This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorcourty.delive.electrofacadekickermeadowofficepipesplaygr.reliefrelief.terraceterrai.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort by
pmmvs698.77 1399.35 298.09 4098.32 9598.92 2098.57 6499.03 1299.36 196.86 8199.77 399.86 196.20 9499.56 499.39 799.59 698.61 20
UniMVSNet_ETH3D98.93 1099.20 398.63 2099.54 1199.33 798.73 5899.37 498.87 597.86 3699.27 3499.78 296.59 7999.52 699.40 699.67 298.21 39
LTVRE_ROB97.71 199.33 199.47 199.16 799.16 4199.11 1199.39 1299.16 1199.26 299.22 499.51 1899.75 398.54 1599.71 199.47 399.52 1299.46 1
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
DeepC-MVS96.08 598.58 1798.49 2398.68 1799.37 2798.52 5899.01 3298.17 5497.17 2098.25 2699.56 1599.62 498.29 2298.40 5598.09 6498.97 4398.08 44
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
v7n99.03 699.03 799.02 999.09 5399.11 1199.57 998.82 1898.21 999.25 299.84 299.59 598.76 699.23 1698.83 2798.63 6698.40 32
DVP-MVS98.27 2498.61 1897.87 6199.17 4099.03 1799.07 2698.17 5496.75 2594.35 16098.92 4699.58 697.86 3998.67 4098.70 3198.63 6698.63 19
MSP-MVS97.67 5597.88 4397.43 8599.34 2998.99 1998.87 4698.12 5795.63 5294.16 16697.45 9599.50 796.44 8796.35 12398.70 3197.65 12298.57 22
anonymousdsp98.85 1298.88 1198.83 1198.69 7998.20 7099.68 197.35 11597.09 2198.98 999.86 199.43 898.94 399.28 1499.19 1399.33 2299.08 4
ACMH95.26 798.75 1498.93 998.54 2498.86 6699.01 1899.58 798.10 6098.67 697.30 5999.18 3899.42 998.40 1999.19 1898.86 2598.99 4198.19 40
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
v14896.99 9396.70 9997.34 8797.89 12897.23 12898.33 7596.96 12695.57 5697.12 6898.99 4399.40 1097.23 6196.22 12995.45 14096.50 16394.02 160
ACMH+94.90 898.40 2198.71 1698.04 5198.93 6398.84 2699.30 1597.86 7997.78 1394.19 16598.77 5999.39 1198.61 1199.33 1399.07 1499.33 2297.81 54
EG-PatchMatch MVS97.98 4597.92 4098.04 5198.84 6998.04 8797.90 10096.83 13395.07 7498.79 1499.07 4199.37 1297.88 3898.74 3398.16 6198.01 10696.96 95
SMA-MVS98.13 3498.22 2998.02 5499.44 2498.73 4298.24 8197.87 7895.22 6896.76 8398.66 6599.35 1397.03 6798.53 5098.39 4698.80 6198.69 15
DPE-MVS97.99 4398.12 3397.84 6498.65 8198.86 2498.86 4798.05 6594.18 10895.49 13798.90 4799.33 1497.11 6498.53 5098.65 3598.86 5798.39 34
PEN-MVS99.08 498.95 899.23 599.65 399.59 299.64 299.34 696.68 2698.65 1699.43 2399.33 1498.47 1799.50 899.32 999.60 598.79 10
LGP-MVS_train97.96 4897.53 6198.45 2999.45 2298.64 4799.09 2498.27 4392.99 13296.04 11496.57 11599.29 1698.66 898.73 3498.42 4499.19 2998.09 43
CHOSEN 1792x268894.98 14394.69 14295.31 15797.27 16495.58 17197.90 10095.56 16895.03 7593.77 17395.65 13299.29 1695.30 11491.51 19091.28 18292.05 19394.50 152
CSCG98.45 1898.61 1898.26 3599.11 4999.06 1498.17 8497.49 10097.93 1297.37 5698.88 4999.29 1698.10 2798.40 5597.51 8199.32 2499.16 3
OPM-MVS98.01 3998.01 3898.00 5699.11 4998.12 7998.68 5997.72 8596.65 2796.68 8898.40 7499.28 1997.44 5398.20 6397.82 7898.40 8597.58 70
ACMMP_NAP98.12 3598.08 3598.18 3699.34 2998.74 4198.97 3698.00 6995.13 7296.90 7697.54 9499.27 2097.18 6298.72 3698.45 4298.68 6598.69 15
zzz-MVS98.14 3297.78 5098.55 2399.58 698.58 5298.98 3598.48 2695.98 4297.39 5494.73 14899.27 2097.98 3598.81 3198.64 3698.90 5198.46 28
MTAPA97.43 5399.27 20
casdiffmvs97.00 9297.36 6696.59 12497.65 14497.98 9198.06 8996.81 13495.78 4992.77 18899.40 2699.26 2395.65 11196.70 11596.39 11698.59 7195.99 126
APDe-MVS98.29 2398.42 2498.14 3799.45 2298.90 2199.18 2198.30 4095.96 4495.13 14498.79 5699.25 2497.92 3698.80 3298.71 3098.85 5898.54 24
SteuartSystems-ACMMP98.06 3897.78 5098.39 3199.54 1198.79 3198.94 4098.42 3293.98 11395.85 11896.66 11499.25 2498.61 1198.71 3898.38 4798.97 4398.67 18
Skip Steuart: Steuart Systems R&D Blog.
MP-MVScopyleft97.98 4597.53 6198.50 2599.56 998.58 5298.97 3698.39 3493.49 12097.14 6596.08 12599.23 2698.06 2998.50 5298.38 4798.90 5198.44 30
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
MIMVSNet198.22 2898.51 2297.87 6199.40 2698.82 2999.31 1498.53 2497.39 1796.59 9099.31 3299.23 2694.76 12598.93 2898.67 3398.63 6697.25 88
ACMP94.03 1297.97 4797.61 5798.39 3199.43 2598.51 5998.97 3698.06 6294.63 9296.10 11296.12 12499.20 2898.63 998.68 3998.20 6099.14 3097.93 50
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
SD-MVS97.84 5097.78 5097.90 5998.33 9398.06 8497.95 9697.80 8496.03 4196.72 8497.57 9299.18 2997.50 5197.88 6997.08 9499.11 3398.68 17
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
COLMAP_ROBcopyleft96.84 298.75 1498.82 1398.66 1999.14 4598.79 3199.30 1597.67 8798.33 897.82 3899.20 3799.18 2998.76 699.27 1598.96 1999.29 2698.03 45
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
ACMMPR98.31 2298.07 3698.60 2199.58 698.83 2799.09 2498.48 2696.25 3597.03 7296.81 10999.09 3198.39 2098.55 4798.45 4299.01 3898.53 26
PS-CasMVS99.08 498.90 1099.28 399.65 399.56 499.59 699.39 396.36 3398.83 1399.46 2199.09 3198.62 1099.51 799.36 899.63 398.97 6
WR-MVS_H98.97 998.82 1399.14 899.56 999.56 499.54 1199.42 296.07 3898.37 2399.34 3099.09 3198.43 1899.45 1099.41 599.53 1098.86 9
UGNet96.79 10097.82 4695.58 15297.57 15098.39 6498.48 6997.84 8195.85 4794.68 15397.91 8599.07 3487.12 19497.71 7797.51 8197.80 11398.29 35
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
MVS_030497.18 8596.84 9397.58 7599.15 4298.19 7198.11 8797.81 8392.36 13798.06 3197.43 9699.06 3594.24 13496.80 11296.54 11198.12 10197.52 74
TSAR-MVS + MP.98.15 3198.23 2898.06 4998.47 8698.16 7699.23 1896.87 13095.58 5596.72 8498.41 7399.06 3598.05 3098.99 2598.90 2299.00 3998.51 27
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
CP-MVS98.00 4197.57 5998.50 2599.47 2198.56 5598.91 4298.38 3594.71 8897.01 7395.20 13899.06 3598.20 2498.61 4498.46 3999.02 3698.40 32
WR-MVS99.22 399.15 599.30 299.54 1199.62 199.63 499.45 197.75 1498.47 2199.71 599.05 3898.88 499.54 599.49 299.81 198.87 8
MTMP97.63 4599.03 39
CLD-MVS96.73 10396.92 8996.51 12898.70 7697.57 11597.64 11392.07 19593.10 13096.31 10498.29 7699.02 4095.99 10097.20 9896.47 11398.37 8796.81 103
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
v114497.51 6797.05 8398.04 5198.26 10097.98 9198.88 4597.42 10995.38 6598.56 1799.59 1499.01 4197.65 4795.77 13796.06 12797.47 12795.56 139
PGM-MVS97.82 5297.25 7098.48 2799.54 1198.75 4099.02 2898.35 3892.41 13696.84 8295.39 13598.99 4298.24 2398.43 5498.34 5098.90 5198.41 31
HFP-MVS98.17 2998.02 3798.35 3399.36 2898.62 4898.79 5198.46 3096.24 3696.53 9297.13 10698.98 4398.02 3198.20 6398.42 4498.95 4798.54 24
v1097.64 5897.26 6998.08 4498.07 11598.56 5598.86 4798.18 5294.48 10098.24 2799.56 1598.98 4397.72 4496.05 13396.26 12097.42 13196.93 96
DTE-MVSNet99.03 698.88 1199.21 699.66 299.59 299.62 599.34 696.92 2298.52 1899.36 2998.98 4398.57 1399.49 999.23 1299.56 998.55 23
mPP-MVS99.58 698.98 43
SixPastTwentyTwo99.25 299.20 399.32 199.53 1599.32 899.64 299.19 1098.05 1099.19 599.74 498.96 4799.03 299.69 299.58 199.32 2499.06 5
UA-Net98.66 1698.60 2198.73 1599.83 199.28 998.56 6699.24 896.04 3997.12 6898.44 7298.95 4898.17 2699.15 2199.00 1899.48 1799.33 2
ACMMPcopyleft97.99 4397.60 5898.45 2999.53 1598.83 2799.13 2398.30 4094.57 9496.39 10395.32 13698.95 4898.37 2198.61 4498.47 3899.00 3998.45 29
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
DELS-MVS96.90 9497.24 7196.50 12997.85 13098.18 7297.88 10395.92 15693.48 12195.34 13998.86 5398.94 5094.03 13797.33 9497.04 9598.00 10796.85 102
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
SR-MVS99.33 3198.40 3398.90 51
APD-MVScopyleft97.47 7297.16 7597.84 6499.32 3298.39 6498.47 7198.21 4792.08 14095.23 14196.68 11398.90 5196.99 6898.20 6398.21 5798.80 6197.67 63
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
v14419297.49 7096.99 8798.07 4798.11 11497.95 9499.02 2897.21 11994.90 8398.88 1299.53 1798.89 5397.75 4295.59 14195.90 13197.43 13096.16 121
ACMM94.29 1198.12 3597.71 5498.59 2299.51 1798.58 5299.24 1798.25 4496.22 3796.90 7695.01 14298.89 5398.52 1698.66 4198.32 5399.13 3198.28 38
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
testgi94.81 14896.05 11493.35 18299.06 5796.87 14597.57 11896.70 13995.77 5088.60 20393.19 17298.87 5581.21 20897.03 10696.64 10896.97 15293.99 161
pm-mvs198.14 3298.66 1797.53 7997.93 12598.49 6098.14 8698.19 5097.95 1196.17 11099.63 1098.85 5695.41 11398.91 2998.89 2399.34 2197.86 53
diffmvs95.86 12696.21 10995.44 15597.25 16596.85 14696.99 14595.23 17594.96 8092.82 18798.89 4898.85 5693.52 14594.21 16494.25 15696.84 15595.49 140
v2v48297.33 7796.84 9397.90 5998.19 10797.83 10098.74 5597.44 10695.42 6498.23 2899.46 2198.84 5897.46 5295.51 14496.10 12597.36 13594.72 148
v119297.52 6697.03 8498.09 4098.31 9898.01 8998.96 3997.25 11895.22 6898.89 1199.64 998.83 5997.68 4695.63 14095.91 13097.47 12795.97 127
TranMVSNet+NR-MVSNet98.45 1898.22 2998.72 1699.32 3299.06 1498.99 3398.89 1495.52 6197.53 4899.42 2598.83 5998.01 3298.55 4798.34 5099.57 897.80 55
Vis-MVSNetpermissive98.01 3998.42 2497.54 7896.89 17298.82 2999.14 2297.59 9096.30 3497.04 7199.26 3598.83 5996.01 9998.73 3498.21 5798.58 7298.75 12
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
HPM-MVS++copyleft97.56 6197.11 8198.09 4099.18 3997.95 9498.57 6498.20 4894.08 11197.25 6295.96 12998.81 6297.13 6397.51 8897.30 9198.21 9598.15 42
FC-MVSNet-train97.65 5798.16 3197.05 10298.85 6798.85 2599.34 1398.08 6194.50 9994.41 15899.21 3698.80 6392.66 15498.98 2698.85 2698.96 4597.94 49
DeepC-MVS_fast95.38 697.53 6597.30 6897.79 6898.83 7097.64 11098.18 8297.14 12195.57 5697.83 3797.10 10798.80 6396.53 8497.41 9197.32 8998.24 9497.26 87
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
XVS99.48 1998.76 3699.22 1996.40 9998.78 6598.94 48
X-MVStestdata99.48 1998.76 3699.22 1996.40 9998.78 6598.94 48
X-MVS97.60 5997.00 8598.29 3499.50 1898.76 3698.90 4398.37 3694.67 9196.40 9991.47 18798.78 6597.60 5098.55 4798.50 3798.96 4598.29 35
v897.51 6797.16 7597.91 5897.99 12198.48 6198.76 5298.17 5494.54 9897.69 4399.48 2098.76 6897.63 4996.10 13296.14 12297.20 14196.64 107
CNVR-MVS97.03 9196.77 9797.34 8798.89 6497.67 10997.64 11397.17 12094.40 10395.70 13094.02 16198.76 6896.49 8697.78 7597.29 9298.12 10197.47 77
v192192097.50 6997.00 8598.07 4798.20 10697.94 9799.03 2797.06 12395.29 6799.01 899.62 1198.73 7097.74 4395.52 14395.78 13597.39 13396.12 123
FC-MVSNet-test97.54 6398.26 2796.70 11998.87 6597.79 10798.49 6898.56 2396.04 3990.39 19499.65 898.67 7195.15 11799.23 1699.07 1498.73 6497.39 81
TDRefinement99.00 899.13 698.86 1098.99 6199.05 1699.58 798.29 4298.96 497.96 3499.40 2698.67 7198.87 599.60 399.46 499.46 1898.74 13
Gipumacopyleft98.43 2098.15 3298.76 1499.00 6098.29 6797.91 9998.06 6299.02 399.50 196.33 11998.67 7199.22 199.02 2498.02 6998.88 5697.66 64
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
CP-MVSNet98.91 1198.61 1899.25 499.63 599.50 699.55 1099.36 595.53 6098.77 1599.11 4098.64 7498.57 1399.42 1199.28 1199.61 498.78 11
FMVSNet197.40 7698.09 3496.60 12397.80 13998.76 3698.26 7998.50 2596.79 2493.13 18299.28 3398.64 7492.90 15297.67 8097.86 7599.02 3697.64 65
V4297.10 8796.97 8897.26 9197.64 14597.60 11298.45 7295.99 15394.44 10197.35 5799.40 2698.63 7697.34 5896.33 12696.38 11796.82 15896.00 125
PHI-MVS97.44 7397.17 7497.74 7198.14 11198.41 6398.03 9297.50 9892.07 14198.01 3397.33 10098.62 7796.02 9898.34 6298.21 5798.76 6397.24 90
RPSCF97.83 5198.27 2697.31 9098.23 10298.06 8497.44 12595.79 16396.90 2395.81 12098.76 6098.61 7897.70 4598.90 3098.36 4998.90 5198.29 35
NR-MVSNet98.00 4197.88 4398.13 3898.33 9398.77 3398.83 4998.88 1594.10 10997.46 5298.87 5198.58 7995.78 10299.13 2298.16 6199.52 1297.53 73
TSAR-MVS + ACMM97.54 6397.79 4897.26 9198.23 10298.10 8297.71 10897.88 7795.97 4395.57 13698.71 6398.57 8097.36 5697.74 7696.81 10296.83 15698.59 21
CPTT-MVS97.08 8896.25 10698.05 5099.21 3698.30 6698.54 6797.98 7094.28 10595.89 11789.57 19698.54 8198.18 2597.82 7397.32 8998.54 7397.91 52
OMC-MVS97.23 8397.21 7297.25 9497.85 13097.52 11997.92 9895.77 16495.83 4897.09 7097.86 8698.52 8296.62 7797.51 8896.65 10798.26 9196.57 108
v124097.43 7596.87 9298.09 4098.25 10197.92 9899.02 2897.06 12394.77 8699.09 799.68 698.51 8397.78 4195.25 14895.81 13397.32 13796.13 122
EU-MVSNet96.03 12296.23 10795.80 14695.48 19894.18 18098.99 3391.51 19797.22 1997.66 4499.15 3998.51 8398.08 2895.92 13592.88 17393.09 18695.72 136
train_agg96.68 10495.93 11897.56 7699.08 5497.16 13298.44 7497.37 11291.12 15095.18 14395.43 13498.48 8597.36 5696.48 12095.52 13997.95 11097.34 85
PCF-MVS92.69 1495.98 12395.05 13597.06 10198.43 8997.56 11697.76 10696.65 14289.95 16595.70 13096.18 12398.48 8595.74 10393.64 16993.35 17098.09 10496.18 120
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
xxxxxxxxxxxxxcwj97.26 8097.43 6397.05 10298.80 7297.83 10096.02 17297.44 10694.98 7795.74 12497.16 10398.45 8795.72 10497.85 7097.97 7098.60 6997.78 56
xxxxxxxxxxxx97.26 8097.43 6397.05 10298.80 7297.83 10096.02 17297.44 10694.98 7795.74 12497.16 10398.45 8795.72 10497.85 7097.97 7098.60 6997.78 56
UniMVSNet (Re)98.23 2597.85 4598.67 1899.15 4298.87 2398.74 5598.84 1794.27 10797.94 3599.01 4298.39 8997.82 4098.35 6098.29 5599.51 1597.78 56
MVS_111021_HR97.27 7997.11 8197.46 8498.46 8797.82 10497.50 12196.86 13194.97 7997.13 6796.99 10898.39 8996.82 7297.65 8397.38 8498.02 10596.56 110
Anonymous2023121197.49 7097.91 4197.00 10698.31 9898.72 4498.27 7897.84 8194.76 8794.77 15298.14 8198.38 9193.60 14398.96 2798.66 3499.22 2897.77 59
TSAR-MVS + GP.97.26 8097.33 6797.18 9698.21 10598.06 8496.38 16397.66 8893.92 11695.23 14198.48 7098.33 9297.41 5497.63 8597.35 8598.18 9797.57 71
DU-MVS98.23 2597.74 5398.81 1299.23 3498.77 3398.76 5298.88 1594.10 10998.50 1998.87 5198.32 9397.99 3398.40 5598.08 6799.49 1697.64 65
pmmvs-eth3d96.84 9796.22 10897.56 7697.63 14796.38 15998.74 5596.91 12994.63 9298.26 2599.43 2398.28 9496.58 8194.52 15895.54 13897.24 13994.75 147
CDPH-MVS96.68 10495.99 11597.48 8299.13 4797.64 11098.08 8897.46 10290.56 15695.13 14494.87 14698.27 9596.56 8297.09 10296.45 11498.54 7397.08 93
MSLP-MVS++96.66 10696.46 10596.89 11398.02 11797.71 10895.57 18196.96 12694.36 10496.19 10991.37 18898.24 9697.07 6597.69 7897.89 7397.52 12597.95 48
TransMVSNet (Re)98.23 2598.72 1597.66 7298.22 10498.73 4298.66 6098.03 6798.60 796.40 9999.60 1298.24 9695.26 11599.19 1899.05 1799.36 1997.64 65
Baseline_NR-MVSNet98.17 2997.90 4298.48 2799.23 3498.59 5098.83 4998.73 2193.97 11496.95 7599.66 798.23 9897.90 3798.40 5599.06 1699.25 2797.42 80
new-patchmatchnet94.48 15394.02 15195.02 16697.51 15595.00 17695.68 18094.26 19197.32 1895.73 12799.60 1298.22 9991.30 15994.13 16584.41 19595.65 17389.45 187
MCST-MVS96.79 10096.08 11297.62 7398.78 7497.52 11998.01 9497.32 11693.20 12495.84 11993.97 16398.12 10097.34 5896.34 12495.88 13298.45 8097.51 75
NCCC96.56 10995.68 12197.59 7499.04 5897.54 11897.67 11097.56 9494.84 8496.10 11287.91 20098.09 10196.98 6997.20 9896.80 10398.21 9597.38 84
DeepPCF-MVS94.55 1097.05 8997.13 8096.95 10896.06 18597.12 13698.01 9495.44 17095.18 7097.50 4997.86 8698.08 10297.31 6097.23 9697.00 9697.36 13597.45 78
N_pmnet92.46 17392.38 17192.55 18997.91 12793.47 18297.42 12694.01 19396.40 3288.48 20498.50 6998.07 10388.14 18991.04 19384.30 19689.35 20184.85 201
Anonymous2023120695.69 13195.68 12195.70 14898.32 9596.95 14197.37 12896.65 14293.33 12293.61 17498.70 6498.03 10491.04 16395.07 15194.59 15597.20 14193.09 170
test20.0396.08 12096.80 9595.25 16199.19 3897.58 11397.24 13797.56 9494.95 8191.91 18998.58 6798.03 10487.88 19097.43 9096.94 9897.69 11994.05 159
DCV-MVSNet97.56 6197.63 5697.47 8398.41 9099.12 1098.63 6198.57 2295.71 5195.60 13493.79 16698.01 10694.25 13399.16 2098.88 2499.35 2098.74 13
HQP-MVS95.97 12495.01 13797.08 9998.72 7597.19 13097.07 14396.69 14091.49 14495.77 12392.19 18197.93 10796.15 9694.66 15594.16 15798.10 10397.45 78
TAPA-MVS93.96 1396.79 10096.70 9996.90 11297.64 14597.58 11397.54 11994.50 18995.14 7196.64 8996.76 11197.90 10896.63 7695.98 13496.14 12298.45 8097.39 81
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
CANet96.81 9896.50 10297.17 9799.10 5197.96 9397.86 10497.51 9691.30 14697.75 4097.64 9097.89 10993.39 14796.98 10896.73 10497.40 13296.99 94
MSDG96.27 11596.17 11196.38 13497.85 13096.27 16296.55 16094.41 19094.55 9595.62 13397.56 9397.80 11096.22 9297.17 10096.27 11997.67 12193.60 164
PVSNet_BlendedMVS95.44 13595.09 13295.86 14497.31 16297.13 13496.31 16695.01 17888.55 17696.23 10594.55 15597.75 11192.56 15696.42 12195.44 14197.71 11695.81 130
PVSNet_Blended95.44 13595.09 13295.86 14497.31 16297.13 13496.31 16695.01 17888.55 17696.23 10594.55 15597.75 11192.56 15696.42 12195.44 14197.71 11695.81 130
MDTV_nov1_ep13_2view94.39 15593.34 16195.63 15097.23 16695.33 17397.76 10696.84 13294.55 9597.47 5098.96 4497.70 11393.88 13992.27 18386.81 19390.56 19587.73 194
MVS_111021_LR96.86 9596.72 9897.03 10597.80 13997.06 13997.04 14495.51 16994.55 9597.47 5097.35 9997.68 11496.66 7597.11 10196.73 10497.69 11996.57 108
QAPM97.04 9097.14 7796.93 11097.78 14298.02 8897.36 13096.72 13794.68 9096.23 10597.21 10297.68 11495.70 10697.37 9297.24 9397.78 11597.77 59
UniMVSNet_NR-MVSNet98.12 3597.56 6098.78 1399.13 4798.89 2298.76 5298.78 1993.81 11798.50 1998.81 5597.64 11697.99 3398.18 6697.92 7299.53 1097.64 65
thisisatest051597.82 5297.67 5597.99 5798.49 8598.07 8398.48 6998.06 6295.35 6697.74 4198.83 5497.61 11796.74 7397.53 8798.30 5498.43 8498.01 47
3Dnovator96.31 397.22 8497.19 7397.25 9498.14 11197.95 9498.03 9296.77 13696.42 3097.14 6595.11 13997.59 11895.14 11997.79 7497.72 7998.26 9197.76 61
baseline94.07 16194.50 14793.57 18096.34 18293.40 18395.56 18492.39 19492.07 14194.00 16898.24 7997.51 11989.19 18191.75 18792.72 17493.96 18295.79 132
USDC96.30 11395.64 12397.07 10097.62 14896.35 16197.17 14095.71 16595.52 6199.17 698.11 8297.46 12095.67 10895.44 14693.60 16697.09 14692.99 171
pmmvs595.70 13095.22 12996.26 13596.55 18097.24 12797.50 12194.99 18090.95 15296.87 7898.47 7197.40 12194.45 12992.86 17894.98 14797.23 14094.64 150
PMMVS286.47 20592.62 16979.29 20792.01 20985.63 21193.74 20486.37 20493.95 11554.18 21598.19 8097.39 12258.46 21096.57 11893.07 17190.99 19483.55 208
Fast-Effi-MVS+96.80 9995.92 11997.84 6498.57 8397.46 12298.06 8998.24 4589.64 16897.57 4796.45 11797.35 12396.73 7497.22 9796.64 10897.86 11296.65 106
Effi-MVS+-dtu95.94 12595.08 13496.94 10998.54 8497.38 12396.66 15797.89 7688.68 17395.92 11592.90 17497.28 12494.18 13696.68 11796.13 12498.45 8096.51 112
3Dnovator+96.20 497.58 6097.14 7798.10 3998.98 6297.85 9998.60 6398.33 3996.41 3197.23 6394.66 15197.26 12596.91 7097.91 6897.87 7498.53 7598.03 45
PM-MVS96.85 9696.62 10197.11 9897.13 16796.51 15298.29 7794.65 18794.84 8498.12 2998.59 6697.20 12697.41 5496.24 12896.41 11597.09 14696.56 110
ambc96.78 9699.01 5997.11 13795.73 17995.91 4599.25 298.56 6897.17 12797.04 6696.76 11395.22 14596.72 16096.73 105
abl_696.45 13197.79 14197.28 12697.16 14196.16 14989.92 16695.72 12891.59 18697.16 12894.37 13297.51 12695.49 140
LS3D97.93 4997.80 4798.08 4499.20 3798.77 3398.89 4497.92 7496.59 2896.99 7496.71 11297.14 12996.39 8899.04 2398.96 1999.10 3597.39 81
EIA-MVS96.23 11894.85 14097.84 6499.08 5498.21 6997.69 10998.03 6785.68 19898.09 3091.75 18597.07 13095.66 11097.58 8697.72 7998.47 7995.91 128
PMVScopyleft90.51 1797.77 5497.98 3997.53 7998.68 8098.14 7897.67 11097.03 12596.43 2998.38 2298.72 6297.03 13194.44 13099.37 1299.30 1098.98 4296.86 101
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
Anonymous20240521197.39 6598.85 6798.59 5097.89 10297.93 7394.41 10297.37 9896.99 13293.09 14998.61 4498.46 3999.11 3397.27 86
9.1496.98 133
PVSNet_Blended_VisFu97.44 7397.14 7797.79 6899.15 4298.44 6298.32 7697.66 8893.74 11997.73 4298.79 5696.93 13495.64 11297.69 7896.91 9998.25 9397.50 76
tfpnnormal97.66 5697.79 4897.52 8198.32 9598.53 5798.45 7297.69 8697.59 1696.12 11197.79 8896.70 13595.69 10798.35 6098.34 5098.85 5897.22 91
MVS_Test95.34 13894.88 13995.89 14396.93 17196.84 14796.66 15797.08 12290.06 16494.02 16797.61 9196.64 13693.59 14492.73 18194.02 16197.03 14996.24 118
CNLPA96.24 11695.97 11696.57 12697.48 15697.10 13896.75 15394.95 18194.92 8296.20 10894.81 14796.61 13796.25 9096.94 10995.64 13697.79 11495.74 135
TSAR-MVS + COLMAP96.05 12195.94 11796.18 13797.46 15796.41 15597.26 13695.83 16094.69 8995.30 14098.31 7596.52 13894.71 12695.48 14594.87 14896.54 16295.33 142
CANet_DTU94.96 14494.62 14595.35 15698.03 11696.11 16496.92 14995.60 16788.59 17597.27 6195.27 13796.50 13988.77 18695.53 14295.59 13795.54 17494.78 146
DPM-MVS94.86 14693.90 15595.99 14098.19 10796.52 15196.29 16895.95 15493.11 12894.61 15588.17 19796.44 14093.77 14293.33 17293.54 16897.11 14596.22 119
MS-PatchMatch94.84 14794.76 14194.94 16796.38 18194.69 17995.90 17594.03 19292.49 13593.81 17195.79 13196.38 14194.54 12794.70 15494.85 14994.97 17894.43 154
TinyColmap96.64 10796.07 11397.32 8997.84 13596.40 15697.63 11596.25 14795.86 4698.98 997.94 8496.34 14296.17 9597.30 9595.38 14397.04 14893.24 167
Effi-MVS+96.46 11195.28 12797.85 6398.64 8297.16 13297.15 14298.75 2090.27 16098.03 3293.93 16496.21 14396.55 8396.34 12496.69 10697.97 10996.33 117
AdaColmapbinary95.85 12794.65 14497.26 9198.70 7697.20 12997.33 13197.30 11791.28 14895.90 11688.16 19896.17 14496.60 7897.34 9396.82 10197.71 11695.60 138
PLCcopyleft92.55 1596.10 11995.36 12496.96 10798.13 11396.88 14396.49 16196.67 14194.07 11295.71 12991.14 18996.09 14596.84 7196.70 11596.58 11097.92 11196.03 124
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
CS-MVS96.24 11694.67 14398.08 4499.10 5198.62 4898.25 8098.12 5787.70 18397.76 3988.13 19996.08 14696.39 8897.64 8498.10 6398.84 6096.39 115
FMVSNet295.77 12896.20 11095.27 15996.77 17598.18 7297.28 13397.90 7593.12 12791.37 19198.25 7896.05 14790.04 17594.96 15395.94 12998.28 8896.90 97
OpenMVScopyleft94.63 995.75 12995.04 13696.58 12597.85 13097.55 11796.71 15596.07 15090.15 16396.47 9490.77 19495.95 14894.41 13197.01 10796.95 9798.00 10796.90 97
ETV-MVS96.54 11095.27 12898.02 5499.07 5697.48 12198.16 8598.19 5087.33 18897.58 4692.67 17595.93 14996.22 9298.49 5398.46 3998.91 5096.50 113
CMPMVSbinary71.81 1992.34 17592.85 16791.75 19592.70 20890.43 20288.84 21188.56 20185.87 19794.35 16090.98 19095.89 15091.14 16196.14 13094.83 15094.93 17995.78 133
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
IB-MVS92.44 1693.33 17092.15 17494.70 16997.42 15896.39 15895.57 18194.67 18686.40 19693.59 17578.28 21095.76 15189.59 18095.88 13695.98 12897.39 13396.34 116
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
Fast-Effi-MVS+-dtu94.34 15693.26 16395.62 15197.82 13695.97 16795.86 17699.01 1386.88 19093.39 17990.83 19295.46 15290.61 16994.46 16094.68 15397.01 15094.51 151
Vis-MVSNet (Re-imp)96.29 11496.50 10296.05 13897.96 12497.83 10097.30 13297.86 7993.14 12688.90 20196.80 11095.28 15395.15 11798.37 5998.25 5699.12 3295.84 129
MDA-MVSNet-bldmvs95.45 13495.20 13095.74 14794.24 20496.38 15997.93 9794.80 18295.56 5996.87 7898.29 7695.24 15496.50 8598.65 4290.38 18594.09 18091.93 175
MAR-MVS95.51 13294.49 14896.71 11897.92 12696.40 15696.72 15498.04 6686.74 19296.72 8492.52 17895.14 15594.02 13896.81 11196.54 11196.85 15397.25 88
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
PMMVS91.67 18091.47 17991.91 19489.43 21388.61 20894.99 19585.67 20687.50 18693.80 17294.42 15894.88 15690.71 16892.26 18492.96 17296.83 15689.65 185
MIMVSNet93.68 16893.96 15293.35 18297.82 13696.08 16596.34 16498.46 3091.28 14886.67 20894.95 14494.87 15784.39 20594.53 15694.65 15496.45 16591.34 177
new_pmnet90.85 18692.26 17389.21 20393.68 20789.05 20793.20 20884.16 20992.99 13284.25 21097.72 8994.60 15886.80 19793.20 17591.30 18193.21 18486.94 197
CDS-MVSNet94.91 14595.17 13194.60 17197.85 13096.21 16396.90 15196.39 14590.81 15393.40 17897.24 10194.54 15985.78 20096.25 12796.15 12197.26 13895.01 145
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
canonicalmvs97.11 8696.88 9097.38 8698.34 9298.72 4497.52 12097.94 7295.60 5395.01 14994.58 15294.50 16096.59 7997.84 7298.03 6898.90 5198.91 7
IS_MVSNet96.62 10896.48 10496.78 11798.46 8798.68 4698.61 6298.24 4592.23 13889.63 19895.90 13094.40 16196.23 9198.65 4298.77 2899.52 1296.76 104
pmmvs391.20 18391.40 18090.96 19991.71 21191.08 19895.41 19081.34 21087.36 18794.57 15695.02 14194.30 16290.42 17094.28 16389.26 18992.30 19288.49 192
pmmvs495.37 13794.25 14996.67 12197.01 17095.28 17497.60 11696.07 15093.11 12897.29 6098.09 8394.23 16395.21 11691.56 18993.91 16396.82 15893.59 165
EPNet_dtu93.45 16992.51 17094.55 17298.39 9191.67 19795.46 18797.50 9886.56 19397.38 5593.52 16794.20 16485.82 19993.31 17492.53 17592.72 18895.76 134
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
PatchMatch-RL94.79 15193.75 15796.00 13996.80 17495.00 17695.47 18695.25 17490.68 15595.80 12192.97 17393.64 16595.67 10896.13 13195.81 13396.99 15192.01 174
FPMVS94.70 15294.99 13894.37 17395.84 19193.20 18496.00 17491.93 19695.03 7594.64 15494.68 14993.29 16690.95 16498.07 6797.34 8896.85 15393.29 166
IterMVS-LS96.35 11295.85 12096.93 11097.53 15198.00 9097.37 12897.97 7195.49 6396.71 8798.94 4593.23 16794.82 12493.15 17795.05 14697.17 14397.12 92
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
TAMVS92.46 17393.34 16191.44 19797.03 16993.84 18194.68 19990.60 19990.44 15885.31 20997.14 10593.03 16885.78 20094.34 16193.67 16595.22 17690.93 179
HyFIR lowres test95.05 14293.54 15896.81 11697.81 13896.88 14398.18 8297.46 10294.28 10594.98 15096.57 11592.89 16996.15 9690.90 19491.87 17996.28 16891.35 176
GBi-Net95.21 13995.35 12595.04 16496.77 17598.18 7297.28 13397.58 9188.43 17890.28 19596.01 12692.43 17090.04 17597.67 8097.86 7598.28 8896.90 97
test195.21 13995.35 12595.04 16496.77 17598.18 7297.28 13397.58 9188.43 17890.28 19596.01 12692.43 17090.04 17597.67 8097.86 7598.28 8896.90 97
FMVSNet394.06 16293.85 15694.31 17695.46 19997.80 10696.34 16497.58 9188.43 17890.28 19596.01 12692.43 17088.67 18791.82 18693.96 16297.53 12496.50 113
MVS-HIRNet88.72 19786.49 19991.33 19891.81 21085.66 21087.02 21396.25 14781.48 21194.82 15196.31 12192.14 17390.32 17287.60 19983.82 19787.74 20578.42 210
MVEpermissive72.99 1885.37 20689.43 18680.63 20674.43 21471.94 21588.25 21289.81 20093.27 12367.32 21396.32 12091.83 17490.40 17193.36 17190.79 18473.55 21388.49 192
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
IterMVS-SCA-FT95.16 14193.95 15396.56 12797.89 12896.69 14996.94 14796.05 15293.06 13197.35 5798.79 5691.45 17595.93 10192.78 17991.00 18395.22 17693.91 162
EPNet94.33 15893.52 15995.27 15998.81 7194.71 17896.77 15298.20 4888.12 18196.53 9292.53 17791.19 17685.25 20495.22 14995.26 14496.09 17197.63 69
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
IterMVS94.48 15393.46 16095.66 14997.52 15296.43 15397.20 13894.73 18592.91 13496.44 9598.75 6191.10 17794.53 12892.10 18590.10 18793.51 18392.84 173
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
EPP-MVSNet97.29 7896.88 9097.76 7098.70 7699.10 1398.92 4198.36 3795.12 7393.36 18097.39 9791.00 17897.65 4798.72 3698.91 2199.58 797.92 51
GG-mvs-BLEND61.03 20787.02 19730.71 2090.74 21890.01 20378.90 2150.74 21584.56 2029.46 21679.17 20990.69 1791.37 21491.74 18889.13 19093.04 18783.83 207
CVMVSNet94.01 16494.25 14993.73 17994.36 20392.44 18797.45 12488.56 20195.59 5493.06 18598.88 4990.03 18094.84 12394.08 16693.45 16994.09 18095.31 143
DI_MVS_plusplus_trai95.48 13394.51 14696.61 12297.13 16797.30 12598.05 9196.79 13593.75 11895.08 14796.38 11889.76 18194.95 12093.97 16894.82 15297.64 12395.63 137
test0.0.03 191.17 18491.50 17890.80 20098.01 11895.46 17294.22 20095.80 16186.55 19481.75 21190.83 19287.93 18278.48 20994.51 15994.11 16096.50 16391.08 178
CHOSEN 280x42091.55 18190.27 18493.05 18594.61 20288.01 20996.56 15994.62 18888.04 18294.20 16392.66 17686.60 18390.82 16595.06 15291.89 17887.49 20689.61 186
DeepMVS_CXcopyleft72.99 21480.14 21437.34 21183.46 20760.13 21484.40 20285.48 18486.93 19687.22 20079.61 21287.32 196
GA-MVS94.18 15992.98 16695.58 15297.36 15996.42 15496.21 16995.86 15790.29 15995.08 14796.19 12285.37 18592.82 15394.01 16794.14 15896.16 17094.41 155
gg-mvs-nofinetune94.13 16093.93 15494.37 17397.99 12195.86 16895.45 18999.22 997.61 1595.10 14699.50 1984.50 18681.73 20795.31 14794.12 15996.71 16190.59 180
thres100view90092.93 17290.89 18195.31 15797.52 15296.82 14896.41 16295.08 17687.65 18493.56 17683.03 20784.12 18791.12 16294.53 15696.91 9998.17 9893.21 168
tfpn200view993.80 16791.75 17796.20 13697.52 15298.15 7797.48 12397.47 10187.65 18493.56 17683.03 20784.12 18792.62 15597.04 10398.09 6498.52 7694.17 156
thres20093.98 16591.90 17696.40 13397.66 14398.12 7997.20 13897.45 10490.16 16293.82 17083.08 20683.74 18993.80 14097.04 10397.48 8398.49 7793.70 163
E-PMN86.94 20285.10 20489.09 20595.77 19283.54 21389.89 21086.55 20392.18 13987.34 20794.02 16183.42 19089.63 17993.32 17377.11 20985.33 20972.09 211
thres40094.04 16391.94 17596.50 12997.98 12397.82 10497.66 11296.96 12690.96 15194.20 16383.24 20582.82 19193.80 14096.50 11998.09 6498.38 8694.15 157
ADS-MVSNet89.89 19087.70 19192.43 19195.52 19690.91 20095.57 18195.33 17293.19 12591.21 19293.41 16982.12 19289.05 18286.21 20283.77 19887.92 20484.31 203
thres600view794.34 15692.31 17296.70 11998.19 10798.12 7997.85 10597.45 10491.49 14493.98 16984.27 20382.02 19394.24 13497.04 10398.76 2998.49 7794.47 153
EMVS86.63 20484.48 20589.15 20495.51 19783.66 21290.19 20986.14 20591.78 14388.68 20293.83 16581.97 19489.05 18292.76 18076.09 21085.31 21071.28 212
baseline193.89 16692.82 16895.14 16397.62 14896.97 14096.12 17096.36 14691.30 14691.53 19094.68 14980.72 19590.80 16795.71 13896.29 11898.44 8394.09 158
MDTV_nov1_ep1390.30 18887.32 19693.78 17896.00 18892.97 18595.46 18795.39 17188.61 17495.41 13894.45 15780.39 19689.87 17886.58 20183.54 20090.56 19584.71 202
SCA91.15 18587.65 19295.23 16296.15 18395.68 17096.68 15698.18 5290.46 15797.21 6492.44 17980.17 19793.51 14686.04 20383.58 19989.68 20085.21 200
test-LLR89.77 19287.47 19492.45 19098.01 11889.77 20493.25 20695.80 16181.56 20989.19 19992.08 18279.59 19885.77 20291.47 19189.04 19192.69 18988.75 189
TESTMET0.1,188.60 19887.47 19489.93 20294.23 20589.77 20493.25 20684.47 20881.56 20989.19 19992.08 18279.59 19885.77 20291.47 19189.04 19192.69 18988.75 189
test-mter89.16 19588.14 18990.37 20194.79 20191.05 19993.60 20585.26 20781.65 20888.32 20592.22 18079.35 20087.03 19592.28 18290.12 18693.19 18590.29 183
PatchmatchNetpermissive89.98 18986.23 20294.36 17596.56 17991.90 19696.07 17196.72 13790.18 16196.87 7893.36 17178.06 20191.46 15884.71 20781.40 20588.45 20383.97 206
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
thisisatest053094.81 14893.06 16496.85 11598.01 11897.18 13196.93 14897.36 11389.73 16795.80 12194.98 14377.88 20294.89 12196.73 11497.35 8598.13 10097.54 72
baseline292.06 17689.82 18594.68 17097.32 16095.72 16994.97 19695.08 17684.75 20194.34 16290.68 19577.75 20390.13 17493.38 17093.58 16796.25 16992.90 172
tttt051794.81 14893.04 16596.88 11498.15 11097.37 12496.99 14597.36 11389.51 16995.74 12494.89 14577.53 20494.89 12196.94 10997.35 8598.17 9897.70 62
CR-MVSNet91.94 17888.50 18895.94 14296.14 18492.08 19195.23 19298.47 2884.30 20496.44 9594.58 15275.57 20592.92 15090.22 19592.22 17696.43 16690.56 181
PatchT91.40 18288.54 18794.74 16891.48 21292.18 19097.42 12697.51 9684.96 20096.44 9594.16 15975.47 20692.92 15090.22 19592.22 17692.66 19190.56 181
EPMVS89.28 19486.28 20092.79 18896.01 18792.00 19495.83 17795.85 15990.78 15491.00 19394.58 15274.65 20788.93 18485.00 20582.88 20389.09 20284.09 205
CostFormer89.06 19685.65 20393.03 18795.88 19092.40 18895.30 19195.86 15786.49 19593.12 18493.40 17074.18 20888.25 18882.99 20881.46 20489.77 19988.66 191
FMVSNet589.65 19387.60 19392.04 19395.63 19596.61 15094.82 19894.75 18380.11 21287.72 20677.73 21173.81 20983.81 20695.64 13996.08 12695.49 17593.21 168
RPMNet90.52 18786.27 20195.48 15495.95 18992.08 19195.55 18598.12 5784.30 20495.60 13487.49 20172.78 21091.24 16087.93 19889.34 18896.41 16789.98 184
MVSTER91.97 17790.31 18393.91 17796.81 17396.91 14294.22 20095.64 16684.98 19992.98 18693.42 16872.56 21186.64 19895.11 15093.89 16497.16 14495.31 143
tpmrst87.60 20084.13 20791.66 19695.65 19489.73 20693.77 20394.74 18488.85 17293.35 18195.60 13372.37 21287.40 19281.24 21078.19 20785.02 21182.90 209
ET-MVSNet_ETH3D93.18 17190.80 18295.95 14196.05 18696.07 16696.92 14996.51 14489.34 17095.63 13294.08 16072.31 21393.13 14894.33 16294.83 15097.44 12994.65 149
tpm89.84 19186.81 19893.36 18196.60 17891.92 19595.02 19497.39 11086.79 19196.54 9195.03 14069.70 21487.66 19188.79 19786.19 19486.95 20889.27 188
tpm cat187.19 20182.78 20892.33 19295.66 19390.61 20194.19 20295.27 17386.97 18994.38 15990.91 19169.40 21587.21 19379.57 21177.82 20887.25 20784.18 204
dps88.36 19984.32 20693.07 18493.86 20692.29 18994.89 19795.93 15583.50 20693.13 18291.87 18467.79 21690.32 17285.99 20483.22 20190.28 19885.56 199
tmp_tt45.72 20860.00 21538.74 21645.50 21612.18 21279.58 21368.42 21267.62 21265.04 21722.12 21184.83 20678.72 20666.08 214
DWT-MVSNet_training86.69 20381.24 20993.05 18595.31 20092.06 19395.75 17891.51 19784.32 20394.49 15783.46 20455.37 21890.81 16682.76 20983.19 20290.45 19787.52 195
gm-plane-assit91.85 17987.91 19096.44 13299.14 4598.25 6899.02 2897.38 11195.57 5698.31 2499.34 3051.00 21988.93 18493.16 17691.57 18095.85 17286.50 198
testmvs4.99 2086.88 2102.78 2111.73 2162.04 2183.10 2181.71 2137.27 2143.92 21812.18 2136.71 2203.31 2136.94 2125.51 2122.94 2157.51 213
test1234.41 2095.71 2112.88 2101.28 2172.21 2173.09 2191.65 2146.35 2154.98 2178.53 2143.88 2213.46 2125.79 2135.71 2112.85 2167.50 214
uanet_test0.00 2100.00 2120.00 2120.00 2190.00 2190.00 2200.00 2160.00 2160.00 2190.00 2150.00 2220.00 2150.00 2140.00 2130.00 2170.00 215
sosnet-low-res0.00 2100.00 2120.00 2120.00 2190.00 2190.00 2200.00 2160.00 2160.00 2190.00 2150.00 2220.00 2150.00 2140.00 2130.00 2170.00 215
sosnet0.00 2100.00 2120.00 2120.00 2190.00 2190.00 2200.00 2160.00 2160.00 2190.00 2150.00 2220.00 2150.00 2140.00 2130.00 2170.00 215
our_test_397.32 16095.13 17597.59 117
test_part198.16 41
Patchmatch-RL test17.42 217
NP-MVS89.27 171
Patchmtry92.70 18695.23 19298.47 2896.44 95