | 88.85 172 | 93.35 181 | 95.60 133 | 72.37 212 | 87.40 192 | 81.24 210 | 78.19 207 | 85.02 211 | 82.90 209 |
|
dps | | | 88.36 199 | 84.32 206 | 93.07 184 | 93.86 206 | 92.29 189 | 94.89 197 | 95.93 155 | 83.50 206 | 93.13 182 | 91.87 184 | 67.79 216 | 90.32 172 | 85.99 204 | 83.22 201 | 90.28 198 | 85.56 199 |
|
FMVSNet1 | | | 97.40 76 | 98.09 34 | 96.60 123 | 97.80 139 | 98.76 36 | 98.26 79 | 98.50 25 | 96.79 24 | 93.13 182 | 99.28 33 | 98.64 74 | 92.90 152 | 97.67 80 | 97.86 75 | 99.02 36 | 97.64 65 |
|
CostFormer | | | 89.06 196 | 85.65 203 | 93.03 187 | 95.88 190 | 92.40 188 | 95.30 191 | 95.86 157 | 86.49 195 | 93.12 184 | 93.40 170 | 74.18 208 | 88.25 188 | 82.99 208 | 81.46 204 | 89.77 199 | 88.66 191 |
|
CVMVSNet | | | 94.01 164 | 94.25 149 | 93.73 179 | 94.36 203 | 92.44 187 | 97.45 124 | 88.56 201 | 95.59 54 | 93.06 185 | 98.88 49 | 90.03 180 | 94.84 123 | 94.08 166 | 93.45 169 | 94.09 180 | 95.31 143 |
|
MVSTER | | | 91.97 177 | 90.31 183 | 93.91 177 | 96.81 173 | 96.91 142 | 94.22 200 | 95.64 166 | 84.98 199 | 92.98 186 | 93.42 168 | 72.56 211 | 86.64 198 | 95.11 150 | 93.89 164 | 97.16 144 | 95.31 143 |
|
diffmvs | | | 95.86 126 | 96.21 109 | 95.44 155 | 97.25 165 | 96.85 146 | 96.99 145 | 95.23 175 | 94.96 80 | 92.82 187 | 98.89 48 | 98.85 56 | 93.52 145 | 94.21 164 | 94.25 156 | 96.84 155 | 95.49 140 |
|
casdiffmvs | | | 97.00 92 | 97.36 66 | 96.59 124 | 97.65 144 | 97.98 91 | 98.06 89 | 96.81 134 | 95.78 49 | 92.77 188 | 99.40 26 | 99.26 23 | 95.65 111 | 96.70 115 | 96.39 116 | 98.59 71 | 95.99 126 |
|
test20.03 | | | 96.08 120 | 96.80 95 | 95.25 161 | 99.19 38 | 97.58 113 | 97.24 137 | 97.56 94 | 94.95 81 | 91.91 189 | 98.58 67 | 98.03 104 | 87.88 190 | 97.43 90 | 96.94 98 | 97.69 119 | 94.05 159 |
|
baseline1 | | | 93.89 166 | 92.82 168 | 95.14 163 | 97.62 148 | 96.97 140 | 96.12 170 | 96.36 146 | 91.30 146 | 91.53 190 | 94.68 149 | 80.72 195 | 90.80 167 | 95.71 138 | 96.29 118 | 98.44 83 | 94.09 158 |
|
FMVSNet2 | | | 95.77 128 | 96.20 110 | 95.27 159 | 96.77 175 | 98.18 72 | 97.28 133 | 97.90 75 | 93.12 127 | 91.37 191 | 98.25 78 | 96.05 147 | 90.04 175 | 94.96 153 | 95.94 129 | 98.28 88 | 96.90 97 |
|
ADS-MVSNet | | | 89.89 190 | 87.70 191 | 92.43 191 | 95.52 196 | 90.91 200 | 95.57 181 | 95.33 172 | 93.19 125 | 91.21 192 | 93.41 169 | 82.12 192 | 89.05 182 | 86.21 202 | 83.77 198 | 87.92 204 | 84.31 203 |
|
EPMVS | | | 89.28 194 | 86.28 200 | 92.79 188 | 96.01 187 | 92.00 194 | 95.83 177 | 95.85 159 | 90.78 154 | 91.00 193 | 94.58 152 | 74.65 207 | 88.93 184 | 85.00 205 | 82.88 203 | 89.09 202 | 84.09 205 |
|
FC-MVSNet-test | | | 97.54 63 | 98.26 27 | 96.70 119 | 98.87 65 | 97.79 107 | 98.49 68 | 98.56 23 | 96.04 39 | 90.39 194 | 99.65 8 | 98.67 71 | 95.15 117 | 99.23 16 | 99.07 14 | 98.73 64 | 97.39 81 |
|
GBi-Net | | | 95.21 139 | 95.35 125 | 95.04 164 | 96.77 175 | 98.18 72 | 97.28 133 | 97.58 91 | 88.43 178 | 90.28 195 | 96.01 126 | 92.43 170 | 90.04 175 | 97.67 80 | 97.86 75 | 98.28 88 | 96.90 97 |
|
test1 | | | 95.21 139 | 95.35 125 | 95.04 164 | 96.77 175 | 98.18 72 | 97.28 133 | 97.58 91 | 88.43 178 | 90.28 195 | 96.01 126 | 92.43 170 | 90.04 175 | 97.67 80 | 97.86 75 | 98.28 88 | 96.90 97 |
|
FMVSNet3 | | | 94.06 162 | 93.85 156 | 94.31 176 | 95.46 199 | 97.80 106 | 96.34 164 | 97.58 91 | 88.43 178 | 90.28 195 | 96.01 126 | 92.43 170 | 88.67 187 | 91.82 186 | 93.96 162 | 97.53 124 | 96.50 113 |
|
IS_MVSNet | | | 96.62 108 | 96.48 104 | 96.78 117 | 98.46 87 | 98.68 46 | 98.61 62 | 98.24 45 | 92.23 138 | 89.63 198 | 95.90 130 | 94.40 161 | 96.23 91 | 98.65 42 | 98.77 28 | 99.52 12 | 96.76 104 |
|
test-LLR | | | 89.77 192 | 87.47 194 | 92.45 190 | 98.01 118 | 89.77 204 | 93.25 206 | 95.80 161 | 81.56 209 | 89.19 199 | 92.08 182 | 79.59 198 | 85.77 202 | 91.47 191 | 89.04 191 | 92.69 189 | 88.75 189 |
|
TESTMET0.1,1 | | | 88.60 198 | 87.47 194 | 89.93 202 | 94.23 205 | 89.77 204 | 93.25 206 | 84.47 208 | 81.56 209 | 89.19 199 | 92.08 182 | 79.59 198 | 85.77 202 | 91.47 191 | 89.04 191 | 92.69 189 | 88.75 189 |
|
Vis-MVSNet (Re-imp) | | | 96.29 114 | 96.50 102 | 96.05 138 | 97.96 124 | 97.83 100 | 97.30 132 | 97.86 79 | 93.14 126 | 88.90 201 | 96.80 110 | 95.28 153 | 95.15 117 | 98.37 59 | 98.25 56 | 99.12 32 | 95.84 129 |
|
EMVS | | | 86.63 204 | 84.48 205 | 89.15 204 | 95.51 197 | 83.66 212 | 90.19 209 | 86.14 205 | 91.78 143 | 88.68 202 | 93.83 165 | 81.97 194 | 89.05 182 | 92.76 180 | 76.09 210 | 85.31 210 | 71.28 212 |
|
testgi | | | 94.81 148 | 96.05 114 | 93.35 182 | 99.06 57 | 96.87 145 | 97.57 118 | 96.70 139 | 95.77 50 | 88.60 203 | 93.19 172 | 98.87 55 | 81.21 208 | 97.03 106 | 96.64 108 | 96.97 152 | 93.99 161 |
|
N_pmnet | | | 92.46 173 | 92.38 171 | 92.55 189 | 97.91 127 | 93.47 182 | 97.42 126 | 94.01 193 | 96.40 32 | 88.48 204 | 98.50 69 | 98.07 103 | 88.14 189 | 91.04 193 | 84.30 196 | 89.35 201 | 84.85 201 |
|
test-mter | | | 89.16 195 | 88.14 189 | 90.37 201 | 94.79 201 | 91.05 199 | 93.60 205 | 85.26 207 | 81.65 208 | 88.32 205 | 92.22 180 | 79.35 200 | 87.03 195 | 92.28 182 | 90.12 186 | 93.19 185 | 90.29 183 |
|
FMVSNet5 | | | 89.65 193 | 87.60 193 | 92.04 193 | 95.63 195 | 96.61 150 | 94.82 198 | 94.75 183 | 80.11 212 | 87.72 206 | 77.73 211 | 73.81 209 | 83.81 206 | 95.64 139 | 96.08 126 | 95.49 175 | 93.21 168 |
|
E-PMN | | | 86.94 202 | 85.10 204 | 89.09 205 | 95.77 192 | 83.54 213 | 89.89 210 | 86.55 203 | 92.18 139 | 87.34 207 | 94.02 161 | 83.42 190 | 89.63 179 | 93.32 173 | 77.11 209 | 85.33 209 | 72.09 211 |
|
MIMVSNet | | | 93.68 168 | 93.96 152 | 93.35 182 | 97.82 136 | 96.08 165 | 96.34 164 | 98.46 30 | 91.28 148 | 86.67 208 | 94.95 144 | 94.87 157 | 84.39 205 | 94.53 156 | 94.65 154 | 96.45 165 | 91.34 177 |
|
TAMVS | | | 92.46 173 | 93.34 161 | 91.44 197 | 97.03 169 | 93.84 181 | 94.68 199 | 90.60 199 | 90.44 158 | 85.31 209 | 97.14 105 | 93.03 168 | 85.78 200 | 94.34 161 | 93.67 165 | 95.22 176 | 90.93 179 |
|
new_pmnet | | | 90.85 186 | 92.26 173 | 89.21 203 | 93.68 207 | 89.05 207 | 93.20 208 | 84.16 209 | 92.99 132 | 84.25 210 | 97.72 89 | 94.60 158 | 86.80 197 | 93.20 175 | 91.30 181 | 93.21 184 | 86.94 197 |
|
test0.0.03 1 | | | 91.17 184 | 91.50 178 | 90.80 200 | 98.01 118 | 95.46 172 | 94.22 200 | 95.80 161 | 86.55 194 | 81.75 211 | 90.83 192 | 87.93 182 | 78.48 209 | 94.51 159 | 94.11 160 | 96.50 163 | 91.08 178 |
|
tmp_tt | | | | | 45.72 208 | 60.00 215 | 38.74 216 | 45.50 216 | 12.18 212 | 79.58 213 | 68.42 212 | 67.62 212 | 65.04 217 | 22.12 211 | 84.83 206 | 78.72 206 | 66.08 214 | |
|
MVE | | 72.99 18 | 85.37 206 | 89.43 186 | 80.63 206 | 74.43 214 | 71.94 215 | 88.25 212 | 89.81 200 | 93.27 123 | 67.32 213 | 96.32 120 | 91.83 174 | 90.40 171 | 93.36 171 | 90.79 184 | 73.55 213 | 88.49 192 |
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
DeepMVS_CX | | | | | | | 72.99 214 | 80.14 214 | 37.34 211 | 83.46 207 | 60.13 214 | 84.40 202 | 85.48 184 | 86.93 196 | 87.22 200 | | 79.61 212 | 87.32 196 |
|
PMMVS2 | | | 86.47 205 | 92.62 169 | 79.29 207 | 92.01 209 | 85.63 211 | 93.74 204 | 86.37 204 | 93.95 115 | 54.18 215 | 98.19 80 | 97.39 122 | 58.46 210 | 96.57 118 | 93.07 171 | 90.99 194 | 83.55 208 |
|
GG-mvs-BLEND | | | 61.03 207 | 87.02 197 | 30.71 209 | 0.74 218 | 90.01 203 | 78.90 215 | 0.74 215 | 84.56 202 | 9.46 216 | 79.17 209 | 90.69 179 | 1.37 214 | 91.74 188 | 89.13 190 | 93.04 187 | 83.83 207 |
|
test123 | | | 4.41 209 | 5.71 211 | 2.88 210 | 1.28 217 | 2.21 217 | 3.09 219 | 1.65 214 | 6.35 215 | 4.98 217 | 8.53 214 | 3.88 221 | 3.46 212 | 5.79 213 | 5.71 211 | 2.85 216 | 7.50 214 |
|
testmvs | | | 4.99 208 | 6.88 210 | 2.78 211 | 1.73 216 | 2.04 218 | 3.10 218 | 1.71 213 | 7.27 214 | 3.92 218 | 12.18 213 | 6.71 220 | 3.31 213 | 6.94 212 | 5.51 212 | 2.94 215 | 7.51 213 |
|
uanet_test | | | 0.00 210 | 0.00 212 | 0.00 212 | 0.00 219 | 0.00 219 | 0.00 220 | 0.00 216 | 0.00 216 | 0.00 219 | 0.00 215 | 0.00 222 | 0.00 215 | 0.00 214 | 0.00 213 | 0.00 217 | 0.00 215 |
|
sosnet-low-res | | | 0.00 210 | 0.00 212 | 0.00 212 | 0.00 219 | 0.00 219 | 0.00 220 | 0.00 216 | 0.00 216 | 0.00 219 | 0.00 215 | 0.00 222 | 0.00 215 | 0.00 214 | 0.00 213 | 0.00 217 | 0.00 215 |
|
sosnet | | | 0.00 210 | 0.00 212 | 0.00 212 | 0.00 219 | 0.00 219 | 0.00 220 | 0.00 216 | 0.00 216 | 0.00 219 | 0.00 215 | 0.00 222 | 0.00 215 | 0.00 214 | 0.00 213 | 0.00 217 | 0.00 215 |
|
9.14 | | | | | | | | | | | | | 96.98 133 | | | | | |
|
SR-MVS | | | | | | 99.33 31 | | | 98.40 33 | | | | 98.90 51 | | | | | |
|
Anonymous202405211 | | | | 97.39 65 | | 98.85 67 | 98.59 50 | 97.89 102 | 97.93 73 | 94.41 102 | | 97.37 98 | 96.99 132 | 93.09 149 | 98.61 44 | 98.46 39 | 99.11 33 | 97.27 86 |
|
our_test_3 | | | | | | 97.32 160 | 95.13 175 | 97.59 117 | | | | | | | | | | |
|
test_part1 | | | | | | | | | | | | | | | | | | 98.16 41 |
|
Patchmatch-RL test | | | | | | | | 17.42 217 | | | | | | | | | | |
|
mPP-MVS | | | | | | 99.58 6 | | | | | | | 98.98 43 | | | | | |
|
NP-MVS | | | | | | | | | | 89.27 171 | | | | | | | | |
|