This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorcourty.delive.electrofacadekickermeadowofficepipesplaygr.reliefrelief.terraceterrai.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted by
LTVRE_ROB97.71 199.33 199.47 299.16 799.16 4299.11 1499.39 1399.16 1199.26 399.22 599.51 1999.75 498.54 1599.71 299.47 499.52 1399.46 1
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
test_part199.20 499.62 198.72 1698.92 6699.62 199.52 1299.01 1499.39 197.87 3799.74 499.75 497.29 6499.73 199.71 199.69 299.41 2
DVP-MVS++98.44 2198.92 1197.88 6599.17 4099.00 2398.89 4898.26 5197.54 1896.05 11999.35 3199.76 396.34 9798.79 3998.65 4298.56 7999.35 3
UA-Net98.66 1798.60 2398.73 1599.83 199.28 1098.56 7499.24 896.04 4297.12 7198.44 7898.95 5298.17 2999.15 2599.00 2399.48 1899.33 4
CSCG98.45 1998.61 2098.26 3999.11 5099.06 1898.17 9397.49 10997.93 1397.37 5998.88 5599.29 2098.10 3098.40 6497.51 8999.32 2799.16 5
anonymousdsp98.85 1398.88 1398.83 1198.69 8598.20 7999.68 197.35 12497.09 2398.98 1099.86 199.43 1198.94 399.28 1599.19 1499.33 2599.08 6
SixPastTwentyTwo99.25 299.20 499.32 199.53 1599.32 999.64 299.19 1098.05 1199.19 699.74 498.96 5199.03 299.69 399.58 299.32 2799.06 7
PS-CasMVS99.08 598.90 1299.28 399.65 399.56 599.59 699.39 396.36 3698.83 1499.46 2299.09 3598.62 1099.51 899.36 999.63 498.97 8
canonicalmvs97.11 9596.88 9797.38 9598.34 10198.72 5397.52 12997.94 8195.60 6095.01 15694.58 16394.50 16796.59 8797.84 8198.03 7698.90 5898.91 9
WR-MVS99.22 399.15 699.30 299.54 1199.62 199.63 499.45 197.75 1598.47 2299.71 699.05 4298.88 499.54 699.49 399.81 198.87 10
WR-MVS_H98.97 1098.82 1599.14 899.56 999.56 599.54 1199.42 296.07 4198.37 2499.34 3299.09 3598.43 1899.45 1199.41 699.53 1198.86 11
PEN-MVS99.08 598.95 999.23 599.65 399.59 399.64 299.34 696.68 2898.65 1799.43 2499.33 1798.47 1799.50 999.32 1099.60 698.79 12
CP-MVSNet98.91 1298.61 2099.25 499.63 599.50 799.55 1099.36 595.53 6798.77 1699.11 4398.64 7998.57 1399.42 1299.28 1299.61 598.78 13
Vis-MVSNetpermissive98.01 4298.42 2797.54 8796.89 18198.82 3899.14 2697.59 9996.30 3797.04 7499.26 3798.83 6396.01 10898.73 4298.21 6698.58 7898.75 14
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
DCV-MVSNet97.56 6797.63 5997.47 9298.41 9999.12 1398.63 6998.57 2695.71 5895.60 14193.79 17798.01 11294.25 14299.16 2498.88 3099.35 2398.74 15
TDRefinement99.00 999.13 798.86 1098.99 6399.05 2099.58 798.29 4998.96 597.96 3599.40 2798.67 7698.87 599.60 499.46 599.46 1998.74 15
SMA-MVScopyleft98.13 3698.22 3298.02 5899.44 2498.73 5198.24 9097.87 8795.22 7596.76 8698.66 7199.35 1697.03 7298.53 5998.39 5598.80 6798.69 17
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
ACMMP_NAP98.12 3798.08 3898.18 4199.34 2998.74 5098.97 4098.00 7895.13 7996.90 7997.54 10199.27 2497.18 6698.72 4498.45 5198.68 7198.69 17
SD-MVS97.84 5597.78 5397.90 6398.33 10298.06 9397.95 10597.80 9396.03 4696.72 8797.57 9999.18 3397.50 5497.88 7897.08 10299.11 4098.68 19
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
SteuartSystems-ACMMP98.06 4097.78 5398.39 3599.54 1198.79 4098.94 4498.42 3693.98 12095.85 12596.66 12299.25 2898.61 1198.71 4698.38 5698.97 5098.67 20
Skip Steuart: Steuart Systems R&D Blog.
SED-MVS98.05 4198.46 2697.57 8499.01 5998.99 2498.82 5798.24 5395.76 5794.70 16298.96 4799.49 1096.19 10398.74 4098.65 4298.46 8798.63 21
DVP-MVScopyleft98.27 2698.61 2097.87 6699.17 4099.03 2199.07 3098.17 6496.75 2794.35 17098.92 5199.58 897.86 4298.67 4898.70 3898.63 7298.63 21
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
pmmvs698.77 1499.35 398.09 4598.32 10498.92 2698.57 7299.03 1399.36 296.86 8499.77 399.86 196.20 10299.56 599.39 899.59 798.61 23
TSAR-MVS + ACMM97.54 6997.79 5197.26 10098.23 11198.10 9197.71 11797.88 8695.97 4895.57 14398.71 6998.57 8597.36 5997.74 8596.81 11196.83 16598.59 24
MSP-MVS97.67 6097.88 4697.43 9499.34 2998.99 2498.87 5198.12 6795.63 5994.16 17697.45 10299.50 996.44 9596.35 13298.70 3897.65 13198.57 25
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
DTE-MVSNet99.03 798.88 1399.21 699.66 299.59 399.62 599.34 696.92 2498.52 1999.36 3098.98 4798.57 1399.49 1099.23 1399.56 1098.55 26
HFP-MVS98.17 3198.02 4098.35 3799.36 2898.62 5798.79 5898.46 3496.24 3996.53 9797.13 11398.98 4798.02 3498.20 7298.42 5398.95 5498.54 27
APDe-MVS98.29 2598.42 2798.14 4299.45 2298.90 2799.18 2598.30 4795.96 4995.13 15198.79 6299.25 2897.92 3998.80 3898.71 3798.85 6598.54 27
ACMMPR98.31 2498.07 3998.60 2399.58 698.83 3499.09 2898.48 3096.25 3897.03 7596.81 11699.09 3598.39 2098.55 5698.45 5199.01 4598.53 29
TSAR-MVS + MP.98.15 3398.23 3198.06 5398.47 9598.16 8599.23 2296.87 13995.58 6296.72 8798.41 7999.06 3998.05 3398.99 3098.90 2899.00 4698.51 30
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
zzz-MVS98.14 3497.78 5398.55 2599.58 698.58 6098.98 3998.48 3095.98 4797.39 5794.73 15999.27 2497.98 3898.81 3798.64 4598.90 5898.46 31
ACMMPcopyleft97.99 4697.60 6198.45 3299.53 1598.83 3499.13 2798.30 4794.57 10196.39 10895.32 14698.95 5298.37 2198.61 5398.47 4799.00 4698.45 32
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
MP-MVScopyleft97.98 4897.53 6598.50 2799.56 998.58 6098.97 4098.39 4193.49 12797.14 6896.08 13599.23 3098.06 3298.50 6198.38 5698.90 5898.44 33
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
PGM-MVS97.82 5797.25 7598.48 3099.54 1198.75 4999.02 3298.35 4592.41 14396.84 8595.39 14598.99 4698.24 2398.43 6398.34 5998.90 5898.41 34
v7n99.03 799.03 899.02 999.09 5399.11 1499.57 998.82 2198.21 1099.25 399.84 299.59 798.76 699.23 2098.83 3398.63 7298.40 35
CP-MVS98.00 4497.57 6298.50 2799.47 2198.56 6398.91 4698.38 4294.71 9597.01 7695.20 14899.06 3998.20 2498.61 5398.46 4899.02 4398.40 35
DPE-MVScopyleft97.99 4698.12 3697.84 6998.65 9098.86 3098.86 5298.05 7494.18 11595.49 14498.90 5399.33 1797.11 6898.53 5998.65 4298.86 6498.39 37
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
X-MVS97.60 6597.00 9298.29 3899.50 1898.76 4598.90 4798.37 4394.67 9896.40 10491.47 19898.78 6997.60 5398.55 5698.50 4698.96 5298.29 38
UGNet96.79 10997.82 4995.58 16197.57 15998.39 7298.48 7997.84 9095.85 5294.68 16397.91 9199.07 3887.12 20397.71 8697.51 8997.80 12298.29 38
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
RPSCF97.83 5698.27 2997.31 9998.23 11198.06 9397.44 13495.79 17296.90 2595.81 12798.76 6698.61 8397.70 4898.90 3598.36 5898.90 5898.29 38
ACMM94.29 1198.12 3797.71 5798.59 2499.51 1798.58 6099.24 2198.25 5296.22 4096.90 7995.01 15298.89 5798.52 1698.66 4998.32 6299.13 3898.28 41
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
DROMVSNet97.63 6496.88 9798.50 2798.74 7999.16 1299.33 1698.83 2088.77 18396.62 9396.48 12597.75 11798.19 2699.00 2998.76 3599.29 2998.27 42
UniMVSNet_ETH3D98.93 1199.20 498.63 2299.54 1199.33 898.73 6599.37 498.87 697.86 3899.27 3699.78 296.59 8799.52 799.40 799.67 398.21 43
ACMH95.26 798.75 1598.93 1098.54 2698.86 6999.01 2299.58 798.10 6998.67 797.30 6299.18 4099.42 1298.40 1999.19 2298.86 3198.99 4898.19 44
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
HPM-MVS++copyleft97.56 6797.11 8798.09 4599.18 3997.95 10398.57 7298.20 5894.08 11897.25 6595.96 13998.81 6697.13 6797.51 9797.30 9998.21 10398.15 45
LGP-MVS_train97.96 5197.53 6598.45 3299.45 2298.64 5699.09 2898.27 5092.99 13996.04 12096.57 12399.29 2098.66 898.73 4298.42 5399.19 3398.09 46
DeepC-MVS96.08 598.58 1898.49 2598.68 1999.37 2798.52 6699.01 3698.17 6497.17 2298.25 2799.56 1699.62 698.29 2298.40 6498.09 7298.97 5098.08 47
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
3Dnovator+96.20 497.58 6697.14 8398.10 4498.98 6497.85 10898.60 7198.33 4696.41 3497.23 6694.66 16297.26 13396.91 7697.91 7797.87 8298.53 8298.03 48
COLMAP_ROBcopyleft96.84 298.75 1598.82 1598.66 2199.14 4698.79 4099.30 1997.67 9698.33 997.82 4099.20 3999.18 3398.76 699.27 1898.96 2499.29 2998.03 48
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
thisisatest051597.82 5797.67 5897.99 6198.49 9498.07 9298.48 7998.06 7195.35 7397.74 4298.83 6097.61 12596.74 7997.53 9698.30 6398.43 9298.01 50
CS-MVS97.89 5497.44 6798.42 3498.71 8199.22 1199.34 1498.21 5691.60 15296.62 9396.73 11998.69 7598.20 2498.65 5099.18 1599.44 2097.99 51
MSLP-MVS++96.66 11596.46 11496.89 12298.02 12697.71 11795.57 19096.96 13594.36 11196.19 11491.37 19998.24 10197.07 7097.69 8797.89 8197.52 13497.95 52
FC-MVSNet-train97.65 6298.16 3497.05 11198.85 7098.85 3199.34 1498.08 7094.50 10694.41 16899.21 3898.80 6792.66 16498.98 3198.85 3298.96 5297.94 53
ACMP94.03 1297.97 5097.61 6098.39 3599.43 2598.51 6798.97 4098.06 7194.63 9996.10 11796.12 13499.20 3298.63 998.68 4798.20 6999.14 3597.93 54
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
EPP-MVSNet97.29 8896.88 9797.76 7698.70 8299.10 1698.92 4598.36 4495.12 8093.36 19097.39 10491.00 18797.65 5098.72 4498.91 2799.58 897.92 55
CPTT-MVS97.08 9796.25 11598.05 5499.21 3698.30 7598.54 7597.98 7994.28 11295.89 12489.57 20798.54 8698.18 2897.82 8297.32 9798.54 8097.91 56
CS-MVS-test97.94 5297.27 7398.71 1898.66 8799.07 1799.33 1699.05 1291.33 15597.64 4696.30 13198.52 8798.19 2698.83 3698.96 2499.40 2197.90 57
pm-mvs198.14 3498.66 1997.53 8897.93 13498.49 6898.14 9598.19 6097.95 1296.17 11599.63 1198.85 6095.41 12298.91 3498.89 2999.34 2497.86 58
ACMH+94.90 898.40 2398.71 1898.04 5598.93 6598.84 3399.30 1997.86 8897.78 1494.19 17598.77 6599.39 1498.61 1199.33 1499.07 1699.33 2597.81 59
TranMVSNet+NR-MVSNet98.45 1998.22 3298.72 1699.32 3299.06 1898.99 3798.89 1695.52 6897.53 5099.42 2698.83 6398.01 3598.55 5698.34 5999.57 997.80 60
xxxxxxxxxxxxxcwj97.32 8797.55 6497.05 11198.80 7597.83 10996.02 18297.44 11594.98 8495.74 13197.16 11099.30 1995.72 11397.85 7997.97 7898.60 7597.78 61
SF-MVS97.26 9097.43 6897.05 11198.80 7597.83 10996.02 18297.44 11594.98 8495.74 13197.16 11098.45 9395.72 11397.85 7997.97 7898.60 7597.78 61
UniMVSNet (Re)98.23 2797.85 4898.67 2099.15 4398.87 2998.74 6298.84 1994.27 11497.94 3699.01 4598.39 9497.82 4398.35 6998.29 6499.51 1697.78 61
Anonymous2023121197.49 7697.91 4497.00 11598.31 10798.72 5398.27 8897.84 9094.76 9494.77 16198.14 8798.38 9693.60 15298.96 3298.66 4199.22 3297.77 64
QAPM97.04 9997.14 8396.93 11997.78 15198.02 9797.36 13996.72 14694.68 9796.23 11097.21 10997.68 12295.70 11597.37 10197.24 10197.78 12497.77 64
3Dnovator96.31 397.22 9397.19 7997.25 10398.14 12097.95 10398.03 10196.77 14596.42 3397.14 6895.11 14997.59 12695.14 12897.79 8397.72 8798.26 9997.76 66
tttt051794.81 15693.04 17396.88 12398.15 11997.37 13396.99 15597.36 12289.51 17995.74 13194.89 15577.53 21494.89 13096.94 11897.35 9398.17 10697.70 67
APD-MVScopyleft97.47 8097.16 8197.84 6999.32 3298.39 7298.47 8198.21 5692.08 14895.23 14896.68 12198.90 5596.99 7498.20 7298.21 6698.80 6797.67 68
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
Gipumacopyleft98.43 2298.15 3598.76 1499.00 6298.29 7697.91 10898.06 7199.02 499.50 196.33 12898.67 7699.22 199.02 2898.02 7798.88 6397.66 69
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
UniMVSNet_NR-MVSNet98.12 3797.56 6398.78 1399.13 4898.89 2898.76 5998.78 2293.81 12498.50 2098.81 6197.64 12497.99 3698.18 7597.92 8099.53 1197.64 70
TransMVSNet (Re)98.23 2798.72 1797.66 7998.22 11398.73 5198.66 6898.03 7698.60 896.40 10499.60 1398.24 10195.26 12499.19 2299.05 1999.36 2297.64 70
DU-MVS98.23 2797.74 5698.81 1299.23 3498.77 4298.76 5998.88 1794.10 11698.50 2098.87 5798.32 9897.99 3698.40 6498.08 7599.49 1797.64 70
FMVSNet197.40 8498.09 3796.60 13297.80 14898.76 4598.26 8998.50 2996.79 2693.13 19299.28 3598.64 7992.90 16297.67 8997.86 8399.02 4397.64 70
EPNet94.33 16693.52 16795.27 16898.81 7494.71 18796.77 16298.20 5888.12 19296.53 9792.53 18891.19 18385.25 21395.22 15895.26 15396.09 18097.63 74
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
OPM-MVS98.01 4298.01 4198.00 6099.11 5098.12 8898.68 6697.72 9496.65 3096.68 9198.40 8099.28 2397.44 5698.20 7297.82 8698.40 9397.58 75
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
TSAR-MVS + GP.97.26 9097.33 7197.18 10598.21 11498.06 9396.38 17397.66 9793.92 12395.23 14898.48 7698.33 9797.41 5797.63 9397.35 9398.18 10597.57 76
thisisatest053094.81 15693.06 17296.85 12498.01 12797.18 14096.93 15897.36 12289.73 17795.80 12894.98 15377.88 21294.89 13096.73 12397.35 9398.13 10897.54 77
NR-MVSNet98.00 4497.88 4698.13 4398.33 10298.77 4298.83 5598.88 1794.10 11697.46 5598.87 5798.58 8495.78 11199.13 2698.16 7099.52 1397.53 78
MVS_030497.18 9496.84 10197.58 8399.15 4398.19 8098.11 9697.81 9292.36 14598.06 3297.43 10399.06 3994.24 14396.80 12196.54 12098.12 10997.52 79
MCST-MVS96.79 10996.08 12197.62 8198.78 7797.52 12898.01 10397.32 12593.20 13195.84 12693.97 17498.12 10697.34 6196.34 13395.88 14198.45 8897.51 80
PVSNet_Blended_VisFu97.44 8197.14 8397.79 7499.15 4398.44 7098.32 8697.66 9793.74 12697.73 4398.79 6296.93 14295.64 12197.69 8796.91 10898.25 10197.50 81
CNVR-MVS97.03 10096.77 10697.34 9698.89 6797.67 11897.64 12297.17 12994.40 11095.70 13794.02 17298.76 7296.49 9497.78 8497.29 10098.12 10997.47 82
HQP-MVS95.97 13295.01 14697.08 10898.72 8097.19 13997.07 15296.69 14991.49 15395.77 13092.19 19297.93 11396.15 10594.66 16494.16 16698.10 11197.45 83
DeepPCF-MVS94.55 1097.05 9897.13 8696.95 11796.06 19597.12 14598.01 10395.44 17995.18 7797.50 5297.86 9298.08 10897.31 6397.23 10597.00 10497.36 14497.45 83
Baseline_NR-MVSNet98.17 3197.90 4598.48 3099.23 3498.59 5898.83 5598.73 2593.97 12196.95 7899.66 898.23 10397.90 4098.40 6499.06 1899.25 3197.42 85
FC-MVSNet-test97.54 6998.26 3096.70 12898.87 6897.79 11698.49 7898.56 2796.04 4290.39 20499.65 998.67 7695.15 12699.23 2099.07 1698.73 7097.39 86
TAPA-MVS93.96 1396.79 10996.70 10896.90 12197.64 15497.58 12297.54 12894.50 19895.14 7896.64 9296.76 11897.90 11496.63 8495.98 14396.14 13198.45 8897.39 86
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
LS3D97.93 5397.80 5098.08 4999.20 3798.77 4298.89 4897.92 8396.59 3196.99 7796.71 12097.14 13796.39 9699.04 2798.96 2499.10 4297.39 86
NCCC96.56 11895.68 13097.59 8299.04 5897.54 12797.67 11997.56 10394.84 9196.10 11787.91 21098.09 10796.98 7597.20 10796.80 11298.21 10397.38 89
train_agg96.68 11395.93 12797.56 8599.08 5497.16 14198.44 8497.37 12191.12 16095.18 15095.43 14498.48 9197.36 5996.48 12995.52 14897.95 11997.34 90
Anonymous20240521197.39 6998.85 7098.59 5897.89 11197.93 8294.41 10997.37 10596.99 14093.09 15898.61 5398.46 4899.11 4097.27 91
DeepC-MVS_fast95.38 697.53 7197.30 7297.79 7498.83 7397.64 11998.18 9197.14 13095.57 6397.83 3997.10 11498.80 6796.53 9297.41 10097.32 9798.24 10297.26 92
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
MIMVSNet198.22 3098.51 2497.87 6699.40 2698.82 3899.31 1898.53 2897.39 1996.59 9599.31 3499.23 3094.76 13498.93 3398.67 4098.63 7297.25 93
MAR-MVS95.51 14094.49 15696.71 12797.92 13596.40 16596.72 16498.04 7586.74 20296.72 8792.52 18995.14 16294.02 14796.81 12096.54 12096.85 16297.25 93
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
PHI-MVS97.44 8197.17 8097.74 7798.14 12098.41 7198.03 10197.50 10792.07 14998.01 3497.33 10798.62 8296.02 10798.34 7198.21 6698.76 6997.24 95
tfpnnormal97.66 6197.79 5197.52 9098.32 10498.53 6598.45 8297.69 9597.59 1796.12 11697.79 9496.70 14395.69 11698.35 6998.34 5998.85 6597.22 96
IterMVS-LS96.35 12195.85 12996.93 11997.53 16098.00 9997.37 13797.97 8095.49 7096.71 9098.94 5093.23 17494.82 13393.15 18695.05 15597.17 15297.12 97
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
test111197.48 7897.20 7897.81 7398.78 7798.85 3198.68 6698.40 3796.68 2894.84 15999.13 4290.32 18997.01 7399.27 1899.05 1999.19 3397.10 98
CDPH-MVS96.68 11395.99 12497.48 9199.13 4897.64 11998.08 9797.46 11190.56 16695.13 15194.87 15798.27 10096.56 9097.09 11196.45 12398.54 8097.08 99
CANet96.81 10796.50 11197.17 10699.10 5297.96 10297.86 11397.51 10591.30 15697.75 4197.64 9697.89 11593.39 15696.98 11796.73 11397.40 14196.99 100
EG-PatchMatch MVS97.98 4897.92 4398.04 5598.84 7298.04 9697.90 10996.83 14295.07 8198.79 1599.07 4499.37 1597.88 4198.74 4098.16 7098.01 11596.96 101
v1097.64 6397.26 7498.08 4998.07 12498.56 6398.86 5298.18 6294.48 10798.24 2899.56 1698.98 4797.72 4796.05 14296.26 12997.42 14096.93 102
GBi-Net95.21 14795.35 13495.04 17396.77 18498.18 8197.28 14297.58 10088.43 18990.28 20596.01 13692.43 17790.04 18497.67 8997.86 8398.28 9696.90 103
test195.21 14795.35 13495.04 17396.77 18498.18 8197.28 14297.58 10088.43 18990.28 20596.01 13692.43 17790.04 18497.67 8997.86 8398.28 9696.90 103
FMVSNet295.77 13696.20 11995.27 16896.77 18498.18 8197.28 14297.90 8493.12 13491.37 20198.25 8496.05 15490.04 18494.96 16295.94 13898.28 9696.90 103
OpenMVScopyleft94.63 995.75 13795.04 14596.58 13497.85 13997.55 12696.71 16596.07 15990.15 17396.47 9990.77 20595.95 15594.41 14097.01 11696.95 10698.00 11696.90 103
test250694.29 16791.43 18997.64 8098.66 8798.83 3498.50 7698.40 3796.04 4294.45 16794.88 15655.05 22896.70 8199.28 1599.04 2199.14 3596.87 107
PMVScopyleft90.51 1797.77 5997.98 4297.53 8898.68 8698.14 8797.67 11997.03 13496.43 3298.38 2398.72 6897.03 13994.44 13999.37 1399.30 1198.98 4996.86 108
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
DELS-MVS96.90 10397.24 7696.50 13897.85 13998.18 8197.88 11295.92 16593.48 12895.34 14698.86 5998.94 5494.03 14697.33 10397.04 10398.00 11696.85 109
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
CLD-MVS96.73 11296.92 9696.51 13798.70 8297.57 12497.64 12292.07 20593.10 13796.31 10998.29 8299.02 4495.99 10997.20 10796.47 12298.37 9596.81 110
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
GeoE97.48 7896.84 10198.22 4099.01 5998.39 7298.85 5498.76 2392.37 14497.53 5097.58 9898.23 10397.11 6897.57 9596.98 10598.10 11196.78 111
IS_MVSNet96.62 11796.48 11396.78 12698.46 9698.68 5598.61 7098.24 5392.23 14689.63 20895.90 14094.40 16896.23 9998.65 5098.77 3499.52 1396.76 112
ambc96.78 10599.01 5997.11 14695.73 18895.91 5099.25 398.56 7497.17 13597.04 7196.76 12295.22 15496.72 16996.73 113
Fast-Effi-MVS+96.80 10895.92 12897.84 6998.57 9297.46 13198.06 9898.24 5389.64 17897.57 4996.45 12697.35 13196.73 8097.22 10696.64 11797.86 12196.65 114
v897.51 7397.16 8197.91 6297.99 13098.48 6998.76 5998.17 6494.54 10597.69 4499.48 2198.76 7297.63 5296.10 14196.14 13197.20 15096.64 115
ECVR-MVScopyleft97.40 8497.11 8797.73 7898.66 8798.83 3498.50 7698.40 3796.04 4295.00 15798.95 4991.07 18696.70 8199.28 1599.04 2199.14 3596.58 116
MVS_111021_LR96.86 10496.72 10797.03 11497.80 14897.06 14897.04 15395.51 17894.55 10297.47 5397.35 10697.68 12296.66 8397.11 11096.73 11397.69 12896.57 117
OMC-MVS97.23 9297.21 7797.25 10397.85 13997.52 12897.92 10795.77 17395.83 5397.09 7397.86 9298.52 8796.62 8597.51 9796.65 11698.26 9996.57 117
PM-MVS96.85 10596.62 11097.11 10797.13 17696.51 16198.29 8794.65 19694.84 9198.12 3098.59 7297.20 13497.41 5796.24 13796.41 12497.09 15596.56 119
MVS_111021_HR97.27 8997.11 8797.46 9398.46 9697.82 11397.50 13096.86 14094.97 8697.13 7096.99 11598.39 9496.82 7897.65 9297.38 9298.02 11496.56 119
Effi-MVS+-dtu95.94 13395.08 14396.94 11898.54 9397.38 13296.66 16797.89 8588.68 18495.92 12292.90 18597.28 13294.18 14596.68 12696.13 13398.45 8896.51 121
ETV-MVS96.54 11995.27 13798.02 5899.07 5697.48 13098.16 9498.19 6087.33 19897.58 4892.67 18695.93 15696.22 10098.49 6298.46 4898.91 5796.50 122
FMVSNet394.06 17193.85 16494.31 18695.46 20997.80 11596.34 17497.58 10088.43 18990.28 20596.01 13692.43 17788.67 19691.82 19593.96 17197.53 13396.50 122
IB-MVS92.44 1693.33 18092.15 18394.70 17897.42 16796.39 16795.57 19094.67 19586.40 20693.59 18578.28 22095.76 15889.59 18995.88 14595.98 13797.39 14296.34 124
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
Effi-MVS+96.46 12095.28 13697.85 6898.64 9197.16 14197.15 15198.75 2490.27 17098.03 3393.93 17596.21 15196.55 9196.34 13396.69 11597.97 11896.33 125
MVS_Test95.34 14694.88 14895.89 15296.93 18096.84 15696.66 16797.08 13190.06 17494.02 17797.61 9796.64 14493.59 15392.73 19094.02 17097.03 15896.24 126
DPM-MVS94.86 15493.90 16395.99 14998.19 11696.52 16096.29 17895.95 16393.11 13594.61 16588.17 20896.44 14893.77 15193.33 18193.54 17797.11 15496.22 127
PCF-MVS92.69 1495.98 13195.05 14497.06 11098.43 9897.56 12597.76 11596.65 15189.95 17595.70 13796.18 13398.48 9195.74 11293.64 17893.35 17998.09 11396.18 128
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
v14419297.49 7696.99 9498.07 5198.11 12397.95 10399.02 3297.21 12894.90 9098.88 1399.53 1898.89 5797.75 4595.59 15095.90 14097.43 13996.16 129
v124097.43 8396.87 10098.09 4598.25 11097.92 10799.02 3297.06 13294.77 9399.09 899.68 798.51 8997.78 4495.25 15795.81 14297.32 14696.13 130
v192192097.50 7597.00 9298.07 5198.20 11597.94 10699.03 3197.06 13295.29 7499.01 999.62 1298.73 7497.74 4695.52 15295.78 14497.39 14296.12 131
PLCcopyleft92.55 1596.10 12795.36 13396.96 11698.13 12296.88 15296.49 17196.67 15094.07 11995.71 13691.14 20096.09 15396.84 7796.70 12496.58 11997.92 12096.03 132
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
V4297.10 9696.97 9597.26 10097.64 15497.60 12198.45 8295.99 16294.44 10897.35 6099.40 2798.63 8197.34 6196.33 13596.38 12696.82 16796.00 133
casdiffmvs97.00 10197.36 7096.59 13397.65 15397.98 10098.06 9896.81 14395.78 5592.77 19899.40 2799.26 2795.65 12096.70 12496.39 12598.59 7795.99 134
v119297.52 7297.03 9198.09 4598.31 10798.01 9898.96 4397.25 12795.22 7598.89 1299.64 1098.83 6397.68 4995.63 14995.91 13997.47 13695.97 135
EIA-MVS96.23 12694.85 14997.84 6999.08 5498.21 7897.69 11898.03 7685.68 20898.09 3191.75 19697.07 13895.66 11997.58 9497.72 8798.47 8695.91 136
Vis-MVSNet (Re-imp)96.29 12396.50 11196.05 14797.96 13397.83 10997.30 14197.86 8893.14 13388.90 21196.80 11795.28 16095.15 12698.37 6898.25 6599.12 3995.84 137
PVSNet_BlendedMVS95.44 14395.09 14195.86 15397.31 17197.13 14396.31 17695.01 18788.55 18796.23 11094.55 16697.75 11792.56 16696.42 13095.44 15097.71 12595.81 138
PVSNet_Blended95.44 14395.09 14195.86 15397.31 17197.13 14396.31 17695.01 18788.55 18796.23 11094.55 16697.75 11792.56 16696.42 13095.44 15097.71 12595.81 138
baseline94.07 17094.50 15593.57 19096.34 19293.40 19395.56 19392.39 20492.07 14994.00 17898.24 8597.51 12789.19 19091.75 19692.72 18393.96 19195.79 140
CMPMVSbinary71.81 1992.34 18592.85 17591.75 20492.70 21790.43 21188.84 22088.56 21085.87 20794.35 17090.98 20195.89 15791.14 17196.14 13994.83 15994.93 18895.78 141
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
EPNet_dtu93.45 17992.51 17994.55 18298.39 10091.67 20695.46 19697.50 10786.56 20397.38 5893.52 17894.20 17185.82 20893.31 18392.53 18492.72 19795.76 142
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
CNLPA96.24 12595.97 12596.57 13597.48 16597.10 14796.75 16394.95 19094.92 8996.20 11394.81 15896.61 14596.25 9896.94 11895.64 14597.79 12395.74 143
EU-MVSNet96.03 13096.23 11695.80 15595.48 20894.18 18998.99 3791.51 20797.22 2197.66 4599.15 4198.51 8998.08 3195.92 14492.88 18293.09 19595.72 144
DI_MVS_plusplus_trai95.48 14194.51 15496.61 13197.13 17697.30 13498.05 10096.79 14493.75 12595.08 15496.38 12789.76 19194.95 12993.97 17794.82 16197.64 13295.63 145
AdaColmapbinary95.85 13594.65 15297.26 10098.70 8297.20 13897.33 14097.30 12691.28 15895.90 12388.16 20996.17 15296.60 8697.34 10296.82 11097.71 12595.60 146
v114497.51 7397.05 9098.04 5598.26 10997.98 10098.88 5097.42 11895.38 7298.56 1899.59 1599.01 4597.65 5095.77 14696.06 13697.47 13695.56 147
diffmvs95.86 13496.21 11895.44 16497.25 17496.85 15596.99 15595.23 18494.96 8792.82 19798.89 5498.85 6093.52 15494.21 17394.25 16596.84 16495.49 148
abl_696.45 14097.79 15097.28 13597.16 15096.16 15889.92 17695.72 13591.59 19797.16 13694.37 14197.51 13595.49 148
TSAR-MVS + COLMAP96.05 12995.94 12696.18 14697.46 16696.41 16497.26 14595.83 16994.69 9695.30 14798.31 8196.52 14694.71 13595.48 15494.87 15796.54 17195.33 150
CVMVSNet94.01 17394.25 15793.73 18994.36 21292.44 19797.45 13388.56 21095.59 6193.06 19598.88 5590.03 19094.84 13294.08 17593.45 17894.09 18995.31 151
MVSTER91.97 18790.31 19393.91 18796.81 18296.91 15194.22 20995.64 17584.98 20992.98 19693.42 17972.56 22186.64 20795.11 15993.89 17397.16 15395.31 151
CDS-MVSNet94.91 15395.17 14094.60 18197.85 13996.21 17296.90 16196.39 15490.81 16393.40 18897.24 10894.54 16685.78 20996.25 13696.15 13097.26 14795.01 153
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
CANet_DTU94.96 15294.62 15395.35 16598.03 12596.11 17396.92 15995.60 17688.59 18697.27 6495.27 14796.50 14788.77 19595.53 15195.59 14695.54 18394.78 154
pmmvs-eth3d96.84 10696.22 11797.56 8597.63 15696.38 16898.74 6296.91 13894.63 9998.26 2699.43 2498.28 9996.58 8994.52 16795.54 14797.24 14894.75 155
v2v48297.33 8696.84 10197.90 6398.19 11697.83 10998.74 6297.44 11595.42 7198.23 2999.46 2298.84 6297.46 5595.51 15396.10 13497.36 14494.72 156
ET-MVSNet_ETH3D93.18 18190.80 19295.95 15096.05 19696.07 17596.92 15996.51 15389.34 18095.63 13994.08 17172.31 22393.13 15794.33 17194.83 15997.44 13894.65 157
pmmvs595.70 13895.22 13896.26 14496.55 19097.24 13697.50 13094.99 18990.95 16296.87 8198.47 7797.40 12994.45 13892.86 18794.98 15697.23 14994.64 158
Fast-Effi-MVS+-dtu94.34 16493.26 17195.62 16097.82 14595.97 17695.86 18699.01 1486.88 20093.39 18990.83 20395.46 15990.61 17894.46 16994.68 16297.01 15994.51 159
CHOSEN 1792x268894.98 15194.69 15195.31 16697.27 17395.58 18097.90 10995.56 17795.03 8293.77 18395.65 14299.29 2095.30 12391.51 19991.28 19192.05 20394.50 160
thres600view794.34 16492.31 18196.70 12898.19 11698.12 8897.85 11497.45 11391.49 15393.98 17984.27 21382.02 20394.24 14397.04 11298.76 3598.49 8494.47 161
MS-PatchMatch94.84 15594.76 15094.94 17696.38 19194.69 18895.90 18594.03 20192.49 14293.81 18195.79 14196.38 14994.54 13694.70 16394.85 15894.97 18794.43 162
GA-MVS94.18 16892.98 17495.58 16197.36 16896.42 16396.21 17995.86 16690.29 16995.08 15496.19 13285.37 19592.82 16394.01 17694.14 16796.16 17994.41 163
tfpn200view993.80 17691.75 18696.20 14597.52 16198.15 8697.48 13297.47 11087.65 19493.56 18683.03 21684.12 19792.62 16597.04 11298.09 7298.52 8394.17 164
thres40094.04 17291.94 18496.50 13897.98 13297.82 11397.66 12196.96 13590.96 16194.20 17383.24 21482.82 20193.80 14996.50 12898.09 7298.38 9494.15 165
baseline193.89 17592.82 17695.14 17297.62 15796.97 14996.12 18096.36 15591.30 15691.53 20094.68 16080.72 20590.80 17695.71 14796.29 12798.44 9194.09 166
test20.0396.08 12896.80 10495.25 17099.19 3897.58 12297.24 14697.56 10394.95 8891.91 19998.58 7398.03 11087.88 19997.43 9996.94 10797.69 12894.05 167
v14896.99 10296.70 10897.34 9697.89 13797.23 13798.33 8596.96 13595.57 6397.12 7198.99 4699.40 1397.23 6596.22 13895.45 14996.50 17294.02 168
testgi94.81 15696.05 12393.35 19299.06 5796.87 15497.57 12796.70 14895.77 5688.60 21393.19 18398.87 5981.21 21797.03 11596.64 11796.97 16193.99 169
IterMVS-SCA-FT95.16 14993.95 16196.56 13697.89 13796.69 15896.94 15796.05 16193.06 13897.35 6098.79 6291.45 18295.93 11092.78 18891.00 19295.22 18593.91 170
thres20093.98 17491.90 18596.40 14297.66 15298.12 8897.20 14797.45 11390.16 17293.82 18083.08 21583.74 19993.80 14997.04 11297.48 9198.49 8493.70 171
MSDG96.27 12496.17 12096.38 14397.85 13996.27 17196.55 17094.41 19994.55 10295.62 14097.56 10097.80 11696.22 10097.17 10996.27 12897.67 13093.60 172
pmmvs495.37 14594.25 15796.67 13097.01 17995.28 18397.60 12596.07 15993.11 13597.29 6398.09 8994.23 17095.21 12591.56 19893.91 17296.82 16793.59 173
FPMVS94.70 16094.99 14794.37 18395.84 20193.20 19496.00 18491.93 20695.03 8294.64 16494.68 16093.29 17390.95 17498.07 7697.34 9696.85 16293.29 174
TinyColmap96.64 11696.07 12297.32 9897.84 14496.40 16597.63 12496.25 15695.86 5198.98 1097.94 9096.34 15096.17 10497.30 10495.38 15297.04 15793.24 175
thres100view90092.93 18290.89 19195.31 16697.52 16196.82 15796.41 17295.08 18587.65 19493.56 18683.03 21684.12 19791.12 17294.53 16596.91 10898.17 10693.21 176
FMVSNet589.65 20387.60 20392.04 20295.63 20596.61 15994.82 20794.75 19280.11 22287.72 21677.73 22173.81 21983.81 21595.64 14896.08 13595.49 18493.21 176
Anonymous2023120695.69 13995.68 13095.70 15798.32 10496.95 15097.37 13796.65 15193.33 12993.61 18498.70 7098.03 11091.04 17395.07 16094.59 16497.20 15093.09 178
USDC96.30 12295.64 13297.07 10997.62 15796.35 17097.17 14995.71 17495.52 6899.17 798.11 8897.46 12895.67 11795.44 15593.60 17597.09 15592.99 179
baseline292.06 18689.82 19594.68 18097.32 16995.72 17894.97 20595.08 18584.75 21194.34 17290.68 20677.75 21390.13 18393.38 17993.58 17696.25 17892.90 180
IterMVS94.48 16193.46 16895.66 15897.52 16196.43 16297.20 14794.73 19492.91 14196.44 10098.75 6791.10 18494.53 13792.10 19490.10 19693.51 19292.84 181
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
PatchMatch-RL94.79 15993.75 16596.00 14896.80 18395.00 18595.47 19595.25 18390.68 16595.80 12892.97 18493.64 17295.67 11796.13 14095.81 14296.99 16092.01 182
MDA-MVSNet-bldmvs95.45 14295.20 13995.74 15694.24 21396.38 16897.93 10694.80 19195.56 6696.87 8198.29 8295.24 16196.50 9398.65 5090.38 19494.09 18991.93 183
HyFIR lowres test95.05 15093.54 16696.81 12597.81 14796.88 15298.18 9197.46 11194.28 11294.98 15896.57 12392.89 17696.15 10590.90 20391.87 18896.28 17791.35 184
MIMVSNet93.68 17793.96 16093.35 19297.82 14596.08 17496.34 17498.46 3491.28 15886.67 21894.95 15494.87 16484.39 21494.53 16594.65 16396.45 17491.34 185
test0.0.03 191.17 19491.50 18790.80 20998.01 12795.46 18194.22 20995.80 17086.55 20481.75 22190.83 20387.93 19278.48 21894.51 16894.11 16996.50 17291.08 186
TAMVS92.46 18393.34 16991.44 20697.03 17893.84 19194.68 20890.60 20890.44 16885.31 21997.14 11293.03 17585.78 20994.34 17093.67 17495.22 18590.93 187
gg-mvs-nofinetune94.13 16993.93 16294.37 18397.99 13095.86 17795.45 19899.22 997.61 1695.10 15399.50 2084.50 19681.73 21695.31 15694.12 16896.71 17090.59 188
CR-MVSNet91.94 18888.50 19895.94 15196.14 19492.08 20195.23 20198.47 3284.30 21396.44 10094.58 16375.57 21592.92 16090.22 20492.22 18596.43 17590.56 189
PatchT91.40 19288.54 19794.74 17791.48 22192.18 20097.42 13597.51 10584.96 21096.44 10094.16 17075.47 21692.92 16090.22 20492.22 18592.66 20090.56 189
test-mter89.16 20588.14 19990.37 21094.79 21091.05 20893.60 21485.26 21681.65 21788.32 21592.22 19179.35 21087.03 20492.28 19190.12 19593.19 19490.29 191
RPMNet90.52 19786.27 21195.48 16395.95 19992.08 20195.55 19498.12 6784.30 21395.60 14187.49 21172.78 22091.24 17087.93 20889.34 19796.41 17689.98 192
PMMVS91.67 19091.47 18891.91 20389.43 22288.61 21794.99 20485.67 21587.50 19693.80 18294.42 16994.88 16390.71 17792.26 19392.96 18196.83 16589.65 193
CHOSEN 280x42091.55 19190.27 19493.05 19594.61 21188.01 21896.56 16994.62 19788.04 19394.20 17392.66 18786.60 19390.82 17595.06 16191.89 18787.49 21589.61 194
new-patchmatchnet94.48 16194.02 15995.02 17597.51 16495.00 18595.68 18994.26 20097.32 2095.73 13499.60 1398.22 10591.30 16994.13 17484.41 20495.65 18289.45 195
tpm89.84 20186.81 20893.36 19196.60 18891.92 20495.02 20397.39 11986.79 20196.54 9695.03 15069.70 22487.66 20088.79 20786.19 20386.95 21789.27 196
test-LLR89.77 20287.47 20492.45 19998.01 12789.77 21393.25 21595.80 17081.56 21889.19 20992.08 19379.59 20885.77 21191.47 20089.04 20092.69 19888.75 197
TESTMET0.1,188.60 20887.47 20489.93 21194.23 21489.77 21393.25 21584.47 21781.56 21889.19 20992.08 19379.59 20885.77 21191.47 20089.04 20092.69 19888.75 197
CostFormer89.06 20685.65 21393.03 19695.88 20092.40 19895.30 20095.86 16686.49 20593.12 19493.40 18174.18 21888.25 19782.99 21881.46 21389.77 20888.66 199
pmmvs391.20 19391.40 19090.96 20891.71 22091.08 20795.41 19981.34 21987.36 19794.57 16695.02 15194.30 16990.42 17994.28 17289.26 19892.30 20288.49 200
MVEpermissive72.99 1885.37 21589.43 19680.63 21574.43 22371.94 22488.25 22189.81 20993.27 13067.32 22496.32 12991.83 18190.40 18093.36 18090.79 19373.55 22388.49 200
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
pmnet_mix0293.59 17892.65 17794.69 17996.76 18794.16 19097.03 15493.00 20395.79 5496.03 12198.91 5297.69 12192.99 15990.03 20684.10 20692.35 20187.89 202
MDTV_nov1_ep13_2view94.39 16393.34 16995.63 15997.23 17595.33 18297.76 11596.84 14194.55 10297.47 5398.96 4797.70 12093.88 14892.27 19286.81 20290.56 20587.73 203
DeepMVS_CXcopyleft72.99 22380.14 22337.34 22083.46 21660.13 22584.40 21285.48 19486.93 20587.22 21079.61 22187.32 204
new_pmnet90.85 19692.26 18289.21 21293.68 21689.05 21693.20 21784.16 21892.99 13984.25 22097.72 9594.60 16586.80 20693.20 18491.30 19093.21 19386.94 205
gm-plane-assit91.85 18987.91 20096.44 14199.14 4698.25 7799.02 3297.38 12095.57 6398.31 2599.34 3251.00 22988.93 19393.16 18591.57 18995.85 18186.50 206
dps88.36 20984.32 21693.07 19493.86 21592.29 19994.89 20695.93 16483.50 21593.13 19291.87 19567.79 22690.32 18185.99 21483.22 21190.28 20785.56 207
SCA91.15 19587.65 20295.23 17196.15 19395.68 17996.68 16698.18 6290.46 16797.21 6792.44 19080.17 20793.51 15586.04 21383.58 20989.68 20985.21 208
N_pmnet92.46 18392.38 18092.55 19897.91 13693.47 19297.42 13594.01 20296.40 3588.48 21498.50 7598.07 10988.14 19891.04 20284.30 20589.35 21084.85 209
MDTV_nov1_ep1390.30 19887.32 20693.78 18896.00 19892.97 19595.46 19695.39 18088.61 18595.41 14594.45 16880.39 20689.87 18786.58 21183.54 21090.56 20584.71 210
ADS-MVSNet89.89 20087.70 20192.43 20095.52 20690.91 20995.57 19095.33 18193.19 13291.21 20293.41 18082.12 20289.05 19186.21 21283.77 20887.92 21384.31 211
tpm cat187.19 21182.78 21892.33 20195.66 20390.61 21094.19 21195.27 18286.97 19994.38 16990.91 20269.40 22587.21 20279.57 22177.82 21787.25 21684.18 212
EPMVS89.28 20486.28 21092.79 19796.01 19792.00 20395.83 18795.85 16890.78 16491.00 20394.58 16374.65 21788.93 19385.00 21582.88 21289.09 21184.09 213
PatchmatchNetpermissive89.98 19986.23 21294.36 18596.56 18991.90 20596.07 18196.72 14690.18 17196.87 8193.36 18278.06 21191.46 16884.71 21781.40 21488.45 21283.97 214
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
GG-mvs-BLEND61.03 21787.02 20730.71 2190.74 22890.01 21278.90 2240.74 22584.56 2129.46 22779.17 21990.69 1881.37 22491.74 19789.13 19993.04 19683.83 215
PMMVS286.47 21492.62 17879.29 21692.01 21885.63 22093.74 21386.37 21393.95 12254.18 22698.19 8697.39 13058.46 21996.57 12793.07 18090.99 20483.55 216
tpmrst87.60 21084.13 21791.66 20595.65 20489.73 21593.77 21294.74 19388.85 18293.35 19195.60 14372.37 22287.40 20181.24 21978.19 21685.02 22082.90 217
MVS-HIRNet88.72 20786.49 20991.33 20791.81 21985.66 21987.02 22296.25 15681.48 22094.82 16096.31 13092.14 18090.32 18187.60 20983.82 20787.74 21478.42 218
E-PMN86.94 21285.10 21489.09 21495.77 20283.54 22289.89 21986.55 21292.18 14787.34 21794.02 17283.42 20089.63 18893.32 18277.11 21885.33 21872.09 219
EMVS86.63 21384.48 21589.15 21395.51 20783.66 22190.19 21886.14 21491.78 15188.68 21293.83 17681.97 20489.05 19192.76 18976.09 21985.31 21971.28 220
test_method61.30 21670.45 21950.62 21722.69 22530.92 22668.31 22525.76 22180.56 22168.71 22282.80 21891.08 18544.64 22080.50 22056.70 22073.64 22270.58 221
testmvs4.99 2186.88 2202.78 2211.73 2262.04 2283.10 2281.71 2237.27 2243.92 22912.18 2236.71 2303.31 2236.94 2225.51 2222.94 2257.51 222
test1234.41 2195.71 2212.88 2201.28 2272.21 2273.09 2291.65 2246.35 2254.98 2288.53 2243.88 2313.46 2225.79 2235.71 2212.85 2267.50 223
uanet_test0.00 2200.00 2220.00 2220.00 2290.00 2290.00 2300.00 2260.00 2260.00 2300.00 2250.00 2320.00 2250.00 2240.00 2230.00 2270.00 224
sosnet-low-res0.00 2200.00 2220.00 2220.00 2290.00 2290.00 2300.00 2260.00 2260.00 2300.00 2250.00 2320.00 2250.00 2240.00 2230.00 2270.00 224
sosnet0.00 2200.00 2220.00 2220.00 2290.00 2290.00 2300.00 2260.00 2260.00 2300.00 2250.00 2320.00 2250.00 2240.00 2230.00 2270.00 224
RE-MVS-def99.38 2
9.1496.98 141
SR-MVS99.33 3198.40 3798.90 55
our_test_397.32 16995.13 18497.59 126
MTAPA97.43 5699.27 24
MTMP97.63 4799.03 43
Patchmatch-RL test17.42 227
tmp_tt45.72 21860.00 22438.74 22545.50 22612.18 22279.58 22368.42 22367.62 22265.04 22722.12 22184.83 21678.72 21566.08 224
XVS99.48 1998.76 4599.22 2396.40 10498.78 6998.94 55
X-MVStestdata99.48 1998.76 4599.22 2396.40 10498.78 6998.94 55
mPP-MVS99.58 698.98 47
NP-MVS89.27 181
Patchmtry92.70 19695.23 20198.47 3296.44 100