This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorcourty.delive.electrofacadekickermeadowofficepipesplaygr.reliefrelief.terraceterrai.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted by
LTVRE_ROB97.71 199.33 199.47 199.16 799.16 4199.11 1199.39 1299.16 1199.26 299.22 499.51 1899.75 398.54 1599.71 199.47 399.52 1299.46 1
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
UA-Net98.66 1698.60 2198.73 1599.83 199.28 998.56 6699.24 896.04 3997.12 6898.44 7298.95 4898.17 2699.15 2199.00 1899.48 1799.33 2
CSCG98.45 1898.61 1898.26 3599.11 4999.06 1498.17 8497.49 10097.93 1297.37 5698.88 4999.29 1698.10 2798.40 5597.51 8199.32 2499.16 3
anonymousdsp98.85 1298.88 1198.83 1198.69 7998.20 7099.68 197.35 11597.09 2198.98 999.86 199.43 898.94 399.28 1499.19 1399.33 2299.08 4
SixPastTwentyTwo99.25 299.20 399.32 199.53 1599.32 899.64 299.19 1098.05 1099.19 599.74 498.96 4799.03 299.69 299.58 199.32 2499.06 5
PS-CasMVS99.08 498.90 1099.28 399.65 399.56 499.59 699.39 396.36 3398.83 1399.46 2199.09 3198.62 1099.51 799.36 899.63 398.97 6
canonicalmvs97.11 8696.88 9097.38 8698.34 9298.72 4497.52 12097.94 7295.60 5395.01 14994.58 15294.50 16096.59 7997.84 7298.03 6898.90 5198.91 7
WR-MVS99.22 399.15 599.30 299.54 1199.62 199.63 499.45 197.75 1498.47 2199.71 599.05 3898.88 499.54 599.49 299.81 198.87 8
WR-MVS_H98.97 998.82 1399.14 899.56 999.56 499.54 1199.42 296.07 3898.37 2399.34 3099.09 3198.43 1899.45 1099.41 599.53 1098.86 9
PEN-MVS99.08 498.95 899.23 599.65 399.59 299.64 299.34 696.68 2698.65 1699.43 2399.33 1498.47 1799.50 899.32 999.60 598.79 10
CP-MVSNet98.91 1198.61 1899.25 499.63 599.50 699.55 1099.36 595.53 6098.77 1599.11 4098.64 7498.57 1399.42 1199.28 1199.61 498.78 11
Vis-MVSNetpermissive98.01 3998.42 2497.54 7896.89 17298.82 2999.14 2297.59 9096.30 3497.04 7199.26 3598.83 5996.01 9998.73 3498.21 5798.58 7298.75 12
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
DCV-MVSNet97.56 6197.63 5697.47 8398.41 9099.12 1098.63 6198.57 2295.71 5195.60 13493.79 16698.01 10694.25 13399.16 2098.88 2499.35 2098.74 13
TDRefinement99.00 899.13 698.86 1098.99 6199.05 1699.58 798.29 4298.96 497.96 3499.40 2698.67 7198.87 599.60 399.46 499.46 1898.74 13
SMA-MVS98.13 3498.22 2998.02 5499.44 2498.73 4298.24 8197.87 7895.22 6896.76 8398.66 6599.35 1397.03 6798.53 5098.39 4698.80 6198.69 15
ACMMP_NAP98.12 3598.08 3598.18 3699.34 2998.74 4198.97 3698.00 6995.13 7296.90 7697.54 9499.27 2097.18 6298.72 3698.45 4298.68 6598.69 15
SD-MVS97.84 5097.78 5097.90 5998.33 9398.06 8497.95 9697.80 8496.03 4196.72 8497.57 9299.18 2997.50 5197.88 6997.08 9499.11 3398.68 17
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
SteuartSystems-ACMMP98.06 3897.78 5098.39 3199.54 1198.79 3198.94 4098.42 3293.98 11395.85 11896.66 11499.25 2498.61 1198.71 3898.38 4798.97 4398.67 18
Skip Steuart: Steuart Systems R&D Blog.
DVP-MVS98.27 2498.61 1897.87 6199.17 4099.03 1799.07 2698.17 5496.75 2594.35 16098.92 4699.58 697.86 3998.67 4098.70 3198.63 6698.63 19
pmmvs698.77 1399.35 298.09 4098.32 9598.92 2098.57 6499.03 1299.36 196.86 8199.77 399.86 196.20 9499.56 499.39 799.59 698.61 20
TSAR-MVS + ACMM97.54 6397.79 4897.26 9198.23 10298.10 8297.71 10897.88 7795.97 4395.57 13698.71 6398.57 8097.36 5697.74 7696.81 10296.83 15698.59 21
MSP-MVS97.67 5597.88 4397.43 8599.34 2998.99 1998.87 4698.12 5795.63 5294.16 16697.45 9599.50 796.44 8796.35 12398.70 3197.65 12298.57 22
DTE-MVSNet99.03 698.88 1199.21 699.66 299.59 299.62 599.34 696.92 2298.52 1899.36 2998.98 4398.57 1399.49 999.23 1299.56 998.55 23
HFP-MVS98.17 2998.02 3798.35 3399.36 2898.62 4898.79 5198.46 3096.24 3696.53 9297.13 10698.98 4398.02 3198.20 6398.42 4498.95 4798.54 24
APDe-MVS98.29 2398.42 2498.14 3799.45 2298.90 2199.18 2198.30 4095.96 4495.13 14498.79 5699.25 2497.92 3698.80 3298.71 3098.85 5898.54 24
ACMMPR98.31 2298.07 3698.60 2199.58 698.83 2799.09 2498.48 2696.25 3597.03 7296.81 10999.09 3198.39 2098.55 4798.45 4299.01 3898.53 26
TSAR-MVS + MP.98.15 3198.23 2898.06 4998.47 8698.16 7699.23 1896.87 13095.58 5596.72 8498.41 7399.06 3598.05 3098.99 2598.90 2299.00 3998.51 27
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
zzz-MVS98.14 3297.78 5098.55 2399.58 698.58 5298.98 3598.48 2695.98 4297.39 5494.73 14899.27 2097.98 3598.81 3198.64 3698.90 5198.46 28
ACMMPcopyleft97.99 4397.60 5898.45 2999.53 1598.83 2799.13 2398.30 4094.57 9496.39 10395.32 13698.95 4898.37 2198.61 4498.47 3899.00 3998.45 29
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
MP-MVScopyleft97.98 4597.53 6198.50 2599.56 998.58 5298.97 3698.39 3493.49 12097.14 6596.08 12599.23 2698.06 2998.50 5298.38 4798.90 5198.44 30
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
PGM-MVS97.82 5297.25 7098.48 2799.54 1198.75 4099.02 2898.35 3892.41 13696.84 8295.39 13598.99 4298.24 2398.43 5498.34 5098.90 5198.41 31
v7n99.03 699.03 799.02 999.09 5399.11 1199.57 998.82 1898.21 999.25 299.84 299.59 598.76 699.23 1698.83 2798.63 6698.40 32
CP-MVS98.00 4197.57 5998.50 2599.47 2198.56 5598.91 4298.38 3594.71 8897.01 7395.20 13899.06 3598.20 2498.61 4498.46 3999.02 3698.40 32
DPE-MVS97.99 4398.12 3397.84 6498.65 8198.86 2498.86 4798.05 6594.18 10895.49 13798.90 4799.33 1497.11 6498.53 5098.65 3598.86 5798.39 34
X-MVS97.60 5997.00 8598.29 3499.50 1898.76 3698.90 4398.37 3694.67 9196.40 9991.47 18798.78 6597.60 5098.55 4798.50 3798.96 4598.29 35
UGNet96.79 10097.82 4695.58 15297.57 15098.39 6498.48 6997.84 8195.85 4794.68 15397.91 8599.07 3487.12 19497.71 7797.51 8197.80 11398.29 35
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
RPSCF97.83 5198.27 2697.31 9098.23 10298.06 8497.44 12595.79 16396.90 2395.81 12098.76 6098.61 7897.70 4598.90 3098.36 4998.90 5198.29 35
ACMM94.29 1198.12 3597.71 5498.59 2299.51 1798.58 5299.24 1798.25 4496.22 3796.90 7695.01 14298.89 5398.52 1698.66 4198.32 5399.13 3198.28 38
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
UniMVSNet_ETH3D98.93 1099.20 398.63 2099.54 1199.33 798.73 5899.37 498.87 597.86 3699.27 3499.78 296.59 7999.52 699.40 699.67 298.21 39
ACMH95.26 798.75 1498.93 998.54 2498.86 6699.01 1899.58 798.10 6098.67 697.30 5999.18 3899.42 998.40 1999.19 1898.86 2598.99 4198.19 40
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
test_part198.16 41
HPM-MVS++copyleft97.56 6197.11 8198.09 4099.18 3997.95 9498.57 6498.20 4894.08 11197.25 6295.96 12998.81 6297.13 6397.51 8897.30 9198.21 9598.15 42
LGP-MVS_train97.96 4897.53 6198.45 2999.45 2298.64 4799.09 2498.27 4392.99 13296.04 11496.57 11599.29 1698.66 898.73 3498.42 4499.19 2998.09 43
DeepC-MVS96.08 598.58 1798.49 2398.68 1799.37 2798.52 5899.01 3298.17 5497.17 2098.25 2699.56 1599.62 498.29 2298.40 5598.09 6498.97 4398.08 44
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
3Dnovator+96.20 497.58 6097.14 7798.10 3998.98 6297.85 9998.60 6398.33 3996.41 3197.23 6394.66 15197.26 12596.91 7097.91 6897.87 7498.53 7598.03 45
COLMAP_ROBcopyleft96.84 298.75 1498.82 1398.66 1999.14 4598.79 3199.30 1597.67 8798.33 897.82 3899.20 3799.18 2998.76 699.27 1598.96 1999.29 2698.03 45
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
thisisatest051597.82 5297.67 5597.99 5798.49 8598.07 8398.48 6998.06 6295.35 6697.74 4198.83 5497.61 11796.74 7397.53 8798.30 5498.43 8498.01 47
MSLP-MVS++96.66 10696.46 10596.89 11398.02 11797.71 10895.57 18196.96 12694.36 10496.19 10991.37 18898.24 9697.07 6597.69 7897.89 7397.52 12597.95 48
FC-MVSNet-train97.65 5798.16 3197.05 10298.85 6798.85 2599.34 1398.08 6194.50 9994.41 15899.21 3698.80 6392.66 15498.98 2698.85 2698.96 4597.94 49
ACMP94.03 1297.97 4797.61 5798.39 3199.43 2598.51 5998.97 3698.06 6294.63 9296.10 11296.12 12499.20 2898.63 998.68 3998.20 6099.14 3097.93 50
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
EPP-MVSNet97.29 7896.88 9097.76 7098.70 7699.10 1398.92 4198.36 3795.12 7393.36 18097.39 9791.00 17897.65 4798.72 3698.91 2199.58 797.92 51
CPTT-MVS97.08 8896.25 10698.05 5099.21 3698.30 6698.54 6797.98 7094.28 10595.89 11789.57 19698.54 8198.18 2597.82 7397.32 8998.54 7397.91 52
pm-mvs198.14 3298.66 1797.53 7997.93 12598.49 6098.14 8698.19 5097.95 1196.17 11099.63 1098.85 5695.41 11398.91 2998.89 2399.34 2197.86 53
ACMH+94.90 898.40 2198.71 1698.04 5198.93 6398.84 2699.30 1597.86 7997.78 1394.19 16598.77 5999.39 1198.61 1199.33 1399.07 1499.33 2297.81 54
TranMVSNet+NR-MVSNet98.45 1898.22 2998.72 1699.32 3299.06 1498.99 3398.89 1495.52 6197.53 4899.42 2598.83 5998.01 3298.55 4798.34 5099.57 897.80 55
xxxxxxxxxxxxxcwj97.26 8097.43 6397.05 10298.80 7297.83 10096.02 17297.44 10694.98 7795.74 12497.16 10398.45 8795.72 10497.85 7097.97 7098.60 6997.78 56
xxxxxxxxxxxx97.26 8097.43 6397.05 10298.80 7297.83 10096.02 17297.44 10694.98 7795.74 12497.16 10398.45 8795.72 10497.85 7097.97 7098.60 6997.78 56
UniMVSNet (Re)98.23 2597.85 4598.67 1899.15 4298.87 2398.74 5598.84 1794.27 10797.94 3599.01 4298.39 8997.82 4098.35 6098.29 5599.51 1597.78 56
Anonymous2023121197.49 7097.91 4197.00 10698.31 9898.72 4498.27 7897.84 8194.76 8794.77 15298.14 8198.38 9193.60 14398.96 2798.66 3499.22 2897.77 59
QAPM97.04 9097.14 7796.93 11097.78 14298.02 8897.36 13096.72 13794.68 9096.23 10597.21 10297.68 11495.70 10697.37 9297.24 9397.78 11597.77 59
3Dnovator96.31 397.22 8497.19 7397.25 9498.14 11197.95 9498.03 9296.77 13696.42 3097.14 6595.11 13997.59 11895.14 11997.79 7497.72 7998.26 9197.76 61
tttt051794.81 14893.04 16596.88 11498.15 11097.37 12496.99 14597.36 11389.51 16995.74 12494.89 14577.53 20494.89 12196.94 10997.35 8598.17 9897.70 62
APD-MVScopyleft97.47 7297.16 7597.84 6499.32 3298.39 6498.47 7198.21 4792.08 14095.23 14196.68 11398.90 5196.99 6898.20 6398.21 5798.80 6197.67 63
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
Gipumacopyleft98.43 2098.15 3298.76 1499.00 6098.29 6797.91 9998.06 6299.02 399.50 196.33 11998.67 7199.22 199.02 2498.02 6998.88 5697.66 64
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
UniMVSNet_NR-MVSNet98.12 3597.56 6098.78 1399.13 4798.89 2298.76 5298.78 1993.81 11798.50 1998.81 5597.64 11697.99 3398.18 6697.92 7299.53 1097.64 65
TransMVSNet (Re)98.23 2598.72 1597.66 7298.22 10498.73 4298.66 6098.03 6798.60 796.40 9999.60 1298.24 9695.26 11599.19 1899.05 1799.36 1997.64 65
DU-MVS98.23 2597.74 5398.81 1299.23 3498.77 3398.76 5298.88 1594.10 10998.50 1998.87 5198.32 9397.99 3398.40 5598.08 6799.49 1697.64 65
FMVSNet197.40 7698.09 3496.60 12397.80 13998.76 3698.26 7998.50 2596.79 2493.13 18299.28 3398.64 7492.90 15297.67 8097.86 7599.02 3697.64 65
EPNet94.33 15893.52 15995.27 15998.81 7194.71 17896.77 15298.20 4888.12 18196.53 9292.53 17791.19 17685.25 20495.22 14995.26 14496.09 17197.63 69
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
OPM-MVS98.01 3998.01 3898.00 5699.11 4998.12 7998.68 5997.72 8596.65 2796.68 8898.40 7499.28 1997.44 5398.20 6397.82 7898.40 8597.58 70
TSAR-MVS + GP.97.26 8097.33 6797.18 9698.21 10598.06 8496.38 16397.66 8893.92 11695.23 14198.48 7098.33 9297.41 5497.63 8597.35 8598.18 9797.57 71
thisisatest053094.81 14893.06 16496.85 11598.01 11897.18 13196.93 14897.36 11389.73 16795.80 12194.98 14377.88 20294.89 12196.73 11497.35 8598.13 10097.54 72
NR-MVSNet98.00 4197.88 4398.13 3898.33 9398.77 3398.83 4998.88 1594.10 10997.46 5298.87 5198.58 7995.78 10299.13 2298.16 6199.52 1297.53 73
MVS_030497.18 8596.84 9397.58 7599.15 4298.19 7198.11 8797.81 8392.36 13798.06 3197.43 9699.06 3594.24 13496.80 11296.54 11198.12 10197.52 74
MCST-MVS96.79 10096.08 11297.62 7398.78 7497.52 11998.01 9497.32 11693.20 12495.84 11993.97 16398.12 10097.34 5896.34 12495.88 13298.45 8097.51 75
PVSNet_Blended_VisFu97.44 7397.14 7797.79 6899.15 4298.44 6298.32 7697.66 8893.74 11997.73 4298.79 5696.93 13495.64 11297.69 7896.91 9998.25 9397.50 76
CNVR-MVS97.03 9196.77 9797.34 8798.89 6497.67 10997.64 11397.17 12094.40 10395.70 13094.02 16198.76 6896.49 8697.78 7597.29 9298.12 10197.47 77
HQP-MVS95.97 12495.01 13797.08 9998.72 7597.19 13097.07 14396.69 14091.49 14495.77 12392.19 18197.93 10796.15 9694.66 15594.16 15798.10 10397.45 78
DeepPCF-MVS94.55 1097.05 8997.13 8096.95 10896.06 18597.12 13698.01 9495.44 17095.18 7097.50 4997.86 8698.08 10297.31 6097.23 9697.00 9697.36 13597.45 78
Baseline_NR-MVSNet98.17 2997.90 4298.48 2799.23 3498.59 5098.83 4998.73 2193.97 11496.95 7599.66 798.23 9897.90 3798.40 5599.06 1699.25 2797.42 80
FC-MVSNet-test97.54 6398.26 2796.70 11998.87 6597.79 10798.49 6898.56 2396.04 3990.39 19499.65 898.67 7195.15 11799.23 1699.07 1498.73 6497.39 81
TAPA-MVS93.96 1396.79 10096.70 9996.90 11297.64 14597.58 11397.54 11994.50 18995.14 7196.64 8996.76 11197.90 10896.63 7695.98 13496.14 12298.45 8097.39 81
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
LS3D97.93 4997.80 4798.08 4499.20 3798.77 3398.89 4497.92 7496.59 2896.99 7496.71 11297.14 12996.39 8899.04 2398.96 1999.10 3597.39 81
NCCC96.56 10995.68 12197.59 7499.04 5897.54 11897.67 11097.56 9494.84 8496.10 11287.91 20098.09 10196.98 6997.20 9896.80 10398.21 9597.38 84
train_agg96.68 10495.93 11897.56 7699.08 5497.16 13298.44 7497.37 11291.12 15095.18 14395.43 13498.48 8597.36 5696.48 12095.52 13997.95 11097.34 85
Anonymous20240521197.39 6598.85 6798.59 5097.89 10297.93 7394.41 10297.37 9896.99 13293.09 14998.61 4498.46 3999.11 3397.27 86
DeepC-MVS_fast95.38 697.53 6597.30 6897.79 6898.83 7097.64 11098.18 8297.14 12195.57 5697.83 3797.10 10798.80 6396.53 8497.41 9197.32 8998.24 9497.26 87
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
MIMVSNet198.22 2898.51 2297.87 6199.40 2698.82 2999.31 1498.53 2497.39 1796.59 9099.31 3299.23 2694.76 12598.93 2898.67 3398.63 6697.25 88
MAR-MVS95.51 13294.49 14896.71 11897.92 12696.40 15696.72 15498.04 6686.74 19296.72 8492.52 17895.14 15594.02 13896.81 11196.54 11196.85 15397.25 88
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
PHI-MVS97.44 7397.17 7497.74 7198.14 11198.41 6398.03 9297.50 9892.07 14198.01 3397.33 10098.62 7796.02 9898.34 6298.21 5798.76 6397.24 90
tfpnnormal97.66 5697.79 4897.52 8198.32 9598.53 5798.45 7297.69 8697.59 1696.12 11197.79 8896.70 13595.69 10798.35 6098.34 5098.85 5897.22 91
IterMVS-LS96.35 11295.85 12096.93 11097.53 15198.00 9097.37 12897.97 7195.49 6396.71 8798.94 4593.23 16794.82 12493.15 17795.05 14697.17 14397.12 92
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
CDPH-MVS96.68 10495.99 11597.48 8299.13 4797.64 11098.08 8897.46 10290.56 15695.13 14494.87 14698.27 9596.56 8297.09 10296.45 11498.54 7397.08 93
CANet96.81 9896.50 10297.17 9799.10 5197.96 9397.86 10497.51 9691.30 14697.75 4097.64 9097.89 10993.39 14796.98 10896.73 10497.40 13296.99 94
EG-PatchMatch MVS97.98 4597.92 4098.04 5198.84 6998.04 8797.90 10096.83 13395.07 7498.79 1499.07 4199.37 1297.88 3898.74 3398.16 6198.01 10696.96 95
v1097.64 5897.26 6998.08 4498.07 11598.56 5598.86 4798.18 5294.48 10098.24 2799.56 1598.98 4397.72 4496.05 13396.26 12097.42 13196.93 96
GBi-Net95.21 13995.35 12595.04 16496.77 17598.18 7297.28 13397.58 9188.43 17890.28 19596.01 12692.43 17090.04 17597.67 8097.86 7598.28 8896.90 97
test195.21 13995.35 12595.04 16496.77 17598.18 7297.28 13397.58 9188.43 17890.28 19596.01 12692.43 17090.04 17597.67 8097.86 7598.28 8896.90 97
FMVSNet295.77 12896.20 11095.27 15996.77 17598.18 7297.28 13397.90 7593.12 12791.37 19198.25 7896.05 14790.04 17594.96 15395.94 12998.28 8896.90 97
OpenMVScopyleft94.63 995.75 12995.04 13696.58 12597.85 13097.55 11796.71 15596.07 15090.15 16396.47 9490.77 19495.95 14894.41 13197.01 10796.95 9798.00 10796.90 97
PMVScopyleft90.51 1797.77 5497.98 3997.53 7998.68 8098.14 7897.67 11097.03 12596.43 2998.38 2298.72 6297.03 13194.44 13099.37 1299.30 1098.98 4296.86 101
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
DELS-MVS96.90 9497.24 7196.50 12997.85 13098.18 7297.88 10395.92 15693.48 12195.34 13998.86 5398.94 5094.03 13797.33 9497.04 9598.00 10796.85 102
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
CLD-MVS96.73 10396.92 8996.51 12898.70 7697.57 11597.64 11392.07 19593.10 13096.31 10498.29 7699.02 4095.99 10097.20 9896.47 11398.37 8796.81 103
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
IS_MVSNet96.62 10896.48 10496.78 11798.46 8798.68 4698.61 6298.24 4592.23 13889.63 19895.90 13094.40 16196.23 9198.65 4298.77 2899.52 1296.76 104
ambc96.78 9699.01 5997.11 13795.73 17995.91 4599.25 298.56 6897.17 12797.04 6696.76 11395.22 14596.72 16096.73 105
Fast-Effi-MVS+96.80 9995.92 11997.84 6498.57 8397.46 12298.06 8998.24 4589.64 16897.57 4796.45 11797.35 12396.73 7497.22 9796.64 10897.86 11296.65 106
v897.51 6797.16 7597.91 5897.99 12198.48 6198.76 5298.17 5494.54 9897.69 4399.48 2098.76 6897.63 4996.10 13296.14 12297.20 14196.64 107
MVS_111021_LR96.86 9596.72 9897.03 10597.80 13997.06 13997.04 14495.51 16994.55 9597.47 5097.35 9997.68 11496.66 7597.11 10196.73 10497.69 11996.57 108
OMC-MVS97.23 8397.21 7297.25 9497.85 13097.52 11997.92 9895.77 16495.83 4897.09 7097.86 8698.52 8296.62 7797.51 8896.65 10798.26 9196.57 108
PM-MVS96.85 9696.62 10197.11 9897.13 16796.51 15298.29 7794.65 18794.84 8498.12 2998.59 6697.20 12697.41 5496.24 12896.41 11597.09 14696.56 110
MVS_111021_HR97.27 7997.11 8197.46 8498.46 8797.82 10497.50 12196.86 13194.97 7997.13 6796.99 10898.39 8996.82 7297.65 8397.38 8498.02 10596.56 110
Effi-MVS+-dtu95.94 12595.08 13496.94 10998.54 8497.38 12396.66 15797.89 7688.68 17395.92 11592.90 17497.28 12494.18 13696.68 11796.13 12498.45 8096.51 112
ETV-MVS96.54 11095.27 12898.02 5499.07 5697.48 12198.16 8598.19 5087.33 18897.58 4692.67 17595.93 14996.22 9298.49 5398.46 3998.91 5096.50 113
FMVSNet394.06 16293.85 15694.31 17695.46 19997.80 10696.34 16497.58 9188.43 17890.28 19596.01 12692.43 17088.67 18791.82 18693.96 16297.53 12496.50 113
CS-MVS96.24 11694.67 14398.08 4499.10 5198.62 4898.25 8098.12 5787.70 18397.76 3988.13 19996.08 14696.39 8897.64 8498.10 6398.84 6096.39 115
IB-MVS92.44 1693.33 17092.15 17494.70 16997.42 15896.39 15895.57 18194.67 18686.40 19693.59 17578.28 21095.76 15189.59 18095.88 13695.98 12897.39 13396.34 116
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
Effi-MVS+96.46 11195.28 12797.85 6398.64 8297.16 13297.15 14298.75 2090.27 16098.03 3293.93 16496.21 14396.55 8396.34 12496.69 10697.97 10996.33 117
MVS_Test95.34 13894.88 13995.89 14396.93 17196.84 14796.66 15797.08 12290.06 16494.02 16797.61 9196.64 13693.59 14492.73 18194.02 16197.03 14996.24 118
DPM-MVS94.86 14693.90 15595.99 14098.19 10796.52 15196.29 16895.95 15493.11 12894.61 15588.17 19796.44 14093.77 14293.33 17293.54 16897.11 14596.22 119
PCF-MVS92.69 1495.98 12395.05 13597.06 10198.43 8997.56 11697.76 10696.65 14289.95 16595.70 13096.18 12398.48 8595.74 10393.64 16993.35 17098.09 10496.18 120
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
v14419297.49 7096.99 8798.07 4798.11 11497.95 9499.02 2897.21 11994.90 8398.88 1299.53 1798.89 5397.75 4295.59 14195.90 13197.43 13096.16 121
v124097.43 7596.87 9298.09 4098.25 10197.92 9899.02 2897.06 12394.77 8699.09 799.68 698.51 8397.78 4195.25 14895.81 13397.32 13796.13 122
v192192097.50 6997.00 8598.07 4798.20 10697.94 9799.03 2797.06 12395.29 6799.01 899.62 1198.73 7097.74 4395.52 14395.78 13597.39 13396.12 123
PLCcopyleft92.55 1596.10 11995.36 12496.96 10798.13 11396.88 14396.49 16196.67 14194.07 11295.71 12991.14 18996.09 14596.84 7196.70 11596.58 11097.92 11196.03 124
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
V4297.10 8796.97 8897.26 9197.64 14597.60 11298.45 7295.99 15394.44 10197.35 5799.40 2698.63 7697.34 5896.33 12696.38 11796.82 15896.00 125
casdiffmvs97.00 9297.36 6696.59 12497.65 14497.98 9198.06 8996.81 13495.78 4992.77 18899.40 2699.26 2395.65 11196.70 11596.39 11698.59 7195.99 126
v119297.52 6697.03 8498.09 4098.31 9898.01 8998.96 3997.25 11895.22 6898.89 1199.64 998.83 5997.68 4695.63 14095.91 13097.47 12795.97 127
EIA-MVS96.23 11894.85 14097.84 6499.08 5498.21 6997.69 10998.03 6785.68 19898.09 3091.75 18597.07 13095.66 11097.58 8697.72 7998.47 7995.91 128
Vis-MVSNet (Re-imp)96.29 11496.50 10296.05 13897.96 12497.83 10097.30 13297.86 7993.14 12688.90 20196.80 11095.28 15395.15 11798.37 5998.25 5699.12 3295.84 129
PVSNet_BlendedMVS95.44 13595.09 13295.86 14497.31 16297.13 13496.31 16695.01 17888.55 17696.23 10594.55 15597.75 11192.56 15696.42 12195.44 14197.71 11695.81 130
PVSNet_Blended95.44 13595.09 13295.86 14497.31 16297.13 13496.31 16695.01 17888.55 17696.23 10594.55 15597.75 11192.56 15696.42 12195.44 14197.71 11695.81 130
baseline94.07 16194.50 14793.57 18096.34 18293.40 18395.56 18492.39 19492.07 14194.00 16898.24 7997.51 11989.19 18191.75 18792.72 17493.96 18295.79 132
CMPMVSbinary71.81 1992.34 17592.85 16791.75 19592.70 20890.43 20288.84 21188.56 20185.87 19794.35 16090.98 19095.89 15091.14 16196.14 13094.83 15094.93 17995.78 133
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
EPNet_dtu93.45 16992.51 17094.55 17298.39 9191.67 19795.46 18797.50 9886.56 19397.38 5593.52 16794.20 16485.82 19993.31 17492.53 17592.72 18895.76 134
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
CNLPA96.24 11695.97 11696.57 12697.48 15697.10 13896.75 15394.95 18194.92 8296.20 10894.81 14796.61 13796.25 9096.94 10995.64 13697.79 11495.74 135
EU-MVSNet96.03 12296.23 10795.80 14695.48 19894.18 18098.99 3391.51 19797.22 1997.66 4499.15 3998.51 8398.08 2895.92 13592.88 17393.09 18695.72 136
DI_MVS_plusplus_trai95.48 13394.51 14696.61 12297.13 16797.30 12598.05 9196.79 13593.75 11895.08 14796.38 11889.76 18194.95 12093.97 16894.82 15297.64 12395.63 137
AdaColmapbinary95.85 12794.65 14497.26 9198.70 7697.20 12997.33 13197.30 11791.28 14895.90 11688.16 19896.17 14496.60 7897.34 9396.82 10197.71 11695.60 138
v114497.51 6797.05 8398.04 5198.26 10097.98 9198.88 4597.42 10995.38 6598.56 1799.59 1499.01 4197.65 4795.77 13796.06 12797.47 12795.56 139
diffmvs95.86 12696.21 10995.44 15597.25 16596.85 14696.99 14595.23 17594.96 8092.82 18798.89 4898.85 5693.52 14594.21 16494.25 15696.84 15595.49 140
abl_696.45 13197.79 14197.28 12697.16 14196.16 14989.92 16695.72 12891.59 18697.16 12894.37 13297.51 12695.49 140
TSAR-MVS + COLMAP96.05 12195.94 11796.18 13797.46 15796.41 15597.26 13695.83 16094.69 8995.30 14098.31 7596.52 13894.71 12695.48 14594.87 14896.54 16295.33 142
CVMVSNet94.01 16494.25 14993.73 17994.36 20392.44 18797.45 12488.56 20195.59 5493.06 18598.88 4990.03 18094.84 12394.08 16693.45 16994.09 18095.31 143
MVSTER91.97 17790.31 18393.91 17796.81 17396.91 14294.22 20095.64 16684.98 19992.98 18693.42 16872.56 21186.64 19895.11 15093.89 16497.16 14495.31 143
CDS-MVSNet94.91 14595.17 13194.60 17197.85 13096.21 16396.90 15196.39 14590.81 15393.40 17897.24 10194.54 15985.78 20096.25 12796.15 12197.26 13895.01 145
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
CANet_DTU94.96 14494.62 14595.35 15698.03 11696.11 16496.92 14995.60 16788.59 17597.27 6195.27 13796.50 13988.77 18695.53 14295.59 13795.54 17494.78 146
pmmvs-eth3d96.84 9796.22 10897.56 7697.63 14796.38 15998.74 5596.91 12994.63 9298.26 2599.43 2398.28 9496.58 8194.52 15895.54 13897.24 13994.75 147
v2v48297.33 7796.84 9397.90 5998.19 10797.83 10098.74 5597.44 10695.42 6498.23 2899.46 2198.84 5897.46 5295.51 14496.10 12597.36 13594.72 148
ET-MVSNet_ETH3D93.18 17190.80 18295.95 14196.05 18696.07 16696.92 14996.51 14489.34 17095.63 13294.08 16072.31 21393.13 14894.33 16294.83 15097.44 12994.65 149
pmmvs595.70 13095.22 12996.26 13596.55 18097.24 12797.50 12194.99 18090.95 15296.87 7898.47 7197.40 12194.45 12992.86 17894.98 14797.23 14094.64 150
Fast-Effi-MVS+-dtu94.34 15693.26 16395.62 15197.82 13695.97 16795.86 17699.01 1386.88 19093.39 17990.83 19295.46 15290.61 16994.46 16094.68 15397.01 15094.51 151
CHOSEN 1792x268894.98 14394.69 14295.31 15797.27 16495.58 17197.90 10095.56 16895.03 7593.77 17395.65 13299.29 1695.30 11491.51 19091.28 18292.05 19394.50 152
thres600view794.34 15692.31 17296.70 11998.19 10798.12 7997.85 10597.45 10491.49 14493.98 16984.27 20382.02 19394.24 13497.04 10398.76 2998.49 7794.47 153
MS-PatchMatch94.84 14794.76 14194.94 16796.38 18194.69 17995.90 17594.03 19292.49 13593.81 17195.79 13196.38 14194.54 12794.70 15494.85 14994.97 17894.43 154
GA-MVS94.18 15992.98 16695.58 15297.36 15996.42 15496.21 16995.86 15790.29 15995.08 14796.19 12285.37 18592.82 15394.01 16794.14 15896.16 17094.41 155
tfpn200view993.80 16791.75 17796.20 13697.52 15298.15 7797.48 12397.47 10187.65 18493.56 17683.03 20784.12 18792.62 15597.04 10398.09 6498.52 7694.17 156
thres40094.04 16391.94 17596.50 12997.98 12397.82 10497.66 11296.96 12690.96 15194.20 16383.24 20582.82 19193.80 14096.50 11998.09 6498.38 8694.15 157
baseline193.89 16692.82 16895.14 16397.62 14896.97 14096.12 17096.36 14691.30 14691.53 19094.68 14980.72 19590.80 16795.71 13896.29 11898.44 8394.09 158
test20.0396.08 12096.80 9595.25 16199.19 3897.58 11397.24 13797.56 9494.95 8191.91 18998.58 6798.03 10487.88 19097.43 9096.94 9897.69 11994.05 159
v14896.99 9396.70 9997.34 8797.89 12897.23 12898.33 7596.96 12695.57 5697.12 6898.99 4399.40 1097.23 6196.22 12995.45 14096.50 16394.02 160
testgi94.81 14896.05 11493.35 18299.06 5796.87 14597.57 11896.70 13995.77 5088.60 20393.19 17298.87 5581.21 20897.03 10696.64 10896.97 15293.99 161
IterMVS-SCA-FT95.16 14193.95 15396.56 12797.89 12896.69 14996.94 14796.05 15293.06 13197.35 5798.79 5691.45 17595.93 10192.78 17991.00 18395.22 17693.91 162
thres20093.98 16591.90 17696.40 13397.66 14398.12 7997.20 13897.45 10490.16 16293.82 17083.08 20683.74 18993.80 14097.04 10397.48 8398.49 7793.70 163
MSDG96.27 11596.17 11196.38 13497.85 13096.27 16296.55 16094.41 19094.55 9595.62 13397.56 9397.80 11096.22 9297.17 10096.27 11997.67 12193.60 164
pmmvs495.37 13794.25 14996.67 12197.01 17095.28 17497.60 11696.07 15093.11 12897.29 6098.09 8394.23 16395.21 11691.56 18993.91 16396.82 15893.59 165
FPMVS94.70 15294.99 13894.37 17395.84 19193.20 18496.00 17491.93 19695.03 7594.64 15494.68 14993.29 16690.95 16498.07 6797.34 8896.85 15393.29 166
TinyColmap96.64 10796.07 11397.32 8997.84 13596.40 15697.63 11596.25 14795.86 4698.98 997.94 8496.34 14296.17 9597.30 9595.38 14397.04 14893.24 167
thres100view90092.93 17290.89 18195.31 15797.52 15296.82 14896.41 16295.08 17687.65 18493.56 17683.03 20784.12 18791.12 16294.53 15696.91 9998.17 9893.21 168
FMVSNet589.65 19387.60 19392.04 19395.63 19596.61 15094.82 19894.75 18380.11 21287.72 20677.73 21173.81 20983.81 20695.64 13996.08 12695.49 17593.21 168
Anonymous2023120695.69 13195.68 12195.70 14898.32 9596.95 14197.37 12896.65 14293.33 12293.61 17498.70 6498.03 10491.04 16395.07 15194.59 15597.20 14193.09 170
USDC96.30 11395.64 12397.07 10097.62 14896.35 16197.17 14095.71 16595.52 6199.17 698.11 8297.46 12095.67 10895.44 14693.60 16697.09 14692.99 171
baseline292.06 17689.82 18594.68 17097.32 16095.72 16994.97 19695.08 17684.75 20194.34 16290.68 19577.75 20390.13 17493.38 17093.58 16796.25 16992.90 172
IterMVS94.48 15393.46 16095.66 14997.52 15296.43 15397.20 13894.73 18592.91 13496.44 9598.75 6191.10 17794.53 12892.10 18590.10 18793.51 18392.84 173
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
PatchMatch-RL94.79 15193.75 15796.00 13996.80 17495.00 17695.47 18695.25 17490.68 15595.80 12192.97 17393.64 16595.67 10896.13 13195.81 13396.99 15192.01 174
MDA-MVSNet-bldmvs95.45 13495.20 13095.74 14794.24 20496.38 15997.93 9794.80 18295.56 5996.87 7898.29 7695.24 15496.50 8598.65 4290.38 18594.09 18091.93 175
HyFIR lowres test95.05 14293.54 15896.81 11697.81 13896.88 14398.18 8297.46 10294.28 10594.98 15096.57 11592.89 16996.15 9690.90 19491.87 17996.28 16891.35 176
MIMVSNet93.68 16893.96 15293.35 18297.82 13696.08 16596.34 16498.46 3091.28 14886.67 20894.95 14494.87 15784.39 20594.53 15694.65 15496.45 16591.34 177
test0.0.03 191.17 18491.50 17890.80 20098.01 11895.46 17294.22 20095.80 16186.55 19481.75 21190.83 19287.93 18278.48 20994.51 15994.11 16096.50 16391.08 178
TAMVS92.46 17393.34 16191.44 19797.03 16993.84 18194.68 19990.60 19990.44 15885.31 20997.14 10593.03 16885.78 20094.34 16193.67 16595.22 17690.93 179
gg-mvs-nofinetune94.13 16093.93 15494.37 17397.99 12195.86 16895.45 18999.22 997.61 1595.10 14699.50 1984.50 18681.73 20795.31 14794.12 15996.71 16190.59 180
CR-MVSNet91.94 17888.50 18895.94 14296.14 18492.08 19195.23 19298.47 2884.30 20496.44 9594.58 15275.57 20592.92 15090.22 19592.22 17696.43 16690.56 181
PatchT91.40 18288.54 18794.74 16891.48 21292.18 19097.42 12697.51 9684.96 20096.44 9594.16 15975.47 20692.92 15090.22 19592.22 17692.66 19190.56 181
test-mter89.16 19588.14 18990.37 20194.79 20191.05 19993.60 20585.26 20781.65 20888.32 20592.22 18079.35 20087.03 19592.28 18290.12 18693.19 18590.29 183
RPMNet90.52 18786.27 20195.48 15495.95 18992.08 19195.55 18598.12 5784.30 20495.60 13487.49 20172.78 21091.24 16087.93 19889.34 18896.41 16789.98 184
PMMVS91.67 18091.47 17991.91 19489.43 21388.61 20894.99 19585.67 20687.50 18693.80 17294.42 15894.88 15690.71 16892.26 18492.96 17296.83 15689.65 185
CHOSEN 280x42091.55 18190.27 18493.05 18594.61 20288.01 20996.56 15994.62 18888.04 18294.20 16392.66 17686.60 18390.82 16595.06 15291.89 17887.49 20689.61 186
new-patchmatchnet94.48 15394.02 15195.02 16697.51 15595.00 17695.68 18094.26 19197.32 1895.73 12799.60 1298.22 9991.30 15994.13 16584.41 19595.65 17389.45 187
tpm89.84 19186.81 19893.36 18196.60 17891.92 19595.02 19497.39 11086.79 19196.54 9195.03 14069.70 21487.66 19188.79 19786.19 19486.95 20889.27 188
test-LLR89.77 19287.47 19492.45 19098.01 11889.77 20493.25 20695.80 16181.56 20989.19 19992.08 18279.59 19885.77 20291.47 19189.04 19192.69 18988.75 189
TESTMET0.1,188.60 19887.47 19489.93 20294.23 20589.77 20493.25 20684.47 20881.56 20989.19 19992.08 18279.59 19885.77 20291.47 19189.04 19192.69 18988.75 189
CostFormer89.06 19685.65 20393.03 18795.88 19092.40 18895.30 19195.86 15786.49 19593.12 18493.40 17074.18 20888.25 18882.99 20881.46 20489.77 19988.66 191
pmmvs391.20 18391.40 18090.96 19991.71 21191.08 19895.41 19081.34 21087.36 18794.57 15695.02 14194.30 16290.42 17094.28 16389.26 18992.30 19288.49 192
MVEpermissive72.99 1885.37 20689.43 18680.63 20674.43 21471.94 21588.25 21289.81 20093.27 12367.32 21396.32 12091.83 17490.40 17193.36 17190.79 18473.55 21388.49 192
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
MDTV_nov1_ep13_2view94.39 15593.34 16195.63 15097.23 16695.33 17397.76 10696.84 13294.55 9597.47 5098.96 4497.70 11393.88 13992.27 18386.81 19390.56 19587.73 194
DWT-MVSNet_training86.69 20381.24 20993.05 18595.31 20092.06 19395.75 17891.51 19784.32 20394.49 15783.46 20455.37 21890.81 16682.76 20983.19 20290.45 19787.52 195
DeepMVS_CXcopyleft72.99 21480.14 21437.34 21183.46 20760.13 21484.40 20285.48 18486.93 19687.22 20079.61 21287.32 196
new_pmnet90.85 18692.26 17389.21 20393.68 20789.05 20793.20 20884.16 20992.99 13284.25 21097.72 8994.60 15886.80 19793.20 17591.30 18193.21 18486.94 197
gm-plane-assit91.85 17987.91 19096.44 13299.14 4598.25 6899.02 2897.38 11195.57 5698.31 2499.34 3051.00 21988.93 18493.16 17691.57 18095.85 17286.50 198
dps88.36 19984.32 20693.07 18493.86 20692.29 18994.89 19795.93 15583.50 20693.13 18291.87 18467.79 21690.32 17285.99 20483.22 20190.28 19885.56 199
SCA91.15 18587.65 19295.23 16296.15 18395.68 17096.68 15698.18 5290.46 15797.21 6492.44 17980.17 19793.51 14686.04 20383.58 19989.68 20085.21 200
N_pmnet92.46 17392.38 17192.55 18997.91 12793.47 18297.42 12694.01 19396.40 3288.48 20498.50 6998.07 10388.14 18991.04 19384.30 19689.35 20184.85 201
MDTV_nov1_ep1390.30 18887.32 19693.78 17896.00 18892.97 18595.46 18795.39 17188.61 17495.41 13894.45 15780.39 19689.87 17886.58 20183.54 20090.56 19584.71 202
ADS-MVSNet89.89 19087.70 19192.43 19195.52 19690.91 20095.57 18195.33 17293.19 12591.21 19293.41 16982.12 19289.05 18286.21 20283.77 19887.92 20484.31 203
tpm cat187.19 20182.78 20892.33 19295.66 19390.61 20194.19 20295.27 17386.97 18994.38 15990.91 19169.40 21587.21 19379.57 21177.82 20887.25 20784.18 204
EPMVS89.28 19486.28 20092.79 18896.01 18792.00 19495.83 17795.85 15990.78 15491.00 19394.58 15274.65 20788.93 18485.00 20582.88 20389.09 20284.09 205
PatchmatchNetpermissive89.98 18986.23 20294.36 17596.56 17991.90 19696.07 17196.72 13790.18 16196.87 7893.36 17178.06 20191.46 15884.71 20781.40 20588.45 20383.97 206
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
GG-mvs-BLEND61.03 20787.02 19730.71 2090.74 21890.01 20378.90 2150.74 21584.56 2029.46 21679.17 20990.69 1791.37 21491.74 18889.13 19093.04 18783.83 207
PMMVS286.47 20592.62 16979.29 20792.01 20985.63 21193.74 20486.37 20493.95 11554.18 21598.19 8097.39 12258.46 21096.57 11893.07 17190.99 19483.55 208
tpmrst87.60 20084.13 20791.66 19695.65 19489.73 20693.77 20394.74 18488.85 17293.35 18195.60 13372.37 21287.40 19281.24 21078.19 20785.02 21182.90 209
MVS-HIRNet88.72 19786.49 19991.33 19891.81 21085.66 21087.02 21396.25 14781.48 21194.82 15196.31 12192.14 17390.32 17287.60 19983.82 19787.74 20578.42 210
E-PMN86.94 20285.10 20489.09 20595.77 19283.54 21389.89 21086.55 20392.18 13987.34 20794.02 16183.42 19089.63 17993.32 17377.11 20985.33 20972.09 211
EMVS86.63 20484.48 20589.15 20495.51 19783.66 21290.19 20986.14 20591.78 14388.68 20293.83 16581.97 19489.05 18292.76 18076.09 21085.31 21071.28 212
testmvs4.99 2086.88 2102.78 2111.73 2162.04 2183.10 2181.71 2137.27 2143.92 21812.18 2136.71 2203.31 2136.94 2125.51 2122.94 2157.51 213
test1234.41 2095.71 2112.88 2101.28 2172.21 2173.09 2191.65 2146.35 2154.98 2178.53 2143.88 2213.46 2125.79 2135.71 2112.85 2167.50 214
uanet_test0.00 2100.00 2120.00 2120.00 2190.00 2190.00 2200.00 2160.00 2160.00 2190.00 2150.00 2220.00 2150.00 2140.00 2130.00 2170.00 215
sosnet-low-res0.00 2100.00 2120.00 2120.00 2190.00 2190.00 2200.00 2160.00 2160.00 2190.00 2150.00 2220.00 2150.00 2140.00 2130.00 2170.00 215
sosnet0.00 2100.00 2120.00 2120.00 2190.00 2190.00 2200.00 2160.00 2160.00 2190.00 2150.00 2220.00 2150.00 2140.00 2130.00 2170.00 215
9.1496.98 133
SR-MVS99.33 3198.40 3398.90 51
our_test_397.32 16095.13 17597.59 117
MTAPA97.43 5399.27 20
MTMP97.63 4599.03 39
Patchmatch-RL test17.42 217
tmp_tt45.72 20860.00 21538.74 21645.50 21612.18 21279.58 21368.42 21267.62 21265.04 21722.12 21184.83 20678.72 20666.08 214
XVS99.48 1998.76 3699.22 1996.40 9998.78 6598.94 48
X-MVStestdata99.48 1998.76 3699.22 1996.40 9998.78 6598.94 48
mPP-MVS99.58 698.98 43
NP-MVS89.27 171
Patchmtry92.70 18695.23 19298.47 2896.44 95