This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorcourty.delive.electrofacadekickermeadowofficepipesplaygr.reliefrelief.terraceterrai.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort by
TDRefinement93.16 195.57 190.36 188.79 5293.57 197.27 178.23 2295.55 293.00 193.98 1796.01 3987.53 197.69 196.81 197.33 195.34 3
anonymousdsp85.62 6190.53 4879.88 9264.64 20176.35 13896.28 1353.53 18785.63 6981.59 7092.81 3097.71 1486.88 294.56 2692.83 2596.35 693.84 8
LTVRE_ROB86.82 191.55 394.43 388.19 1183.19 10986.35 6793.60 3778.79 1995.48 491.79 293.08 2697.21 2186.34 397.06 296.27 395.46 2395.56 2
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
PMVScopyleft79.51 990.23 1492.67 1487.39 2190.16 3988.75 4193.64 3675.78 4490.00 3383.70 4892.97 2892.22 10286.13 497.01 396.79 294.94 3090.96 46
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
SixPastTwentyTwo89.14 2992.19 3185.58 3284.62 8982.56 9290.53 6471.93 6091.95 1285.89 3694.22 1497.25 2085.42 595.73 1291.71 4195.08 2891.89 37
CPTT-MVS89.63 2590.52 4988.59 790.95 3190.74 2195.71 1779.13 1587.70 5185.68 3980.05 13495.74 4684.77 694.28 3092.68 2795.28 2692.45 31
ACMMPR91.30 492.88 1189.46 491.92 1191.61 596.60 579.46 1490.08 3188.53 1489.54 6595.57 4884.25 795.24 2094.27 1395.97 1193.85 7
COLMAP_ROBcopyleft85.66 291.85 295.01 288.16 1288.98 5192.86 295.51 2072.17 5994.95 591.27 394.11 1697.77 1284.22 896.49 495.27 596.79 293.60 11
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
MP-MVScopyleft90.84 691.95 3489.55 392.92 590.90 1996.56 679.60 1186.83 6088.75 1389.00 7394.38 7884.01 994.94 2594.34 1195.45 2493.24 22
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
CP-MVS91.09 592.33 2589.65 292.16 1090.41 2796.46 1080.38 888.26 4689.17 1187.00 9496.34 3183.95 1095.77 1194.72 895.81 1793.78 9
SD-MVS89.91 1892.23 3087.19 2291.31 2489.79 3494.31 3275.34 4789.26 3881.79 6892.68 3195.08 6283.88 1193.10 3992.69 2696.54 493.02 23
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
PGM-MVS90.42 1091.58 3789.05 691.77 1491.06 1396.51 778.94 1785.41 7287.67 1987.02 9395.26 5683.62 1295.01 2493.94 1695.79 1993.40 19
ACMM80.67 790.67 792.46 1988.57 891.35 2289.93 3196.34 1277.36 3190.17 2986.88 3087.32 8996.63 2483.32 1395.79 1094.49 1096.19 992.91 25
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
LGP-MVS_train90.56 992.38 2188.43 1090.88 3291.15 1195.35 2277.65 2686.26 6587.23 2490.45 5497.35 1883.20 1495.44 1693.41 2196.28 892.63 26
TSAR-MVS + ACMM89.14 2992.11 3285.67 3189.27 4790.61 2490.98 5179.48 1388.86 4179.80 8093.01 2793.53 8883.17 1592.75 4692.45 3091.32 8293.59 12
ACMMPcopyleft90.63 892.40 2088.56 991.24 2891.60 696.49 977.53 2787.89 4986.87 3187.24 9196.46 2682.87 1695.59 1594.50 996.35 693.51 17
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
MSLP-MVS++86.29 5989.10 5783.01 5985.71 8289.79 3487.04 10474.39 5185.17 7478.92 8677.59 14893.57 8682.60 1793.23 3791.88 4089.42 10592.46 30
zzz-MVS90.38 1191.35 4189.25 593.08 386.59 6496.45 1179.00 1690.23 2889.30 1085.87 10594.97 6582.54 1895.05 2394.83 795.14 2791.94 36
TSAR-MVS + MP.89.67 2492.25 2886.65 2691.53 1890.98 1796.15 1473.30 5687.88 5081.83 6792.92 2995.15 6082.23 1993.58 3592.25 3494.87 3193.01 24
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
ACMP80.00 890.12 1692.30 2687.58 1990.83 3491.10 1294.96 2876.06 4187.47 5385.33 4088.91 7697.65 1682.13 2095.31 1793.44 2096.14 1092.22 33
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
SteuartSystems-ACMMP90.00 1791.73 3587.97 1391.21 2990.29 2896.51 778.00 2486.33 6385.32 4188.23 8194.67 7082.08 2195.13 2293.88 1794.72 3693.59 12
Skip Steuart: Steuart Systems R&D Blog.
Gipumacopyleft86.47 5789.25 5683.23 5683.88 10178.78 11985.35 11468.42 8992.69 1089.03 1291.94 3796.32 3381.80 2294.45 2786.86 8290.91 8883.69 98
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
HFP-MVS90.32 1392.37 2287.94 1491.46 2190.91 1895.69 1879.49 1289.94 3483.50 5189.06 7294.44 7681.68 2394.17 3194.19 1495.81 1793.87 6
APDe-MVS89.85 2092.91 1086.29 2790.47 3891.34 796.04 1576.41 4091.11 1778.50 8893.44 2195.82 4381.55 2493.16 3891.90 3994.77 3493.58 14
DVP-MVS89.40 2792.69 1385.56 3489.01 5089.85 3293.72 3575.42 4592.28 1180.49 7394.36 1394.87 6681.46 2592.49 5091.42 4293.27 5293.54 16
APD-MVScopyleft89.14 2991.25 4486.67 2591.73 1591.02 1595.50 2177.74 2584.04 8379.47 8391.48 4494.85 6781.14 2692.94 4192.20 3694.47 3992.24 32
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
DPE-MVS89.81 2292.34 2486.86 2489.69 4491.00 1695.53 1976.91 3488.18 4783.43 5493.48 2095.19 5781.07 2792.75 4692.07 3794.55 3793.74 10
DeepC-MVS83.59 490.37 1292.56 1887.82 1591.26 2792.33 394.72 3080.04 990.01 3284.61 4393.33 2294.22 7980.59 2892.90 4492.52 2995.69 2192.57 27
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
ACMH+79.05 1189.62 2693.08 885.58 3288.58 5589.26 3892.18 4574.23 5293.55 882.66 5992.32 3698.35 880.29 2995.28 1892.34 3295.52 2290.43 50
HPM-MVS++copyleft88.74 4089.54 5487.80 1692.58 785.69 7295.10 2678.01 2387.08 5787.66 2087.89 8492.07 10580.28 3090.97 7091.41 4493.17 5691.69 38
DeepPCF-MVS81.61 687.95 4890.29 5185.22 3887.48 6690.01 3093.79 3473.54 5488.93 4083.89 4689.40 6790.84 11980.26 3190.62 7390.19 5492.36 7092.03 35
RPSCF88.05 4692.61 1782.73 6684.24 9488.40 4390.04 7466.29 10591.46 1382.29 6188.93 7596.01 3979.38 3295.15 2194.90 694.15 4093.40 19
TSAR-MVS + GP.85.32 6687.41 7582.89 6390.07 4185.69 7289.07 8272.99 5782.45 9174.52 10685.09 11287.67 13979.24 3391.11 6590.41 5191.45 7989.45 57
OPM-MVS89.82 2192.24 2986.99 2390.86 3389.35 3795.07 2775.91 4391.16 1686.87 3191.07 5097.29 1979.13 3493.32 3691.99 3894.12 4191.49 41
SMA-MVScopyleft90.13 1592.26 2787.64 1891.68 1690.44 2695.22 2477.34 3390.79 2287.80 1790.42 5592.05 10779.05 3593.89 3393.59 1994.77 3494.62 4
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
IterMVS-SCA-FT77.23 12979.18 13774.96 12676.67 16479.85 10975.58 17861.34 15373.10 14473.79 11186.23 10079.61 16579.00 3680.28 15775.50 16683.41 16479.70 136
EG-PatchMatch MVS84.35 7487.55 7280.62 8686.38 7682.24 9486.75 10564.02 13084.24 7978.17 9089.38 6895.03 6478.78 3789.95 7986.33 8689.59 10185.65 85
ACMMP_NAP89.86 1991.96 3387.42 2091.00 3090.08 2996.00 1676.61 3789.28 3587.73 1890.04 5791.80 11078.71 3894.36 2993.82 1894.48 3894.32 5
CSCG88.12 4591.45 3884.23 4888.12 6290.59 2590.57 6168.60 8791.37 1583.45 5389.94 5895.14 6178.71 3891.45 5988.21 7495.96 1293.44 18
UA-Net89.02 3391.44 3986.20 2894.88 189.84 3394.76 2977.45 2985.41 7274.79 10388.83 7788.90 13378.67 4096.06 795.45 496.66 395.58 1
LS3D89.02 3391.69 3685.91 3089.72 4390.81 2092.56 4471.69 6390.83 2187.24 2389.71 6392.07 10578.37 4194.43 2892.59 2895.86 1391.35 42
train_agg86.67 5587.73 7185.43 3591.51 1982.72 8994.47 3174.22 5381.71 9881.54 7189.20 7192.87 9478.33 4290.12 7788.47 7092.51 6989.04 61
3Dnovator+83.71 388.13 4490.00 5285.94 2986.82 7291.06 1394.26 3375.39 4688.85 4285.76 3885.74 10786.92 14278.02 4393.03 4092.21 3595.39 2592.21 34
ACMH78.40 1288.94 3892.62 1684.65 4286.45 7587.16 5991.47 4868.79 8595.49 389.74 693.55 1998.50 377.96 4494.14 3289.57 6393.49 4789.94 54
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
xxxxxxxxxxxxxcwj88.03 4791.29 4384.22 4988.17 6087.90 5290.80 5671.80 6189.28 3582.70 5789.90 5997.72 1377.91 4591.69 5490.04 5593.95 4492.47 28
SF-MVS87.85 5090.95 4684.22 4988.17 6087.90 5290.80 5671.80 6189.28 3582.70 5789.90 5995.37 5477.91 4591.69 5490.04 5593.95 4492.47 28
v7n87.11 5290.46 5083.19 5785.22 8583.69 8390.03 7568.20 9391.01 1986.71 3494.80 1098.46 577.69 4791.10 6685.98 8991.30 8388.19 67
OMC-MVS88.16 4391.34 4284.46 4686.85 7190.63 2393.01 4167.00 10090.35 2787.40 2286.86 9696.35 3077.66 4892.63 4890.84 4794.84 3291.68 39
FPMVS81.56 10084.04 11378.66 10082.92 11175.96 14286.48 10865.66 11484.67 7871.47 12577.78 14683.22 15577.57 4991.24 6290.21 5387.84 12385.21 87
PVSNet_Blended_VisFu83.00 8784.16 11181.65 7282.17 11986.01 6888.03 9071.23 6576.05 13679.54 8283.88 11883.44 15277.49 5087.38 9884.93 10091.41 8087.40 75
PLCcopyleft76.06 1585.38 6587.46 7382.95 6285.79 8188.84 4088.86 8468.70 8687.06 5883.60 4979.02 13790.05 12477.37 5190.88 7189.66 6193.37 5186.74 77
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
PM-MVS80.42 10983.63 11776.67 11278.04 14972.37 16287.14 10060.18 16180.13 11871.75 12386.12 10293.92 8277.08 5286.56 10685.12 9885.83 14781.18 121
NCCC86.74 5487.97 7085.31 3690.64 3587.25 5893.27 3974.59 4986.50 6183.72 4775.92 16492.39 10077.08 5291.72 5390.68 4992.57 6791.30 43
SED-MVS88.96 3792.37 2284.99 4088.64 5489.65 3695.11 2575.98 4290.73 2380.15 7994.21 1594.51 7576.59 5492.94 4191.17 4593.46 4993.37 21
X-MVS89.36 2890.73 4787.77 1791.50 2091.23 896.76 478.88 1887.29 5587.14 2678.98 13994.53 7276.47 5595.25 1994.28 1295.85 1493.55 15
CNLPA85.50 6388.58 5981.91 6984.55 9187.52 5690.89 5463.56 13588.18 4784.06 4583.85 11991.34 11676.46 5691.27 6189.00 6891.96 7488.88 63
MSP-MVS88.51 4291.36 4085.19 3990.63 3692.01 495.29 2377.52 2890.48 2680.21 7890.21 5696.08 3576.38 5788.30 9391.42 4291.12 8791.01 45
v124083.57 8084.94 10081.97 6884.05 9681.27 10189.46 7966.06 10881.31 10887.50 2191.88 4095.46 5276.25 5881.16 15080.51 13888.52 11882.98 106
TAPA-MVS78.00 1385.88 6088.37 6382.96 6184.69 8888.62 4290.62 5964.22 12589.15 3988.05 1578.83 14193.71 8376.20 5990.11 7888.22 7394.00 4289.97 53
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
CNVR-MVS86.93 5388.98 5884.54 4490.11 4087.41 5793.23 4073.47 5586.31 6482.25 6282.96 12292.15 10376.04 6091.69 5490.69 4892.17 7391.64 40
PHI-MVS86.37 5888.14 6784.30 4786.65 7487.56 5590.76 5870.16 7082.55 9089.65 784.89 11492.40 9975.97 6190.88 7189.70 6092.58 6589.03 62
v192192083.49 8184.94 10081.80 7083.78 10281.20 10389.50 7865.91 11181.64 10087.18 2591.70 4295.39 5375.85 6281.56 14880.27 14088.60 11582.80 108
DeepC-MVS_fast81.78 587.38 5189.64 5384.75 4189.89 4290.70 2292.74 4374.45 5086.02 6682.16 6586.05 10391.99 10975.84 6391.16 6490.44 5093.41 5091.09 44
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
v14419283.43 8284.97 9981.63 7383.43 10581.23 10289.42 8066.04 11081.45 10686.40 3591.46 4595.70 4775.76 6482.14 14180.23 14188.74 11282.57 111
CDPH-MVS86.66 5688.52 6184.48 4589.61 4588.27 4592.86 4272.69 5880.55 11682.71 5686.92 9593.32 9075.55 6591.00 6989.85 5893.47 4889.71 55
thisisatest051581.18 10684.32 10777.52 11076.73 16374.84 15285.06 11761.37 15281.05 11173.95 10988.79 7889.25 13075.49 6685.98 11184.78 10292.53 6885.56 86
MVS_111021_LR83.20 8585.33 9280.73 8482.88 11378.23 12389.61 7665.23 11782.08 9581.19 7285.31 10992.04 10875.22 6789.50 8085.90 9190.24 9284.23 93
AdaColmapbinary84.15 7585.14 9683.00 6089.08 4987.14 6090.56 6270.90 6682.40 9280.41 7473.82 17584.69 15175.19 6891.58 5889.90 5791.87 7686.48 78
WR-MVS89.79 2393.66 485.27 3791.32 2388.27 4593.49 3879.86 1092.75 975.37 9996.86 198.38 675.10 6995.93 894.07 1596.46 589.39 58
MCST-MVS84.79 7186.48 7982.83 6487.30 6787.03 6190.46 6969.33 7983.14 8682.21 6481.69 13092.14 10475.09 7087.27 10084.78 10292.58 6589.30 59
PatchMatch-RL76.05 13976.64 15375.36 11977.84 15369.87 17081.09 14263.43 13771.66 15368.34 14571.70 18281.76 16074.98 7184.83 12583.44 11486.45 13873.22 163
v119283.61 7985.23 9481.72 7184.05 9682.15 9589.54 7766.20 10681.38 10786.76 3391.79 4196.03 3774.88 7281.81 14580.92 13488.91 11182.50 112
Effi-MVS+-dtu82.04 9783.39 12080.48 8985.48 8486.57 6688.40 8868.28 9169.04 16573.13 11676.26 15991.11 11874.74 7388.40 9087.76 7592.84 6284.57 91
ambc88.38 6291.62 1787.97 5184.48 12188.64 4587.93 1687.38 8894.82 6974.53 7489.14 8483.86 11285.94 14586.84 76
MVS_111021_HR83.95 7786.10 8581.44 7584.62 8980.29 10790.51 6568.05 9484.07 8280.38 7684.74 11591.37 11574.23 7590.37 7587.25 7890.86 8984.59 90
v1083.17 8685.22 9580.78 8183.26 10882.99 8888.66 8766.49 10479.24 12583.60 4991.46 4595.47 5174.12 7682.60 14080.66 13588.53 11784.11 96
V4279.59 11683.59 11874.93 12769.61 18677.05 13486.59 10755.84 17678.42 12877.29 9189.84 6295.08 6274.12 7683.05 13380.11 14286.12 14181.59 119
v114483.22 8485.01 9781.14 7783.76 10381.60 9888.95 8365.58 11581.89 9785.80 3791.68 4395.84 4274.04 7882.12 14280.56 13788.70 11481.41 120
TSAR-MVS + COLMAP85.51 6288.36 6482.19 6786.05 7987.69 5490.50 6670.60 6986.40 6282.33 6089.69 6492.52 9874.01 7987.53 9786.84 8389.63 10087.80 72
EIA-MVS78.57 12477.90 14379.35 9687.24 6980.71 10586.16 10964.03 12962.63 19473.49 11373.60 17676.12 18073.83 8088.49 8984.93 10091.36 8178.78 141
EU-MVSNet76.48 13580.53 13271.75 14067.62 19270.30 16781.74 13854.06 18475.47 13871.01 12880.10 13293.17 9373.67 8183.73 13177.85 15182.40 16683.07 103
ETV-MVS79.01 12377.98 14280.22 9186.69 7379.73 11288.80 8568.27 9263.22 18971.56 12470.25 19473.63 18773.66 8290.30 7686.77 8492.33 7181.95 117
CVMVSNet75.65 14377.62 14773.35 13571.95 17969.89 16983.04 12860.84 15769.12 16368.76 14079.92 13578.93 16873.64 8381.02 15181.01 13381.86 16983.43 100
Fast-Effi-MVS+81.42 10183.82 11578.62 10182.24 11880.62 10687.72 9363.51 13673.01 14574.75 10483.80 12092.70 9673.44 8488.15 9585.26 9690.05 9483.17 102
v882.20 9584.56 10579.45 9482.42 11681.65 9787.26 9864.27 12479.36 12481.70 6991.04 5195.75 4573.30 8582.82 13679.18 14787.74 12582.09 115
CS-MVS79.35 11977.74 14481.22 7685.59 8379.85 10988.78 8666.61 10267.63 16880.41 7467.82 19875.07 18573.27 8688.31 9284.36 10692.63 6481.18 121
PCF-MVS76.59 1484.11 7685.27 9382.76 6586.12 7888.30 4491.24 5069.10 8082.36 9384.45 4477.56 14990.40 12372.91 8785.88 11283.88 11092.72 6388.53 65
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
MVS_030484.73 7286.19 8383.02 5888.32 5686.71 6391.55 4770.87 6773.79 14382.88 5585.13 11193.35 8972.55 8888.62 8787.69 7691.93 7588.05 70
HQP-MVS85.02 6886.41 8183.40 5589.19 4886.59 6491.28 4971.60 6482.79 8983.48 5278.65 14393.54 8772.55 8886.49 10785.89 9292.28 7290.95 47
Effi-MVS+82.33 9383.87 11480.52 8884.51 9281.32 10087.53 9568.05 9474.94 14179.67 8182.37 12792.31 10172.21 9085.06 11986.91 8191.18 8584.20 94
thisisatest053075.54 14475.95 16175.05 12275.08 17073.56 15782.15 13560.31 15869.17 16269.32 13579.02 13758.78 20672.17 9183.88 13083.08 12091.30 8384.20 94
tttt051775.86 14276.23 15775.42 11875.55 16974.06 15682.73 13060.31 15869.24 16170.24 13279.18 13658.79 20572.17 9184.49 12783.08 12091.54 7884.80 88
EPP-MVSNet82.76 9186.47 8078.45 10286.00 8084.47 7785.39 11368.42 8984.17 8062.97 16089.26 7076.84 17672.13 9392.56 4990.40 5295.76 2087.56 74
v2v48282.20 9584.26 10879.81 9382.67 11580.18 10887.67 9463.96 13281.69 9984.73 4291.27 4896.33 3272.05 9481.94 14479.56 14487.79 12478.84 140
WR-MVS_H88.99 3593.28 583.99 5491.92 1189.13 3991.95 4683.23 190.14 3071.92 12295.85 598.01 1171.83 9595.82 993.19 2393.07 5890.83 48
Vis-MVSNetpermissive83.32 8388.12 6877.71 10677.91 15283.44 8690.58 6069.49 7681.11 11067.10 15089.85 6191.48 11471.71 9691.34 6089.37 6489.48 10390.26 51
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
v14879.33 12082.32 12575.84 11680.14 13075.74 14381.98 13657.06 17381.51 10479.36 8489.42 6696.42 2871.32 9781.54 14975.29 16785.20 15276.32 149
PS-CasMVS89.07 3293.23 784.21 5192.44 888.23 4790.54 6382.95 390.50 2575.31 10095.80 698.37 771.16 9896.30 593.32 2292.88 6090.11 52
HyFIR lowres test73.29 15374.14 16972.30 13773.08 17578.33 12283.12 12662.41 14763.81 18662.13 16476.67 15678.50 16971.09 9974.13 17977.47 15681.98 16870.10 170
CP-MVSNet88.71 4192.63 1584.13 5292.39 988.09 4990.47 6882.86 488.79 4375.16 10194.87 997.68 1571.05 10096.16 693.18 2492.85 6189.64 56
QAPM80.43 10884.34 10675.86 11579.40 13682.06 9679.86 15161.94 14983.28 8574.73 10581.74 12985.44 14870.97 10184.99 12484.71 10488.29 11988.14 68
3Dnovator79.41 1082.21 9486.07 8677.71 10679.31 13784.61 7687.18 9961.02 15585.65 6876.11 9585.07 11385.38 14970.96 10287.22 10186.47 8591.66 7788.12 69
IterMVS-LS79.79 11282.56 12476.56 11481.83 12177.85 12579.90 15069.42 7878.93 12671.21 12690.47 5385.20 15070.86 10380.54 15580.57 13686.15 14084.36 92
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
DTE-MVSNet88.99 3592.77 1284.59 4393.31 288.10 4890.96 5283.09 291.38 1476.21 9496.03 398.04 970.78 10495.65 1492.32 3393.18 5587.84 71
PEN-MVS88.86 3992.92 984.11 5392.92 588.05 5090.83 5582.67 591.04 1874.83 10295.97 498.47 470.38 10595.70 1392.43 3193.05 5988.78 64
TinyColmap83.79 7886.12 8481.07 7883.42 10681.44 9985.42 11268.55 8888.71 4489.46 887.60 8692.72 9570.34 10689.29 8281.94 12789.20 10681.12 123
MAR-MVS81.98 9882.92 12280.88 8085.18 8685.85 6989.13 8169.52 7471.21 15582.25 6271.28 18688.89 13469.69 10788.71 8586.96 7989.52 10287.57 73
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
MSDG81.39 10384.23 11078.09 10482.40 11782.47 9385.31 11660.91 15679.73 12280.26 7786.30 9988.27 13769.67 10887.20 10284.98 9989.97 9680.67 126
MDA-MVSNet-bldmvs76.51 13482.87 12369.09 15850.71 21274.72 15484.05 12360.27 16081.62 10171.16 12788.21 8291.58 11169.62 10992.78 4577.48 15578.75 17573.69 161
CANet82.84 8984.60 10480.78 8187.30 6785.20 7590.23 7169.00 8172.16 15178.73 8784.49 11690.70 12169.54 11087.65 9686.17 8789.87 9885.84 83
IterMVS73.62 15176.53 15470.23 15071.83 18077.18 13380.69 14353.22 18872.23 15066.62 15285.21 11078.96 16769.54 11076.28 17471.63 17779.45 17274.25 158
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
test_part187.86 4993.26 681.56 7487.23 7086.76 6290.91 5370.06 7196.50 176.74 9296.63 298.62 269.45 11292.93 4390.92 4694.98 2990.46 49
UniMVSNet (Re)84.95 6988.53 6080.78 8187.82 6484.21 7888.03 9076.50 3881.18 10969.29 13692.63 3496.83 2369.07 11391.23 6389.60 6293.97 4384.00 97
abl_679.30 9784.98 8785.78 7090.50 6666.88 10177.08 13274.02 10873.29 17989.34 12868.94 11490.49 9085.98 81
IB-MVS71.28 1775.21 14577.00 15173.12 13676.76 15777.45 12883.05 12758.92 16763.01 19064.31 15759.99 20887.57 14068.64 11586.26 11082.34 12587.05 13282.36 114
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
OpenMVScopyleft75.38 1678.44 12581.39 13074.99 12580.46 12879.85 10979.99 14858.31 17077.34 13173.85 11077.19 15282.33 15968.60 11684.67 12681.95 12688.72 11386.40 80
UniMVSNet_NR-MVSNet84.62 7388.00 6980.68 8588.18 5983.83 8087.06 10276.47 3981.46 10570.49 13093.24 2395.56 4968.13 11790.43 7488.47 7093.78 4683.02 104
DU-MVS84.88 7088.27 6680.92 7988.30 5783.59 8487.06 10278.35 2080.64 11470.49 13092.67 3296.91 2268.13 11791.79 5189.29 6693.20 5483.02 104
pmmvs-eth3d79.64 11482.06 12776.83 11180.05 13172.64 16087.47 9666.59 10380.83 11373.50 11289.32 6993.20 9167.78 11980.78 15381.64 13085.58 15076.01 150
CHOSEN 1792x268868.80 17371.09 17666.13 17469.11 18868.89 17478.98 15754.68 17961.63 19656.69 17271.56 18378.39 17067.69 12072.13 18672.01 17669.63 19373.02 164
DPM-MVS81.42 10182.11 12680.62 8687.54 6585.30 7490.18 7368.96 8281.00 11279.15 8570.45 19283.29 15467.67 12182.81 13783.46 11390.19 9388.48 66
IS_MVSNet81.72 9985.01 9777.90 10586.19 7782.64 9185.56 11170.02 7280.11 11963.52 15887.28 9081.18 16167.26 12291.08 6889.33 6594.82 3383.42 101
DELS-MVS79.71 11383.74 11675.01 12479.31 13782.68 9084.79 11960.06 16275.43 13969.09 13786.13 10189.38 12767.16 12385.12 11883.87 11189.65 9983.57 99
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
TranMVSNet+NR-MVSNet85.23 6789.38 5580.39 9088.78 5383.77 8187.40 9776.75 3585.47 7068.99 13895.18 897.55 1767.13 12491.61 5789.13 6793.26 5382.95 107
Baseline_NR-MVSNet82.79 9086.51 7878.44 10388.30 5775.62 14687.81 9274.97 4881.53 10266.84 15194.71 1296.46 2666.90 12591.79 5183.37 11885.83 14782.09 115
DI_MVS_plusplus_trai77.64 12879.64 13475.31 12079.87 13376.89 13581.55 14063.64 13476.21 13572.03 12185.59 10882.97 15666.63 12679.27 16177.78 15288.14 12178.76 142
USDC81.39 10383.07 12179.43 9581.48 12378.95 11882.62 13266.17 10787.45 5490.73 482.40 12693.65 8566.57 12783.63 13277.97 15089.00 10977.45 148
PVSNet_BlendedMVS76.45 13678.12 14074.49 12876.76 15778.46 12079.65 15263.26 13965.42 18073.15 11475.05 16988.96 13166.51 12882.73 13877.66 15387.61 12678.60 143
PVSNet_Blended76.45 13678.12 14074.49 12876.76 15778.46 12079.65 15263.26 13965.42 18073.15 11475.05 16988.96 13166.51 12882.73 13877.66 15387.61 12678.60 143
ET-MVSNet_ETH3D74.71 14874.19 16875.31 12079.22 13975.29 14782.70 13164.05 12865.45 17970.96 12977.15 15357.70 20765.89 13084.40 12881.65 12989.03 10877.67 147
casdiffmvs79.93 11184.11 11275.05 12281.41 12578.99 11782.95 12962.90 14381.53 10268.60 14391.94 3796.03 3765.84 13182.89 13577.07 15888.59 11680.34 132
SCA68.54 17567.52 18469.73 15367.79 19175.04 14876.96 16668.94 8366.41 17367.86 14774.03 17360.96 19865.55 13268.99 19465.67 18971.30 18861.54 194
canonicalmvs81.22 10586.04 8775.60 11783.17 11083.18 8780.29 14665.82 11385.97 6767.98 14677.74 14791.51 11365.17 13388.62 8786.15 8891.17 8689.09 60
CR-MVSNet69.56 17068.34 18270.99 14472.78 17867.63 17664.47 20267.74 9759.93 20072.30 11880.10 13256.77 20965.04 13471.64 18772.91 17383.61 16269.40 173
PatchT66.25 18166.76 18665.67 17855.87 20760.75 19270.17 19159.00 16659.80 20272.30 11878.68 14254.12 21465.04 13471.64 18772.91 17371.63 18569.40 173
pmmvs475.92 14077.48 14874.10 13078.21 14870.94 16484.06 12264.78 12075.13 14068.47 14484.12 11783.32 15364.74 13675.93 17579.14 14884.31 15773.77 160
CLD-MVS82.75 9287.22 7677.54 10988.01 6385.76 7190.23 7154.52 18182.28 9482.11 6688.48 8095.27 5563.95 13789.41 8188.29 7286.45 13881.01 124
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
GA-MVS75.01 14776.39 15573.39 13378.37 14575.66 14580.03 14758.40 16970.51 15775.85 9783.24 12176.14 17963.75 13877.28 16776.62 16183.97 15975.30 155
UniMVSNet_ETH3D85.39 6491.12 4578.71 9990.48 3783.72 8281.76 13782.41 693.84 664.43 15695.41 798.76 163.72 13993.63 3489.74 5989.47 10482.74 110
MVEpermissive41.12 1951.80 20660.92 20241.16 20635.21 21534.14 21548.45 21541.39 20369.11 16419.53 21363.33 20473.80 18663.56 14067.19 19761.51 19738.85 21257.38 202
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
CMPMVSbinary55.74 1871.56 16376.26 15666.08 17568.11 19063.91 18863.17 20450.52 19668.79 16675.49 9870.78 19185.67 14663.54 14181.58 14777.20 15775.63 17785.86 82
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
MVS_Test76.72 13379.40 13673.60 13178.85 14374.99 15079.91 14961.56 15169.67 15972.44 11785.98 10490.78 12063.50 14278.30 16375.74 16585.33 15180.31 133
CHOSEN 280x42056.32 20358.85 20953.36 20051.63 20939.91 21369.12 19838.61 20556.29 20536.79 20948.84 21062.59 19763.39 14373.61 18367.66 18660.61 20163.07 188
Fast-Effi-MVS+-dtu76.92 13177.18 14976.62 11379.55 13479.17 11584.80 11877.40 3064.46 18468.75 14170.81 19086.57 14363.36 14481.74 14681.76 12885.86 14675.78 152
MS-PatchMatch71.18 16673.99 17067.89 16777.16 15571.76 16377.18 16456.38 17567.35 16955.04 17974.63 17175.70 18162.38 14576.62 17075.97 16479.22 17375.90 151
diffmvs76.74 13281.61 12971.06 14375.64 16874.45 15580.68 14457.57 17277.48 12967.62 14988.95 7493.94 8161.98 14679.74 15876.18 16282.85 16580.50 127
MDTV_nov1_ep13_2view72.96 15875.59 16269.88 15271.15 18364.86 18582.31 13454.45 18276.30 13478.32 8986.52 9791.58 11161.35 14776.80 16866.83 18871.70 18366.26 179
baseline268.71 17468.34 18269.14 15775.69 16769.70 17176.60 16755.53 17860.13 19962.07 16566.76 20160.35 20060.77 14876.53 17374.03 16984.19 15870.88 167
PatchmatchNetpermissive64.81 18463.74 19466.06 17669.21 18758.62 19573.16 18460.01 16365.92 17566.19 15476.27 15859.09 20260.45 14966.58 19961.47 19867.33 19758.24 199
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
RPMNet67.02 17963.99 19370.56 14871.55 18167.63 17675.81 17169.44 7759.93 20063.24 15964.32 20347.51 21759.68 15070.37 19169.64 18383.64 16168.49 176
EPNet79.36 11879.44 13579.27 9889.51 4677.20 13288.35 8977.35 3268.27 16774.29 10776.31 15779.22 16659.63 15185.02 12385.45 9586.49 13784.61 89
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
tpm cat164.79 18562.74 19867.17 16874.61 17265.91 18376.18 17059.32 16464.88 18366.41 15371.21 18753.56 21559.17 15261.53 20658.16 20167.33 19763.95 183
gm-plane-assit71.56 16369.99 17773.39 13384.43 9373.21 15890.42 7051.36 19484.08 8176.00 9691.30 4737.09 21859.01 15373.65 18270.24 18179.09 17460.37 195
E-PMN59.07 19762.79 19754.72 19767.01 19647.81 20960.44 20743.40 20072.95 14644.63 20070.42 19373.17 18858.73 15480.97 15251.98 20854.14 20842.26 210
DCV-MVSNet80.04 11085.67 9173.48 13282.91 11281.11 10480.44 14566.06 10885.01 7562.53 16378.84 14094.43 7758.51 15588.66 8685.91 9090.41 9185.73 84
PMMVS61.98 19265.61 18857.74 19145.03 21351.76 20569.54 19535.05 20655.49 20755.32 17768.23 19778.39 17058.09 15670.21 19271.56 17883.42 16363.66 184
dps65.14 18264.50 19165.89 17771.41 18265.81 18471.44 18861.59 15058.56 20361.43 16675.45 16752.70 21658.06 15769.57 19364.65 19071.39 18764.77 181
EMVS58.97 19862.63 19954.70 19866.26 20048.71 20761.74 20542.71 20172.80 14846.00 19973.01 18071.66 18957.91 15880.41 15650.68 21053.55 20941.11 211
MVSTER68.08 17769.73 17866.16 17366.33 19970.06 16875.71 17652.36 19055.18 20858.64 16970.23 19556.72 21057.34 15979.68 15976.03 16386.61 13580.20 134
MVS-HIRNet59.74 19458.74 21060.92 18757.74 20645.81 21056.02 21058.69 16855.69 20665.17 15570.86 18971.66 18956.75 16061.11 20753.74 20671.17 18952.28 205
CostFormer66.81 18066.94 18566.67 17172.79 17768.25 17579.55 15555.57 17765.52 17862.77 16176.98 15460.09 20156.73 16165.69 20262.35 19272.59 18269.71 172
Anonymous2023121179.37 11785.78 8971.89 13982.87 11479.66 11378.77 15863.93 13383.36 8459.39 16790.54 5294.66 7156.46 16287.38 9884.12 10889.92 9780.74 125
test-mter59.39 19661.59 20056.82 19353.21 20854.82 19973.12 18526.57 21153.19 20956.31 17364.71 20260.47 19956.36 16368.69 19564.27 19175.38 17865.00 180
pmmvs680.46 10788.34 6571.26 14181.96 12077.51 12777.54 16168.83 8493.72 755.92 17593.94 1898.03 1055.94 16489.21 8385.61 9387.36 12980.38 128
Anonymous20240521184.68 10383.92 9979.45 11479.03 15667.79 9682.01 9688.77 7992.58 9755.93 16586.68 10584.26 10788.92 11078.98 139
thres600view774.34 15078.43 13969.56 15580.47 12776.28 13978.65 15962.56 14577.39 13052.53 18574.03 17376.78 17755.90 16685.06 11985.19 9787.25 13074.29 157
FMVSNet178.20 12784.83 10270.46 14978.62 14479.03 11677.90 16067.53 9983.02 8755.10 17887.19 9293.18 9255.65 16785.57 11383.39 11587.98 12282.40 113
MDTV_nov1_ep1364.96 18364.77 19065.18 18067.08 19562.46 19075.80 17251.10 19562.27 19569.74 13374.12 17262.65 19655.64 16868.19 19662.16 19671.70 18361.57 193
thres40073.13 15676.99 15268.62 16079.46 13574.93 15177.23 16361.23 15475.54 13752.31 18872.20 18177.10 17554.89 16982.92 13482.62 12486.57 13673.66 162
thres20072.41 16076.00 16068.21 16378.28 14676.28 13974.94 17962.56 14572.14 15251.35 19369.59 19676.51 17854.89 16985.06 11980.51 13887.25 13071.92 165
tfpnnormal77.16 13084.26 10868.88 15981.02 12675.02 14976.52 16863.30 13887.29 5552.40 18791.24 4993.97 8054.85 17185.46 11681.08 13285.18 15375.76 153
baseline69.33 17175.37 16462.28 18566.54 19766.67 18173.95 18248.07 19766.10 17459.26 16882.45 12486.30 14454.44 17274.42 17873.25 17271.42 18678.43 145
pm-mvs178.21 12685.68 9069.50 15680.38 12975.73 14476.25 16965.04 11887.59 5254.47 18093.16 2595.99 4154.20 17386.37 10882.98 12286.64 13477.96 146
NR-MVSNet82.89 8887.43 7477.59 10883.91 10083.59 8487.10 10178.35 2080.64 11468.85 13992.67 3296.50 2554.19 17487.19 10388.68 6993.16 5782.75 109
pmmvs362.72 18968.71 18155.74 19550.74 21157.10 19670.05 19228.82 20961.57 19857.39 17171.19 18885.73 14553.96 17573.36 18469.43 18473.47 18162.55 189
CANet_DTU75.04 14678.45 13871.07 14277.27 15477.96 12483.88 12458.00 17164.11 18568.67 14275.65 16688.37 13653.92 17682.05 14381.11 13184.67 15579.88 135
TransMVSNet (Re)79.05 12286.66 7770.18 15183.32 10775.99 14177.54 16163.98 13190.68 2455.84 17694.80 1096.06 3653.73 17786.27 10983.22 11986.65 13379.61 137
UGNet79.62 11585.91 8872.28 13873.52 17383.91 7986.64 10669.51 7579.85 12162.57 16285.82 10689.63 12553.18 17888.39 9187.35 7788.28 12086.43 79
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
Vis-MVSNet (Re-imp)76.15 13880.84 13170.68 14683.66 10474.80 15381.66 13969.59 7380.48 11746.94 19887.44 8780.63 16353.14 17986.87 10484.56 10589.12 10771.12 166
test-LLR62.15 19159.46 20765.29 17979.07 14052.66 20369.46 19662.93 14150.76 21153.81 18263.11 20558.91 20352.87 18066.54 20062.34 19373.59 17961.87 191
TESTMET0.1,157.21 19959.46 20754.60 19950.95 21052.66 20369.46 19626.91 21050.76 21153.81 18263.11 20558.91 20352.87 18066.54 20062.34 19373.59 17961.87 191
GBi-Net73.17 15477.64 14567.95 16576.76 15777.36 12975.77 17364.57 12162.99 19151.83 19076.05 16077.76 17252.73 18285.57 11383.39 11586.04 14280.37 129
test173.17 15477.64 14567.95 16576.76 15777.36 12975.77 17364.57 12162.99 19151.83 19076.05 16077.76 17252.73 18285.57 11383.39 11586.04 14280.37 129
FMVSNet274.43 14979.70 13368.27 16276.76 15777.36 12975.77 17365.36 11672.28 14952.97 18481.92 12885.61 14752.73 18280.66 15479.73 14386.04 14280.37 129
tfpn200view972.01 16175.40 16368.06 16477.97 15076.44 13777.04 16562.67 14466.81 17150.82 19467.30 19975.67 18252.46 18585.06 11982.64 12387.41 12873.86 159
EPNet_dtu71.90 16273.03 17470.59 14778.28 14661.64 19182.44 13364.12 12663.26 18869.74 13371.47 18482.41 15751.89 18678.83 16278.01 14977.07 17675.60 154
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
FMVSNet371.40 16575.20 16666.97 16975.00 17176.59 13674.29 18064.57 12162.99 19151.83 19076.05 16077.76 17251.49 18776.58 17177.03 15984.62 15679.43 138
thres100view90069.86 16872.97 17566.24 17277.97 15072.49 16173.29 18359.12 16566.81 17150.82 19467.30 19975.67 18250.54 18878.24 16479.40 14585.71 14970.88 167
FC-MVSNet-train79.20 12186.29 8270.94 14584.06 9577.67 12685.68 11064.11 12782.90 8852.22 18992.57 3593.69 8449.52 18988.30 9386.93 8090.03 9581.95 117
tpmrst59.42 19560.02 20558.71 19067.56 19353.10 20266.99 20051.88 19163.80 18757.68 17076.73 15556.49 21148.73 19056.47 21055.55 20359.43 20458.02 200
tpm62.79 18863.25 19562.26 18670.09 18553.78 20071.65 18747.31 19865.72 17776.70 9380.62 13156.40 21248.11 19164.20 20458.54 19959.70 20363.47 185
FC-MVSNet-test75.91 14183.59 11866.95 17076.63 16569.07 17285.33 11564.97 11984.87 7741.95 20293.17 2487.04 14147.78 19291.09 6785.56 9485.06 15474.34 156
baseline169.62 16973.55 17265.02 18178.95 14270.39 16671.38 18962.03 14870.97 15647.95 19778.47 14468.19 19347.77 19379.65 16076.94 16082.05 16770.27 169
pmmvs568.91 17274.35 16762.56 18467.45 19466.78 18071.70 18651.47 19367.17 17056.25 17482.41 12588.59 13547.21 19473.21 18574.23 16881.30 17068.03 177
MIMVSNet173.40 15281.85 12863.55 18272.90 17664.37 18684.58 12053.60 18690.84 2053.92 18187.75 8596.10 3445.31 19585.37 11779.32 14670.98 19069.18 175
EPMVS56.62 20159.77 20652.94 20162.41 20250.55 20660.66 20652.83 18965.15 18241.80 20377.46 15057.28 20842.68 19659.81 20854.82 20457.23 20653.35 204
CDS-MVSNet73.07 15777.02 15068.46 16181.62 12272.89 15979.56 15470.78 6869.56 16052.52 18677.37 15181.12 16242.60 19784.20 12983.93 10983.65 16070.07 171
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
TAMVS63.02 18669.30 17955.70 19670.12 18456.89 19769.63 19445.13 19970.23 15838.00 20877.79 14575.15 18442.60 19774.48 17772.81 17568.70 19557.75 201
gg-mvs-nofinetune72.68 15975.21 16569.73 15381.48 12369.04 17370.48 19076.67 3686.92 5967.80 14888.06 8364.67 19542.12 19977.60 16573.65 17079.81 17166.57 178
Anonymous2023120667.28 17873.41 17360.12 18876.45 16663.61 18974.21 18156.52 17476.35 13342.23 20175.81 16590.47 12241.51 20074.52 17669.97 18269.83 19263.17 187
test20.0369.91 16776.20 15862.58 18384.01 9867.34 17875.67 17765.88 11279.98 12040.28 20682.65 12389.31 12939.63 20177.41 16673.28 17169.98 19163.40 186
ADS-MVSNet56.89 20061.09 20152.00 20259.48 20448.10 20858.02 20854.37 18372.82 14749.19 19675.32 16865.97 19437.96 20259.34 20954.66 20552.99 21051.42 206
MIMVSNet63.02 18669.02 18056.01 19468.20 18959.26 19470.01 19353.79 18571.56 15441.26 20571.38 18582.38 15836.38 20371.43 18967.32 18766.45 19959.83 196
FMVSNet556.37 20260.14 20451.98 20360.83 20359.58 19366.85 20142.37 20252.68 21041.33 20447.09 21154.68 21335.28 20473.88 18070.77 17965.24 20062.26 190
DeepMVS_CXcopyleft17.78 21620.40 2166.69 21231.41 2139.80 21638.61 21234.88 21933.78 20528.41 21223.59 21445.77 209
test0.0.03 161.79 19365.33 18957.65 19279.07 14064.09 18768.51 19962.93 14161.59 19733.71 21061.58 20771.58 19133.43 20670.95 19068.68 18568.26 19658.82 197
testgi68.20 17676.05 15959.04 18979.99 13267.32 17981.16 14151.78 19284.91 7639.36 20773.42 17795.19 5732.79 20776.54 17270.40 18069.14 19464.55 182
N_pmnet54.95 20465.90 18742.18 20566.37 19843.86 21257.92 20939.79 20479.54 12317.24 21586.31 9887.91 13825.44 20864.68 20351.76 20946.33 21147.23 208
new-patchmatchnet62.59 19073.79 17149.53 20476.98 15653.57 20153.46 21254.64 18085.43 7128.81 21191.94 3796.41 2925.28 20976.80 16853.66 20757.99 20558.69 198
new_pmnet52.29 20563.16 19639.61 20758.89 20544.70 21148.78 21434.73 20765.88 17617.85 21473.42 17780.00 16423.06 21067.00 19862.28 19554.36 20748.81 207
PMMVS248.13 20764.06 19229.55 20844.06 21436.69 21451.95 21329.97 20874.75 1428.90 21776.02 16391.24 1177.53 21173.78 18155.91 20234.87 21340.01 212
tmp_tt13.54 21016.73 2166.42 2178.49 2172.36 21328.69 21427.44 21218.40 21313.51 2203.70 21233.23 21136.26 21122.54 215
test1231.06 2091.41 2110.64 2110.39 2170.48 2180.52 2200.25 2151.11 2161.37 2192.01 2151.98 2210.87 2131.43 2131.27 2120.46 2171.62 214
testmvs0.93 2101.37 2120.41 2120.36 2180.36 2190.62 2190.39 2141.48 2150.18 2202.41 2141.31 2220.41 2141.25 2141.08 2130.48 2161.68 213
GG-mvs-BLEND41.63 20860.36 20319.78 2090.14 21966.04 18255.66 2110.17 21657.64 2042.42 21851.82 20969.42 1920.28 21564.11 20558.29 20060.02 20255.18 203
uanet_test0.00 2110.00 2130.00 2130.00 2200.00 2200.00 2210.00 2170.00 2170.00 2210.00 2160.00 2230.00 2160.00 2150.00 2140.00 2180.00 215
sosnet-low-res0.00 2110.00 2130.00 2130.00 2200.00 2200.00 2210.00 2170.00 2170.00 2210.00 2160.00 2230.00 2160.00 2150.00 2140.00 2180.00 215
sosnet0.00 2110.00 2130.00 2130.00 2200.00 2200.00 2210.00 2170.00 2170.00 2210.00 2160.00 2230.00 2160.00 2150.00 2140.00 2180.00 215
RE-MVS-def87.10 29
9.1489.43 126
SR-MVS91.82 1380.80 795.53 50
our_test_373.27 17470.91 16583.26 125
MTAPA89.37 994.85 67
MTMP90.54 595.16 59
Patchmatch-RL test4.13 218
XVS91.28 2591.23 896.89 287.14 2694.53 7295.84 15
X-MVStestdata91.28 2591.23 896.89 287.14 2694.53 7295.84 15
mPP-MVS93.05 495.77 44
NP-MVS78.65 127
Patchmtry56.88 19864.47 20267.74 9772.30 118