This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorcourty.delive.electrofacadekickermeadowofficepipesplaygr.reliefrelief.terraceterrai.
sort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort by
WR-MVS99.22 399.15 699.30 299.54 1199.62 199.63 499.45 197.75 1598.47 2299.71 699.05 4298.88 499.54 699.49 399.81 198.87 10
WR-MVS_H98.97 1098.82 1599.14 899.56 999.56 599.54 1199.42 296.07 4198.37 2499.34 3299.09 3598.43 1899.45 1199.41 699.53 1198.86 11
PS-CasMVS99.08 598.90 1299.28 399.65 399.56 599.59 699.39 396.36 3698.83 1499.46 2299.09 3598.62 1099.51 899.36 999.63 498.97 8
UniMVSNet_ETH3D98.93 1199.20 498.63 2299.54 1199.33 898.73 6599.37 498.87 697.86 3899.27 3699.78 296.59 8799.52 799.40 799.67 398.21 43
CP-MVSNet98.91 1298.61 2099.25 499.63 599.50 799.55 1099.36 595.53 6798.77 1699.11 4398.64 7998.57 1399.42 1299.28 1299.61 598.78 13
PEN-MVS99.08 598.95 999.23 599.65 399.59 399.64 299.34 696.68 2898.65 1799.43 2499.33 1798.47 1799.50 999.32 1099.60 698.79 12
DTE-MVSNet99.03 798.88 1399.21 699.66 299.59 399.62 599.34 696.92 2498.52 1999.36 3098.98 4798.57 1399.49 1099.23 1399.56 1098.55 26
UA-Net98.66 1798.60 2398.73 1599.83 199.28 1098.56 7499.24 896.04 4297.12 7198.44 7898.95 5298.17 2999.15 2599.00 2399.48 1899.33 4
gg-mvs-nofinetune94.13 16993.93 16294.37 18397.99 13095.86 17795.45 19899.22 997.61 1695.10 15399.50 2084.50 19681.73 21695.31 15694.12 16896.71 17090.59 188
SixPastTwentyTwo99.25 299.20 499.32 199.53 1599.32 999.64 299.19 1098.05 1199.19 699.74 498.96 5199.03 299.69 399.58 299.32 2799.06 7
LTVRE_ROB97.71 199.33 199.47 299.16 799.16 4299.11 1499.39 1399.16 1199.26 399.22 599.51 1999.75 498.54 1599.71 299.47 499.52 1399.46 1
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
CS-MVS-test97.94 5297.27 7398.71 1898.66 8799.07 1799.33 1699.05 1291.33 15597.64 4696.30 13198.52 8798.19 2698.83 3698.96 2499.40 2197.90 57
pmmvs698.77 1499.35 398.09 4598.32 10498.92 2698.57 7299.03 1399.36 296.86 8499.77 399.86 196.20 10299.56 599.39 899.59 798.61 23
test_part199.20 499.62 198.72 1698.92 6699.62 199.52 1299.01 1499.39 197.87 3799.74 499.75 497.29 6499.73 199.71 199.69 299.41 2
Fast-Effi-MVS+-dtu94.34 16493.26 17195.62 16097.82 14595.97 17695.86 18699.01 1486.88 20093.39 18990.83 20395.46 15990.61 17894.46 16994.68 16297.01 15994.51 159
TranMVSNet+NR-MVSNet98.45 1998.22 3298.72 1699.32 3299.06 1898.99 3798.89 1695.52 6897.53 5099.42 2698.83 6398.01 3598.55 5698.34 5999.57 997.80 60
DU-MVS98.23 2797.74 5698.81 1299.23 3498.77 4298.76 5998.88 1794.10 11698.50 2098.87 5798.32 9897.99 3698.40 6498.08 7599.49 1797.64 70
NR-MVSNet98.00 4497.88 4698.13 4398.33 10298.77 4298.83 5598.88 1794.10 11697.46 5598.87 5798.58 8495.78 11199.13 2698.16 7099.52 1397.53 78
UniMVSNet (Re)98.23 2797.85 4898.67 2099.15 4398.87 2998.74 6298.84 1994.27 11497.94 3699.01 4598.39 9497.82 4398.35 6998.29 6499.51 1697.78 61
DROMVSNet97.63 6496.88 9798.50 2798.74 7999.16 1299.33 1698.83 2088.77 18396.62 9396.48 12597.75 11798.19 2699.00 2998.76 3599.29 2998.27 42
v7n99.03 799.03 899.02 999.09 5399.11 1499.57 998.82 2198.21 1099.25 399.84 299.59 798.76 699.23 2098.83 3398.63 7298.40 35
UniMVSNet_NR-MVSNet98.12 3797.56 6398.78 1399.13 4898.89 2898.76 5998.78 2293.81 12498.50 2098.81 6197.64 12497.99 3698.18 7597.92 8099.53 1197.64 70
GeoE97.48 7896.84 10198.22 4099.01 5998.39 7298.85 5498.76 2392.37 14497.53 5097.58 9898.23 10397.11 6897.57 9596.98 10598.10 11196.78 111
Effi-MVS+96.46 12095.28 13697.85 6898.64 9197.16 14197.15 15198.75 2490.27 17098.03 3393.93 17596.21 15196.55 9196.34 13396.69 11597.97 11896.33 125
Baseline_NR-MVSNet98.17 3197.90 4598.48 3099.23 3498.59 5898.83 5598.73 2593.97 12196.95 7899.66 898.23 10397.90 4098.40 6499.06 1899.25 3197.42 85
DCV-MVSNet97.56 6797.63 5997.47 9298.41 9999.12 1398.63 6998.57 2695.71 5895.60 14193.79 17798.01 11294.25 14299.16 2498.88 3099.35 2398.74 15
FC-MVSNet-test97.54 6998.26 3096.70 12898.87 6897.79 11698.49 7898.56 2796.04 4290.39 20499.65 998.67 7695.15 12699.23 2099.07 1698.73 7097.39 86
MIMVSNet198.22 3098.51 2497.87 6699.40 2698.82 3899.31 1898.53 2897.39 1996.59 9599.31 3499.23 3094.76 13498.93 3398.67 4098.63 7297.25 93
FMVSNet197.40 8498.09 3796.60 13297.80 14898.76 4598.26 8998.50 2996.79 2693.13 19299.28 3598.64 7992.90 16297.67 8997.86 8399.02 4397.64 70
zzz-MVS98.14 3497.78 5398.55 2599.58 698.58 6098.98 3998.48 3095.98 4797.39 5794.73 15999.27 2497.98 3898.81 3798.64 4598.90 5898.46 31
ACMMPR98.31 2498.07 3998.60 2399.58 698.83 3499.09 2898.48 3096.25 3897.03 7596.81 11699.09 3598.39 2098.55 5698.45 5199.01 4598.53 29
CR-MVSNet91.94 18888.50 19895.94 15196.14 19492.08 20195.23 20198.47 3284.30 21396.44 10094.58 16375.57 21592.92 16090.22 20492.22 18596.43 17590.56 189
Patchmtry92.70 19695.23 20198.47 3296.44 100
HFP-MVS98.17 3198.02 4098.35 3799.36 2898.62 5798.79 5898.46 3496.24 3996.53 9797.13 11398.98 4798.02 3498.20 7298.42 5398.95 5498.54 27
MIMVSNet93.68 17793.96 16093.35 19297.82 14596.08 17496.34 17498.46 3491.28 15886.67 21894.95 15494.87 16484.39 21494.53 16594.65 16396.45 17491.34 185
SteuartSystems-ACMMP98.06 4097.78 5398.39 3599.54 1198.79 4098.94 4498.42 3693.98 12095.85 12596.66 12299.25 2898.61 1198.71 4698.38 5698.97 5098.67 20
Skip Steuart: Steuart Systems R&D Blog.
test250694.29 16791.43 18997.64 8098.66 8798.83 3498.50 7698.40 3796.04 4294.45 16794.88 15655.05 22896.70 8199.28 1599.04 2199.14 3596.87 107
test111197.48 7897.20 7897.81 7398.78 7798.85 3198.68 6698.40 3796.68 2894.84 15999.13 4290.32 18997.01 7399.27 1899.05 1999.19 3397.10 98
ECVR-MVScopyleft97.40 8497.11 8797.73 7898.66 8798.83 3498.50 7698.40 3796.04 4295.00 15798.95 4991.07 18696.70 8199.28 1599.04 2199.14 3596.58 116
SR-MVS99.33 3198.40 3798.90 55
MP-MVScopyleft97.98 4897.53 6598.50 2799.56 998.58 6098.97 4098.39 4193.49 12797.14 6896.08 13599.23 3098.06 3298.50 6198.38 5698.90 5898.44 33
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
CP-MVS98.00 4497.57 6298.50 2799.47 2198.56 6398.91 4698.38 4294.71 9597.01 7695.20 14899.06 3998.20 2498.61 5398.46 4899.02 4398.40 35
X-MVS97.60 6597.00 9298.29 3899.50 1898.76 4598.90 4798.37 4394.67 9896.40 10491.47 19898.78 6997.60 5398.55 5698.50 4698.96 5298.29 38
EPP-MVSNet97.29 8896.88 9797.76 7698.70 8299.10 1698.92 4598.36 4495.12 8093.36 19097.39 10491.00 18797.65 5098.72 4498.91 2799.58 897.92 55
PGM-MVS97.82 5797.25 7598.48 3099.54 1198.75 4999.02 3298.35 4592.41 14396.84 8595.39 14598.99 4698.24 2398.43 6398.34 5998.90 5898.41 34
3Dnovator+96.20 497.58 6697.14 8398.10 4498.98 6497.85 10898.60 7198.33 4696.41 3497.23 6694.66 16297.26 13396.91 7697.91 7797.87 8298.53 8298.03 48
APDe-MVS98.29 2598.42 2798.14 4299.45 2298.90 2799.18 2598.30 4795.96 4995.13 15198.79 6299.25 2897.92 3998.80 3898.71 3798.85 6598.54 27
ACMMPcopyleft97.99 4697.60 6198.45 3299.53 1598.83 3499.13 2798.30 4794.57 10196.39 10895.32 14698.95 5298.37 2198.61 5398.47 4799.00 4698.45 32
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
TDRefinement99.00 999.13 798.86 1098.99 6399.05 2099.58 798.29 4998.96 597.96 3599.40 2798.67 7698.87 599.60 499.46 599.46 1998.74 15
LGP-MVS_train97.96 5197.53 6598.45 3299.45 2298.64 5699.09 2898.27 5092.99 13996.04 12096.57 12399.29 2098.66 898.73 4298.42 5399.19 3398.09 46
DVP-MVS++98.44 2198.92 1197.88 6599.17 4099.00 2398.89 4898.26 5197.54 1896.05 11999.35 3199.76 396.34 9798.79 3998.65 4298.56 7999.35 3
ACMM94.29 1198.12 3797.71 5798.59 2499.51 1798.58 6099.24 2198.25 5296.22 4096.90 7995.01 15298.89 5798.52 1698.66 4998.32 6299.13 3898.28 41
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
SED-MVS98.05 4198.46 2697.57 8499.01 5998.99 2498.82 5798.24 5395.76 5794.70 16298.96 4799.49 1096.19 10398.74 4098.65 4298.46 8798.63 21
Fast-Effi-MVS+96.80 10895.92 12897.84 6998.57 9297.46 13198.06 9898.24 5389.64 17897.57 4996.45 12697.35 13196.73 8097.22 10696.64 11797.86 12196.65 114
IS_MVSNet96.62 11796.48 11396.78 12698.46 9698.68 5598.61 7098.24 5392.23 14689.63 20895.90 14094.40 16896.23 9998.65 5098.77 3499.52 1396.76 112
CS-MVS97.89 5497.44 6798.42 3498.71 8199.22 1199.34 1498.21 5691.60 15296.62 9396.73 11998.69 7598.20 2498.65 5099.18 1599.44 2097.99 51
APD-MVScopyleft97.47 8097.16 8197.84 6999.32 3298.39 7298.47 8198.21 5692.08 14895.23 14896.68 12198.90 5596.99 7498.20 7298.21 6698.80 6797.67 68
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
HPM-MVS++copyleft97.56 6797.11 8798.09 4599.18 3997.95 10398.57 7298.20 5894.08 11897.25 6595.96 13998.81 6697.13 6797.51 9797.30 9998.21 10398.15 45
EPNet94.33 16693.52 16795.27 16898.81 7494.71 18796.77 16298.20 5888.12 19296.53 9792.53 18891.19 18385.25 21395.22 15895.26 15396.09 18097.63 74
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
ETV-MVS96.54 11995.27 13798.02 5899.07 5697.48 13098.16 9498.19 6087.33 19897.58 4892.67 18695.93 15696.22 10098.49 6298.46 4898.91 5796.50 122
pm-mvs198.14 3498.66 1997.53 8897.93 13498.49 6898.14 9598.19 6097.95 1296.17 11599.63 1198.85 6095.41 12298.91 3498.89 2999.34 2497.86 58
SCA91.15 19587.65 20295.23 17196.15 19395.68 17996.68 16698.18 6290.46 16797.21 6792.44 19080.17 20793.51 15586.04 21383.58 20989.68 20985.21 208
v1097.64 6397.26 7498.08 4998.07 12498.56 6398.86 5298.18 6294.48 10798.24 2899.56 1698.98 4797.72 4796.05 14296.26 12997.42 14096.93 102
DVP-MVScopyleft98.27 2698.61 2097.87 6699.17 4099.03 2199.07 3098.17 6496.75 2794.35 17098.92 5199.58 897.86 4298.67 4898.70 3898.63 7298.63 21
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
v897.51 7397.16 8197.91 6297.99 13098.48 6998.76 5998.17 6494.54 10597.69 4499.48 2198.76 7297.63 5296.10 14196.14 13197.20 15096.64 115
DeepC-MVS96.08 598.58 1898.49 2598.68 1999.37 2798.52 6699.01 3698.17 6497.17 2298.25 2799.56 1699.62 698.29 2298.40 6498.09 7298.97 5098.08 47
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
MSP-MVS97.67 6097.88 4697.43 9499.34 2998.99 2498.87 5198.12 6795.63 5994.16 17697.45 10299.50 996.44 9596.35 13298.70 3897.65 13198.57 25
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
RPMNet90.52 19786.27 21195.48 16395.95 19992.08 20195.55 19498.12 6784.30 21395.60 14187.49 21172.78 22091.24 17087.93 20889.34 19796.41 17689.98 192
ACMH95.26 798.75 1598.93 1098.54 2698.86 6999.01 2299.58 798.10 6998.67 797.30 6299.18 4099.42 1298.40 1999.19 2298.86 3198.99 4898.19 44
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
FC-MVSNet-train97.65 6298.16 3497.05 11198.85 7098.85 3199.34 1498.08 7094.50 10694.41 16899.21 3898.80 6792.66 16498.98 3198.85 3298.96 5297.94 53
thisisatest051597.82 5797.67 5897.99 6198.49 9498.07 9298.48 7998.06 7195.35 7397.74 4298.83 6097.61 12596.74 7997.53 9698.30 6398.43 9298.01 50
ACMP94.03 1297.97 5097.61 6098.39 3599.43 2598.51 6798.97 4098.06 7194.63 9996.10 11796.12 13499.20 3298.63 998.68 4798.20 6999.14 3597.93 54
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
Gipumacopyleft98.43 2298.15 3598.76 1499.00 6298.29 7697.91 10898.06 7199.02 499.50 196.33 12898.67 7699.22 199.02 2898.02 7798.88 6397.66 69
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
DPE-MVScopyleft97.99 4698.12 3697.84 6998.65 9098.86 3098.86 5298.05 7494.18 11595.49 14498.90 5399.33 1797.11 6898.53 5998.65 4298.86 6498.39 37
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
MAR-MVS95.51 14094.49 15696.71 12797.92 13596.40 16596.72 16498.04 7586.74 20296.72 8792.52 18995.14 16294.02 14796.81 12096.54 12096.85 16297.25 93
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
EIA-MVS96.23 12694.85 14997.84 6999.08 5498.21 7897.69 11898.03 7685.68 20898.09 3191.75 19697.07 13895.66 11997.58 9497.72 8798.47 8695.91 136
TransMVSNet (Re)98.23 2798.72 1797.66 7998.22 11398.73 5198.66 6898.03 7698.60 896.40 10499.60 1398.24 10195.26 12499.19 2299.05 1999.36 2297.64 70
ACMMP_NAP98.12 3798.08 3898.18 4199.34 2998.74 5098.97 4098.00 7895.13 7996.90 7997.54 10199.27 2497.18 6698.72 4498.45 5198.68 7198.69 17
CPTT-MVS97.08 9796.25 11598.05 5499.21 3698.30 7598.54 7597.98 7994.28 11295.89 12489.57 20798.54 8698.18 2897.82 8297.32 9798.54 8097.91 56
IterMVS-LS96.35 12195.85 12996.93 11997.53 16098.00 9997.37 13797.97 8095.49 7096.71 9098.94 5093.23 17494.82 13393.15 18695.05 15597.17 15297.12 97
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
canonicalmvs97.11 9596.88 9797.38 9598.34 10198.72 5397.52 12997.94 8195.60 6095.01 15694.58 16394.50 16796.59 8797.84 8198.03 7698.90 5898.91 9
Anonymous20240521197.39 6998.85 7098.59 5897.89 11197.93 8294.41 10997.37 10596.99 14093.09 15898.61 5398.46 4899.11 4097.27 91
LS3D97.93 5397.80 5098.08 4999.20 3798.77 4298.89 4897.92 8396.59 3196.99 7796.71 12097.14 13796.39 9699.04 2798.96 2499.10 4297.39 86
FMVSNet295.77 13696.20 11995.27 16896.77 18498.18 8197.28 14297.90 8493.12 13491.37 20198.25 8496.05 15490.04 18494.96 16295.94 13898.28 9696.90 103
Effi-MVS+-dtu95.94 13395.08 14396.94 11898.54 9397.38 13296.66 16797.89 8588.68 18495.92 12292.90 18597.28 13294.18 14596.68 12696.13 13398.45 8896.51 121
TSAR-MVS + ACMM97.54 6997.79 5197.26 10098.23 11198.10 9197.71 11797.88 8695.97 4895.57 14398.71 6998.57 8597.36 5997.74 8596.81 11196.83 16598.59 24
SMA-MVScopyleft98.13 3698.22 3298.02 5899.44 2498.73 5198.24 9097.87 8795.22 7596.76 8698.66 7199.35 1697.03 7298.53 5998.39 5598.80 6798.69 17
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
Vis-MVSNet (Re-imp)96.29 12396.50 11196.05 14797.96 13397.83 10997.30 14197.86 8893.14 13388.90 21196.80 11795.28 16095.15 12698.37 6898.25 6599.12 3995.84 137
ACMH+94.90 898.40 2398.71 1898.04 5598.93 6598.84 3399.30 1997.86 8897.78 1494.19 17598.77 6599.39 1498.61 1199.33 1499.07 1699.33 2597.81 59
Anonymous2023121197.49 7697.91 4497.00 11598.31 10798.72 5398.27 8897.84 9094.76 9494.77 16198.14 8798.38 9693.60 15298.96 3298.66 4199.22 3297.77 64
UGNet96.79 10997.82 4995.58 16197.57 15998.39 7298.48 7997.84 9095.85 5294.68 16397.91 9199.07 3887.12 20397.71 8697.51 8997.80 12298.29 38
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
MVS_030497.18 9496.84 10197.58 8399.15 4398.19 8098.11 9697.81 9292.36 14598.06 3297.43 10399.06 3994.24 14396.80 12196.54 12098.12 10997.52 79
SD-MVS97.84 5597.78 5397.90 6398.33 10298.06 9397.95 10597.80 9396.03 4696.72 8797.57 9999.18 3397.50 5497.88 7897.08 10299.11 4098.68 19
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
OPM-MVS98.01 4298.01 4198.00 6099.11 5098.12 8898.68 6697.72 9496.65 3096.68 9198.40 8099.28 2397.44 5698.20 7297.82 8698.40 9397.58 75
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
tfpnnormal97.66 6197.79 5197.52 9098.32 10498.53 6598.45 8297.69 9597.59 1796.12 11697.79 9496.70 14395.69 11698.35 6998.34 5998.85 6597.22 96
COLMAP_ROBcopyleft96.84 298.75 1598.82 1598.66 2199.14 4698.79 4099.30 1997.67 9698.33 997.82 4099.20 3999.18 3398.76 699.27 1898.96 2499.29 2998.03 48
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
TSAR-MVS + GP.97.26 9097.33 7197.18 10598.21 11498.06 9396.38 17397.66 9793.92 12395.23 14898.48 7698.33 9797.41 5797.63 9397.35 9398.18 10597.57 76
PVSNet_Blended_VisFu97.44 8197.14 8397.79 7499.15 4398.44 7098.32 8697.66 9793.74 12697.73 4398.79 6296.93 14295.64 12197.69 8796.91 10898.25 10197.50 81
Vis-MVSNetpermissive98.01 4298.42 2797.54 8796.89 18198.82 3899.14 2697.59 9996.30 3797.04 7499.26 3798.83 6396.01 10898.73 4298.21 6698.58 7898.75 14
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
GBi-Net95.21 14795.35 13495.04 17396.77 18498.18 8197.28 14297.58 10088.43 18990.28 20596.01 13692.43 17790.04 18497.67 8997.86 8398.28 9696.90 103
test195.21 14795.35 13495.04 17396.77 18498.18 8197.28 14297.58 10088.43 18990.28 20596.01 13692.43 17790.04 18497.67 8997.86 8398.28 9696.90 103
FMVSNet394.06 17193.85 16494.31 18695.46 20997.80 11596.34 17497.58 10088.43 18990.28 20596.01 13692.43 17788.67 19691.82 19593.96 17197.53 13396.50 122
test20.0396.08 12896.80 10495.25 17099.19 3897.58 12297.24 14697.56 10394.95 8891.91 19998.58 7398.03 11087.88 19997.43 9996.94 10797.69 12894.05 167
NCCC96.56 11895.68 13097.59 8299.04 5897.54 12797.67 11997.56 10394.84 9196.10 11787.91 21098.09 10796.98 7597.20 10796.80 11298.21 10397.38 89
CANet96.81 10796.50 11197.17 10699.10 5297.96 10297.86 11397.51 10591.30 15697.75 4197.64 9697.89 11593.39 15696.98 11796.73 11397.40 14196.99 100
PatchT91.40 19288.54 19794.74 17791.48 22192.18 20097.42 13597.51 10584.96 21096.44 10094.16 17075.47 21692.92 16090.22 20492.22 18592.66 20090.56 189
EPNet_dtu93.45 17992.51 17994.55 18298.39 10091.67 20695.46 19697.50 10786.56 20397.38 5893.52 17894.20 17185.82 20893.31 18392.53 18492.72 19795.76 142
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
PHI-MVS97.44 8197.17 8097.74 7798.14 12098.41 7198.03 10197.50 10792.07 14998.01 3497.33 10798.62 8296.02 10798.34 7198.21 6698.76 6997.24 95
CSCG98.45 1998.61 2098.26 3999.11 5099.06 1898.17 9397.49 10997.93 1397.37 5998.88 5599.29 2098.10 3098.40 6497.51 8999.32 2799.16 5
tfpn200view993.80 17691.75 18696.20 14597.52 16198.15 8697.48 13297.47 11087.65 19493.56 18683.03 21684.12 19792.62 16597.04 11298.09 7298.52 8394.17 164
CDPH-MVS96.68 11395.99 12497.48 9199.13 4897.64 11998.08 9797.46 11190.56 16695.13 15194.87 15798.27 10096.56 9097.09 11196.45 12398.54 8097.08 99
HyFIR lowres test95.05 15093.54 16696.81 12597.81 14796.88 15298.18 9197.46 11194.28 11294.98 15896.57 12392.89 17696.15 10590.90 20391.87 18896.28 17791.35 184
thres600view794.34 16492.31 18196.70 12898.19 11698.12 8897.85 11497.45 11391.49 15393.98 17984.27 21382.02 20394.24 14397.04 11298.76 3598.49 8494.47 161
thres20093.98 17491.90 18596.40 14297.66 15298.12 8897.20 14797.45 11390.16 17293.82 18083.08 21583.74 19993.80 14997.04 11297.48 9198.49 8493.70 171
xxxxxxxxxxxxxcwj97.32 8797.55 6497.05 11198.80 7597.83 10996.02 18297.44 11594.98 8495.74 13197.16 11099.30 1995.72 11397.85 7997.97 7898.60 7597.78 61
SF-MVS97.26 9097.43 6897.05 11198.80 7597.83 10996.02 18297.44 11594.98 8495.74 13197.16 11098.45 9395.72 11397.85 7997.97 7898.60 7597.78 61
v2v48297.33 8696.84 10197.90 6398.19 11697.83 10998.74 6297.44 11595.42 7198.23 2999.46 2298.84 6297.46 5595.51 15396.10 13497.36 14494.72 156
v114497.51 7397.05 9098.04 5598.26 10997.98 10098.88 5097.42 11895.38 7298.56 1899.59 1599.01 4597.65 5095.77 14696.06 13697.47 13695.56 147
tpm89.84 20186.81 20893.36 19196.60 18891.92 20495.02 20397.39 11986.79 20196.54 9695.03 15069.70 22487.66 20088.79 20786.19 20386.95 21789.27 196
gm-plane-assit91.85 18987.91 20096.44 14199.14 4698.25 7799.02 3297.38 12095.57 6398.31 2599.34 3251.00 22988.93 19393.16 18591.57 18995.85 18186.50 206
train_agg96.68 11395.93 12797.56 8599.08 5497.16 14198.44 8497.37 12191.12 16095.18 15095.43 14498.48 9197.36 5996.48 12995.52 14897.95 11997.34 90
thisisatest053094.81 15693.06 17296.85 12498.01 12797.18 14096.93 15897.36 12289.73 17795.80 12894.98 15377.88 21294.89 13096.73 12397.35 9398.13 10897.54 77
tttt051794.81 15693.04 17396.88 12398.15 11997.37 13396.99 15597.36 12289.51 17995.74 13194.89 15577.53 21494.89 13096.94 11897.35 9398.17 10697.70 67
anonymousdsp98.85 1398.88 1398.83 1198.69 8598.20 7999.68 197.35 12497.09 2398.98 1099.86 199.43 1198.94 399.28 1599.19 1499.33 2599.08 6
MCST-MVS96.79 10996.08 12197.62 8198.78 7797.52 12898.01 10397.32 12593.20 13195.84 12693.97 17498.12 10697.34 6196.34 13395.88 14198.45 8897.51 80
AdaColmapbinary95.85 13594.65 15297.26 10098.70 8297.20 13897.33 14097.30 12691.28 15895.90 12388.16 20996.17 15296.60 8697.34 10296.82 11097.71 12595.60 146
v119297.52 7297.03 9198.09 4598.31 10798.01 9898.96 4397.25 12795.22 7598.89 1299.64 1098.83 6397.68 4995.63 14995.91 13997.47 13695.97 135
v14419297.49 7696.99 9498.07 5198.11 12397.95 10399.02 3297.21 12894.90 9098.88 1399.53 1898.89 5797.75 4595.59 15095.90 14097.43 13996.16 129
CNVR-MVS97.03 10096.77 10697.34 9698.89 6797.67 11897.64 12297.17 12994.40 11095.70 13794.02 17298.76 7296.49 9497.78 8497.29 10098.12 10997.47 82
DeepC-MVS_fast95.38 697.53 7197.30 7297.79 7498.83 7397.64 11998.18 9197.14 13095.57 6397.83 3997.10 11498.80 6796.53 9297.41 10097.32 9798.24 10297.26 92
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
MVS_Test95.34 14694.88 14895.89 15296.93 18096.84 15696.66 16797.08 13190.06 17494.02 17797.61 9796.64 14493.59 15392.73 19094.02 17097.03 15896.24 126
v192192097.50 7597.00 9298.07 5198.20 11597.94 10699.03 3197.06 13295.29 7499.01 999.62 1298.73 7497.74 4695.52 15295.78 14497.39 14296.12 131
v124097.43 8396.87 10098.09 4598.25 11097.92 10799.02 3297.06 13294.77 9399.09 899.68 798.51 8997.78 4495.25 15795.81 14297.32 14696.13 130
PMVScopyleft90.51 1797.77 5997.98 4297.53 8898.68 8698.14 8797.67 11997.03 13496.43 3298.38 2398.72 6897.03 13994.44 13999.37 1399.30 1198.98 4996.86 108
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
v14896.99 10296.70 10897.34 9697.89 13797.23 13798.33 8596.96 13595.57 6397.12 7198.99 4699.40 1397.23 6596.22 13895.45 14996.50 17294.02 168
MSLP-MVS++96.66 11596.46 11496.89 12298.02 12697.71 11795.57 19096.96 13594.36 11196.19 11491.37 19998.24 10197.07 7097.69 8797.89 8197.52 13497.95 52
thres40094.04 17291.94 18496.50 13897.98 13297.82 11397.66 12196.96 13590.96 16194.20 17383.24 21482.82 20193.80 14996.50 12898.09 7298.38 9494.15 165
pmmvs-eth3d96.84 10696.22 11797.56 8597.63 15696.38 16898.74 6296.91 13894.63 9998.26 2699.43 2498.28 9996.58 8994.52 16795.54 14797.24 14894.75 155
TSAR-MVS + MP.98.15 3398.23 3198.06 5398.47 9598.16 8599.23 2296.87 13995.58 6296.72 8798.41 7999.06 3998.05 3398.99 3098.90 2899.00 4698.51 30
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
MVS_111021_HR97.27 8997.11 8797.46 9398.46 9697.82 11397.50 13096.86 14094.97 8697.13 7096.99 11598.39 9496.82 7897.65 9297.38 9298.02 11496.56 119
MDTV_nov1_ep13_2view94.39 16393.34 16995.63 15997.23 17595.33 18297.76 11596.84 14194.55 10297.47 5398.96 4797.70 12093.88 14892.27 19286.81 20290.56 20587.73 203
EG-PatchMatch MVS97.98 4897.92 4398.04 5598.84 7298.04 9697.90 10996.83 14295.07 8198.79 1599.07 4499.37 1597.88 4198.74 4098.16 7098.01 11596.96 101
casdiffmvs97.00 10197.36 7096.59 13397.65 15397.98 10098.06 9896.81 14395.78 5592.77 19899.40 2799.26 2795.65 12096.70 12496.39 12598.59 7795.99 134
DI_MVS_plusplus_trai95.48 14194.51 15496.61 13197.13 17697.30 13498.05 10096.79 14493.75 12595.08 15496.38 12789.76 19194.95 12993.97 17794.82 16197.64 13295.63 145
3Dnovator96.31 397.22 9397.19 7997.25 10398.14 12097.95 10398.03 10196.77 14596.42 3397.14 6895.11 14997.59 12695.14 12897.79 8397.72 8798.26 9997.76 66
QAPM97.04 9997.14 8396.93 11997.78 15198.02 9797.36 13996.72 14694.68 9796.23 11097.21 10997.68 12295.70 11597.37 10197.24 10197.78 12497.77 64
PatchmatchNetpermissive89.98 19986.23 21294.36 18596.56 18991.90 20596.07 18196.72 14690.18 17196.87 8193.36 18278.06 21191.46 16884.71 21781.40 21488.45 21283.97 214
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
testgi94.81 15696.05 12393.35 19299.06 5796.87 15497.57 12796.70 14895.77 5688.60 21393.19 18398.87 5981.21 21797.03 11596.64 11796.97 16193.99 169
HQP-MVS95.97 13295.01 14697.08 10898.72 8097.19 13997.07 15296.69 14991.49 15395.77 13092.19 19297.93 11396.15 10594.66 16494.16 16698.10 11197.45 83
PLCcopyleft92.55 1596.10 12795.36 13396.96 11698.13 12296.88 15296.49 17196.67 15094.07 11995.71 13691.14 20096.09 15396.84 7796.70 12496.58 11997.92 12096.03 132
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
Anonymous2023120695.69 13995.68 13095.70 15798.32 10496.95 15097.37 13796.65 15193.33 12993.61 18498.70 7098.03 11091.04 17395.07 16094.59 16497.20 15093.09 178
PCF-MVS92.69 1495.98 13195.05 14497.06 11098.43 9897.56 12597.76 11596.65 15189.95 17595.70 13796.18 13398.48 9195.74 11293.64 17893.35 17998.09 11396.18 128
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
ET-MVSNet_ETH3D93.18 18190.80 19295.95 15096.05 19696.07 17596.92 15996.51 15389.34 18095.63 13994.08 17172.31 22393.13 15794.33 17194.83 15997.44 13894.65 157
CDS-MVSNet94.91 15395.17 14094.60 18197.85 13996.21 17296.90 16196.39 15490.81 16393.40 18897.24 10894.54 16685.78 20996.25 13696.15 13097.26 14795.01 153
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
baseline193.89 17592.82 17695.14 17297.62 15796.97 14996.12 18096.36 15591.30 15691.53 20094.68 16080.72 20590.80 17695.71 14796.29 12798.44 9194.09 166
MVS-HIRNet88.72 20786.49 20991.33 20791.81 21985.66 21987.02 22296.25 15681.48 22094.82 16096.31 13092.14 18090.32 18187.60 20983.82 20787.74 21478.42 218
TinyColmap96.64 11696.07 12297.32 9897.84 14496.40 16597.63 12496.25 15695.86 5198.98 1097.94 9096.34 15096.17 10497.30 10495.38 15297.04 15793.24 175
abl_696.45 14097.79 15097.28 13597.16 15096.16 15889.92 17695.72 13591.59 19797.16 13694.37 14197.51 13595.49 148
pmmvs495.37 14594.25 15796.67 13097.01 17995.28 18397.60 12596.07 15993.11 13597.29 6398.09 8994.23 17095.21 12591.56 19893.91 17296.82 16793.59 173
OpenMVScopyleft94.63 995.75 13795.04 14596.58 13497.85 13997.55 12696.71 16596.07 15990.15 17396.47 9990.77 20595.95 15594.41 14097.01 11696.95 10698.00 11696.90 103
IterMVS-SCA-FT95.16 14993.95 16196.56 13697.89 13796.69 15896.94 15796.05 16193.06 13897.35 6098.79 6291.45 18295.93 11092.78 18891.00 19295.22 18593.91 170
V4297.10 9696.97 9597.26 10097.64 15497.60 12198.45 8295.99 16294.44 10897.35 6099.40 2798.63 8197.34 6196.33 13596.38 12696.82 16796.00 133
DPM-MVS94.86 15493.90 16395.99 14998.19 11696.52 16096.29 17895.95 16393.11 13594.61 16588.17 20896.44 14893.77 15193.33 18193.54 17797.11 15496.22 127
dps88.36 20984.32 21693.07 19493.86 21592.29 19994.89 20695.93 16483.50 21593.13 19291.87 19567.79 22690.32 18185.99 21483.22 21190.28 20785.56 207
DELS-MVS96.90 10397.24 7696.50 13897.85 13998.18 8197.88 11295.92 16593.48 12895.34 14698.86 5998.94 5494.03 14697.33 10397.04 10398.00 11696.85 109
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
GA-MVS94.18 16892.98 17495.58 16197.36 16896.42 16396.21 17995.86 16690.29 16995.08 15496.19 13285.37 19592.82 16394.01 17694.14 16796.16 17994.41 163
CostFormer89.06 20685.65 21393.03 19695.88 20092.40 19895.30 20095.86 16686.49 20593.12 19493.40 18174.18 21888.25 19782.99 21881.46 21389.77 20888.66 199
EPMVS89.28 20486.28 21092.79 19796.01 19792.00 20395.83 18795.85 16890.78 16491.00 20394.58 16374.65 21788.93 19385.00 21582.88 21289.09 21184.09 213
TSAR-MVS + COLMAP96.05 12995.94 12696.18 14697.46 16696.41 16497.26 14595.83 16994.69 9695.30 14798.31 8196.52 14694.71 13595.48 15494.87 15796.54 17195.33 150
test-LLR89.77 20287.47 20492.45 19998.01 12789.77 21393.25 21595.80 17081.56 21889.19 20992.08 19379.59 20885.77 21191.47 20089.04 20092.69 19888.75 197
test0.0.03 191.17 19491.50 18790.80 20998.01 12795.46 18194.22 20995.80 17086.55 20481.75 22190.83 20387.93 19278.48 21894.51 16894.11 16996.50 17291.08 186
RPSCF97.83 5698.27 2997.31 9998.23 11198.06 9397.44 13495.79 17296.90 2595.81 12798.76 6698.61 8397.70 4898.90 3598.36 5898.90 5898.29 38
OMC-MVS97.23 9297.21 7797.25 10397.85 13997.52 12897.92 10795.77 17395.83 5397.09 7397.86 9298.52 8796.62 8597.51 9796.65 11698.26 9996.57 117
USDC96.30 12295.64 13297.07 10997.62 15796.35 17097.17 14995.71 17495.52 6899.17 798.11 8897.46 12895.67 11795.44 15593.60 17597.09 15592.99 179
MVSTER91.97 18790.31 19393.91 18796.81 18296.91 15194.22 20995.64 17584.98 20992.98 19693.42 17972.56 22186.64 20795.11 15993.89 17397.16 15395.31 151
CANet_DTU94.96 15294.62 15395.35 16598.03 12596.11 17396.92 15995.60 17688.59 18697.27 6495.27 14796.50 14788.77 19595.53 15195.59 14695.54 18394.78 154
CHOSEN 1792x268894.98 15194.69 15195.31 16697.27 17395.58 18097.90 10995.56 17795.03 8293.77 18395.65 14299.29 2095.30 12391.51 19991.28 19192.05 20394.50 160
MVS_111021_LR96.86 10496.72 10797.03 11497.80 14897.06 14897.04 15395.51 17894.55 10297.47 5397.35 10697.68 12296.66 8397.11 11096.73 11397.69 12896.57 117
DeepPCF-MVS94.55 1097.05 9897.13 8696.95 11796.06 19597.12 14598.01 10395.44 17995.18 7797.50 5297.86 9298.08 10897.31 6397.23 10597.00 10497.36 14497.45 83
MDTV_nov1_ep1390.30 19887.32 20693.78 18896.00 19892.97 19595.46 19695.39 18088.61 18595.41 14594.45 16880.39 20689.87 18786.58 21183.54 21090.56 20584.71 210
ADS-MVSNet89.89 20087.70 20192.43 20095.52 20690.91 20995.57 19095.33 18193.19 13291.21 20293.41 18082.12 20289.05 19186.21 21283.77 20887.92 21384.31 211
tpm cat187.19 21182.78 21892.33 20195.66 20390.61 21094.19 21195.27 18286.97 19994.38 16990.91 20269.40 22587.21 20279.57 22177.82 21787.25 21684.18 212
PatchMatch-RL94.79 15993.75 16596.00 14896.80 18395.00 18595.47 19595.25 18390.68 16595.80 12892.97 18493.64 17295.67 11796.13 14095.81 14296.99 16092.01 182
diffmvs95.86 13496.21 11895.44 16497.25 17496.85 15596.99 15595.23 18494.96 8792.82 19798.89 5498.85 6093.52 15494.21 17394.25 16596.84 16495.49 148
thres100view90092.93 18290.89 19195.31 16697.52 16196.82 15796.41 17295.08 18587.65 19493.56 18683.03 21684.12 19791.12 17294.53 16596.91 10898.17 10693.21 176
baseline292.06 18689.82 19594.68 18097.32 16995.72 17894.97 20595.08 18584.75 21194.34 17290.68 20677.75 21390.13 18393.38 17993.58 17696.25 17892.90 180
PVSNet_BlendedMVS95.44 14395.09 14195.86 15397.31 17197.13 14396.31 17695.01 18788.55 18796.23 11094.55 16697.75 11792.56 16696.42 13095.44 15097.71 12595.81 138
PVSNet_Blended95.44 14395.09 14195.86 15397.31 17197.13 14396.31 17695.01 18788.55 18796.23 11094.55 16697.75 11792.56 16696.42 13095.44 15097.71 12595.81 138
pmmvs595.70 13895.22 13896.26 14496.55 19097.24 13697.50 13094.99 18990.95 16296.87 8198.47 7797.40 12994.45 13892.86 18794.98 15697.23 14994.64 158
CNLPA96.24 12595.97 12596.57 13597.48 16597.10 14796.75 16394.95 19094.92 8996.20 11394.81 15896.61 14596.25 9896.94 11895.64 14597.79 12395.74 143
MDA-MVSNet-bldmvs95.45 14295.20 13995.74 15694.24 21396.38 16897.93 10694.80 19195.56 6696.87 8198.29 8295.24 16196.50 9398.65 5090.38 19494.09 18991.93 183
FMVSNet589.65 20387.60 20392.04 20295.63 20596.61 15994.82 20794.75 19280.11 22287.72 21677.73 22173.81 21983.81 21595.64 14896.08 13595.49 18493.21 176
tpmrst87.60 21084.13 21791.66 20595.65 20489.73 21593.77 21294.74 19388.85 18293.35 19195.60 14372.37 22287.40 20181.24 21978.19 21685.02 22082.90 217
IterMVS94.48 16193.46 16895.66 15897.52 16196.43 16297.20 14794.73 19492.91 14196.44 10098.75 6791.10 18494.53 13792.10 19490.10 19693.51 19292.84 181
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
IB-MVS92.44 1693.33 18092.15 18394.70 17897.42 16796.39 16795.57 19094.67 19586.40 20693.59 18578.28 22095.76 15889.59 18995.88 14595.98 13797.39 14296.34 124
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
PM-MVS96.85 10596.62 11097.11 10797.13 17696.51 16198.29 8794.65 19694.84 9198.12 3098.59 7297.20 13497.41 5796.24 13796.41 12497.09 15596.56 119
CHOSEN 280x42091.55 19190.27 19493.05 19594.61 21188.01 21896.56 16994.62 19788.04 19394.20 17392.66 18786.60 19390.82 17595.06 16191.89 18787.49 21589.61 194
TAPA-MVS93.96 1396.79 10996.70 10896.90 12197.64 15497.58 12297.54 12894.50 19895.14 7896.64 9296.76 11897.90 11496.63 8495.98 14396.14 13198.45 8897.39 86
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
MSDG96.27 12496.17 12096.38 14397.85 13996.27 17196.55 17094.41 19994.55 10295.62 14097.56 10097.80 11696.22 10097.17 10996.27 12897.67 13093.60 172
new-patchmatchnet94.48 16194.02 15995.02 17597.51 16495.00 18595.68 18994.26 20097.32 2095.73 13499.60 1398.22 10591.30 16994.13 17484.41 20495.65 18289.45 195
MS-PatchMatch94.84 15594.76 15094.94 17696.38 19194.69 18895.90 18594.03 20192.49 14293.81 18195.79 14196.38 14994.54 13694.70 16394.85 15894.97 18794.43 162
N_pmnet92.46 18392.38 18092.55 19897.91 13693.47 19297.42 13594.01 20296.40 3588.48 21498.50 7598.07 10988.14 19891.04 20284.30 20589.35 21084.85 209
pmnet_mix0293.59 17892.65 17794.69 17996.76 18794.16 19097.03 15493.00 20395.79 5496.03 12198.91 5297.69 12192.99 15990.03 20684.10 20692.35 20187.89 202
baseline94.07 17094.50 15593.57 19096.34 19293.40 19395.56 19392.39 20492.07 14994.00 17898.24 8597.51 12789.19 19091.75 19692.72 18393.96 19195.79 140
CLD-MVS96.73 11296.92 9696.51 13798.70 8297.57 12497.64 12292.07 20593.10 13796.31 10998.29 8299.02 4495.99 10997.20 10796.47 12298.37 9596.81 110
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
FPMVS94.70 16094.99 14794.37 18395.84 20193.20 19496.00 18491.93 20695.03 8294.64 16494.68 16093.29 17390.95 17498.07 7697.34 9696.85 16293.29 174
EU-MVSNet96.03 13096.23 11695.80 15595.48 20894.18 18998.99 3791.51 20797.22 2197.66 4599.15 4198.51 8998.08 3195.92 14492.88 18293.09 19595.72 144
TAMVS92.46 18393.34 16991.44 20697.03 17893.84 19194.68 20890.60 20890.44 16885.31 21997.14 11293.03 17585.78 20994.34 17093.67 17495.22 18590.93 187
MVEpermissive72.99 1885.37 21589.43 19680.63 21574.43 22371.94 22488.25 22189.81 20993.27 13067.32 22496.32 12991.83 18190.40 18093.36 18090.79 19373.55 22388.49 200
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
CVMVSNet94.01 17394.25 15793.73 18994.36 21292.44 19797.45 13388.56 21095.59 6193.06 19598.88 5590.03 19094.84 13294.08 17593.45 17894.09 18995.31 151
CMPMVSbinary71.81 1992.34 18592.85 17591.75 20492.70 21790.43 21188.84 22088.56 21085.87 20794.35 17090.98 20195.89 15791.14 17196.14 13994.83 15994.93 18895.78 141
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
E-PMN86.94 21285.10 21489.09 21495.77 20283.54 22289.89 21986.55 21292.18 14787.34 21794.02 17283.42 20089.63 18893.32 18277.11 21885.33 21872.09 219
PMMVS286.47 21492.62 17879.29 21692.01 21885.63 22093.74 21386.37 21393.95 12254.18 22698.19 8697.39 13058.46 21996.57 12793.07 18090.99 20483.55 216
EMVS86.63 21384.48 21589.15 21395.51 20783.66 22190.19 21886.14 21491.78 15188.68 21293.83 17681.97 20489.05 19192.76 18976.09 21985.31 21971.28 220
PMMVS91.67 19091.47 18891.91 20389.43 22288.61 21794.99 20485.67 21587.50 19693.80 18294.42 16994.88 16390.71 17792.26 19392.96 18196.83 16589.65 193
test-mter89.16 20588.14 19990.37 21094.79 21091.05 20893.60 21485.26 21681.65 21788.32 21592.22 19179.35 21087.03 20492.28 19190.12 19593.19 19490.29 191
TESTMET0.1,188.60 20887.47 20489.93 21194.23 21489.77 21393.25 21584.47 21781.56 21889.19 20992.08 19379.59 20885.77 21191.47 20089.04 20092.69 19888.75 197
new_pmnet90.85 19692.26 18289.21 21293.68 21689.05 21693.20 21784.16 21892.99 13984.25 22097.72 9594.60 16586.80 20693.20 18491.30 19093.21 19386.94 205
pmmvs391.20 19391.40 19090.96 20891.71 22091.08 20795.41 19981.34 21987.36 19794.57 16695.02 15194.30 16990.42 17994.28 17289.26 19892.30 20288.49 200
DeepMVS_CXcopyleft72.99 22380.14 22337.34 22083.46 21660.13 22584.40 21285.48 19486.93 20587.22 21079.61 22187.32 204
test_method61.30 21670.45 21950.62 21722.69 22530.92 22668.31 22525.76 22180.56 22168.71 22282.80 21891.08 18544.64 22080.50 22056.70 22073.64 22270.58 221
tmp_tt45.72 21860.00 22438.74 22545.50 22612.18 22279.58 22368.42 22367.62 22265.04 22722.12 22184.83 21678.72 21566.08 224
testmvs4.99 2186.88 2202.78 2211.73 2262.04 2283.10 2281.71 2237.27 2243.92 22912.18 2236.71 2303.31 2236.94 2225.51 2222.94 2257.51 222
test1234.41 2195.71 2212.88 2201.28 2272.21 2273.09 2291.65 2246.35 2254.98 2288.53 2243.88 2313.46 2225.79 2235.71 2212.85 2267.50 223
GG-mvs-BLEND61.03 21787.02 20730.71 2190.74 22890.01 21278.90 2240.74 22584.56 2129.46 22779.17 21990.69 1881.37 22491.74 19789.13 19993.04 19683.83 215
uanet_test0.00 2200.00 2220.00 2220.00 2290.00 2290.00 2300.00 2260.00 2260.00 2300.00 2250.00 2320.00 2250.00 2240.00 2230.00 2270.00 224
sosnet-low-res0.00 2200.00 2220.00 2220.00 2290.00 2290.00 2300.00 2260.00 2260.00 2300.00 2250.00 2320.00 2250.00 2240.00 2230.00 2270.00 224
sosnet0.00 2200.00 2220.00 2220.00 2290.00 2290.00 2300.00 2260.00 2260.00 2300.00 2250.00 2320.00 2250.00 2240.00 2230.00 2270.00 224
RE-MVS-def99.38 2
9.1496.98 141
our_test_397.32 16995.13 18497.59 126
ambc96.78 10599.01 5997.11 14695.73 18895.91 5099.25 398.56 7497.17 13597.04 7196.76 12295.22 15496.72 16996.73 113
MTAPA97.43 5699.27 24
MTMP97.63 4799.03 43
Patchmatch-RL test17.42 227
XVS99.48 1998.76 4599.22 2396.40 10498.78 6998.94 55
X-MVStestdata99.48 1998.76 4599.22 2396.40 10498.78 6998.94 55
mPP-MVS99.58 698.98 47
NP-MVS89.27 181