This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorcourty.delive.electrofacadekickermeadowofficepipesplaygr.reliefrelief.terraceterrai.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort by
WR-MVS99.22 399.15 699.30 299.54 1199.62 199.63 499.45 197.75 1598.47 2299.71 699.05 4298.88 499.54 699.49 399.81 198.87 10
test_part199.20 499.62 198.72 1698.92 6799.62 199.52 1299.01 1399.39 197.87 3899.74 499.75 497.29 6499.73 199.71 199.69 299.41 2
UniMVSNet_ETH3D98.93 1199.20 498.63 2399.54 1199.33 898.73 6599.37 498.87 697.86 3999.27 3699.78 296.59 8799.52 799.40 799.67 398.21 43
PS-CasMVS99.08 598.90 1299.28 399.65 399.56 599.59 699.39 396.36 3698.83 1499.46 2299.09 3598.62 1099.51 899.36 999.63 498.97 8
CP-MVSNet98.91 1298.61 2099.25 499.63 599.50 799.55 1099.36 595.53 6798.77 1699.11 4398.64 7998.57 1399.42 1299.28 1299.61 598.78 13
PEN-MVS99.08 598.95 999.23 599.65 399.59 399.64 299.34 696.68 2898.65 1799.43 2499.33 1798.47 1799.50 999.32 1099.60 698.79 12
pmmvs698.77 1499.35 398.09 4598.32 10498.92 2598.57 7299.03 1299.36 296.86 8599.77 399.86 196.20 10299.56 599.39 899.59 798.61 23
EPP-MVSNet97.29 8896.88 9797.76 7698.70 8299.10 1598.92 4598.36 4495.12 8093.36 19097.39 10591.00 18797.65 5098.72 4498.91 2799.58 897.92 55
TranMVSNet+NR-MVSNet98.45 1998.22 3298.72 1699.32 3299.06 1798.99 3798.89 1595.52 6897.53 5199.42 2698.83 6398.01 3498.55 5698.34 5999.57 997.80 60
DTE-MVSNet99.03 798.88 1399.21 699.66 299.59 399.62 599.34 696.92 2498.52 1999.36 3098.98 4798.57 1399.49 1099.23 1399.56 1098.55 26
UniMVSNet_NR-MVSNet98.12 3797.56 6398.78 1399.13 4998.89 2898.76 5998.78 2293.81 12498.50 2098.81 6197.64 12497.99 3598.18 7597.92 8099.53 1197.64 70
WR-MVS_H98.97 1098.82 1599.14 899.56 999.56 599.54 1199.42 296.07 4198.37 2499.34 3299.09 3598.43 1899.45 1199.41 699.53 1198.86 11
NR-MVSNet98.00 4597.88 4698.13 4398.33 10298.77 4298.83 5598.88 1694.10 11697.46 5698.87 5798.58 8495.78 11199.13 2698.16 7099.52 1397.53 78
IS_MVSNet96.62 11796.48 11396.78 12698.46 9698.68 5598.61 7098.24 5392.23 14689.63 20895.90 14094.40 16896.23 9998.65 5098.77 3499.52 1396.76 112
LTVRE_ROB97.71 199.33 199.47 299.16 799.16 4399.11 1399.39 1399.16 1199.26 399.22 599.51 1999.75 498.54 1599.71 299.47 499.52 1399.46 1
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
UniMVSNet (Re)98.23 2797.85 4898.67 2199.15 4498.87 2998.74 6298.84 1894.27 11497.94 3799.01 4598.39 9497.82 4398.35 6998.29 6499.51 1697.78 61
DU-MVS98.23 2797.74 5698.81 1299.23 3598.77 4298.76 5998.88 1694.10 11698.50 2098.87 5798.32 9897.99 3598.40 6498.08 7599.49 1797.64 70
UA-Net98.66 1798.60 2398.73 1599.83 199.28 1098.56 7499.24 896.04 4297.12 7298.44 7898.95 5298.17 2899.15 2599.00 2399.48 1899.33 4
TDRefinement99.00 999.13 798.86 1098.99 6499.05 1999.58 798.29 4998.96 597.96 3699.40 2798.67 7698.87 599.60 499.46 599.46 1998.74 15
CS-MVS-test97.93 5397.30 7298.68 1998.66 8799.07 1699.33 1598.83 1991.33 15597.64 4796.30 13198.52 8798.19 2599.00 2998.96 2499.40 2097.90 57
TransMVSNet (Re)98.23 2798.72 1797.66 7998.22 11398.73 5198.66 6898.03 7698.60 896.40 10499.60 1398.24 10195.26 12499.19 2299.05 1899.36 2197.64 70
DCV-MVSNet97.56 6797.63 5997.47 9298.41 9999.12 1298.63 6998.57 2695.71 5895.60 14193.79 17798.01 11294.25 14299.16 2498.88 3099.35 2298.74 15
pm-mvs198.14 3498.66 1997.53 8897.93 13498.49 6898.14 9598.19 6097.95 1296.17 11599.63 1198.85 6095.41 12298.91 3598.89 2999.34 2397.86 58
anonymousdsp98.85 1398.88 1398.83 1198.69 8598.20 7999.68 197.35 12497.09 2398.98 1099.86 199.43 1198.94 399.28 1599.19 1499.33 2499.08 6
ACMH+94.90 898.40 2398.71 1898.04 5598.93 6698.84 3399.30 1897.86 8897.78 1494.19 17598.77 6599.39 1498.61 1199.33 1499.07 1599.33 2497.81 59
SixPastTwentyTwo99.25 299.20 499.32 199.53 1599.32 999.64 299.19 1098.05 1199.19 699.74 498.96 5199.03 299.69 399.58 299.32 2699.06 7
CSCG98.45 1998.61 2098.26 3999.11 5199.06 1798.17 9397.49 10997.93 1397.37 6098.88 5599.29 2098.10 2998.40 6497.51 8999.32 2699.16 5
CS-MVS98.05 4197.48 6798.72 1699.30 3498.90 2699.25 2098.21 5691.35 15498.30 2697.73 9598.72 7597.96 3898.65 5099.05 1899.29 2898.00 51
DROMVSNet97.63 6496.88 9798.50 2898.74 8099.16 1199.33 1598.83 1988.77 18396.62 9496.48 12597.75 11798.19 2599.00 2998.76 3599.29 2898.27 42
COLMAP_ROBcopyleft96.84 298.75 1598.82 1598.66 2299.14 4798.79 4099.30 1897.67 9698.33 997.82 4199.20 3999.18 3398.76 699.27 1898.96 2499.29 2898.03 48
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
Baseline_NR-MVSNet98.17 3197.90 4598.48 3199.23 3598.59 5898.83 5598.73 2593.97 12196.95 7999.66 898.23 10397.90 4098.40 6499.06 1799.25 3197.42 85
Anonymous2023121197.49 7697.91 4497.00 11598.31 10798.72 5398.27 8897.84 9094.76 9494.77 16198.14 8798.38 9693.60 15298.96 3398.66 4199.22 3297.77 64
test111197.48 7897.20 7897.81 7398.78 7898.85 3198.68 6698.40 3796.68 2894.84 15999.13 4290.32 18997.01 7399.27 1899.05 1899.19 3397.10 98
LGP-MVS_train97.96 5297.53 6598.45 3399.45 2298.64 5699.09 2898.27 5092.99 13996.04 12096.57 12399.29 2098.66 898.73 4298.42 5399.19 3398.09 46
test250694.29 16791.43 18997.64 8098.66 8798.83 3498.50 7698.40 3796.04 4294.45 16794.88 15655.05 22896.70 8199.28 1599.04 2199.14 3596.87 107
ECVR-MVScopyleft97.40 8497.11 8797.73 7898.66 8798.83 3498.50 7698.40 3796.04 4295.00 15798.95 4991.07 18696.70 8199.28 1599.04 2199.14 3596.58 116
ACMP94.03 1297.97 5197.61 6098.39 3599.43 2598.51 6798.97 4098.06 7194.63 9996.10 11796.12 13499.20 3298.63 998.68 4798.20 6999.14 3597.93 54
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
ACMM94.29 1198.12 3797.71 5798.59 2599.51 1798.58 6099.24 2198.25 5296.22 4096.90 8095.01 15298.89 5798.52 1698.66 4998.32 6299.13 3898.28 41
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
Vis-MVSNet (Re-imp)96.29 12396.50 11196.05 14797.96 13397.83 10997.30 14197.86 8893.14 13388.90 21196.80 11895.28 16095.15 12698.37 6898.25 6599.12 3995.84 137
Anonymous20240521197.39 6998.85 7198.59 5897.89 11197.93 8294.41 10997.37 10696.99 14093.09 15898.61 5398.46 4899.11 4097.27 91
SD-MVS97.84 5597.78 5397.90 6398.33 10298.06 9397.95 10597.80 9396.03 4696.72 8897.57 10099.18 3397.50 5497.88 7897.08 10299.11 4098.68 19
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
LS3D97.93 5397.80 5098.08 4999.20 3898.77 4298.89 4897.92 8396.59 3196.99 7896.71 12097.14 13796.39 9699.04 2798.96 2499.10 4297.39 86
CP-MVS98.00 4597.57 6298.50 2899.47 2198.56 6398.91 4698.38 4294.71 9597.01 7795.20 14899.06 3998.20 2498.61 5398.46 4899.02 4398.40 35
FMVSNet197.40 8498.09 3796.60 13297.80 14898.76 4598.26 8998.50 2996.79 2693.13 19299.28 3598.64 7992.90 16297.67 8997.86 8399.02 4397.64 70
ACMMPR98.31 2498.07 3998.60 2499.58 698.83 3499.09 2898.48 3096.25 3897.03 7696.81 11799.09 3598.39 2098.55 5698.45 5199.01 4598.53 29
TSAR-MVS + MP.98.15 3398.23 3198.06 5398.47 9598.16 8599.23 2296.87 13995.58 6296.72 8898.41 7999.06 3998.05 3298.99 3198.90 2899.00 4698.51 30
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
ACMMPcopyleft97.99 4797.60 6198.45 3399.53 1598.83 3499.13 2798.30 4794.57 10196.39 10895.32 14698.95 5298.37 2198.61 5398.47 4799.00 4698.45 32
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
ACMH95.26 798.75 1598.93 1098.54 2798.86 7099.01 2199.58 798.10 6998.67 797.30 6399.18 4099.42 1298.40 1999.19 2298.86 3198.99 4898.19 44
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
PMVScopyleft90.51 1797.77 5997.98 4297.53 8898.68 8698.14 8797.67 11997.03 13496.43 3298.38 2398.72 6897.03 13994.44 13999.37 1399.30 1198.98 4996.86 108
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
SteuartSystems-ACMMP98.06 4097.78 5398.39 3599.54 1198.79 4098.94 4498.42 3693.98 12095.85 12596.66 12299.25 2898.61 1198.71 4698.38 5698.97 5098.67 20
Skip Steuart: Steuart Systems R&D Blog.
DeepC-MVS96.08 598.58 1898.49 2598.68 1999.37 2798.52 6699.01 3698.17 6497.17 2298.25 2899.56 1699.62 698.29 2298.40 6498.09 7298.97 5098.08 47
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
FC-MVSNet-train97.65 6298.16 3497.05 11198.85 7198.85 3199.34 1498.08 7094.50 10694.41 16899.21 3898.80 6792.66 16498.98 3298.85 3298.96 5297.94 53
X-MVS97.60 6597.00 9298.29 3899.50 1898.76 4598.90 4798.37 4394.67 9896.40 10491.47 19898.78 6997.60 5398.55 5698.50 4698.96 5298.29 38
HFP-MVS98.17 3198.02 4098.35 3799.36 2898.62 5798.79 5898.46 3496.24 3996.53 9797.13 11498.98 4798.02 3398.20 7298.42 5398.95 5498.54 27
XVS99.48 1998.76 4599.22 2396.40 10498.78 6998.94 55
X-MVStestdata99.48 1998.76 4599.22 2396.40 10498.78 6998.94 55
ETV-MVS96.54 11995.27 13798.02 5899.07 5797.48 13098.16 9498.19 6087.33 19897.58 4992.67 18695.93 15696.22 10098.49 6298.46 4898.91 5796.50 122
zzz-MVS98.14 3497.78 5398.55 2699.58 698.58 6098.98 3998.48 3095.98 4797.39 5894.73 15999.27 2497.98 3798.81 3798.64 4598.90 5898.46 31
canonicalmvs97.11 9596.88 9797.38 9598.34 10198.72 5397.52 12997.94 8195.60 6095.01 15694.58 16394.50 16796.59 8797.84 8198.03 7698.90 5898.91 9
MP-MVScopyleft97.98 4997.53 6598.50 2899.56 998.58 6098.97 4098.39 4193.49 12797.14 6996.08 13599.23 3098.06 3198.50 6198.38 5698.90 5898.44 33
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
PGM-MVS97.82 5797.25 7598.48 3199.54 1198.75 4999.02 3298.35 4592.41 14396.84 8695.39 14598.99 4698.24 2398.43 6398.34 5998.90 5898.41 34
RPSCF97.83 5698.27 2997.31 9998.23 11198.06 9397.44 13495.79 17296.90 2595.81 12798.76 6698.61 8397.70 4898.90 3698.36 5898.90 5898.29 38
Gipumacopyleft98.43 2298.15 3598.76 1499.00 6398.29 7697.91 10898.06 7199.02 499.50 196.33 12898.67 7699.22 199.02 2898.02 7798.88 6397.66 69
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
DPE-MVScopyleft97.99 4798.12 3697.84 6998.65 9098.86 3098.86 5298.05 7494.18 11595.49 14498.90 5399.33 1797.11 6898.53 5998.65 4298.86 6498.39 37
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
tfpnnormal97.66 6197.79 5197.52 9098.32 10498.53 6598.45 8297.69 9597.59 1796.12 11697.79 9496.70 14395.69 11698.35 6998.34 5998.85 6597.22 96
APDe-MVS98.29 2598.42 2798.14 4299.45 2298.90 2699.18 2598.30 4795.96 4995.13 15198.79 6299.25 2897.92 3998.80 3898.71 3798.85 6598.54 27
SMA-MVScopyleft98.13 3698.22 3298.02 5899.44 2498.73 5198.24 9097.87 8795.22 7596.76 8798.66 7199.35 1697.03 7298.53 5998.39 5598.80 6798.69 17
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
APD-MVScopyleft97.47 8097.16 8197.84 6999.32 3298.39 7298.47 8198.21 5692.08 14895.23 14896.68 12198.90 5596.99 7498.20 7298.21 6698.80 6797.67 68
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
PHI-MVS97.44 8197.17 8097.74 7798.14 12098.41 7198.03 10197.50 10792.07 14998.01 3597.33 10898.62 8296.02 10798.34 7198.21 6698.76 6997.24 95
FC-MVSNet-test97.54 6998.26 3096.70 12898.87 6997.79 11698.49 7898.56 2796.04 4290.39 20499.65 998.67 7695.15 12699.23 2099.07 1598.73 7097.39 86
ACMMP_NAP98.12 3798.08 3898.18 4199.34 2998.74 5098.97 4098.00 7895.13 7996.90 8097.54 10299.27 2497.18 6698.72 4498.45 5198.68 7198.69 17
DVP-MVScopyleft98.27 2698.61 2097.87 6699.17 4199.03 2099.07 3098.17 6496.75 2794.35 17098.92 5199.58 897.86 4298.67 4898.70 3898.63 7298.63 21
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
v7n99.03 799.03 899.02 999.09 5499.11 1399.57 998.82 2198.21 1099.25 399.84 299.59 798.76 699.23 2098.83 3398.63 7298.40 35
MIMVSNet198.22 3098.51 2497.87 6699.40 2698.82 3899.31 1798.53 2897.39 1996.59 9599.31 3499.23 3094.76 13498.93 3498.67 4098.63 7297.25 93
xxxxxxxxxxxxxcwj97.32 8797.55 6497.05 11198.80 7697.83 10996.02 18297.44 11594.98 8495.74 13197.16 11199.30 1995.72 11397.85 7997.97 7898.60 7597.78 61
SF-MVS97.26 9097.43 6897.05 11198.80 7697.83 10996.02 18297.44 11594.98 8495.74 13197.16 11198.45 9395.72 11397.85 7997.97 7898.60 7597.78 61
casdiffmvs97.00 10197.36 7096.59 13397.65 15397.98 10098.06 9896.81 14395.78 5592.77 19899.40 2799.26 2795.65 12096.70 12496.39 12598.59 7795.99 134
Vis-MVSNetpermissive98.01 4398.42 2797.54 8796.89 18198.82 3899.14 2697.59 9996.30 3797.04 7599.26 3798.83 6396.01 10898.73 4298.21 6698.58 7898.75 14
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
DVP-MVS++98.44 2198.92 1197.88 6599.17 4199.00 2298.89 4898.26 5197.54 1896.05 11999.35 3199.76 396.34 9798.79 3998.65 4298.56 7999.35 3
CDPH-MVS96.68 11395.99 12497.48 9199.13 4997.64 11998.08 9797.46 11190.56 16695.13 15194.87 15798.27 10096.56 9097.09 11196.45 12398.54 8097.08 99
CPTT-MVS97.08 9796.25 11598.05 5499.21 3798.30 7598.54 7597.98 7994.28 11295.89 12489.57 20798.54 8698.18 2797.82 8297.32 9798.54 8097.91 56
3Dnovator+96.20 497.58 6697.14 8398.10 4498.98 6597.85 10898.60 7198.33 4696.41 3497.23 6794.66 16297.26 13396.91 7697.91 7797.87 8298.53 8298.03 48
tfpn200view993.80 17691.75 18696.20 14597.52 16198.15 8697.48 13297.47 11087.65 19493.56 18683.03 21684.12 19792.62 16597.04 11298.09 7298.52 8394.17 164
thres600view794.34 16492.31 18196.70 12898.19 11698.12 8897.85 11497.45 11391.49 15293.98 17984.27 21382.02 20394.24 14397.04 11298.76 3598.49 8494.47 161
thres20093.98 17491.90 18596.40 14297.66 15298.12 8897.20 14797.45 11390.16 17293.82 18083.08 21583.74 19993.80 14997.04 11297.48 9198.49 8493.70 171
EIA-MVS96.23 12694.85 14997.84 6999.08 5598.21 7897.69 11898.03 7685.68 20898.09 3291.75 19697.07 13895.66 11997.58 9497.72 8798.47 8695.91 136
SED-MVS98.05 4198.46 2697.57 8499.01 6098.99 2398.82 5798.24 5395.76 5794.70 16298.96 4799.49 1096.19 10398.74 4098.65 4298.46 8798.63 21
Effi-MVS+-dtu95.94 13395.08 14396.94 11898.54 9397.38 13296.66 16797.89 8588.68 18495.92 12292.90 18597.28 13294.18 14596.68 12696.13 13398.45 8896.51 121
MCST-MVS96.79 10996.08 12197.62 8198.78 7897.52 12898.01 10397.32 12593.20 13195.84 12693.97 17498.12 10697.34 6196.34 13395.88 14198.45 8897.51 80
TAPA-MVS93.96 1396.79 10996.70 10896.90 12197.64 15497.58 12297.54 12894.50 19895.14 7896.64 9396.76 11997.90 11496.63 8495.98 14396.14 13198.45 8897.39 86
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
baseline193.89 17592.82 17695.14 17297.62 15796.97 14996.12 18096.36 15591.30 15691.53 20094.68 16080.72 20590.80 17695.71 14796.29 12798.44 9194.09 166
thisisatest051597.82 5797.67 5897.99 6198.49 9498.07 9298.48 7998.06 7195.35 7397.74 4398.83 6097.61 12596.74 7997.53 9698.30 6398.43 9298.01 50
OPM-MVS98.01 4398.01 4198.00 6099.11 5198.12 8898.68 6697.72 9496.65 3096.68 9298.40 8099.28 2397.44 5698.20 7297.82 8698.40 9397.58 75
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
thres40094.04 17291.94 18496.50 13897.98 13297.82 11397.66 12196.96 13590.96 16194.20 17383.24 21482.82 20193.80 14996.50 12898.09 7298.38 9494.15 165
CLD-MVS96.73 11296.92 9696.51 13798.70 8297.57 12497.64 12292.07 20593.10 13796.31 10998.29 8299.02 4495.99 10997.20 10796.47 12298.37 9596.81 110
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
GBi-Net95.21 14795.35 13495.04 17396.77 18498.18 8197.28 14297.58 10088.43 18990.28 20596.01 13692.43 17790.04 18497.67 8997.86 8398.28 9696.90 103
test195.21 14795.35 13495.04 17396.77 18498.18 8197.28 14297.58 10088.43 18990.28 20596.01 13692.43 17790.04 18497.67 8997.86 8398.28 9696.90 103
FMVSNet295.77 13696.20 11995.27 16896.77 18498.18 8197.28 14297.90 8493.12 13491.37 20198.25 8496.05 15490.04 18494.96 16295.94 13898.28 9696.90 103
OMC-MVS97.23 9297.21 7797.25 10397.85 13997.52 12897.92 10795.77 17395.83 5397.09 7497.86 9298.52 8796.62 8597.51 9796.65 11698.26 9996.57 117
3Dnovator96.31 397.22 9397.19 7997.25 10398.14 12097.95 10398.03 10196.77 14596.42 3397.14 6995.11 14997.59 12695.14 12897.79 8397.72 8798.26 9997.76 66
PVSNet_Blended_VisFu97.44 8197.14 8397.79 7499.15 4498.44 7098.32 8697.66 9793.74 12697.73 4498.79 6296.93 14295.64 12197.69 8796.91 10898.25 10197.50 81
DeepC-MVS_fast95.38 697.53 7197.30 7297.79 7498.83 7497.64 11998.18 9197.14 13095.57 6397.83 4097.10 11598.80 6796.53 9297.41 10097.32 9798.24 10297.26 92
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
HPM-MVS++copyleft97.56 6797.11 8798.09 4599.18 4097.95 10398.57 7298.20 5894.08 11897.25 6695.96 13998.81 6697.13 6797.51 9797.30 9998.21 10398.15 45
NCCC96.56 11895.68 13097.59 8299.04 5997.54 12797.67 11997.56 10394.84 9196.10 11787.91 21098.09 10796.98 7597.20 10796.80 11298.21 10397.38 89
TSAR-MVS + GP.97.26 9097.33 7197.18 10598.21 11498.06 9396.38 17397.66 9793.92 12395.23 14898.48 7698.33 9797.41 5797.63 9397.35 9398.18 10597.57 76
tttt051794.81 15693.04 17396.88 12398.15 11997.37 13396.99 15597.36 12289.51 17995.74 13194.89 15577.53 21494.89 13096.94 11897.35 9398.17 10697.70 67
thres100view90092.93 18290.89 19195.31 16697.52 16196.82 15796.41 17295.08 18587.65 19493.56 18683.03 21684.12 19791.12 17294.53 16596.91 10898.17 10693.21 176
thisisatest053094.81 15693.06 17296.85 12498.01 12797.18 14096.93 15897.36 12289.73 17795.80 12894.98 15377.88 21294.89 13096.73 12397.35 9398.13 10897.54 77
MVS_030497.18 9496.84 10197.58 8399.15 4498.19 8098.11 9697.81 9292.36 14598.06 3397.43 10499.06 3994.24 14396.80 12196.54 12098.12 10997.52 79
CNVR-MVS97.03 10096.77 10697.34 9698.89 6897.67 11897.64 12297.17 12994.40 11095.70 13794.02 17298.76 7296.49 9497.78 8497.29 10098.12 10997.47 82
GeoE97.48 7896.84 10198.22 4099.01 6098.39 7298.85 5498.76 2392.37 14497.53 5197.58 9998.23 10397.11 6897.57 9596.98 10598.10 11196.78 111
HQP-MVS95.97 13295.01 14697.08 10898.72 8197.19 13997.07 15296.69 14991.49 15295.77 13092.19 19297.93 11396.15 10594.66 16494.16 16698.10 11197.45 83
PCF-MVS92.69 1495.98 13195.05 14497.06 11098.43 9897.56 12597.76 11596.65 15189.95 17595.70 13796.18 13398.48 9195.74 11293.64 17893.35 17998.09 11396.18 128
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
MVS_111021_HR97.27 8997.11 8797.46 9398.46 9697.82 11397.50 13096.86 14094.97 8697.13 7196.99 11698.39 9496.82 7897.65 9297.38 9298.02 11496.56 119
EG-PatchMatch MVS97.98 4997.92 4398.04 5598.84 7398.04 9697.90 10996.83 14295.07 8198.79 1599.07 4499.37 1597.88 4198.74 4098.16 7098.01 11596.96 101
DELS-MVS96.90 10397.24 7696.50 13897.85 13998.18 8197.88 11295.92 16593.48 12895.34 14698.86 5998.94 5494.03 14697.33 10397.04 10398.00 11696.85 109
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
OpenMVScopyleft94.63 995.75 13795.04 14596.58 13497.85 13997.55 12696.71 16596.07 15990.15 17396.47 9990.77 20595.95 15594.41 14097.01 11696.95 10698.00 11696.90 103
Effi-MVS+96.46 12095.28 13697.85 6898.64 9197.16 14197.15 15198.75 2490.27 17098.03 3493.93 17596.21 15196.55 9196.34 13396.69 11597.97 11896.33 125
train_agg96.68 11395.93 12797.56 8599.08 5597.16 14198.44 8497.37 12191.12 16095.18 15095.43 14498.48 9197.36 5996.48 12995.52 14897.95 11997.34 90
PLCcopyleft92.55 1596.10 12795.36 13396.96 11698.13 12296.88 15296.49 17196.67 15094.07 11995.71 13691.14 20096.09 15396.84 7796.70 12496.58 11997.92 12096.03 132
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
Fast-Effi-MVS+96.80 10895.92 12897.84 6998.57 9297.46 13198.06 9898.24 5389.64 17897.57 5096.45 12697.35 13196.73 8097.22 10696.64 11797.86 12196.65 114
UGNet96.79 10997.82 4995.58 16197.57 15998.39 7298.48 7997.84 9095.85 5294.68 16397.91 9199.07 3887.12 20397.71 8697.51 8997.80 12298.29 38
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
CNLPA96.24 12595.97 12596.57 13597.48 16597.10 14796.75 16394.95 19094.92 8996.20 11394.81 15896.61 14596.25 9896.94 11895.64 14597.79 12395.74 143
QAPM97.04 9997.14 8396.93 11997.78 15198.02 9797.36 13996.72 14694.68 9796.23 11097.21 11097.68 12295.70 11597.37 10197.24 10197.78 12497.77 64
PVSNet_BlendedMVS95.44 14395.09 14195.86 15397.31 17197.13 14396.31 17695.01 18788.55 18796.23 11094.55 16697.75 11792.56 16696.42 13095.44 15097.71 12595.81 138
PVSNet_Blended95.44 14395.09 14195.86 15397.31 17197.13 14396.31 17695.01 18788.55 18796.23 11094.55 16697.75 11792.56 16696.42 13095.44 15097.71 12595.81 138
AdaColmapbinary95.85 13594.65 15297.26 10098.70 8297.20 13897.33 14097.30 12691.28 15895.90 12388.16 20996.17 15296.60 8697.34 10296.82 11097.71 12595.60 146
test20.0396.08 12896.80 10495.25 17099.19 3997.58 12297.24 14697.56 10394.95 8891.91 19998.58 7398.03 11087.88 19997.43 9996.94 10797.69 12894.05 167
MVS_111021_LR96.86 10496.72 10797.03 11497.80 14897.06 14897.04 15395.51 17894.55 10297.47 5497.35 10797.68 12296.66 8397.11 11096.73 11397.69 12896.57 117
MSDG96.27 12496.17 12096.38 14397.85 13996.27 17196.55 17094.41 19994.55 10295.62 14097.56 10197.80 11696.22 10097.17 10996.27 12897.67 13093.60 172
MSP-MVS97.67 6097.88 4697.43 9499.34 2998.99 2398.87 5198.12 6795.63 5994.16 17697.45 10399.50 996.44 9596.35 13298.70 3897.65 13198.57 25
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
DI_MVS_plusplus_trai95.48 14194.51 15496.61 13197.13 17697.30 13498.05 10096.79 14493.75 12595.08 15496.38 12789.76 19194.95 12993.97 17794.82 16197.64 13295.63 145
FMVSNet394.06 17193.85 16494.31 18695.46 20997.80 11596.34 17497.58 10088.43 18990.28 20596.01 13692.43 17788.67 19691.82 19593.96 17197.53 13396.50 122
MSLP-MVS++96.66 11596.46 11496.89 12298.02 12697.71 11795.57 19096.96 13594.36 11196.19 11491.37 19998.24 10197.07 7097.69 8797.89 8197.52 13497.95 52
abl_696.45 14097.79 15097.28 13597.16 15096.16 15889.92 17695.72 13591.59 19797.16 13694.37 14197.51 13595.49 148
v119297.52 7297.03 9198.09 4598.31 10798.01 9898.96 4397.25 12795.22 7598.89 1299.64 1098.83 6397.68 4995.63 14995.91 13997.47 13695.97 135
v114497.51 7397.05 9098.04 5598.26 10997.98 10098.88 5097.42 11895.38 7298.56 1899.59 1599.01 4597.65 5095.77 14696.06 13697.47 13695.56 147
ET-MVSNet_ETH3D93.18 18190.80 19295.95 15096.05 19696.07 17596.92 15996.51 15389.34 18095.63 13994.08 17172.31 22393.13 15794.33 17194.83 15997.44 13894.65 157
v14419297.49 7696.99 9498.07 5198.11 12397.95 10399.02 3297.21 12894.90 9098.88 1399.53 1898.89 5797.75 4595.59 15095.90 14097.43 13996.16 129
v1097.64 6397.26 7498.08 4998.07 12498.56 6398.86 5298.18 6294.48 10798.24 2999.56 1698.98 4797.72 4796.05 14296.26 12997.42 14096.93 102
CANet96.81 10796.50 11197.17 10699.10 5397.96 10297.86 11397.51 10591.30 15697.75 4297.64 9797.89 11593.39 15696.98 11796.73 11397.40 14196.99 100
v192192097.50 7597.00 9298.07 5198.20 11597.94 10699.03 3197.06 13295.29 7499.01 999.62 1298.73 7497.74 4695.52 15295.78 14497.39 14296.12 131
IB-MVS92.44 1693.33 18092.15 18394.70 17897.42 16796.39 16795.57 19094.67 19586.40 20693.59 18578.28 22095.76 15889.59 18995.88 14595.98 13797.39 14296.34 124
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
v2v48297.33 8696.84 10197.90 6398.19 11697.83 10998.74 6297.44 11595.42 7198.23 3099.46 2298.84 6297.46 5595.51 15396.10 13497.36 14494.72 156
DeepPCF-MVS94.55 1097.05 9897.13 8696.95 11796.06 19597.12 14598.01 10395.44 17995.18 7797.50 5397.86 9298.08 10897.31 6397.23 10597.00 10497.36 14497.45 83
v124097.43 8396.87 10098.09 4598.25 11097.92 10799.02 3297.06 13294.77 9399.09 899.68 798.51 8997.78 4495.25 15795.81 14297.32 14696.13 130
CDS-MVSNet94.91 15395.17 14094.60 18197.85 13996.21 17296.90 16196.39 15490.81 16393.40 18897.24 10994.54 16685.78 20996.25 13696.15 13097.26 14795.01 153
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
pmmvs-eth3d96.84 10696.22 11797.56 8597.63 15696.38 16898.74 6296.91 13894.63 9998.26 2799.43 2498.28 9996.58 8994.52 16795.54 14797.24 14894.75 155
pmmvs595.70 13895.22 13896.26 14496.55 19097.24 13697.50 13094.99 18990.95 16296.87 8298.47 7797.40 12994.45 13892.86 18794.98 15697.23 14994.64 158
Anonymous2023120695.69 13995.68 13095.70 15798.32 10496.95 15097.37 13796.65 15193.33 12993.61 18498.70 7098.03 11091.04 17395.07 16094.59 16497.20 15093.09 178
v897.51 7397.16 8197.91 6297.99 13098.48 6998.76 5998.17 6494.54 10597.69 4599.48 2198.76 7297.63 5296.10 14196.14 13197.20 15096.64 115
IterMVS-LS96.35 12195.85 12996.93 11997.53 16098.00 9997.37 13797.97 8095.49 7096.71 9198.94 5093.23 17494.82 13393.15 18695.05 15597.17 15297.12 97
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
MVSTER91.97 18790.31 19393.91 18796.81 18296.91 15194.22 20995.64 17584.98 20992.98 19693.42 17972.56 22186.64 20795.11 15993.89 17397.16 15395.31 151
DPM-MVS94.86 15493.90 16395.99 14998.19 11696.52 16096.29 17895.95 16393.11 13594.61 16588.17 20896.44 14893.77 15193.33 18193.54 17797.11 15496.22 127
PM-MVS96.85 10596.62 11097.11 10797.13 17696.51 16198.29 8794.65 19694.84 9198.12 3198.59 7297.20 13497.41 5796.24 13796.41 12497.09 15596.56 119
USDC96.30 12295.64 13297.07 10997.62 15796.35 17097.17 14995.71 17495.52 6899.17 798.11 8897.46 12895.67 11795.44 15593.60 17597.09 15592.99 179
TinyColmap96.64 11696.07 12297.32 9897.84 14496.40 16597.63 12496.25 15695.86 5198.98 1097.94 9096.34 15096.17 10497.30 10495.38 15297.04 15793.24 175
MVS_Test95.34 14694.88 14895.89 15296.93 18096.84 15696.66 16797.08 13190.06 17494.02 17797.61 9896.64 14493.59 15392.73 19094.02 17097.03 15896.24 126
Fast-Effi-MVS+-dtu94.34 16493.26 17195.62 16097.82 14595.97 17695.86 18699.01 1386.88 20093.39 18990.83 20395.46 15990.61 17894.46 16994.68 16297.01 15994.51 159
PatchMatch-RL94.79 15993.75 16596.00 14896.80 18395.00 18595.47 19595.25 18390.68 16595.80 12892.97 18493.64 17295.67 11796.13 14095.81 14296.99 16092.01 182
testgi94.81 15696.05 12393.35 19299.06 5896.87 15497.57 12796.70 14895.77 5688.60 21393.19 18398.87 5981.21 21797.03 11596.64 11796.97 16193.99 169
MAR-MVS95.51 14094.49 15696.71 12797.92 13596.40 16596.72 16498.04 7586.74 20296.72 8892.52 18995.14 16294.02 14796.81 12096.54 12096.85 16297.25 93
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
FPMVS94.70 16094.99 14794.37 18395.84 20193.20 19496.00 18491.93 20695.03 8294.64 16494.68 16093.29 17390.95 17498.07 7697.34 9696.85 16293.29 174
diffmvs95.86 13496.21 11895.44 16497.25 17496.85 15596.99 15595.23 18494.96 8792.82 19798.89 5498.85 6093.52 15494.21 17394.25 16596.84 16495.49 148
TSAR-MVS + ACMM97.54 6997.79 5197.26 10098.23 11198.10 9197.71 11797.88 8695.97 4895.57 14398.71 6998.57 8597.36 5997.74 8596.81 11196.83 16598.59 24
PMMVS91.67 19091.47 18891.91 20389.43 22288.61 21794.99 20485.67 21587.50 19693.80 18294.42 16994.88 16390.71 17792.26 19392.96 18196.83 16589.65 193
V4297.10 9696.97 9597.26 10097.64 15497.60 12198.45 8295.99 16294.44 10897.35 6199.40 2798.63 8197.34 6196.33 13596.38 12696.82 16796.00 133
pmmvs495.37 14594.25 15796.67 13097.01 17995.28 18397.60 12596.07 15993.11 13597.29 6498.09 8994.23 17095.21 12591.56 19893.91 17296.82 16793.59 173
ambc96.78 10599.01 6097.11 14695.73 18895.91 5099.25 398.56 7497.17 13597.04 7196.76 12295.22 15496.72 16996.73 113
gg-mvs-nofinetune94.13 16993.93 16294.37 18397.99 13095.86 17795.45 19899.22 997.61 1695.10 15399.50 2084.50 19681.73 21695.31 15694.12 16896.71 17090.59 188
TSAR-MVS + COLMAP96.05 12995.94 12696.18 14697.46 16696.41 16497.26 14595.83 16994.69 9695.30 14798.31 8196.52 14694.71 13595.48 15494.87 15796.54 17195.33 150
v14896.99 10296.70 10897.34 9697.89 13797.23 13798.33 8596.96 13595.57 6397.12 7298.99 4699.40 1397.23 6596.22 13895.45 14996.50 17294.02 168
test0.0.03 191.17 19491.50 18790.80 20998.01 12795.46 18194.22 20995.80 17086.55 20481.75 22190.83 20387.93 19278.48 21894.51 16894.11 16996.50 17291.08 186
MIMVSNet93.68 17793.96 16093.35 19297.82 14596.08 17496.34 17498.46 3491.28 15886.67 21894.95 15494.87 16484.39 21494.53 16594.65 16396.45 17491.34 185
CR-MVSNet91.94 18888.50 19895.94 15196.14 19492.08 20195.23 20198.47 3284.30 21396.44 10094.58 16375.57 21592.92 16090.22 20492.22 18596.43 17590.56 189
RPMNet90.52 19786.27 21195.48 16395.95 19992.08 20195.55 19498.12 6784.30 21395.60 14187.49 21172.78 22091.24 17087.93 20889.34 19796.41 17689.98 192
HyFIR lowres test95.05 15093.54 16696.81 12597.81 14796.88 15298.18 9197.46 11194.28 11294.98 15896.57 12392.89 17696.15 10590.90 20391.87 18896.28 17791.35 184
baseline292.06 18689.82 19594.68 18097.32 16995.72 17894.97 20595.08 18584.75 21194.34 17290.68 20677.75 21390.13 18393.38 17993.58 17696.25 17892.90 180
GA-MVS94.18 16892.98 17495.58 16197.36 16896.42 16396.21 17995.86 16690.29 16995.08 15496.19 13285.37 19592.82 16394.01 17694.14 16796.16 17994.41 163
EPNet94.33 16693.52 16795.27 16898.81 7594.71 18796.77 16298.20 5888.12 19296.53 9792.53 18891.19 18385.25 21395.22 15895.26 15396.09 18097.63 74
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
gm-plane-assit91.85 18987.91 20096.44 14199.14 4798.25 7799.02 3297.38 12095.57 6398.31 2599.34 3251.00 22988.93 19393.16 18591.57 18995.85 18186.50 206
new-patchmatchnet94.48 16194.02 15995.02 17597.51 16495.00 18595.68 18994.26 20097.32 2095.73 13499.60 1398.22 10591.30 16994.13 17484.41 20495.65 18289.45 195
CANet_DTU94.96 15294.62 15395.35 16598.03 12596.11 17396.92 15995.60 17688.59 18697.27 6595.27 14796.50 14788.77 19595.53 15195.59 14695.54 18394.78 154
FMVSNet589.65 20387.60 20392.04 20295.63 20596.61 15994.82 20794.75 19280.11 22287.72 21677.73 22173.81 21983.81 21595.64 14896.08 13595.49 18493.21 176
IterMVS-SCA-FT95.16 14993.95 16196.56 13697.89 13796.69 15896.94 15796.05 16193.06 13897.35 6198.79 6291.45 18295.93 11092.78 18891.00 19295.22 18593.91 170
TAMVS92.46 18393.34 16991.44 20697.03 17893.84 19194.68 20890.60 20890.44 16885.31 21997.14 11393.03 17585.78 20994.34 17093.67 17495.22 18590.93 187
MS-PatchMatch94.84 15594.76 15094.94 17696.38 19194.69 18895.90 18594.03 20192.49 14293.81 18195.79 14196.38 14994.54 13694.70 16394.85 15894.97 18794.43 162
CMPMVSbinary71.81 1992.34 18592.85 17591.75 20492.70 21790.43 21188.84 22088.56 21085.87 20794.35 17090.98 20195.89 15791.14 17196.14 13994.83 15994.93 18895.78 141
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
CVMVSNet94.01 17394.25 15793.73 18994.36 21292.44 19797.45 13388.56 21095.59 6193.06 19598.88 5590.03 19094.84 13294.08 17593.45 17894.09 18995.31 151
MDA-MVSNet-bldmvs95.45 14295.20 13995.74 15694.24 21396.38 16897.93 10694.80 19195.56 6696.87 8298.29 8295.24 16196.50 9398.65 5090.38 19494.09 18991.93 183
baseline94.07 17094.50 15593.57 19096.34 19293.40 19395.56 19392.39 20492.07 14994.00 17898.24 8597.51 12789.19 19091.75 19692.72 18393.96 19195.79 140
IterMVS94.48 16193.46 16895.66 15897.52 16196.43 16297.20 14794.73 19492.91 14196.44 10098.75 6791.10 18494.53 13792.10 19490.10 19693.51 19292.84 181
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
new_pmnet90.85 19692.26 18289.21 21293.68 21689.05 21693.20 21784.16 21892.99 13984.25 22097.72 9694.60 16586.80 20693.20 18491.30 19093.21 19386.94 205
test-mter89.16 20588.14 19990.37 21094.79 21091.05 20893.60 21485.26 21681.65 21788.32 21592.22 19179.35 21087.03 20492.28 19190.12 19593.19 19490.29 191
EU-MVSNet96.03 13096.23 11695.80 15595.48 20894.18 18998.99 3791.51 20797.22 2197.66 4699.15 4198.51 8998.08 3095.92 14492.88 18293.09 19595.72 144
GG-mvs-BLEND61.03 21787.02 20730.71 2190.74 22890.01 21278.90 2240.74 22584.56 2129.46 22779.17 21990.69 1881.37 22491.74 19789.13 19993.04 19683.83 215
EPNet_dtu93.45 17992.51 17994.55 18298.39 10091.67 20695.46 19697.50 10786.56 20397.38 5993.52 17894.20 17185.82 20893.31 18392.53 18492.72 19795.76 142
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
test-LLR89.77 20287.47 20492.45 19998.01 12789.77 21393.25 21595.80 17081.56 21889.19 20992.08 19379.59 20885.77 21191.47 20089.04 20092.69 19888.75 197
TESTMET0.1,188.60 20887.47 20489.93 21194.23 21489.77 21393.25 21584.47 21781.56 21889.19 20992.08 19379.59 20885.77 21191.47 20089.04 20092.69 19888.75 197
PatchT91.40 19288.54 19794.74 17791.48 22192.18 20097.42 13597.51 10584.96 21096.44 10094.16 17075.47 21692.92 16090.22 20492.22 18592.66 20090.56 189
pmnet_mix0293.59 17892.65 17794.69 17996.76 18794.16 19097.03 15493.00 20395.79 5496.03 12198.91 5297.69 12192.99 15990.03 20684.10 20692.35 20187.89 202
pmmvs391.20 19391.40 19090.96 20891.71 22091.08 20795.41 19981.34 21987.36 19794.57 16695.02 15194.30 16990.42 17994.28 17289.26 19892.30 20288.49 200
CHOSEN 1792x268894.98 15194.69 15195.31 16697.27 17395.58 18097.90 10995.56 17795.03 8293.77 18395.65 14299.29 2095.30 12391.51 19991.28 19192.05 20394.50 160
PMMVS286.47 21492.62 17879.29 21692.01 21885.63 22093.74 21386.37 21393.95 12254.18 22698.19 8697.39 13058.46 21996.57 12793.07 18090.99 20483.55 216
MDTV_nov1_ep13_2view94.39 16393.34 16995.63 15997.23 17595.33 18297.76 11596.84 14194.55 10297.47 5498.96 4797.70 12093.88 14892.27 19286.81 20290.56 20587.73 203
MDTV_nov1_ep1390.30 19887.32 20693.78 18896.00 19892.97 19595.46 19695.39 18088.61 18595.41 14594.45 16880.39 20689.87 18786.58 21183.54 21090.56 20584.71 210
dps88.36 20984.32 21693.07 19493.86 21592.29 19994.89 20695.93 16483.50 21593.13 19291.87 19567.79 22690.32 18185.99 21483.22 21190.28 20785.56 207
CostFormer89.06 20685.65 21393.03 19695.88 20092.40 19895.30 20095.86 16686.49 20593.12 19493.40 18174.18 21888.25 19782.99 21881.46 21389.77 20888.66 199
SCA91.15 19587.65 20295.23 17196.15 19395.68 17996.68 16698.18 6290.46 16797.21 6892.44 19080.17 20793.51 15586.04 21383.58 20989.68 20985.21 208
N_pmnet92.46 18392.38 18092.55 19897.91 13693.47 19297.42 13594.01 20296.40 3588.48 21498.50 7598.07 10988.14 19891.04 20284.30 20589.35 21084.85 209
EPMVS89.28 20486.28 21092.79 19796.01 19792.00 20395.83 18795.85 16890.78 16491.00 20394.58 16374.65 21788.93 19385.00 21582.88 21289.09 21184.09 213
PatchmatchNetpermissive89.98 19986.23 21294.36 18596.56 18991.90 20596.07 18196.72 14690.18 17196.87 8293.36 18278.06 21191.46 16884.71 21781.40 21488.45 21283.97 214
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
ADS-MVSNet89.89 20087.70 20192.43 20095.52 20690.91 20995.57 19095.33 18193.19 13291.21 20293.41 18082.12 20289.05 19186.21 21283.77 20887.92 21384.31 211
MVS-HIRNet88.72 20786.49 20991.33 20791.81 21985.66 21987.02 22296.25 15681.48 22094.82 16096.31 13092.14 18090.32 18187.60 20983.82 20787.74 21478.42 218
CHOSEN 280x42091.55 19190.27 19493.05 19594.61 21188.01 21896.56 16994.62 19788.04 19394.20 17392.66 18786.60 19390.82 17595.06 16191.89 18787.49 21589.61 194
tpm cat187.19 21182.78 21892.33 20195.66 20390.61 21094.19 21195.27 18286.97 19994.38 16990.91 20269.40 22587.21 20279.57 22177.82 21787.25 21684.18 212
tpm89.84 20186.81 20893.36 19196.60 18891.92 20495.02 20397.39 11986.79 20196.54 9695.03 15069.70 22487.66 20088.79 20786.19 20386.95 21789.27 196
E-PMN86.94 21285.10 21489.09 21495.77 20283.54 22289.89 21986.55 21292.18 14787.34 21794.02 17283.42 20089.63 18893.32 18277.11 21885.33 21872.09 219
EMVS86.63 21384.48 21589.15 21395.51 20783.66 22190.19 21886.14 21491.78 15188.68 21293.83 17681.97 20489.05 19192.76 18976.09 21985.31 21971.28 220
tpmrst87.60 21084.13 21791.66 20595.65 20489.73 21593.77 21294.74 19388.85 18293.35 19195.60 14372.37 22287.40 20181.24 21978.19 21685.02 22082.90 217
DeepMVS_CXcopyleft72.99 22380.14 22337.34 22083.46 21660.13 22584.40 21285.48 19486.93 20587.22 21079.61 22187.32 204
test_method61.30 21670.45 21950.62 21722.69 22530.92 22668.31 22525.76 22180.56 22168.71 22282.80 21891.08 18544.64 22080.50 22056.70 22073.64 22270.58 221
MVEpermissive72.99 1885.37 21589.43 19680.63 21574.43 22371.94 22488.25 22189.81 20993.27 13067.32 22496.32 12991.83 18190.40 18093.36 18090.79 19373.55 22388.49 200
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
tmp_tt45.72 21860.00 22438.74 22545.50 22612.18 22279.58 22368.42 22367.62 22265.04 22722.12 22184.83 21678.72 21566.08 224
testmvs4.99 2186.88 2202.78 2211.73 2262.04 2283.10 2281.71 2237.27 2243.92 22912.18 2236.71 2303.31 2236.94 2225.51 2222.94 2257.51 222
test1234.41 2195.71 2212.88 2201.28 2272.21 2273.09 2291.65 2246.35 2254.98 2288.53 2243.88 2313.46 2225.79 2235.71 2212.85 2267.50 223
uanet_test0.00 2200.00 2220.00 2220.00 2290.00 2290.00 2300.00 2260.00 2260.00 2300.00 2250.00 2320.00 2250.00 2240.00 2230.00 2270.00 224
sosnet-low-res0.00 2200.00 2220.00 2220.00 2290.00 2290.00 2300.00 2260.00 2260.00 2300.00 2250.00 2320.00 2250.00 2240.00 2230.00 2270.00 224
sosnet0.00 2200.00 2220.00 2220.00 2290.00 2290.00 2300.00 2260.00 2260.00 2300.00 2250.00 2320.00 2250.00 2240.00 2230.00 2270.00 224
RE-MVS-def99.38 2
9.1496.98 141
SR-MVS99.33 3198.40 3798.90 55
our_test_397.32 16995.13 18497.59 126
MTAPA97.43 5799.27 24
MTMP97.63 4899.03 43
Patchmatch-RL test17.42 227
mPP-MVS99.58 698.98 47
NP-MVS89.27 181
Patchmtry92.70 19695.23 20198.47 3296.44 100