LCM-MVSNet | | | 95.70 1 | 96.40 1 | 93.61 2 | 98.67 1 | 85.39 34 | 95.54 5 | 97.36 1 | 96.97 1 | 99.04 1 | 99.05 1 | 96.61 1 | 95.92 14 | 85.07 52 | 99.27 1 | 99.54 1 |
|
UniMVSNet_ETH3D | | | 89.12 64 | 90.72 46 | 84.31 154 | 97.00 2 | 64.33 219 | 89.67 65 | 88.38 197 | 88.84 15 | 94.29 19 | 97.57 3 | 90.48 14 | 91.26 193 | 72.57 193 | 97.65 62 | 97.34 14 |
|
PMVS |  | 80.48 6 | 90.08 41 | 90.66 47 | 88.34 83 | 96.71 3 | 92.97 1 | 90.31 51 | 89.57 180 | 88.51 19 | 90.11 93 | 95.12 42 | 90.98 7 | 88.92 251 | 77.55 140 | 97.07 86 | 83.13 316 |
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
zzz-MVS | | | 91.27 22 | 91.26 33 | 91.29 29 | 96.59 4 | 86.29 19 | 88.94 80 | 91.81 119 | 84.07 40 | 92.00 63 | 94.40 68 | 86.63 54 | 95.28 57 | 88.59 5 | 98.31 24 | 92.30 168 |
|
MTAPA | | | 91.52 16 | 91.60 20 | 91.29 29 | 96.59 4 | 86.29 19 | 92.02 30 | 91.81 119 | 84.07 40 | 92.00 63 | 94.40 68 | 86.63 54 | 95.28 57 | 88.59 5 | 98.31 24 | 92.30 168 |
|
PEN-MVS | | | 90.03 45 | 91.88 16 | 84.48 148 | 96.57 6 | 58.88 280 | 88.95 79 | 93.19 77 | 91.62 4 | 96.01 6 | 96.16 20 | 87.02 49 | 95.60 35 | 78.69 121 | 98.72 9 | 98.97 3 |
|
PS-CasMVS | | | 90.06 43 | 91.92 13 | 84.47 149 | 96.56 7 | 58.83 283 | 89.04 78 | 92.74 96 | 91.40 5 | 96.12 4 | 96.06 22 | 87.23 47 | 95.57 36 | 79.42 116 | 98.74 6 | 99.00 2 |
|
DTE-MVSNet | | | 89.98 47 | 91.91 15 | 84.21 156 | 96.51 8 | 57.84 288 | 88.93 81 | 92.84 93 | 91.92 3 | 96.16 3 | 96.23 18 | 86.95 50 | 95.99 10 | 79.05 118 | 98.57 15 | 98.80 6 |
|
CP-MVSNet | | | 89.27 61 | 90.91 43 | 84.37 150 | 96.34 9 | 58.61 285 | 88.66 88 | 92.06 110 | 90.78 6 | 95.67 7 | 95.17 40 | 81.80 111 | 95.54 41 | 79.00 119 | 98.69 10 | 98.95 4 |
|
WR-MVS_H | | | 89.91 50 | 91.31 31 | 85.71 128 | 96.32 10 | 62.39 241 | 89.54 70 | 93.31 70 | 90.21 10 | 95.57 9 | 95.66 29 | 81.42 115 | 95.90 15 | 80.94 96 | 98.80 3 | 98.84 5 |
|
MP-MVS |  | | 91.14 27 | 90.91 43 | 91.83 21 | 96.18 11 | 86.88 16 | 92.20 27 | 93.03 85 | 82.59 60 | 88.52 131 | 94.37 71 | 86.74 53 | 95.41 51 | 86.32 37 | 98.21 30 | 93.19 131 |
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
FOURS1 | | | | | | 96.08 12 | 87.41 13 | 96.19 2 | 95.83 4 | 92.95 2 | 96.57 2 | | | | | | |
|
mPP-MVS | | | 91.69 13 | 91.47 24 | 92.37 6 | 96.04 13 | 88.48 10 | 92.72 18 | 92.60 99 | 83.09 54 | 91.54 70 | 94.25 76 | 87.67 43 | 95.51 44 | 87.21 27 | 98.11 36 | 93.12 133 |
|
MP-MVS-pluss | | | 90.81 29 | 91.08 36 | 89.99 51 | 95.97 14 | 79.88 74 | 88.13 93 | 94.51 21 | 75.79 141 | 92.94 44 | 94.96 44 | 88.36 29 | 95.01 67 | 90.70 2 | 98.40 20 | 95.09 62 |
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss |
TDRefinement | | | 93.52 2 | 93.39 3 | 93.88 1 | 95.94 15 | 90.26 3 | 95.70 4 | 96.46 2 | 90.58 8 | 92.86 47 | 96.29 16 | 88.16 35 | 94.17 96 | 86.07 43 | 98.48 18 | 97.22 17 |
|
ACMMP_NAP | | | 90.65 31 | 91.07 38 | 89.42 60 | 95.93 16 | 79.54 79 | 89.95 58 | 93.68 56 | 77.65 117 | 91.97 65 | 94.89 46 | 88.38 28 | 95.45 49 | 89.27 3 | 97.87 52 | 93.27 127 |
|
HPM-MVS_fast | | | 92.50 5 | 92.54 6 | 92.37 6 | 95.93 16 | 85.81 32 | 92.99 13 | 94.23 26 | 85.21 34 | 92.51 54 | 95.13 41 | 90.65 10 | 95.34 54 | 88.06 9 | 98.15 35 | 95.95 40 |
|
MSP-MVS | | | 89.08 65 | 88.16 77 | 91.83 21 | 95.76 18 | 86.14 24 | 92.75 17 | 93.90 46 | 78.43 111 | 89.16 120 | 92.25 143 | 72.03 215 | 96.36 2 | 88.21 8 | 90.93 254 | 92.98 138 |
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025 |
region2R | | | 91.44 20 | 91.30 32 | 91.87 19 | 95.75 19 | 85.90 28 | 92.63 21 | 93.30 72 | 81.91 68 | 90.88 84 | 94.21 77 | 87.75 41 | 95.87 18 | 87.60 16 | 97.71 60 | 93.83 104 |
|
ACMMPR | | | 91.49 17 | 91.35 28 | 91.92 16 | 95.74 20 | 85.88 29 | 92.58 22 | 93.25 75 | 81.99 66 | 91.40 73 | 94.17 81 | 87.51 44 | 95.87 18 | 87.74 11 | 97.76 56 | 93.99 97 |
|
ZNCC-MVS | | | 91.26 23 | 91.34 29 | 91.01 35 | 95.73 21 | 83.05 54 | 92.18 28 | 94.22 27 | 80.14 89 | 91.29 76 | 93.97 90 | 87.93 40 | 95.87 18 | 88.65 4 | 97.96 47 | 94.12 94 |
|
TSAR-MVS + MP. | | | 88.14 75 | 87.82 80 | 89.09 66 | 95.72 22 | 76.74 114 | 92.49 25 | 91.19 136 | 67.85 240 | 86.63 166 | 94.84 48 | 79.58 135 | 95.96 13 | 87.62 14 | 94.50 178 | 94.56 75 |
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
PGM-MVS | | | 91.20 25 | 90.95 42 | 91.93 15 | 95.67 23 | 85.85 30 | 90.00 55 | 93.90 46 | 80.32 86 | 91.74 69 | 94.41 67 | 88.17 34 | 95.98 11 | 86.37 36 | 97.99 42 | 93.96 99 |
|
XVS | | | 91.54 15 | 91.36 26 | 92.08 10 | 95.64 24 | 86.25 21 | 92.64 19 | 93.33 67 | 85.07 35 | 89.99 97 | 94.03 87 | 86.57 56 | 95.80 24 | 87.35 23 | 97.62 64 | 94.20 89 |
|
X-MVStestdata | | | 85.04 121 | 82.70 165 | 92.08 10 | 95.64 24 | 86.25 21 | 92.64 19 | 93.33 67 | 85.07 35 | 89.99 97 | 16.05 372 | 86.57 56 | 95.80 24 | 87.35 23 | 97.62 64 | 94.20 89 |
|
HPM-MVS |  | | 92.13 9 | 92.20 11 | 91.91 17 | 95.58 26 | 84.67 43 | 93.51 8 | 94.85 16 | 82.88 57 | 91.77 68 | 93.94 97 | 90.55 13 | 95.73 30 | 88.50 7 | 98.23 29 | 95.33 53 |
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023 |
ACMMP |  | | 91.91 12 | 91.87 17 | 92.03 13 | 95.53 27 | 85.91 27 | 93.35 11 | 94.16 31 | 82.52 61 | 92.39 57 | 94.14 83 | 89.15 23 | 95.62 34 | 87.35 23 | 98.24 28 | 94.56 75 |
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
GST-MVS | | | 90.96 28 | 91.01 39 | 90.82 38 | 95.45 28 | 82.73 57 | 91.75 36 | 93.74 52 | 80.98 79 | 91.38 74 | 93.80 100 | 87.20 48 | 95.80 24 | 87.10 31 | 97.69 61 | 93.93 100 |
|
HFP-MVS | | | 91.30 21 | 91.39 25 | 91.02 33 | 95.43 29 | 84.66 44 | 92.58 22 | 93.29 73 | 81.99 66 | 91.47 71 | 93.96 93 | 88.35 30 | 95.56 37 | 87.74 11 | 97.74 58 | 92.85 142 |
|
#test# | | | 90.49 36 | 90.31 51 | 91.02 33 | 95.43 29 | 84.66 44 | 90.65 44 | 93.29 73 | 77.00 125 | 91.47 71 | 93.96 93 | 88.35 30 | 95.56 37 | 84.88 55 | 97.74 58 | 92.85 142 |
|
SMA-MVS |  | | 90.31 38 | 90.48 49 | 89.83 52 | 95.31 31 | 79.52 80 | 90.98 42 | 93.24 76 | 75.37 148 | 92.84 48 | 95.28 36 | 85.58 66 | 96.09 7 | 87.92 10 | 97.76 56 | 93.88 102 |
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
CP-MVS | | | 91.67 14 | 91.58 21 | 91.96 14 | 95.29 32 | 87.62 12 | 93.38 9 | 93.36 65 | 83.16 53 | 91.06 79 | 94.00 89 | 88.26 32 | 95.71 31 | 87.28 26 | 98.39 21 | 92.55 156 |
|
VDDNet | | | 84.35 136 | 85.39 120 | 81.25 213 | 95.13 33 | 59.32 273 | 85.42 136 | 81.11 276 | 86.41 29 | 87.41 148 | 96.21 19 | 73.61 192 | 90.61 216 | 66.33 242 | 96.85 92 | 93.81 109 |
|
CPTT-MVS | | | 89.39 59 | 88.98 68 | 90.63 41 | 95.09 34 | 86.95 15 | 92.09 29 | 92.30 105 | 79.74 92 | 87.50 147 | 92.38 136 | 81.42 115 | 93.28 134 | 83.07 73 | 97.24 82 | 91.67 192 |
|
ACMM | | 79.39 9 | 90.65 31 | 90.99 40 | 89.63 56 | 95.03 35 | 83.53 49 | 89.62 67 | 93.35 66 | 79.20 100 | 93.83 28 | 93.60 107 | 90.81 8 | 92.96 146 | 85.02 54 | 98.45 19 | 92.41 162 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
UA-Net | | | 91.49 17 | 91.53 22 | 91.39 26 | 94.98 36 | 82.95 56 | 93.52 7 | 92.79 94 | 88.22 20 | 88.53 130 | 97.64 2 | 83.45 83 | 94.55 85 | 86.02 46 | 98.60 13 | 96.67 26 |
|
HPM-MVS++ |  | | 88.93 68 | 88.45 75 | 90.38 45 | 94.92 37 | 85.85 30 | 89.70 62 | 91.27 133 | 78.20 113 | 86.69 165 | 92.28 142 | 80.36 129 | 95.06 66 | 86.17 42 | 96.49 106 | 90.22 224 |
|
XVG-ACMP-BASELINE | | | 89.98 47 | 89.84 54 | 90.41 44 | 94.91 38 | 84.50 46 | 89.49 72 | 93.98 42 | 79.68 93 | 92.09 61 | 93.89 98 | 83.80 79 | 93.10 143 | 82.67 78 | 98.04 37 | 93.64 117 |
|
EGC-MVSNET | | | 74.79 267 | 69.99 301 | 89.19 64 | 94.89 39 | 87.00 14 | 91.89 35 | 86.28 230 | 1.09 373 | 2.23 375 | 95.98 23 | 81.87 110 | 89.48 242 | 79.76 109 | 95.96 128 | 91.10 201 |
|
SR-MVS | | | 92.23 8 | 92.34 9 | 91.91 17 | 94.89 39 | 87.85 11 | 92.51 24 | 93.87 49 | 88.20 21 | 93.24 41 | 94.02 88 | 90.15 17 | 95.67 33 | 86.82 32 | 97.34 79 | 92.19 176 |
|
OPM-MVS | | | 89.80 51 | 89.97 52 | 89.27 62 | 94.76 41 | 79.86 75 | 86.76 116 | 92.78 95 | 78.78 106 | 92.51 54 | 93.64 106 | 88.13 36 | 93.84 110 | 84.83 57 | 97.55 69 | 94.10 95 |
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS). |
LPG-MVS_test | | | 91.47 19 | 91.68 18 | 90.82 38 | 94.75 42 | 81.69 61 | 90.00 55 | 94.27 23 | 82.35 63 | 93.67 34 | 94.82 49 | 91.18 5 | 95.52 42 | 85.36 50 | 98.73 7 | 95.23 58 |
|
LGP-MVS_train | | | | | 90.82 38 | 94.75 42 | 81.69 61 | | 94.27 23 | 82.35 63 | 93.67 34 | 94.82 49 | 91.18 5 | 95.52 42 | 85.36 50 | 98.73 7 | 95.23 58 |
|
abl_6 | | | 93.02 4 | 93.16 4 | 92.60 4 | 94.73 44 | 88.99 7 | 93.26 12 | 94.19 30 | 89.11 12 | 94.43 16 | 95.27 37 | 91.86 3 | 95.09 64 | 87.54 18 | 98.02 40 | 93.71 112 |
|
test1172 | | | 92.40 7 | 92.41 7 | 92.37 6 | 94.68 45 | 89.04 6 | 91.98 31 | 93.62 57 | 90.14 11 | 93.63 36 | 94.16 82 | 88.83 24 | 95.51 44 | 87.11 30 | 97.54 72 | 92.54 157 |
|
XVG-OURS-SEG-HR | | | 89.59 55 | 89.37 61 | 90.28 47 | 94.47 46 | 85.95 26 | 86.84 112 | 93.91 45 | 80.07 90 | 86.75 162 | 93.26 110 | 93.64 2 | 90.93 203 | 84.60 59 | 90.75 259 | 93.97 98 |
|
ACMP | | 79.16 10 | 90.54 34 | 90.60 48 | 90.35 46 | 94.36 47 | 80.98 67 | 89.16 76 | 94.05 40 | 79.03 103 | 92.87 46 | 93.74 104 | 90.60 12 | 95.21 61 | 82.87 76 | 98.76 4 | 94.87 64 |
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
XVG-OURS | | | 89.18 62 | 88.83 71 | 90.23 48 | 94.28 48 | 86.11 25 | 85.91 127 | 93.60 60 | 80.16 88 | 89.13 121 | 93.44 108 | 83.82 78 | 90.98 201 | 83.86 66 | 95.30 154 | 93.60 119 |
|
test_0728_SECOND | | | | | 86.79 102 | 94.25 49 | 72.45 149 | 90.54 46 | 94.10 38 | | | | | 95.88 16 | 86.42 34 | 97.97 45 | 92.02 180 |
|
SED-MVS | | | 90.46 37 | 91.64 19 | 86.93 99 | 94.18 50 | 72.65 139 | 90.47 49 | 93.69 54 | 83.77 44 | 94.11 23 | 94.27 72 | 90.28 15 | 95.84 22 | 86.03 44 | 97.92 48 | 92.29 170 |
|
IU-MVS | | | | | | 94.18 50 | 72.64 141 | | 90.82 145 | 56.98 315 | 89.67 108 | | | | 85.78 47 | 97.92 48 | 93.28 126 |
|
test_241102_ONE | | | | | | 94.18 50 | 72.65 139 | | 93.69 54 | 83.62 46 | 94.11 23 | 93.78 103 | 90.28 15 | 95.50 47 | | | |
|
DVP-MVS |  | | 90.06 43 | 91.32 30 | 86.29 112 | 94.16 53 | 72.56 145 | 90.54 46 | 91.01 140 | 83.61 47 | 93.75 31 | 94.65 54 | 89.76 19 | 95.78 27 | 86.42 34 | 97.97 45 | 90.55 219 |
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025 |
test0726 | | | | | | 94.16 53 | 72.56 145 | 90.63 45 | 93.90 46 | 83.61 47 | 93.75 31 | 94.49 61 | 89.76 19 | | | | |
|
SR-MVS-dyc-post | | | 92.41 6 | 92.41 7 | 92.39 5 | 94.13 55 | 88.95 8 | 92.87 14 | 94.16 31 | 88.75 16 | 93.79 29 | 94.43 64 | 88.83 24 | 95.51 44 | 87.16 28 | 97.60 66 | 92.73 147 |
|
RE-MVS-def | | | | 92.61 5 | | 94.13 55 | 88.95 8 | 92.87 14 | 94.16 31 | 88.75 16 | 93.79 29 | 94.43 64 | 90.64 11 | | 87.16 28 | 97.60 66 | 92.73 147 |
|
MIMVSNet1 | | | 83.63 155 | 84.59 136 | 80.74 223 | 94.06 57 | 62.77 235 | 82.72 197 | 84.53 257 | 77.57 120 | 90.34 90 | 95.92 24 | 76.88 166 | 85.83 292 | 61.88 274 | 97.42 77 | 93.62 118 |
|
TranMVSNet+NR-MVSNet | | | 87.86 79 | 88.76 73 | 85.18 136 | 94.02 58 | 64.13 220 | 84.38 152 | 91.29 132 | 84.88 37 | 92.06 62 | 93.84 99 | 86.45 58 | 93.73 113 | 73.22 184 | 98.66 11 | 97.69 9 |
|
新几何1 | | | | | 82.95 184 | 93.96 59 | 78.56 89 | | 80.24 282 | 55.45 320 | 83.93 218 | 91.08 171 | 71.19 220 | 88.33 260 | 65.84 247 | 93.07 210 | 81.95 329 |
|
1121 | | | 80.86 194 | 79.81 211 | 84.02 160 | 93.93 60 | 78.70 87 | 81.64 223 | 80.18 283 | 55.43 321 | 83.67 220 | 91.15 169 | 71.29 219 | 91.41 190 | 67.95 234 | 93.06 211 | 81.96 328 |
|
SteuartSystems-ACMMP | | | 91.16 26 | 91.36 26 | 90.55 42 | 93.91 61 | 80.97 68 | 91.49 38 | 93.48 63 | 82.82 58 | 92.60 53 | 93.97 90 | 88.19 33 | 96.29 4 | 87.61 15 | 98.20 32 | 94.39 84 |
Skip Steuart: Steuart Systems R&D Blog. |
test_part2 | | | | | | 93.86 62 | 77.77 97 | | | | 92.84 48 | | | | | | |
|
test_one_0601 | | | | | | 93.85 63 | 73.27 135 | | 94.11 37 | 86.57 27 | 93.47 40 | 94.64 57 | 88.42 27 | | | | |
|
xxxxxxxxxxxxxcwj | | | 89.04 66 | 89.13 64 | 88.79 71 | 93.75 64 | 77.44 102 | 86.31 124 | 95.27 12 | 70.80 207 | 92.28 58 | 93.80 100 | 86.89 51 | 94.64 78 | 85.52 48 | 97.51 74 | 94.30 87 |
|
save fliter | | | | | | 93.75 64 | 77.44 102 | 86.31 124 | 89.72 175 | 70.80 207 | | | | | | | |
|
LTVRE_ROB | | 86.10 1 | 93.04 3 | 93.44 2 | 91.82 23 | 93.73 66 | 85.72 33 | 96.79 1 | 95.51 8 | 88.86 14 | 95.63 8 | 96.99 8 | 84.81 70 | 93.16 139 | 91.10 1 | 97.53 73 | 96.58 29 |
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
COLMAP_ROB |  | 83.01 3 | 91.97 11 | 91.95 12 | 92.04 12 | 93.68 67 | 86.15 23 | 93.37 10 | 95.10 14 | 90.28 9 | 92.11 60 | 95.03 43 | 89.75 21 | 94.93 69 | 79.95 107 | 98.27 27 | 95.04 63 |
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
DeepC-MVS | | 82.31 4 | 89.15 63 | 89.08 65 | 89.37 61 | 93.64 68 | 79.07 83 | 88.54 89 | 94.20 28 | 73.53 166 | 89.71 106 | 94.82 49 | 85.09 67 | 95.77 29 | 84.17 63 | 98.03 39 | 93.26 128 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
mvs_tets | | | 89.78 52 | 89.27 63 | 91.30 28 | 93.51 69 | 84.79 41 | 89.89 60 | 90.63 150 | 70.00 218 | 94.55 15 | 96.67 11 | 87.94 39 | 93.59 121 | 84.27 62 | 95.97 127 | 95.52 48 |
|
HQP_MVS | | | 87.75 83 | 87.43 86 | 88.70 74 | 93.45 70 | 76.42 118 | 89.45 73 | 93.61 58 | 79.44 97 | 86.55 167 | 92.95 119 | 74.84 178 | 95.22 59 | 80.78 99 | 95.83 135 | 94.46 80 |
|
plane_prior7 | | | | | | 93.45 70 | 77.31 106 | | | | | | | | | | |
|
WR-MVS | | | 83.56 156 | 84.40 142 | 81.06 218 | 93.43 72 | 54.88 311 | 78.67 267 | 85.02 251 | 81.24 75 | 90.74 85 | 91.56 160 | 72.85 204 | 91.08 199 | 68.00 232 | 98.04 37 | 97.23 16 |
|
DPE-MVS |  | | 90.53 35 | 91.08 36 | 88.88 67 | 93.38 73 | 78.65 88 | 89.15 77 | 94.05 40 | 84.68 38 | 93.90 25 | 94.11 85 | 88.13 36 | 96.30 3 | 84.51 60 | 97.81 54 | 91.70 191 |
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025 |
jajsoiax | | | 89.41 58 | 88.81 72 | 91.19 32 | 93.38 73 | 84.72 42 | 89.70 62 | 90.29 164 | 69.27 222 | 94.39 17 | 96.38 15 | 86.02 64 | 93.52 125 | 83.96 64 | 95.92 132 | 95.34 52 |
|
PS-MVSNAJss | | | 88.31 73 | 87.90 79 | 89.56 59 | 93.31 75 | 77.96 95 | 87.94 96 | 91.97 113 | 70.73 209 | 94.19 22 | 96.67 11 | 76.94 160 | 94.57 82 | 83.07 73 | 96.28 114 | 96.15 32 |
|
test222 | | | | | | 93.31 75 | 76.54 115 | 79.38 255 | 77.79 295 | 52.59 334 | 82.36 238 | 90.84 182 | 66.83 239 | | | 91.69 239 | 81.25 337 |
|
DU-MVS | | | 86.80 91 | 86.99 92 | 86.21 117 | 93.24 77 | 67.02 197 | 83.16 188 | 92.21 106 | 81.73 70 | 90.92 81 | 91.97 147 | 77.20 154 | 93.99 102 | 74.16 172 | 98.35 22 | 97.61 10 |
|
NR-MVSNet | | | 86.00 104 | 86.22 103 | 85.34 134 | 93.24 77 | 64.56 216 | 82.21 216 | 90.46 153 | 80.99 78 | 88.42 133 | 91.97 147 | 77.56 150 | 93.85 108 | 72.46 194 | 98.65 12 | 97.61 10 |
|
OurMVSNet-221017-0 | | | 90.01 46 | 89.74 55 | 90.83 37 | 93.16 79 | 80.37 71 | 91.91 34 | 93.11 79 | 81.10 77 | 95.32 10 | 97.24 5 | 72.94 203 | 94.85 72 | 85.07 52 | 97.78 55 | 97.26 15 |
|
UniMVSNet (Re) | | | 86.87 88 | 86.98 93 | 86.55 106 | 93.11 80 | 68.48 187 | 83.80 167 | 92.87 90 | 80.37 84 | 89.61 112 | 91.81 154 | 77.72 148 | 94.18 94 | 75.00 168 | 98.53 16 | 96.99 22 |
|
APD-MVS_3200maxsize | | | 92.05 10 | 92.24 10 | 91.48 24 | 93.02 81 | 85.17 36 | 92.47 26 | 95.05 15 | 87.65 24 | 93.21 42 | 94.39 70 | 90.09 18 | 95.08 65 | 86.67 33 | 97.60 66 | 94.18 91 |
|
ACMH+ | | 77.89 11 | 90.73 30 | 91.50 23 | 88.44 80 | 93.00 82 | 76.26 120 | 89.65 66 | 95.55 7 | 87.72 23 | 93.89 27 | 94.94 45 | 91.62 4 | 93.44 129 | 78.35 125 | 98.76 4 | 95.61 47 |
|
APDe-MVS | | | 91.22 24 | 91.92 13 | 89.14 65 | 92.97 83 | 78.04 92 | 92.84 16 | 94.14 35 | 83.33 51 | 93.90 25 | 95.73 26 | 88.77 26 | 96.41 1 | 87.60 16 | 97.98 44 | 92.98 138 |
|
114514_t | | | 83.10 166 | 82.54 171 | 84.77 143 | 92.90 84 | 69.10 185 | 86.65 118 | 90.62 151 | 54.66 324 | 81.46 254 | 90.81 183 | 76.98 159 | 94.38 86 | 72.62 192 | 96.18 119 | 90.82 210 |
|
testdata | | | | | 79.54 244 | 92.87 85 | 72.34 150 | | 80.14 284 | 59.91 299 | 85.47 190 | 91.75 156 | 67.96 233 | 85.24 296 | 68.57 230 | 92.18 231 | 81.06 342 |
|
CNVR-MVS | | | 87.81 82 | 87.68 82 | 88.21 85 | 92.87 85 | 77.30 107 | 85.25 137 | 91.23 134 | 77.31 122 | 87.07 155 | 91.47 162 | 82.94 88 | 94.71 75 | 84.67 58 | 96.27 116 | 92.62 154 |
|
SF-MVS | | | 90.27 39 | 90.80 45 | 88.68 75 | 92.86 87 | 77.09 109 | 91.19 41 | 95.74 5 | 81.38 74 | 92.28 58 | 93.80 100 | 86.89 51 | 94.64 78 | 85.52 48 | 97.51 74 | 94.30 87 |
|
UniMVSNet_NR-MVSNet | | | 86.84 90 | 87.06 90 | 86.17 119 | 92.86 87 | 67.02 197 | 82.55 203 | 91.56 123 | 83.08 55 | 90.92 81 | 91.82 153 | 78.25 144 | 93.99 102 | 74.16 172 | 98.35 22 | 97.49 13 |
|
plane_prior1 | | | | | | 92.83 89 | | | | | | | | | | | |
|
原ACMM1 | | | | | 84.60 147 | 92.81 90 | 74.01 130 | | 91.50 125 | 62.59 277 | 82.73 234 | 90.67 188 | 76.53 167 | 94.25 89 | 69.24 218 | 95.69 142 | 85.55 284 |
|
plane_prior6 | | | | | | 92.61 91 | 76.54 115 | | | | | | 74.84 178 | | | | |
|
APD-MVS |  | | 89.54 56 | 89.63 57 | 89.26 63 | 92.57 92 | 81.34 66 | 90.19 53 | 93.08 81 | 80.87 81 | 91.13 77 | 93.19 111 | 86.22 61 | 95.97 12 | 82.23 83 | 97.18 84 | 90.45 221 |
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
test_0402 | | | 88.65 70 | 89.58 59 | 85.88 124 | 92.55 93 | 72.22 153 | 84.01 158 | 89.44 182 | 88.63 18 | 94.38 18 | 95.77 25 | 86.38 60 | 93.59 121 | 79.84 108 | 95.21 155 | 91.82 188 |
|
SixPastTwentyTwo | | | 87.20 86 | 87.45 85 | 86.45 108 | 92.52 94 | 69.19 183 | 87.84 98 | 88.05 203 | 81.66 71 | 94.64 14 | 96.53 14 | 65.94 243 | 94.75 74 | 83.02 75 | 96.83 94 | 95.41 50 |
|
ACMH | | 76.49 14 | 89.34 60 | 91.14 34 | 83.96 163 | 92.50 95 | 70.36 171 | 89.55 68 | 93.84 50 | 81.89 69 | 94.70 13 | 95.44 34 | 90.69 9 | 88.31 261 | 83.33 71 | 98.30 26 | 93.20 130 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
VPNet | | | 80.25 208 | 81.68 181 | 75.94 291 | 92.46 96 | 47.98 351 | 76.70 292 | 81.67 274 | 73.45 167 | 84.87 198 | 92.82 123 | 74.66 183 | 86.51 282 | 61.66 277 | 96.85 92 | 93.33 124 |
|
F-COLMAP | | | 84.97 125 | 83.42 154 | 89.63 56 | 92.39 97 | 83.40 50 | 88.83 83 | 91.92 115 | 73.19 176 | 80.18 273 | 89.15 216 | 77.04 158 | 93.28 134 | 65.82 248 | 92.28 227 | 92.21 175 |
|
test_djsdf | | | 89.62 54 | 89.01 66 | 91.45 25 | 92.36 98 | 82.98 55 | 91.98 31 | 90.08 170 | 71.54 198 | 94.28 21 | 96.54 13 | 81.57 113 | 94.27 87 | 86.26 38 | 96.49 106 | 97.09 19 |
|
TEST9 | | | | | | 92.34 99 | 79.70 77 | 83.94 160 | 90.32 158 | 65.41 266 | 84.49 205 | 90.97 176 | 82.03 104 | 93.63 117 | | | |
|
train_agg | | | 85.98 106 | 85.28 121 | 88.07 87 | 92.34 99 | 79.70 77 | 83.94 160 | 90.32 158 | 65.79 256 | 84.49 205 | 90.97 176 | 81.93 106 | 93.63 117 | 81.21 92 | 96.54 104 | 90.88 208 |
|
NCCC | | | 87.36 84 | 86.87 95 | 88.83 68 | 92.32 101 | 78.84 86 | 86.58 120 | 91.09 138 | 78.77 107 | 84.85 199 | 90.89 180 | 80.85 122 | 95.29 55 | 81.14 93 | 95.32 151 | 92.34 166 |
|
testtj | | | 89.51 57 | 89.48 60 | 89.59 58 | 92.26 102 | 80.80 69 | 90.14 54 | 93.54 61 | 83.37 50 | 90.57 88 | 92.55 133 | 84.99 68 | 96.15 5 | 81.26 91 | 96.61 101 | 91.83 187 |
|
FC-MVSNet-test | | | 85.93 107 | 87.05 91 | 82.58 194 | 92.25 103 | 56.44 300 | 85.75 131 | 93.09 80 | 77.33 121 | 91.94 66 | 94.65 54 | 74.78 180 | 93.41 131 | 75.11 167 | 98.58 14 | 97.88 7 |
|
CDPH-MVS | | | 86.17 103 | 85.54 117 | 88.05 88 | 92.25 103 | 75.45 123 | 83.85 164 | 92.01 111 | 65.91 255 | 86.19 174 | 91.75 156 | 83.77 80 | 94.98 68 | 77.43 143 | 96.71 98 | 93.73 111 |
|
test1111 | | | 78.53 226 | 78.85 217 | 77.56 273 | 92.22 105 | 47.49 353 | 82.61 199 | 69.24 347 | 72.43 184 | 85.28 191 | 94.20 78 | 51.91 311 | 90.07 234 | 65.36 251 | 96.45 108 | 95.11 61 |
|
ZD-MVS | | | | | | 92.22 105 | 80.48 70 | | 91.85 116 | 71.22 204 | 90.38 89 | 92.98 116 | 86.06 63 | 96.11 6 | 81.99 85 | 96.75 97 | |
|
pmmvs6 | | | 86.52 95 | 88.06 78 | 81.90 203 | 92.22 105 | 62.28 244 | 84.66 145 | 89.15 186 | 83.54 49 | 89.85 102 | 97.32 4 | 88.08 38 | 86.80 277 | 70.43 210 | 97.30 81 | 96.62 27 |
|
EG-PatchMatch MVS | | | 84.08 145 | 84.11 146 | 83.98 162 | 92.22 105 | 72.61 144 | 82.20 218 | 87.02 222 | 72.63 183 | 88.86 123 | 91.02 174 | 78.52 140 | 91.11 198 | 73.41 183 | 91.09 246 | 88.21 254 |
|
test_8 | | | | | | 92.09 109 | 78.87 85 | 83.82 165 | 90.31 160 | 65.79 256 | 84.36 208 | 90.96 178 | 81.93 106 | 93.44 129 | | | |
|
Vis-MVSNet |  | | 86.86 89 | 86.58 98 | 87.72 90 | 92.09 109 | 77.43 104 | 87.35 103 | 92.09 109 | 78.87 105 | 84.27 214 | 94.05 86 | 78.35 143 | 93.65 115 | 80.54 103 | 91.58 242 | 92.08 178 |
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
IS-MVSNet | | | 86.66 93 | 86.82 97 | 86.17 119 | 92.05 111 | 66.87 199 | 91.21 40 | 88.64 193 | 86.30 30 | 89.60 113 | 92.59 130 | 69.22 226 | 94.91 70 | 73.89 176 | 97.89 51 | 96.72 24 |
|
旧先验1 | | | | | | 91.97 112 | 71.77 158 | | 81.78 273 | | | 91.84 151 | 73.92 189 | | | 93.65 198 | 83.61 306 |
|
v7n | | | 90.13 40 | 90.96 41 | 87.65 92 | 91.95 113 | 71.06 166 | 89.99 57 | 93.05 82 | 86.53 28 | 94.29 19 | 96.27 17 | 82.69 90 | 94.08 100 | 86.25 40 | 97.63 63 | 97.82 8 |
|
NP-MVS | | | | | | 91.95 113 | 74.55 127 | | | | | 90.17 201 | | | | | |
|
ETH3D-3000-0.1 | | | 88.85 69 | 88.96 69 | 88.52 76 | 91.94 115 | 77.27 108 | 88.71 86 | 95.26 13 | 76.08 132 | 90.66 87 | 92.69 128 | 84.48 73 | 93.83 111 | 83.38 70 | 97.48 76 | 94.47 79 |
|
OMC-MVS | | | 88.19 74 | 87.52 84 | 90.19 49 | 91.94 115 | 81.68 63 | 87.49 102 | 93.17 78 | 76.02 135 | 88.64 128 | 91.22 166 | 84.24 76 | 93.37 132 | 77.97 136 | 97.03 87 | 95.52 48 |
|
OPU-MVS | | | | | 88.27 84 | 91.89 117 | 77.83 96 | 90.47 49 | | | | 91.22 166 | 81.12 119 | 94.68 76 | 74.48 169 | 95.35 149 | 92.29 170 |
|
FIs | | | 85.35 114 | 86.27 102 | 82.60 193 | 91.86 118 | 57.31 293 | 85.10 139 | 93.05 82 | 75.83 140 | 91.02 80 | 93.97 90 | 73.57 193 | 92.91 150 | 73.97 175 | 98.02 40 | 97.58 12 |
|
test2506 | | | 74.12 272 | 73.39 272 | 76.28 288 | 91.85 119 | 44.20 363 | 84.06 157 | 48.20 375 | 72.30 191 | 81.90 245 | 94.20 78 | 27.22 376 | 89.77 239 | 64.81 254 | 96.02 125 | 94.87 64 |
|
ECVR-MVS |  | | 78.44 227 | 78.63 221 | 77.88 269 | 91.85 119 | 48.95 347 | 83.68 171 | 69.91 345 | 72.30 191 | 84.26 215 | 94.20 78 | 51.89 312 | 89.82 238 | 63.58 261 | 96.02 125 | 94.87 64 |
|
9.14 | | | | 89.29 62 | | 91.84 121 | | 88.80 84 | 95.32 11 | 75.14 150 | 91.07 78 | 92.89 121 | 87.27 46 | 93.78 112 | 83.69 68 | 97.55 69 | |
|
MSLP-MVS++ | | | 85.00 123 | 86.03 107 | 81.90 203 | 91.84 121 | 71.56 164 | 86.75 117 | 93.02 86 | 75.95 138 | 87.12 151 | 89.39 210 | 77.98 145 | 89.40 247 | 77.46 141 | 94.78 171 | 84.75 293 |
|
h-mvs33 | | | 84.25 140 | 82.76 164 | 88.72 73 | 91.82 123 | 82.60 58 | 84.00 159 | 84.98 253 | 71.27 200 | 86.70 163 | 90.55 191 | 63.04 258 | 93.92 106 | 78.26 128 | 94.20 185 | 89.63 231 |
|
DP-MVS Recon | | | 84.05 146 | 83.22 157 | 86.52 107 | 91.73 124 | 75.27 124 | 83.23 186 | 92.40 102 | 72.04 195 | 82.04 243 | 88.33 227 | 77.91 147 | 93.95 105 | 66.17 243 | 95.12 160 | 90.34 223 |
|
SD-MVS | | | 88.96 67 | 89.88 53 | 86.22 115 | 91.63 125 | 77.07 110 | 89.82 61 | 93.77 51 | 78.90 104 | 92.88 45 | 92.29 141 | 86.11 62 | 90.22 225 | 86.24 41 | 97.24 82 | 91.36 199 |
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
AllTest | | | 87.97 78 | 87.40 87 | 89.68 54 | 91.59 126 | 83.40 50 | 89.50 71 | 95.44 9 | 79.47 95 | 88.00 140 | 93.03 114 | 82.66 91 | 91.47 185 | 70.81 202 | 96.14 121 | 94.16 92 |
|
TestCases | | | | | 89.68 54 | 91.59 126 | 83.40 50 | | 95.44 9 | 79.47 95 | 88.00 140 | 93.03 114 | 82.66 91 | 91.47 185 | 70.81 202 | 96.14 121 | 94.16 92 |
|
MCST-MVS | | | 84.36 135 | 83.93 150 | 85.63 129 | 91.59 126 | 71.58 163 | 83.52 174 | 92.13 108 | 61.82 283 | 83.96 217 | 89.75 207 | 79.93 134 | 93.46 128 | 78.33 126 | 94.34 182 | 91.87 186 |
|
agg_prior1 | | | 85.72 109 | 85.20 123 | 87.28 96 | 91.58 129 | 77.69 98 | 83.69 170 | 90.30 161 | 66.29 252 | 84.32 209 | 91.07 173 | 82.13 100 | 93.18 137 | 81.02 94 | 96.36 111 | 90.98 204 |
|
agg_prior | | | | | | 91.58 129 | 77.69 98 | | 90.30 161 | | 84.32 209 | | | 93.18 137 | | | |
|
PVSNet_Blended_VisFu | | | 81.55 186 | 80.49 198 | 84.70 146 | 91.58 129 | 73.24 136 | 84.21 153 | 91.67 122 | 62.86 276 | 80.94 259 | 87.16 247 | 67.27 236 | 92.87 151 | 69.82 214 | 88.94 278 | 87.99 258 |
|
DVP-MVS++ | | | 90.07 42 | 91.09 35 | 87.00 98 | 91.55 132 | 72.64 141 | 96.19 2 | 94.10 38 | 85.33 32 | 93.49 38 | 94.64 57 | 81.12 119 | 95.88 16 | 87.41 21 | 95.94 130 | 92.48 159 |
|
MSC_two_6792asdad | | | | | 88.81 69 | 91.55 132 | 77.99 93 | | 91.01 140 | | | | | 96.05 8 | 87.45 19 | 98.17 33 | 92.40 163 |
|
No_MVS | | | | | 88.81 69 | 91.55 132 | 77.99 93 | | 91.01 140 | | | | | 96.05 8 | 87.45 19 | 98.17 33 | 92.40 163 |
|
EPP-MVSNet | | | 85.47 112 | 85.04 125 | 86.77 103 | 91.52 135 | 69.37 177 | 91.63 37 | 87.98 206 | 81.51 73 | 87.05 156 | 91.83 152 | 66.18 242 | 95.29 55 | 70.75 205 | 96.89 90 | 95.64 45 |
|
DeepPCF-MVS | | 81.24 5 | 87.28 85 | 86.21 104 | 90.49 43 | 91.48 136 | 84.90 39 | 83.41 179 | 92.38 104 | 70.25 215 | 89.35 118 | 90.68 187 | 82.85 89 | 94.57 82 | 79.55 112 | 95.95 129 | 92.00 181 |
|
Baseline_NR-MVSNet | | | 84.00 148 | 85.90 109 | 78.29 262 | 91.47 137 | 53.44 319 | 82.29 212 | 87.00 225 | 79.06 102 | 89.55 114 | 95.72 28 | 77.20 154 | 86.14 288 | 72.30 195 | 98.51 17 | 95.28 55 |
|
HyFIR lowres test | | | 75.12 261 | 72.66 280 | 82.50 197 | 91.44 138 | 65.19 211 | 72.47 325 | 87.31 212 | 46.79 355 | 80.29 269 | 84.30 294 | 52.70 310 | 92.10 170 | 51.88 334 | 86.73 300 | 90.22 224 |
|
DP-MVS | | | 88.60 71 | 89.01 66 | 87.36 95 | 91.30 139 | 77.50 101 | 87.55 100 | 92.97 88 | 87.95 22 | 89.62 110 | 92.87 122 | 84.56 71 | 93.89 107 | 77.65 138 | 96.62 100 | 90.70 213 |
|
DeepC-MVS_fast | | 80.27 8 | 86.23 100 | 85.65 116 | 87.96 89 | 91.30 139 | 76.92 111 | 87.19 106 | 91.99 112 | 70.56 210 | 84.96 195 | 90.69 186 | 80.01 132 | 95.14 62 | 78.37 124 | 95.78 139 | 91.82 188 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
3Dnovator+ | | 83.92 2 | 89.97 49 | 89.66 56 | 90.92 36 | 91.27 141 | 81.66 64 | 91.25 39 | 94.13 36 | 88.89 13 | 88.83 125 | 94.26 75 | 77.55 151 | 95.86 21 | 84.88 55 | 95.87 134 | 95.24 57 |
|
ETH3D cwj APD-0.16 | | | 87.83 81 | 87.62 83 | 88.47 78 | 91.21 142 | 78.20 90 | 87.26 105 | 94.54 20 | 72.05 194 | 88.89 122 | 92.31 140 | 83.86 77 | 94.24 90 | 81.59 90 | 96.87 91 | 92.97 141 |
|
HQP-NCC | | | | | | 91.19 143 | | 84.77 141 | | 73.30 172 | 80.55 266 | | | | | | |
|
ACMP_Plane | | | | | | 91.19 143 | | 84.77 141 | | 73.30 172 | 80.55 266 | | | | | | |
|
HQP-MVS | | | 84.61 129 | 84.06 147 | 86.27 113 | 91.19 143 | 70.66 168 | 84.77 141 | 92.68 97 | 73.30 172 | 80.55 266 | 90.17 201 | 72.10 211 | 94.61 80 | 77.30 144 | 94.47 179 | 93.56 121 |
|
VDD-MVS | | | 84.23 142 | 84.58 137 | 83.20 179 | 91.17 146 | 65.16 212 | 83.25 184 | 84.97 254 | 79.79 91 | 87.18 150 | 94.27 72 | 74.77 181 | 90.89 206 | 69.24 218 | 96.54 104 | 93.55 123 |
|
K. test v3 | | | 85.14 117 | 84.73 130 | 86.37 109 | 91.13 147 | 69.63 176 | 85.45 135 | 76.68 302 | 84.06 42 | 92.44 56 | 96.99 8 | 62.03 262 | 94.65 77 | 80.58 102 | 93.24 206 | 94.83 70 |
|
lessismore_v0 | | | | | 85.95 121 | 91.10 148 | 70.99 167 | | 70.91 341 | | 91.79 67 | 94.42 66 | 61.76 263 | 92.93 148 | 79.52 115 | 93.03 212 | 93.93 100 |
|
hse-mvs2 | | | 83.47 159 | 81.81 180 | 88.47 78 | 91.03 149 | 82.27 59 | 82.61 199 | 83.69 259 | 71.27 200 | 86.70 163 | 86.05 263 | 63.04 258 | 92.41 159 | 78.26 128 | 93.62 200 | 90.71 212 |
|
TransMVSNet (Re) | | | 84.02 147 | 85.74 113 | 78.85 250 | 91.00 150 | 55.20 310 | 82.29 212 | 87.26 213 | 79.65 94 | 88.38 135 | 95.52 33 | 83.00 87 | 86.88 275 | 67.97 233 | 96.60 102 | 94.45 82 |
|
AUN-MVS | | | 81.18 190 | 78.78 218 | 88.39 81 | 90.93 151 | 82.14 60 | 82.51 205 | 83.67 260 | 64.69 270 | 80.29 269 | 85.91 266 | 51.07 315 | 92.38 160 | 76.29 153 | 93.63 199 | 90.65 216 |
|
PAPM_NR | | | 83.23 163 | 83.19 159 | 83.33 176 | 90.90 152 | 65.98 206 | 88.19 92 | 90.78 146 | 78.13 115 | 80.87 261 | 87.92 235 | 73.49 196 | 92.42 158 | 70.07 212 | 88.40 282 | 91.60 194 |
|
CSCG | | | 86.26 99 | 86.47 99 | 85.60 130 | 90.87 153 | 74.26 129 | 87.98 94 | 91.85 116 | 80.35 85 | 89.54 116 | 88.01 231 | 79.09 137 | 92.13 167 | 75.51 161 | 95.06 162 | 90.41 222 |
|
PLC |  | 73.85 16 | 82.09 178 | 80.31 200 | 87.45 94 | 90.86 154 | 80.29 72 | 85.88 129 | 90.65 149 | 68.17 234 | 76.32 300 | 86.33 257 | 73.12 202 | 92.61 156 | 61.40 280 | 90.02 267 | 89.44 235 |
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
ETH3 D test6400 | | | 85.09 119 | 84.87 128 | 85.75 127 | 90.80 155 | 69.34 178 | 85.90 128 | 93.31 70 | 65.43 262 | 86.11 177 | 89.95 203 | 80.92 121 | 94.86 71 | 75.90 158 | 95.57 144 | 93.05 135 |
|
test12 | | | | | 86.57 105 | 90.74 156 | 72.63 143 | | 90.69 148 | | 82.76 233 | | 79.20 136 | 94.80 73 | | 95.32 151 | 92.27 172 |
|
ITE_SJBPF | | | | | 90.11 50 | 90.72 157 | 84.97 38 | | 90.30 161 | 81.56 72 | 90.02 96 | 91.20 168 | 82.40 94 | 90.81 209 | 73.58 181 | 94.66 175 | 94.56 75 |
|
DPM-MVS | | | 80.10 213 | 79.18 215 | 82.88 188 | 90.71 158 | 69.74 173 | 78.87 264 | 90.84 144 | 60.29 297 | 75.64 309 | 85.92 265 | 67.28 235 | 93.11 142 | 71.24 200 | 91.79 237 | 85.77 283 |
|
TAMVS | | | 78.08 231 | 76.36 245 | 83.23 178 | 90.62 159 | 72.87 137 | 79.08 261 | 80.01 285 | 61.72 285 | 81.35 256 | 86.92 251 | 63.96 251 | 88.78 255 | 50.61 335 | 93.01 213 | 88.04 257 |
|
test_prior3 | | | 86.31 98 | 86.31 101 | 86.32 110 | 90.59 160 | 71.99 156 | 83.37 180 | 92.85 91 | 75.43 145 | 84.58 203 | 91.57 158 | 81.92 108 | 94.17 96 | 79.54 113 | 96.97 88 | 92.80 144 |
|
test_prior | | | | | 86.32 110 | 90.59 160 | 71.99 156 | | 92.85 91 | | | | | 94.17 96 | | | 92.80 144 |
|
ambc | | | | | 82.98 183 | 90.55 162 | 64.86 213 | 88.20 91 | 89.15 186 | | 89.40 117 | 93.96 93 | 71.67 218 | 91.38 192 | 78.83 120 | 96.55 103 | 92.71 150 |
|
Anonymous20231211 | | | 88.40 72 | 89.62 58 | 84.73 144 | 90.46 163 | 65.27 210 | 88.86 82 | 93.02 86 | 87.15 25 | 93.05 43 | 97.10 6 | 82.28 98 | 92.02 173 | 76.70 148 | 97.99 42 | 96.88 23 |
|
Test_1112_low_res | | | 73.90 274 | 73.08 275 | 76.35 286 | 90.35 164 | 55.95 301 | 73.40 322 | 86.17 232 | 50.70 348 | 73.14 322 | 85.94 264 | 58.31 285 | 85.90 291 | 56.51 304 | 83.22 328 | 87.20 268 |
|
VPA-MVSNet | | | 83.47 159 | 84.73 130 | 79.69 241 | 90.29 165 | 57.52 292 | 81.30 230 | 88.69 192 | 76.29 129 | 87.58 146 | 94.44 63 | 80.60 126 | 87.20 270 | 66.60 241 | 96.82 95 | 94.34 86 |
|
FMVSNet1 | | | 84.55 131 | 85.45 119 | 81.85 205 | 90.27 166 | 61.05 255 | 86.83 113 | 88.27 200 | 78.57 110 | 89.66 109 | 95.64 30 | 75.43 172 | 90.68 213 | 69.09 222 | 95.33 150 | 93.82 106 |
|
Anonymous20240529 | | | 86.20 102 | 87.13 88 | 83.42 175 | 90.19 167 | 64.55 217 | 84.55 147 | 90.71 147 | 85.85 31 | 89.94 100 | 95.24 39 | 82.13 100 | 90.40 220 | 69.19 221 | 96.40 110 | 95.31 54 |
|
MVS_111021_HR | | | 84.63 128 | 84.34 144 | 85.49 133 | 90.18 168 | 75.86 122 | 79.23 260 | 87.13 217 | 73.35 169 | 85.56 188 | 89.34 211 | 83.60 82 | 90.50 218 | 76.64 149 | 94.05 189 | 90.09 229 |
|
GeoE | | | 85.45 113 | 85.81 111 | 84.37 150 | 90.08 169 | 67.07 196 | 85.86 130 | 91.39 130 | 72.33 189 | 87.59 145 | 90.25 197 | 84.85 69 | 92.37 161 | 78.00 134 | 91.94 236 | 93.66 114 |
|
RPSCF | | | 88.00 77 | 86.93 94 | 91.22 31 | 90.08 169 | 89.30 5 | 89.68 64 | 91.11 137 | 79.26 99 | 89.68 107 | 94.81 52 | 82.44 93 | 87.74 265 | 76.54 150 | 88.74 281 | 96.61 28 |
|
nrg030 | | | 87.85 80 | 88.49 74 | 85.91 122 | 90.07 171 | 69.73 174 | 87.86 97 | 94.20 28 | 74.04 160 | 92.70 52 | 94.66 53 | 85.88 65 | 91.50 184 | 79.72 110 | 97.32 80 | 96.50 30 |
|
AdaColmap |  | | 83.66 154 | 83.69 153 | 83.57 173 | 90.05 172 | 72.26 152 | 86.29 126 | 90.00 172 | 78.19 114 | 81.65 252 | 87.16 247 | 83.40 84 | 94.24 90 | 61.69 276 | 94.76 174 | 84.21 298 |
|
pm-mvs1 | | | 83.69 153 | 84.95 127 | 79.91 236 | 90.04 173 | 59.66 270 | 82.43 207 | 87.44 210 | 75.52 144 | 87.85 142 | 95.26 38 | 81.25 118 | 85.65 294 | 68.74 226 | 96.04 124 | 94.42 83 |
|
CHOSEN 1792x2688 | | | 72.45 284 | 70.56 294 | 78.13 264 | 90.02 174 | 63.08 230 | 68.72 338 | 83.16 262 | 42.99 364 | 75.92 305 | 85.46 273 | 57.22 294 | 85.18 298 | 49.87 339 | 81.67 336 | 86.14 278 |
|
anonymousdsp | | | 89.73 53 | 88.88 70 | 92.27 9 | 89.82 175 | 86.67 17 | 90.51 48 | 90.20 167 | 69.87 219 | 95.06 11 | 96.14 21 | 84.28 75 | 93.07 144 | 87.68 13 | 96.34 112 | 97.09 19 |
|
1112_ss | | | 74.82 266 | 73.74 267 | 78.04 266 | 89.57 176 | 60.04 266 | 76.49 296 | 87.09 221 | 54.31 325 | 73.66 321 | 79.80 337 | 60.25 271 | 86.76 280 | 58.37 294 | 84.15 324 | 87.32 267 |
|
PCF-MVS | | 74.62 15 | 82.15 177 | 80.92 194 | 85.84 125 | 89.43 177 | 72.30 151 | 80.53 239 | 91.82 118 | 57.36 313 | 87.81 143 | 89.92 205 | 77.67 149 | 93.63 117 | 58.69 293 | 95.08 161 | 91.58 195 |
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
MVP-Stereo | | | 75.81 256 | 73.51 271 | 82.71 191 | 89.35 178 | 73.62 131 | 80.06 243 | 85.20 245 | 60.30 296 | 73.96 319 | 87.94 233 | 57.89 290 | 89.45 245 | 52.02 330 | 74.87 357 | 85.06 290 |
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application. |
CNLPA | | | 83.55 157 | 83.10 161 | 84.90 140 | 89.34 179 | 83.87 48 | 84.54 149 | 88.77 190 | 79.09 101 | 83.54 224 | 88.66 224 | 74.87 177 | 81.73 319 | 66.84 239 | 92.29 226 | 89.11 242 |
|
DROMVSNet | | | 88.01 76 | 88.32 76 | 87.09 97 | 89.28 180 | 72.03 155 | 90.31 51 | 96.31 3 | 80.88 80 | 85.12 193 | 89.67 208 | 84.47 74 | 95.46 48 | 82.56 79 | 96.26 117 | 93.77 110 |
|
TSAR-MVS + GP. | | | 83.95 149 | 82.69 166 | 87.72 90 | 89.27 181 | 81.45 65 | 83.72 169 | 81.58 275 | 74.73 153 | 85.66 185 | 86.06 262 | 72.56 209 | 92.69 154 | 75.44 163 | 95.21 155 | 89.01 248 |
|
MVS_111021_LR | | | 84.28 139 | 83.76 152 | 85.83 126 | 89.23 182 | 83.07 53 | 80.99 234 | 83.56 261 | 72.71 182 | 86.07 178 | 89.07 218 | 81.75 112 | 86.19 287 | 77.11 146 | 93.36 202 | 88.24 253 |
|
LFMVS | | | 80.15 212 | 80.56 196 | 78.89 249 | 89.19 183 | 55.93 302 | 85.22 138 | 73.78 322 | 82.96 56 | 84.28 213 | 92.72 127 | 57.38 292 | 90.07 234 | 63.80 260 | 95.75 140 | 90.68 214 |
|
CLD-MVS | | | 83.18 164 | 82.64 167 | 84.79 142 | 89.05 184 | 67.82 193 | 77.93 275 | 92.52 100 | 68.33 232 | 85.07 194 | 81.54 323 | 82.06 102 | 92.96 146 | 69.35 217 | 97.91 50 | 93.57 120 |
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
LS3D | | | 90.60 33 | 90.34 50 | 91.38 27 | 89.03 185 | 84.23 47 | 93.58 6 | 94.68 19 | 90.65 7 | 90.33 91 | 93.95 96 | 84.50 72 | 95.37 53 | 80.87 97 | 95.50 146 | 94.53 78 |
|
CDS-MVSNet | | | 77.32 239 | 75.40 254 | 83.06 181 | 89.00 186 | 72.48 148 | 77.90 276 | 82.17 270 | 60.81 292 | 78.94 283 | 83.49 301 | 59.30 278 | 88.76 256 | 54.64 319 | 92.37 225 | 87.93 260 |
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
tttt0517 | | | 81.07 191 | 79.58 212 | 85.52 131 | 88.99 187 | 66.45 203 | 87.03 110 | 75.51 310 | 73.76 164 | 88.32 137 | 90.20 198 | 37.96 361 | 94.16 99 | 79.36 117 | 95.13 158 | 95.93 41 |
|
tfpnnormal | | | 81.79 184 | 82.95 162 | 78.31 260 | 88.93 188 | 55.40 306 | 80.83 237 | 82.85 265 | 76.81 126 | 85.90 183 | 94.14 83 | 74.58 184 | 86.51 282 | 66.82 240 | 95.68 143 | 93.01 137 |
|
test_part1 | | | 87.15 87 | 87.82 80 | 85.15 137 | 88.88 189 | 63.04 231 | 87.98 94 | 94.85 16 | 82.52 61 | 93.61 37 | 95.73 26 | 67.51 234 | 95.71 31 | 80.48 104 | 98.83 2 | 96.69 25 |
|
Vis-MVSNet (Re-imp) | | | 77.82 234 | 77.79 231 | 77.92 268 | 88.82 190 | 51.29 337 | 83.28 182 | 71.97 335 | 74.04 160 | 82.23 240 | 89.78 206 | 57.38 292 | 89.41 246 | 57.22 301 | 95.41 147 | 93.05 135 |
|
TAPA-MVS | | 77.73 12 | 85.71 110 | 84.83 129 | 88.37 82 | 88.78 191 | 79.72 76 | 87.15 108 | 93.50 62 | 69.17 223 | 85.80 184 | 89.56 209 | 80.76 123 | 92.13 167 | 73.21 189 | 95.51 145 | 93.25 129 |
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
FPMVS | | | 72.29 287 | 72.00 286 | 73.14 304 | 88.63 192 | 85.00 37 | 74.65 314 | 67.39 349 | 71.94 197 | 77.80 292 | 87.66 238 | 50.48 318 | 75.83 338 | 49.95 337 | 79.51 343 | 58.58 367 |
|
ETV-MVS | | | 84.31 137 | 83.91 151 | 85.52 131 | 88.58 193 | 70.40 170 | 84.50 151 | 93.37 64 | 78.76 108 | 84.07 216 | 78.72 342 | 80.39 128 | 95.13 63 | 73.82 178 | 92.98 214 | 91.04 202 |
|
BH-untuned | | | 80.96 193 | 80.99 192 | 80.84 222 | 88.55 194 | 68.23 188 | 80.33 242 | 88.46 194 | 72.79 181 | 86.55 167 | 86.76 252 | 74.72 182 | 91.77 181 | 61.79 275 | 88.99 276 | 82.52 322 |
|
Anonymous202405211 | | | 80.51 201 | 81.19 190 | 78.49 257 | 88.48 195 | 57.26 294 | 76.63 293 | 82.49 267 | 81.21 76 | 84.30 212 | 92.24 144 | 67.99 232 | 86.24 286 | 62.22 270 | 95.13 158 | 91.98 184 |
|
ab-mvs | | | 79.67 215 | 80.56 196 | 76.99 277 | 88.48 195 | 56.93 296 | 84.70 144 | 86.06 233 | 68.95 227 | 80.78 262 | 93.08 113 | 75.30 174 | 84.62 303 | 56.78 302 | 90.90 255 | 89.43 236 |
|
PHI-MVS | | | 86.38 97 | 85.81 111 | 88.08 86 | 88.44 197 | 77.34 105 | 89.35 75 | 93.05 82 | 73.15 177 | 84.76 200 | 87.70 237 | 78.87 139 | 94.18 94 | 80.67 101 | 96.29 113 | 92.73 147 |
|
xiu_mvs_v1_base_debu | | | 80.84 195 | 80.14 206 | 82.93 185 | 88.31 198 | 71.73 159 | 79.53 251 | 87.17 214 | 65.43 262 | 79.59 276 | 82.73 313 | 76.94 160 | 90.14 230 | 73.22 184 | 88.33 283 | 86.90 272 |
|
xiu_mvs_v1_base | | | 80.84 195 | 80.14 206 | 82.93 185 | 88.31 198 | 71.73 159 | 79.53 251 | 87.17 214 | 65.43 262 | 79.59 276 | 82.73 313 | 76.94 160 | 90.14 230 | 73.22 184 | 88.33 283 | 86.90 272 |
|
xiu_mvs_v1_base_debi | | | 80.84 195 | 80.14 206 | 82.93 185 | 88.31 198 | 71.73 159 | 79.53 251 | 87.17 214 | 65.43 262 | 79.59 276 | 82.73 313 | 76.94 160 | 90.14 230 | 73.22 184 | 88.33 283 | 86.90 272 |
|
MG-MVS | | | 80.32 207 | 80.94 193 | 78.47 258 | 88.18 201 | 52.62 326 | 82.29 212 | 85.01 252 | 72.01 196 | 79.24 281 | 92.54 134 | 69.36 225 | 93.36 133 | 70.65 207 | 89.19 275 | 89.45 234 |
|
PM-MVS | | | 80.20 210 | 79.00 216 | 83.78 167 | 88.17 202 | 86.66 18 | 81.31 228 | 66.81 355 | 69.64 220 | 88.33 136 | 90.19 199 | 64.58 246 | 83.63 311 | 71.99 198 | 90.03 266 | 81.06 342 |
|
v10 | | | 86.54 94 | 87.10 89 | 84.84 141 | 88.16 203 | 63.28 228 | 86.64 119 | 92.20 107 | 75.42 147 | 92.81 50 | 94.50 60 | 74.05 188 | 94.06 101 | 83.88 65 | 96.28 114 | 97.17 18 |
|
canonicalmvs | | | 85.50 111 | 86.14 105 | 83.58 172 | 87.97 204 | 67.13 195 | 87.55 100 | 94.32 22 | 73.44 168 | 88.47 132 | 87.54 240 | 86.45 58 | 91.06 200 | 75.76 160 | 93.76 193 | 92.54 157 |
|
EIA-MVS | | | 82.19 176 | 81.23 189 | 85.10 138 | 87.95 205 | 69.17 184 | 83.22 187 | 93.33 67 | 70.42 211 | 78.58 285 | 79.77 339 | 77.29 153 | 94.20 93 | 71.51 199 | 88.96 277 | 91.93 185 |
|
VNet | | | 79.31 216 | 80.27 201 | 76.44 285 | 87.92 206 | 53.95 315 | 75.58 305 | 84.35 258 | 74.39 158 | 82.23 240 | 90.72 185 | 72.84 205 | 84.39 305 | 60.38 287 | 93.98 190 | 90.97 205 |
|
CS-MVS-test | | | 85.00 123 | 85.28 121 | 84.17 159 | 87.84 207 | 66.12 205 | 87.30 104 | 95.67 6 | 77.63 119 | 80.02 274 | 85.85 267 | 81.34 117 | 95.41 51 | 78.18 130 | 93.71 196 | 90.99 203 |
|
v8 | | | 86.22 101 | 86.83 96 | 84.36 152 | 87.82 208 | 62.35 243 | 86.42 122 | 91.33 131 | 76.78 127 | 92.73 51 | 94.48 62 | 73.41 197 | 93.72 114 | 83.10 72 | 95.41 147 | 97.01 21 |
|
alignmvs | | | 83.94 150 | 83.98 149 | 83.80 165 | 87.80 209 | 67.88 192 | 84.54 149 | 91.42 129 | 73.27 175 | 88.41 134 | 87.96 232 | 72.33 210 | 90.83 208 | 76.02 157 | 94.11 187 | 92.69 151 |
|
v1192 | | | 84.57 130 | 84.69 134 | 84.21 156 | 87.75 210 | 62.88 233 | 83.02 191 | 91.43 127 | 69.08 225 | 89.98 99 | 90.89 180 | 72.70 207 | 93.62 120 | 82.41 80 | 94.97 166 | 96.13 33 |
|
PatchMatch-RL | | | 74.48 269 | 73.22 274 | 78.27 263 | 87.70 211 | 85.26 35 | 75.92 302 | 70.09 343 | 64.34 271 | 76.09 303 | 81.25 325 | 65.87 244 | 78.07 331 | 53.86 321 | 83.82 325 | 71.48 356 |
|
v1144 | | | 84.54 133 | 84.72 132 | 84.00 161 | 87.67 212 | 62.55 239 | 82.97 192 | 90.93 143 | 70.32 214 | 89.80 104 | 90.99 175 | 73.50 194 | 93.48 127 | 81.69 89 | 94.65 176 | 95.97 38 |
|
v1240 | | | 84.30 138 | 84.51 139 | 83.65 170 | 87.65 213 | 61.26 252 | 82.85 195 | 91.54 124 | 67.94 238 | 90.68 86 | 90.65 189 | 71.71 217 | 93.64 116 | 82.84 77 | 94.78 171 | 96.07 35 |
|
v1921920 | | | 84.23 142 | 84.37 143 | 83.79 166 | 87.64 214 | 61.71 247 | 82.91 194 | 91.20 135 | 67.94 238 | 90.06 94 | 90.34 194 | 72.04 214 | 93.59 121 | 82.32 82 | 94.91 167 | 96.07 35 |
|
v144192 | | | 84.24 141 | 84.41 141 | 83.71 169 | 87.59 215 | 61.57 248 | 82.95 193 | 91.03 139 | 67.82 241 | 89.80 104 | 90.49 192 | 73.28 200 | 93.51 126 | 81.88 88 | 94.89 169 | 96.04 37 |
|
Fast-Effi-MVS+ | | | 81.04 192 | 80.57 195 | 82.46 198 | 87.50 216 | 63.22 229 | 78.37 271 | 89.63 178 | 68.01 235 | 81.87 246 | 82.08 318 | 82.31 95 | 92.65 155 | 67.10 236 | 88.30 287 | 91.51 197 |
|
pmmvs-eth3d | | | 78.42 228 | 77.04 239 | 82.57 196 | 87.44 217 | 74.41 128 | 80.86 236 | 79.67 286 | 55.68 319 | 84.69 201 | 90.31 196 | 60.91 266 | 85.42 295 | 62.20 271 | 91.59 241 | 87.88 261 |
|
IterMVS-LS | | | 84.73 127 | 84.98 126 | 83.96 163 | 87.35 218 | 63.66 223 | 83.25 184 | 89.88 174 | 76.06 133 | 89.62 110 | 92.37 139 | 73.40 199 | 92.52 157 | 78.16 131 | 94.77 173 | 95.69 43 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
thres100view900 | | | 75.45 257 | 75.05 257 | 76.66 284 | 87.27 219 | 51.88 332 | 81.07 233 | 73.26 326 | 75.68 142 | 83.25 227 | 86.37 256 | 45.54 336 | 88.80 252 | 51.98 331 | 90.99 250 | 89.31 238 |
|
MIMVSNet | | | 71.09 294 | 71.59 289 | 69.57 320 | 87.23 220 | 50.07 345 | 78.91 262 | 71.83 336 | 60.20 298 | 71.26 330 | 91.76 155 | 55.08 305 | 76.09 336 | 41.06 361 | 87.02 299 | 82.54 321 |
|
Effi-MVS+ | | | 83.90 151 | 84.01 148 | 83.57 173 | 87.22 221 | 65.61 209 | 86.55 121 | 92.40 102 | 78.64 109 | 81.34 257 | 84.18 295 | 83.65 81 | 92.93 148 | 74.22 171 | 87.87 291 | 92.17 177 |
|
BH-RMVSNet | | | 80.53 200 | 80.22 204 | 81.49 211 | 87.19 222 | 66.21 204 | 77.79 278 | 86.23 231 | 74.21 159 | 83.69 219 | 88.50 225 | 73.25 201 | 90.75 210 | 63.18 266 | 87.90 290 | 87.52 264 |
|
thisisatest0530 | | | 79.07 218 | 77.33 236 | 84.26 155 | 87.13 223 | 64.58 215 | 83.66 172 | 75.95 305 | 68.86 228 | 85.22 192 | 87.36 244 | 38.10 359 | 93.57 124 | 75.47 162 | 94.28 183 | 94.62 72 |
|
Effi-MVS+-dtu | | | 85.82 108 | 83.38 155 | 93.14 3 | 87.13 223 | 91.15 2 | 87.70 99 | 88.42 195 | 74.57 155 | 83.56 223 | 85.65 268 | 78.49 141 | 94.21 92 | 72.04 196 | 92.88 216 | 94.05 96 |
|
mvs-test1 | | | 84.55 131 | 82.12 175 | 91.84 20 | 87.13 223 | 89.54 4 | 85.05 140 | 88.42 195 | 74.57 155 | 80.60 263 | 82.98 306 | 78.49 141 | 93.98 104 | 72.04 196 | 89.77 268 | 92.00 181 |
|
v2v482 | | | 84.09 144 | 84.24 145 | 83.62 171 | 87.13 223 | 61.40 249 | 82.71 198 | 89.71 176 | 72.19 193 | 89.55 114 | 91.41 163 | 70.70 222 | 93.20 136 | 81.02 94 | 93.76 193 | 96.25 31 |
|
jason | | | 77.42 238 | 75.75 251 | 82.43 199 | 87.10 227 | 69.27 179 | 77.99 274 | 81.94 272 | 51.47 343 | 77.84 290 | 85.07 283 | 60.32 270 | 89.00 249 | 70.74 206 | 89.27 274 | 89.03 246 |
jason: jason. |
PS-MVSNAJ | | | 77.04 242 | 76.53 244 | 78.56 255 | 87.09 228 | 61.40 249 | 75.26 308 | 87.13 217 | 61.25 288 | 74.38 318 | 77.22 350 | 76.94 160 | 90.94 202 | 64.63 257 | 84.83 320 | 83.35 311 |
|
xiu_mvs_v2_base | | | 77.19 240 | 76.75 242 | 78.52 256 | 87.01 229 | 61.30 251 | 75.55 306 | 87.12 220 | 61.24 289 | 74.45 316 | 78.79 341 | 77.20 154 | 90.93 203 | 64.62 258 | 84.80 321 | 83.32 312 |
|
thres600view7 | | | 75.97 254 | 75.35 256 | 77.85 271 | 87.01 229 | 51.84 333 | 80.45 240 | 73.26 326 | 75.20 149 | 83.10 230 | 86.31 259 | 45.54 336 | 89.05 248 | 55.03 316 | 92.24 228 | 92.66 152 |
|
CL-MVSNet_self_test | | | 76.81 245 | 77.38 235 | 75.12 295 | 86.90 231 | 51.34 335 | 73.20 323 | 80.63 281 | 68.30 233 | 81.80 250 | 88.40 226 | 66.92 238 | 80.90 322 | 55.35 313 | 94.90 168 | 93.12 133 |
|
BH-w/o | | | 76.57 248 | 76.07 249 | 78.10 265 | 86.88 232 | 65.92 207 | 77.63 280 | 86.33 229 | 65.69 260 | 80.89 260 | 79.95 336 | 68.97 229 | 90.74 211 | 53.01 327 | 85.25 313 | 77.62 348 |
|
MAR-MVS | | | 80.24 209 | 78.74 220 | 84.73 144 | 86.87 233 | 78.18 91 | 85.75 131 | 87.81 208 | 65.67 261 | 77.84 290 | 78.50 343 | 73.79 191 | 90.53 217 | 61.59 279 | 90.87 256 | 85.49 286 |
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
QAPM | | | 82.59 170 | 82.59 170 | 82.58 194 | 86.44 234 | 66.69 201 | 89.94 59 | 90.36 157 | 67.97 237 | 84.94 197 | 92.58 132 | 72.71 206 | 92.18 166 | 70.63 208 | 87.73 293 | 88.85 249 |
|
PAPM | | | 71.77 290 | 70.06 300 | 76.92 279 | 86.39 235 | 53.97 314 | 76.62 294 | 86.62 227 | 53.44 330 | 63.97 358 | 84.73 290 | 57.79 291 | 92.34 162 | 39.65 363 | 81.33 339 | 84.45 295 |
|
GBi-Net | | | 82.02 179 | 82.07 176 | 81.85 205 | 86.38 236 | 61.05 255 | 86.83 113 | 88.27 200 | 72.43 184 | 86.00 179 | 95.64 30 | 63.78 252 | 90.68 213 | 65.95 244 | 93.34 203 | 93.82 106 |
|
test1 | | | 82.02 179 | 82.07 176 | 81.85 205 | 86.38 236 | 61.05 255 | 86.83 113 | 88.27 200 | 72.43 184 | 86.00 179 | 95.64 30 | 63.78 252 | 90.68 213 | 65.95 244 | 93.34 203 | 93.82 106 |
|
FMVSNet2 | | | 81.31 188 | 81.61 183 | 80.41 229 | 86.38 236 | 58.75 284 | 83.93 162 | 86.58 228 | 72.43 184 | 87.65 144 | 92.98 116 | 63.78 252 | 90.22 225 | 66.86 237 | 93.92 191 | 92.27 172 |
|
3Dnovator | | 80.37 7 | 84.80 126 | 84.71 133 | 85.06 139 | 86.36 239 | 74.71 126 | 88.77 85 | 90.00 172 | 75.65 143 | 84.96 195 | 93.17 112 | 74.06 187 | 91.19 195 | 78.28 127 | 91.09 246 | 89.29 240 |
|
Anonymous20231206 | | | 71.38 293 | 71.88 287 | 69.88 317 | 86.31 240 | 54.37 312 | 70.39 333 | 74.62 313 | 52.57 335 | 76.73 296 | 88.76 221 | 59.94 273 | 72.06 344 | 44.35 356 | 93.23 207 | 83.23 314 |
|
baseline | | | 85.20 116 | 85.93 108 | 83.02 182 | 86.30 241 | 62.37 242 | 84.55 147 | 93.96 43 | 74.48 157 | 87.12 151 | 92.03 146 | 82.30 96 | 91.94 174 | 78.39 123 | 94.21 184 | 94.74 71 |
|
API-MVS | | | 82.28 174 | 82.61 169 | 81.30 212 | 86.29 242 | 69.79 172 | 88.71 86 | 87.67 209 | 78.42 112 | 82.15 242 | 84.15 296 | 77.98 145 | 91.59 183 | 65.39 250 | 92.75 218 | 82.51 323 |
|
tfpn200view9 | | | 74.86 265 | 74.23 264 | 76.74 283 | 86.24 243 | 52.12 329 | 79.24 258 | 73.87 320 | 73.34 170 | 81.82 248 | 84.60 292 | 46.02 330 | 88.80 252 | 51.98 331 | 90.99 250 | 89.31 238 |
|
thres400 | | | 75.14 259 | 74.23 264 | 77.86 270 | 86.24 243 | 52.12 329 | 79.24 258 | 73.87 320 | 73.34 170 | 81.82 248 | 84.60 292 | 46.02 330 | 88.80 252 | 51.98 331 | 90.99 250 | 92.66 152 |
|
UGNet | | | 82.78 167 | 81.64 182 | 86.21 117 | 86.20 245 | 76.24 121 | 86.86 111 | 85.68 238 | 77.07 124 | 73.76 320 | 92.82 123 | 69.64 223 | 91.82 180 | 69.04 223 | 93.69 197 | 90.56 218 |
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
CANet | | | 83.79 152 | 82.85 163 | 86.63 104 | 86.17 246 | 72.21 154 | 83.76 168 | 91.43 127 | 77.24 123 | 74.39 317 | 87.45 242 | 75.36 173 | 95.42 50 | 77.03 147 | 92.83 217 | 92.25 174 |
|
casdiffmvs | | | 85.21 115 | 85.85 110 | 83.31 177 | 86.17 246 | 62.77 235 | 83.03 190 | 93.93 44 | 74.69 154 | 88.21 138 | 92.68 129 | 82.29 97 | 91.89 177 | 77.87 137 | 93.75 195 | 95.27 56 |
|
TR-MVS | | | 76.77 246 | 75.79 250 | 79.72 240 | 86.10 248 | 65.79 208 | 77.14 286 | 83.02 263 | 65.20 267 | 81.40 255 | 82.10 317 | 66.30 240 | 90.73 212 | 55.57 310 | 85.27 312 | 82.65 318 |
|
LCM-MVSNet-Re | | | 83.48 158 | 85.06 124 | 78.75 252 | 85.94 249 | 55.75 305 | 80.05 244 | 94.27 23 | 76.47 128 | 96.09 5 | 94.54 59 | 83.31 85 | 89.75 241 | 59.95 288 | 94.89 169 | 90.75 211 |
|
bset_n11_16_dypcd | | | 79.19 217 | 77.97 229 | 82.86 189 | 85.81 250 | 66.85 200 | 75.02 310 | 79.31 287 | 66.07 253 | 83.50 225 | 83.37 305 | 55.04 306 | 92.10 170 | 78.63 122 | 94.99 165 | 89.63 231 |
|
Fast-Effi-MVS+-dtu | | | 82.54 171 | 81.41 186 | 85.90 123 | 85.60 251 | 76.53 117 | 83.07 189 | 89.62 179 | 73.02 179 | 79.11 282 | 83.51 300 | 80.74 124 | 90.24 224 | 68.76 225 | 89.29 272 | 90.94 206 |
|
v148 | | | 82.31 173 | 82.48 172 | 81.81 208 | 85.59 252 | 59.66 270 | 81.47 226 | 86.02 234 | 72.85 180 | 88.05 139 | 90.65 189 | 70.73 221 | 90.91 205 | 75.15 166 | 91.79 237 | 94.87 64 |
|
MVSFormer | | | 82.23 175 | 81.57 185 | 84.19 158 | 85.54 253 | 69.26 180 | 91.98 31 | 90.08 170 | 71.54 198 | 76.23 301 | 85.07 283 | 58.69 283 | 94.27 87 | 86.26 38 | 88.77 279 | 89.03 246 |
|
lupinMVS | | | 76.37 252 | 74.46 262 | 82.09 200 | 85.54 253 | 69.26 180 | 76.79 290 | 80.77 280 | 50.68 349 | 76.23 301 | 82.82 311 | 58.69 283 | 88.94 250 | 69.85 213 | 88.77 279 | 88.07 255 |
|
TinyColmap | | | 81.25 189 | 82.34 174 | 77.99 267 | 85.33 255 | 60.68 262 | 82.32 211 | 88.33 198 | 71.26 202 | 86.97 158 | 92.22 145 | 77.10 157 | 86.98 274 | 62.37 269 | 95.17 157 | 86.31 277 |
|
PAPR | | | 78.84 221 | 78.10 228 | 81.07 217 | 85.17 256 | 60.22 265 | 82.21 216 | 90.57 152 | 62.51 278 | 75.32 312 | 84.61 291 | 74.99 176 | 92.30 164 | 59.48 291 | 88.04 289 | 90.68 214 |
|
pmmvs4 | | | 74.92 264 | 72.98 277 | 80.73 224 | 84.95 257 | 71.71 162 | 76.23 300 | 77.59 296 | 52.83 333 | 77.73 293 | 86.38 255 | 56.35 298 | 84.97 299 | 57.72 300 | 87.05 298 | 85.51 285 |
|
baseline1 | | | 73.26 277 | 73.54 270 | 72.43 310 | 84.92 258 | 47.79 352 | 79.89 247 | 74.00 318 | 65.93 254 | 78.81 284 | 86.28 260 | 56.36 297 | 81.63 320 | 56.63 303 | 79.04 348 | 87.87 262 |
|
Patchmatch-RL test | | | 74.48 269 | 73.68 268 | 76.89 281 | 84.83 259 | 66.54 202 | 72.29 326 | 69.16 348 | 57.70 309 | 86.76 161 | 86.33 257 | 45.79 335 | 82.59 314 | 69.63 215 | 90.65 263 | 81.54 333 |
|
CS-MVS | | | 82.02 179 | 82.63 168 | 80.19 233 | 84.80 260 | 57.56 291 | 82.39 209 | 94.72 18 | 71.24 203 | 80.22 272 | 84.89 287 | 75.85 170 | 94.56 84 | 76.08 155 | 93.49 201 | 88.46 252 |
|
KD-MVS_self_test | | | 81.93 183 | 83.14 160 | 78.30 261 | 84.75 261 | 52.75 323 | 80.37 241 | 89.42 183 | 70.24 216 | 90.26 92 | 93.39 109 | 74.55 185 | 86.77 278 | 68.61 228 | 96.64 99 | 95.38 51 |
|
XXY-MVS | | | 74.44 271 | 76.19 247 | 69.21 321 | 84.61 262 | 52.43 328 | 71.70 328 | 77.18 298 | 60.73 294 | 80.60 263 | 90.96 178 | 75.44 171 | 69.35 350 | 56.13 306 | 88.33 283 | 85.86 282 |
|
cascas | | | 76.29 253 | 74.81 258 | 80.72 225 | 84.47 263 | 62.94 232 | 73.89 318 | 87.34 211 | 55.94 318 | 75.16 314 | 76.53 353 | 63.97 250 | 91.16 196 | 65.00 252 | 90.97 253 | 88.06 256 |
|
PVSNet_BlendedMVS | | | 78.80 222 | 77.84 230 | 81.65 210 | 84.43 264 | 63.41 225 | 79.49 254 | 90.44 154 | 61.70 286 | 75.43 310 | 87.07 250 | 69.11 227 | 91.44 187 | 60.68 285 | 92.24 228 | 90.11 228 |
|
PVSNet_Blended | | | 76.49 250 | 75.40 254 | 79.76 238 | 84.43 264 | 63.41 225 | 75.14 309 | 90.44 154 | 57.36 313 | 75.43 310 | 78.30 344 | 69.11 227 | 91.44 187 | 60.68 285 | 87.70 294 | 84.42 296 |
|
OpenMVS |  | 76.72 13 | 81.98 182 | 82.00 178 | 81.93 202 | 84.42 266 | 68.22 189 | 88.50 90 | 89.48 181 | 66.92 247 | 81.80 250 | 91.86 149 | 72.59 208 | 90.16 227 | 71.19 201 | 91.25 245 | 87.40 266 |
|
OpenMVS_ROB |  | 70.19 17 | 77.77 236 | 77.46 233 | 78.71 253 | 84.39 267 | 61.15 253 | 81.18 232 | 82.52 266 | 62.45 280 | 83.34 226 | 87.37 243 | 66.20 241 | 88.66 257 | 64.69 256 | 85.02 315 | 86.32 276 |
|
test_yl | | | 78.71 224 | 78.51 223 | 79.32 246 | 84.32 268 | 58.84 281 | 78.38 269 | 85.33 242 | 75.99 136 | 82.49 235 | 86.57 253 | 58.01 286 | 90.02 236 | 62.74 267 | 92.73 219 | 89.10 243 |
|
DCV-MVSNet | | | 78.71 224 | 78.51 223 | 79.32 246 | 84.32 268 | 58.84 281 | 78.38 269 | 85.33 242 | 75.99 136 | 82.49 235 | 86.57 253 | 58.01 286 | 90.02 236 | 62.74 267 | 92.73 219 | 89.10 243 |
|
Regformer-3 | | | 85.06 120 | 84.67 135 | 86.22 115 | 84.27 270 | 73.43 133 | 84.07 155 | 85.26 244 | 80.77 82 | 88.62 129 | 85.48 271 | 80.56 127 | 90.39 221 | 81.99 85 | 91.04 248 | 94.85 68 |
|
Regformer-4 | | | 86.41 96 | 85.71 114 | 88.52 76 | 84.27 270 | 77.57 100 | 84.07 155 | 88.00 205 | 82.82 58 | 89.84 103 | 85.48 271 | 82.06 102 | 92.77 152 | 83.83 67 | 91.04 248 | 95.22 60 |
|
DELS-MVS | | | 81.44 187 | 81.25 187 | 82.03 201 | 84.27 270 | 62.87 234 | 76.47 297 | 92.49 101 | 70.97 206 | 81.64 253 | 83.83 297 | 75.03 175 | 92.70 153 | 74.29 170 | 92.22 230 | 90.51 220 |
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
Gipuma |  | | 84.44 134 | 86.33 100 | 78.78 251 | 84.20 273 | 73.57 132 | 89.55 68 | 90.44 154 | 84.24 39 | 84.38 207 | 94.89 46 | 76.35 169 | 80.40 325 | 76.14 154 | 96.80 96 | 82.36 324 |
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
Regformer-1 | | | 86.00 104 | 85.50 118 | 87.49 93 | 84.18 274 | 76.90 112 | 83.52 174 | 87.94 207 | 82.18 65 | 89.19 119 | 85.07 283 | 82.28 98 | 91.89 177 | 82.40 81 | 92.72 221 | 93.69 113 |
|
Regformer-2 | | | 86.74 92 | 86.08 106 | 88.73 72 | 84.18 274 | 79.20 82 | 83.52 174 | 89.33 184 | 83.33 51 | 89.92 101 | 85.07 283 | 83.23 86 | 93.16 139 | 83.39 69 | 92.72 221 | 93.83 104 |
|
MVS_0304 | | | 78.17 229 | 77.23 237 | 80.99 221 | 84.13 276 | 69.07 186 | 81.39 227 | 80.81 279 | 76.28 130 | 67.53 345 | 89.11 217 | 62.87 260 | 86.77 278 | 60.90 284 | 92.01 235 | 87.13 269 |
|
EI-MVSNet-Vis-set | | | 85.12 118 | 84.53 138 | 86.88 100 | 84.01 277 | 72.76 138 | 83.91 163 | 85.18 246 | 80.44 83 | 88.75 126 | 85.49 270 | 80.08 131 | 91.92 175 | 82.02 84 | 90.85 257 | 95.97 38 |
|
IterMVS-SCA-FT | | | 80.64 199 | 79.41 213 | 84.34 153 | 83.93 278 | 69.66 175 | 76.28 299 | 81.09 277 | 72.43 184 | 86.47 173 | 90.19 199 | 60.46 268 | 93.15 141 | 77.45 142 | 86.39 304 | 90.22 224 |
|
MSDG | | | 80.06 214 | 79.99 210 | 80.25 231 | 83.91 279 | 68.04 191 | 77.51 283 | 89.19 185 | 77.65 117 | 81.94 244 | 83.45 302 | 76.37 168 | 86.31 285 | 63.31 265 | 86.59 301 | 86.41 275 |
|
EI-MVSNet-UG-set | | | 85.04 121 | 84.44 140 | 86.85 101 | 83.87 280 | 72.52 147 | 83.82 165 | 85.15 247 | 80.27 87 | 88.75 126 | 85.45 274 | 79.95 133 | 91.90 176 | 81.92 87 | 90.80 258 | 96.13 33 |
|
thres200 | | | 72.34 286 | 71.55 291 | 74.70 298 | 83.48 281 | 51.60 334 | 75.02 310 | 73.71 323 | 70.14 217 | 78.56 286 | 80.57 330 | 46.20 328 | 88.20 262 | 46.99 350 | 89.29 272 | 84.32 297 |
|
USDC | | | 76.63 247 | 76.73 243 | 76.34 287 | 83.46 282 | 57.20 295 | 80.02 245 | 88.04 204 | 52.14 339 | 83.65 221 | 91.25 165 | 63.24 255 | 86.65 281 | 54.66 318 | 94.11 187 | 85.17 288 |
|
HY-MVS | | 64.64 18 | 73.03 280 | 72.47 284 | 74.71 297 | 83.36 283 | 54.19 313 | 82.14 219 | 81.96 271 | 56.76 317 | 69.57 337 | 86.21 261 | 60.03 272 | 84.83 302 | 49.58 340 | 82.65 333 | 85.11 289 |
|
EI-MVSNet | | | 82.61 169 | 82.42 173 | 83.20 179 | 83.25 284 | 63.66 223 | 83.50 177 | 85.07 248 | 76.06 133 | 86.55 167 | 85.10 280 | 73.41 197 | 90.25 222 | 78.15 133 | 90.67 261 | 95.68 44 |
|
CVMVSNet | | | 72.62 283 | 71.41 292 | 76.28 288 | 83.25 284 | 60.34 264 | 83.50 177 | 79.02 291 | 37.77 368 | 76.33 299 | 85.10 280 | 49.60 320 | 87.41 268 | 70.54 209 | 77.54 353 | 81.08 340 |
|
V42 | | | 83.47 159 | 83.37 156 | 83.75 168 | 83.16 286 | 63.33 227 | 81.31 228 | 90.23 166 | 69.51 221 | 90.91 83 | 90.81 183 | 74.16 186 | 92.29 165 | 80.06 105 | 90.22 265 | 95.62 46 |
|
Anonymous20240521 | | | 80.18 211 | 81.25 187 | 76.95 278 | 83.15 287 | 60.84 260 | 82.46 206 | 85.99 235 | 68.76 229 | 86.78 160 | 93.73 105 | 59.13 280 | 77.44 332 | 73.71 179 | 97.55 69 | 92.56 155 |
|
EU-MVSNet | | | 75.12 261 | 74.43 263 | 77.18 276 | 83.11 288 | 59.48 272 | 85.71 133 | 82.43 268 | 39.76 367 | 85.64 186 | 88.76 221 | 44.71 347 | 87.88 264 | 73.86 177 | 85.88 308 | 84.16 299 |
|
ET-MVSNet_ETH3D | | | 75.28 258 | 72.77 278 | 82.81 190 | 83.03 289 | 68.11 190 | 77.09 287 | 76.51 303 | 60.67 295 | 77.60 294 | 80.52 331 | 38.04 360 | 91.15 197 | 70.78 204 | 90.68 260 | 89.17 241 |
|
FMVSNet3 | | | 78.80 222 | 78.55 222 | 79.57 243 | 82.89 290 | 56.89 298 | 81.76 220 | 85.77 237 | 69.04 226 | 86.00 179 | 90.44 193 | 51.75 313 | 90.09 233 | 65.95 244 | 93.34 203 | 91.72 190 |
|
MVS_Test | | | 82.47 172 | 83.22 157 | 80.22 232 | 82.62 291 | 57.75 290 | 82.54 204 | 91.96 114 | 71.16 205 | 82.89 232 | 92.52 135 | 77.41 152 | 90.50 218 | 80.04 106 | 87.84 292 | 92.40 163 |
|
LF4IMVS | | | 82.75 168 | 81.93 179 | 85.19 135 | 82.08 292 | 80.15 73 | 85.53 134 | 88.76 191 | 68.01 235 | 85.58 187 | 87.75 236 | 71.80 216 | 86.85 276 | 74.02 174 | 93.87 192 | 88.58 251 |
|
PVSNet | | 58.17 21 | 66.41 318 | 65.63 321 | 68.75 324 | 81.96 293 | 49.88 346 | 62.19 355 | 72.51 332 | 51.03 345 | 68.04 341 | 75.34 356 | 50.84 316 | 74.77 340 | 45.82 354 | 82.96 329 | 81.60 332 |
|
GA-MVS | | | 75.83 255 | 74.61 259 | 79.48 245 | 81.87 294 | 59.25 274 | 73.42 321 | 82.88 264 | 68.68 230 | 79.75 275 | 81.80 320 | 50.62 317 | 89.46 244 | 66.85 238 | 85.64 309 | 89.72 230 |
|
MS-PatchMatch | | | 70.93 295 | 70.22 298 | 73.06 305 | 81.85 295 | 62.50 240 | 73.82 319 | 77.90 294 | 52.44 336 | 75.92 305 | 81.27 324 | 55.67 301 | 81.75 318 | 55.37 312 | 77.70 351 | 74.94 352 |
|
SCA | | | 73.32 276 | 72.57 282 | 75.58 293 | 81.62 296 | 55.86 303 | 78.89 263 | 71.37 340 | 61.73 284 | 74.93 315 | 83.42 303 | 60.46 268 | 87.01 271 | 58.11 298 | 82.63 335 | 83.88 300 |
|
FMVSNet5 | | | 72.10 288 | 71.69 288 | 73.32 302 | 81.57 297 | 53.02 322 | 76.77 291 | 78.37 293 | 63.31 273 | 76.37 298 | 91.85 150 | 36.68 363 | 78.98 328 | 47.87 347 | 92.45 224 | 87.95 259 |
|
thisisatest0515 | | | 73.00 281 | 70.52 295 | 80.46 228 | 81.45 298 | 59.90 268 | 73.16 324 | 74.31 317 | 57.86 308 | 76.08 304 | 77.78 345 | 37.60 362 | 92.12 169 | 65.00 252 | 91.45 243 | 89.35 237 |
|
eth_miper_zixun_eth | | | 80.84 195 | 80.22 204 | 82.71 191 | 81.41 299 | 60.98 258 | 77.81 277 | 90.14 169 | 67.31 245 | 86.95 159 | 87.24 246 | 64.26 248 | 92.31 163 | 75.23 165 | 91.61 240 | 94.85 68 |
|
CANet_DTU | | | 77.81 235 | 77.05 238 | 80.09 235 | 81.37 300 | 59.90 268 | 83.26 183 | 88.29 199 | 69.16 224 | 67.83 343 | 83.72 298 | 60.93 265 | 89.47 243 | 69.22 220 | 89.70 269 | 90.88 208 |
|
ANet_high | | | 83.17 165 | 85.68 115 | 75.65 292 | 81.24 301 | 45.26 360 | 79.94 246 | 92.91 89 | 83.83 43 | 91.33 75 | 96.88 10 | 80.25 130 | 85.92 290 | 68.89 224 | 95.89 133 | 95.76 42 |
|
new-patchmatchnet | | | 70.10 300 | 73.37 273 | 60.29 347 | 81.23 302 | 16.95 377 | 59.54 357 | 74.62 313 | 62.93 275 | 80.97 258 | 87.93 234 | 62.83 261 | 71.90 345 | 55.24 314 | 95.01 164 | 92.00 181 |
|
test20.03 | | | 73.75 275 | 74.59 261 | 71.22 314 | 81.11 303 | 51.12 339 | 70.15 334 | 72.10 334 | 70.42 211 | 80.28 271 | 91.50 161 | 64.21 249 | 74.72 342 | 46.96 351 | 94.58 177 | 87.82 263 |
|
MVS | | | 73.21 279 | 72.59 281 | 75.06 296 | 80.97 304 | 60.81 261 | 81.64 223 | 85.92 236 | 46.03 358 | 71.68 329 | 77.54 346 | 68.47 230 | 89.77 239 | 55.70 309 | 85.39 310 | 74.60 353 |
|
N_pmnet | | | 70.20 298 | 68.80 307 | 74.38 299 | 80.91 305 | 84.81 40 | 59.12 359 | 76.45 304 | 55.06 322 | 75.31 313 | 82.36 316 | 55.74 300 | 54.82 368 | 47.02 349 | 87.24 297 | 83.52 307 |
|
IterMVS | | | 76.91 243 | 76.34 246 | 78.64 254 | 80.91 305 | 64.03 221 | 76.30 298 | 79.03 290 | 64.88 269 | 83.11 229 | 89.16 215 | 59.90 274 | 84.46 304 | 68.61 228 | 85.15 314 | 87.42 265 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
c3_l | | | 81.64 185 | 81.59 184 | 81.79 209 | 80.86 307 | 59.15 277 | 78.61 268 | 90.18 168 | 68.36 231 | 87.20 149 | 87.11 249 | 69.39 224 | 91.62 182 | 78.16 131 | 94.43 181 | 94.60 74 |
|
RRT_test8_iter05 | | | 78.08 231 | 77.52 232 | 79.75 239 | 80.84 308 | 52.54 327 | 80.61 238 | 88.96 188 | 67.77 242 | 84.62 202 | 89.29 212 | 33.89 366 | 92.10 170 | 77.59 139 | 94.15 186 | 94.62 72 |
|
WTY-MVS | | | 67.91 311 | 68.35 309 | 66.58 332 | 80.82 309 | 48.12 350 | 65.96 347 | 72.60 330 | 53.67 329 | 71.20 331 | 81.68 322 | 58.97 281 | 69.06 352 | 48.57 343 | 81.67 336 | 82.55 320 |
|
IB-MVS | | 62.13 19 | 71.64 291 | 68.97 305 | 79.66 242 | 80.80 310 | 62.26 245 | 73.94 317 | 76.90 299 | 63.27 274 | 68.63 339 | 76.79 351 | 33.83 367 | 91.84 179 | 59.28 292 | 87.26 296 | 84.88 291 |
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
our_test_3 | | | 71.85 289 | 71.59 289 | 72.62 308 | 80.71 311 | 53.78 316 | 69.72 336 | 71.71 339 | 58.80 302 | 78.03 287 | 80.51 332 | 56.61 296 | 78.84 329 | 62.20 271 | 86.04 307 | 85.23 287 |
|
ppachtmachnet_test | | | 74.73 268 | 74.00 266 | 76.90 280 | 80.71 311 | 56.89 298 | 71.53 329 | 78.42 292 | 58.24 305 | 79.32 280 | 82.92 310 | 57.91 289 | 84.26 306 | 65.60 249 | 91.36 244 | 89.56 233 |
|
testgi | | | 72.36 285 | 74.61 259 | 65.59 334 | 80.56 313 | 42.82 367 | 68.29 339 | 73.35 325 | 66.87 248 | 81.84 247 | 89.93 204 | 72.08 213 | 66.92 358 | 46.05 353 | 92.54 223 | 87.01 271 |
|
RRT_MVS | | | 83.25 162 | 81.08 191 | 89.74 53 | 80.55 314 | 79.32 81 | 86.41 123 | 86.69 226 | 72.33 189 | 87.00 157 | 91.08 171 | 44.98 345 | 95.55 40 | 84.47 61 | 96.24 118 | 94.36 85 |
|
D2MVS | | | 76.84 244 | 75.67 253 | 80.34 230 | 80.48 315 | 62.16 246 | 73.50 320 | 84.80 256 | 57.61 311 | 82.24 239 | 87.54 240 | 51.31 314 | 87.65 266 | 70.40 211 | 93.19 208 | 91.23 200 |
|
1314 | | | 73.22 278 | 72.56 283 | 75.20 294 | 80.41 316 | 57.84 288 | 81.64 223 | 85.36 241 | 51.68 342 | 73.10 323 | 76.65 352 | 61.45 264 | 85.19 297 | 63.54 262 | 79.21 347 | 82.59 319 |
|
cl____ | | | 80.42 203 | 80.23 202 | 81.02 219 | 79.99 317 | 59.25 274 | 77.07 288 | 87.02 222 | 67.37 244 | 86.18 176 | 89.21 214 | 63.08 257 | 90.16 227 | 76.31 152 | 95.80 137 | 93.65 116 |
|
DIV-MVS_self_test | | | 80.43 202 | 80.23 202 | 81.02 219 | 79.99 317 | 59.25 274 | 77.07 288 | 87.02 222 | 67.38 243 | 86.19 174 | 89.22 213 | 63.09 256 | 90.16 227 | 76.32 151 | 95.80 137 | 93.66 114 |
|
miper_ehance_all_eth | | | 80.34 206 | 80.04 209 | 81.24 215 | 79.82 319 | 58.95 279 | 77.66 279 | 89.66 177 | 65.75 259 | 85.99 182 | 85.11 279 | 68.29 231 | 91.42 189 | 76.03 156 | 92.03 232 | 93.33 124 |
|
CR-MVSNet | | | 74.00 273 | 73.04 276 | 76.85 282 | 79.58 320 | 62.64 237 | 82.58 201 | 76.90 299 | 50.50 350 | 75.72 307 | 92.38 136 | 48.07 323 | 84.07 307 | 68.72 227 | 82.91 331 | 83.85 303 |
|
RPMNet | | | 78.88 220 | 78.28 226 | 80.68 226 | 79.58 320 | 62.64 237 | 82.58 201 | 94.16 31 | 74.80 152 | 75.72 307 | 92.59 130 | 48.69 321 | 95.56 37 | 73.48 182 | 82.91 331 | 83.85 303 |
|
baseline2 | | | 69.77 304 | 66.89 314 | 78.41 259 | 79.51 322 | 58.09 286 | 76.23 300 | 69.57 346 | 57.50 312 | 64.82 356 | 77.45 348 | 46.02 330 | 88.44 258 | 53.08 324 | 77.83 350 | 88.70 250 |
|
UnsupCasMVSNet_bld | | | 69.21 307 | 69.68 302 | 67.82 328 | 79.42 323 | 51.15 338 | 67.82 343 | 75.79 306 | 54.15 326 | 77.47 295 | 85.36 278 | 59.26 279 | 70.64 347 | 48.46 344 | 79.35 345 | 81.66 331 |
|
PatchT | | | 70.52 297 | 72.76 279 | 63.79 339 | 79.38 324 | 33.53 373 | 77.63 280 | 65.37 357 | 73.61 165 | 71.77 328 | 92.79 126 | 44.38 348 | 75.65 339 | 64.53 259 | 85.37 311 | 82.18 326 |
|
Patchmtry | | | 76.56 249 | 77.46 233 | 73.83 301 | 79.37 325 | 46.60 357 | 82.41 208 | 76.90 299 | 73.81 163 | 85.56 188 | 92.38 136 | 48.07 323 | 83.98 308 | 63.36 264 | 95.31 153 | 90.92 207 |
|
mvs_anonymous | | | 78.13 230 | 78.76 219 | 76.23 290 | 79.24 326 | 50.31 344 | 78.69 266 | 84.82 255 | 61.60 287 | 83.09 231 | 92.82 123 | 73.89 190 | 87.01 271 | 68.33 231 | 86.41 303 | 91.37 198 |
|
MVS-HIRNet | | | 61.16 330 | 62.92 327 | 55.87 350 | 79.09 327 | 35.34 372 | 71.83 327 | 57.98 369 | 46.56 356 | 59.05 365 | 91.14 170 | 49.95 319 | 76.43 335 | 38.74 364 | 71.92 361 | 55.84 368 |
|
MDA-MVSNet-bldmvs | | | 77.47 237 | 76.90 241 | 79.16 248 | 79.03 328 | 64.59 214 | 66.58 346 | 75.67 308 | 73.15 177 | 88.86 123 | 88.99 219 | 66.94 237 | 81.23 321 | 64.71 255 | 88.22 288 | 91.64 193 |
|
diffmvs | | | 80.40 204 | 80.48 199 | 80.17 234 | 79.02 329 | 60.04 266 | 77.54 282 | 90.28 165 | 66.65 250 | 82.40 237 | 87.33 245 | 73.50 194 | 87.35 269 | 77.98 135 | 89.62 270 | 93.13 132 |
|
tpm2 | | | 68.45 309 | 66.83 315 | 73.30 303 | 78.93 330 | 48.50 348 | 79.76 248 | 71.76 337 | 47.50 354 | 69.92 336 | 83.60 299 | 42.07 353 | 88.40 259 | 48.44 345 | 79.51 343 | 83.01 317 |
|
tpm | | | 67.95 310 | 68.08 311 | 67.55 329 | 78.74 331 | 43.53 365 | 75.60 304 | 67.10 354 | 54.92 323 | 72.23 326 | 88.10 230 | 42.87 352 | 75.97 337 | 52.21 329 | 80.95 342 | 83.15 315 |
|
MDTV_nov1_ep13 | | | | 68.29 310 | | 78.03 332 | 43.87 364 | 74.12 316 | 72.22 333 | 52.17 337 | 67.02 346 | 85.54 269 | 45.36 340 | 80.85 323 | 55.73 307 | 84.42 323 | |
|
cl22 | | | 78.97 219 | 78.21 227 | 81.24 215 | 77.74 333 | 59.01 278 | 77.46 285 | 87.13 217 | 65.79 256 | 84.32 209 | 85.10 280 | 58.96 282 | 90.88 207 | 75.36 164 | 92.03 232 | 93.84 103 |
|
EPNet_dtu | | | 72.87 282 | 71.33 293 | 77.49 275 | 77.72 334 | 60.55 263 | 82.35 210 | 75.79 306 | 66.49 251 | 58.39 368 | 81.06 326 | 53.68 308 | 85.98 289 | 53.55 322 | 92.97 215 | 85.95 280 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
PatchmatchNet |  | | 69.71 305 | 68.83 306 | 72.33 311 | 77.66 335 | 53.60 317 | 79.29 256 | 69.99 344 | 57.66 310 | 72.53 325 | 82.93 309 | 46.45 327 | 80.08 327 | 60.91 283 | 72.09 360 | 83.31 313 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
sss | | | 66.92 313 | 67.26 313 | 65.90 333 | 77.23 336 | 51.10 340 | 64.79 348 | 71.72 338 | 52.12 340 | 70.13 335 | 80.18 334 | 57.96 288 | 65.36 363 | 50.21 336 | 81.01 341 | 81.25 337 |
|
CostFormer | | | 69.98 303 | 68.68 308 | 73.87 300 | 77.14 337 | 50.72 342 | 79.26 257 | 74.51 315 | 51.94 341 | 70.97 333 | 84.75 289 | 45.16 344 | 87.49 267 | 55.16 315 | 79.23 346 | 83.40 310 |
|
tpm cat1 | | | 66.76 316 | 65.21 322 | 71.42 313 | 77.09 338 | 50.62 343 | 78.01 273 | 73.68 324 | 44.89 360 | 68.64 338 | 79.00 340 | 45.51 338 | 82.42 317 | 49.91 338 | 70.15 363 | 81.23 339 |
|
pmmvs5 | | | 70.73 296 | 70.07 299 | 72.72 306 | 77.03 339 | 52.73 324 | 74.14 315 | 75.65 309 | 50.36 351 | 72.17 327 | 85.37 277 | 55.42 303 | 80.67 324 | 52.86 328 | 87.59 295 | 84.77 292 |
|
EPNet | | | 80.37 205 | 78.41 225 | 86.23 114 | 76.75 340 | 73.28 134 | 87.18 107 | 77.45 297 | 76.24 131 | 68.14 340 | 88.93 220 | 65.41 245 | 93.85 108 | 69.47 216 | 96.12 123 | 91.55 196 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
miper_lstm_enhance | | | 76.45 251 | 76.10 248 | 77.51 274 | 76.72 341 | 60.97 259 | 64.69 349 | 85.04 250 | 63.98 272 | 83.20 228 | 88.22 228 | 56.67 295 | 78.79 330 | 73.22 184 | 93.12 209 | 92.78 146 |
|
CHOSEN 280x420 | | | 59.08 334 | 56.52 339 | 66.76 331 | 76.51 342 | 64.39 218 | 49.62 365 | 59.00 366 | 43.86 362 | 55.66 370 | 68.41 363 | 35.55 365 | 68.21 354 | 43.25 357 | 76.78 355 | 67.69 361 |
|
UnsupCasMVSNet_eth | | | 71.63 292 | 72.30 285 | 69.62 319 | 76.47 343 | 52.70 325 | 70.03 335 | 80.97 278 | 59.18 300 | 79.36 279 | 88.21 229 | 60.50 267 | 69.12 351 | 58.33 296 | 77.62 352 | 87.04 270 |
|
test-LLR | | | 67.21 312 | 66.74 316 | 68.63 325 | 76.45 344 | 55.21 308 | 67.89 340 | 67.14 352 | 62.43 281 | 65.08 353 | 72.39 358 | 43.41 349 | 69.37 348 | 61.00 281 | 84.89 318 | 81.31 335 |
|
test-mter | | | 65.00 322 | 63.79 325 | 68.63 325 | 76.45 344 | 55.21 308 | 67.89 340 | 67.14 352 | 50.98 346 | 65.08 353 | 72.39 358 | 28.27 374 | 69.37 348 | 61.00 281 | 84.89 318 | 81.31 335 |
|
miper_enhance_ethall | | | 77.83 233 | 76.93 240 | 80.51 227 | 76.15 346 | 58.01 287 | 75.47 307 | 88.82 189 | 58.05 307 | 83.59 222 | 80.69 327 | 64.41 247 | 91.20 194 | 73.16 190 | 92.03 232 | 92.33 167 |
|
gg-mvs-nofinetune | | | 68.96 308 | 69.11 304 | 68.52 327 | 76.12 347 | 45.32 359 | 83.59 173 | 55.88 370 | 86.68 26 | 64.62 357 | 97.01 7 | 30.36 371 | 83.97 309 | 44.78 355 | 82.94 330 | 76.26 350 |
|
CMPMVS |  | 59.41 20 | 75.12 261 | 73.57 269 | 79.77 237 | 75.84 348 | 67.22 194 | 81.21 231 | 82.18 269 | 50.78 347 | 76.50 297 | 87.66 238 | 55.20 304 | 82.99 313 | 62.17 273 | 90.64 264 | 89.09 245 |
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
wuyk23d | | | 75.13 260 | 79.30 214 | 62.63 340 | 75.56 349 | 75.18 125 | 80.89 235 | 73.10 328 | 75.06 151 | 94.76 12 | 95.32 35 | 87.73 42 | 52.85 369 | 34.16 368 | 97.11 85 | 59.85 365 |
|
Patchmatch-test | | | 65.91 320 | 67.38 312 | 61.48 345 | 75.51 350 | 43.21 366 | 68.84 337 | 63.79 359 | 62.48 279 | 72.80 324 | 83.42 303 | 44.89 346 | 59.52 367 | 48.27 346 | 86.45 302 | 81.70 330 |
|
new_pmnet | | | 55.69 336 | 57.66 338 | 49.76 352 | 75.47 351 | 30.59 374 | 59.56 356 | 51.45 373 | 43.62 363 | 62.49 359 | 75.48 355 | 40.96 355 | 49.15 371 | 37.39 366 | 72.52 359 | 69.55 359 |
|
gm-plane-assit | | | | | | 75.42 352 | 44.97 362 | | | 52.17 337 | | 72.36 360 | | 87.90 263 | 54.10 320 | | |
|
MVSTER | | | 77.09 241 | 75.70 252 | 81.25 213 | 75.27 353 | 61.08 254 | 77.49 284 | 85.07 248 | 60.78 293 | 86.55 167 | 88.68 223 | 43.14 351 | 90.25 222 | 73.69 180 | 90.67 261 | 92.42 161 |
|
PVSNet_0 | | 51.08 22 | 56.10 335 | 54.97 340 | 59.48 348 | 75.12 354 | 53.28 321 | 55.16 362 | 61.89 361 | 44.30 361 | 59.16 364 | 62.48 367 | 54.22 307 | 65.91 362 | 35.40 367 | 47.01 370 | 59.25 366 |
|
test0.0.03 1 | | | 64.66 323 | 64.36 324 | 65.57 335 | 75.03 355 | 46.89 356 | 64.69 349 | 61.58 364 | 62.43 281 | 71.18 332 | 77.54 346 | 43.41 349 | 68.47 353 | 40.75 362 | 82.65 333 | 81.35 334 |
|
DWT-MVSNet_test | | | 66.43 317 | 64.37 323 | 72.63 307 | 74.86 356 | 50.86 341 | 76.52 295 | 72.74 329 | 54.06 327 | 65.50 350 | 68.30 364 | 32.13 369 | 84.84 301 | 61.63 278 | 73.59 358 | 82.19 325 |
|
tpmvs | | | 70.16 299 | 69.56 303 | 71.96 312 | 74.71 357 | 48.13 349 | 79.63 249 | 75.45 311 | 65.02 268 | 70.26 334 | 81.88 319 | 45.34 341 | 85.68 293 | 58.34 295 | 75.39 356 | 82.08 327 |
|
MDA-MVSNet_test_wron | | | 70.05 302 | 70.44 296 | 68.88 323 | 73.84 358 | 53.47 318 | 58.93 361 | 67.28 350 | 58.43 303 | 87.09 154 | 85.40 275 | 59.80 276 | 67.25 356 | 59.66 290 | 83.54 326 | 85.92 281 |
|
YYNet1 | | | 70.06 301 | 70.44 296 | 68.90 322 | 73.76 359 | 53.42 320 | 58.99 360 | 67.20 351 | 58.42 304 | 87.10 153 | 85.39 276 | 59.82 275 | 67.32 355 | 59.79 289 | 83.50 327 | 85.96 279 |
|
GG-mvs-BLEND | | | | | 67.16 330 | 73.36 360 | 46.54 358 | 84.15 154 | 55.04 371 | | 58.64 367 | 61.95 368 | 29.93 372 | 83.87 310 | 38.71 365 | 76.92 354 | 71.07 357 |
|
JIA-IIPM | | | 69.41 306 | 66.64 318 | 77.70 272 | 73.19 361 | 71.24 165 | 75.67 303 | 65.56 356 | 70.42 211 | 65.18 352 | 92.97 118 | 33.64 368 | 83.06 312 | 53.52 323 | 69.61 366 | 78.79 347 |
|
ADS-MVSNet2 | | | 65.87 321 | 63.64 326 | 72.55 309 | 73.16 362 | 56.92 297 | 67.10 344 | 74.81 312 | 49.74 352 | 66.04 348 | 82.97 307 | 46.71 325 | 77.26 333 | 42.29 358 | 69.96 364 | 83.46 308 |
|
ADS-MVSNet | | | 61.90 326 | 62.19 329 | 61.03 346 | 73.16 362 | 36.42 371 | 67.10 344 | 61.75 362 | 49.74 352 | 66.04 348 | 82.97 307 | 46.71 325 | 63.21 365 | 42.29 358 | 69.96 364 | 83.46 308 |
|
DSMNet-mixed | | | 60.98 332 | 61.61 331 | 59.09 349 | 72.88 364 | 45.05 361 | 74.70 313 | 46.61 376 | 26.20 370 | 65.34 351 | 90.32 195 | 55.46 302 | 63.12 366 | 41.72 360 | 81.30 340 | 69.09 360 |
|
tpmrst | | | 66.28 319 | 66.69 317 | 65.05 337 | 72.82 365 | 39.33 368 | 78.20 272 | 70.69 342 | 53.16 332 | 67.88 342 | 80.36 333 | 48.18 322 | 74.75 341 | 58.13 297 | 70.79 362 | 81.08 340 |
|
TESTMET0.1,1 | | | 61.29 329 | 60.32 334 | 64.19 338 | 72.06 366 | 51.30 336 | 67.89 340 | 62.09 360 | 45.27 359 | 60.65 362 | 69.01 361 | 27.93 375 | 64.74 364 | 56.31 305 | 81.65 338 | 76.53 349 |
|
dp | | | 60.70 333 | 60.29 335 | 61.92 343 | 72.04 367 | 38.67 370 | 70.83 330 | 64.08 358 | 51.28 344 | 60.75 361 | 77.28 349 | 36.59 364 | 71.58 346 | 47.41 348 | 62.34 369 | 75.52 351 |
|
pmmvs3 | | | 62.47 324 | 60.02 336 | 69.80 318 | 71.58 368 | 64.00 222 | 70.52 332 | 58.44 368 | 39.77 366 | 66.05 347 | 75.84 354 | 27.10 377 | 72.28 343 | 46.15 352 | 84.77 322 | 73.11 354 |
|
EPMVS | | | 62.47 324 | 62.63 328 | 62.01 341 | 70.63 369 | 38.74 369 | 74.76 312 | 52.86 372 | 53.91 328 | 67.71 344 | 80.01 335 | 39.40 357 | 66.60 359 | 55.54 311 | 68.81 367 | 80.68 344 |
|
KD-MVS_2432*1600 | | | 66.87 314 | 65.81 319 | 70.04 315 | 67.50 370 | 47.49 353 | 62.56 353 | 79.16 288 | 61.21 290 | 77.98 288 | 80.61 328 | 25.29 378 | 82.48 315 | 53.02 325 | 84.92 316 | 80.16 345 |
|
miper_refine_blended | | | 66.87 314 | 65.81 319 | 70.04 315 | 67.50 370 | 47.49 353 | 62.56 353 | 79.16 288 | 61.21 290 | 77.98 288 | 80.61 328 | 25.29 378 | 82.48 315 | 53.02 325 | 84.92 316 | 80.16 345 |
|
E-PMN | | | 61.59 328 | 61.62 330 | 61.49 344 | 66.81 372 | 55.40 306 | 53.77 363 | 60.34 365 | 66.80 249 | 58.90 366 | 65.50 365 | 40.48 356 | 66.12 361 | 55.72 308 | 86.25 305 | 62.95 363 |
|
EMVS | | | 61.10 331 | 60.81 332 | 61.99 342 | 65.96 373 | 55.86 303 | 53.10 364 | 58.97 367 | 67.06 246 | 56.89 369 | 63.33 366 | 40.98 354 | 67.03 357 | 54.79 317 | 86.18 306 | 63.08 362 |
|
PMMVS | | | 61.65 327 | 60.38 333 | 65.47 336 | 65.40 374 | 69.26 180 | 63.97 351 | 61.73 363 | 36.80 369 | 60.11 363 | 68.43 362 | 59.42 277 | 66.35 360 | 48.97 342 | 78.57 349 | 60.81 364 |
|
PMMVS2 | | | 55.64 337 | 59.27 337 | 44.74 353 | 64.30 375 | 12.32 378 | 40.60 366 | 49.79 374 | 53.19 331 | 65.06 355 | 84.81 288 | 53.60 309 | 49.76 370 | 32.68 370 | 89.41 271 | 72.15 355 |
|
MVE |  | 40.22 23 | 51.82 338 | 50.47 341 | 55.87 350 | 62.66 376 | 51.91 331 | 31.61 368 | 39.28 377 | 40.65 365 | 50.76 371 | 74.98 357 | 56.24 299 | 44.67 372 | 33.94 369 | 64.11 368 | 71.04 358 |
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
DeepMVS_CX |  | | | | 24.13 355 | 32.95 377 | 29.49 375 | | 21.63 380 | 12.07 371 | 37.95 372 | 45.07 370 | 30.84 370 | 19.21 374 | 17.94 373 | 33.06 373 | 23.69 370 |
|
test_method | | | 30.46 339 | 29.60 342 | 33.06 354 | 17.99 378 | 3.84 380 | 13.62 369 | 73.92 319 | 2.79 372 | 18.29 374 | 53.41 369 | 28.53 373 | 43.25 373 | 22.56 371 | 35.27 372 | 52.11 369 |
|
tmp_tt | | | 20.25 341 | 24.50 344 | 7.49 356 | 4.47 379 | 8.70 379 | 34.17 367 | 25.16 379 | 1.00 374 | 32.43 373 | 18.49 371 | 39.37 358 | 9.21 375 | 21.64 372 | 43.75 371 | 4.57 371 |
|
testmvs | | | 5.91 345 | 7.65 348 | 0.72 358 | 1.20 380 | 0.37 382 | 59.14 358 | 0.67 382 | 0.49 376 | 1.11 376 | 2.76 375 | 0.94 381 | 0.24 377 | 1.02 375 | 1.47 374 | 1.55 373 |
|
test123 | | | 6.27 344 | 8.08 347 | 0.84 357 | 1.11 381 | 0.57 381 | 62.90 352 | 0.82 381 | 0.54 375 | 1.07 377 | 2.75 376 | 1.26 380 | 0.30 376 | 1.04 374 | 1.26 375 | 1.66 372 |
|
test_blank | | | 0.00 346 | 0.00 349 | 0.00 359 | 0.00 382 | 0.00 383 | 0.00 370 | 0.00 383 | 0.00 377 | 0.00 378 | 0.00 377 | 0.00 382 | 0.00 378 | 0.00 376 | 0.00 376 | 0.00 374 |
|
eth-test2 | | | | | | 0.00 382 | | | | | | | | | | | |
|
eth-test | | | | | | 0.00 382 | | | | | | | | | | | |
|
uanet_test | | | 0.00 346 | 0.00 349 | 0.00 359 | 0.00 382 | 0.00 383 | 0.00 370 | 0.00 383 | 0.00 377 | 0.00 378 | 0.00 377 | 0.00 382 | 0.00 378 | 0.00 376 | 0.00 376 | 0.00 374 |
|
cdsmvs_eth3d_5k | | | 20.81 340 | 27.75 343 | 0.00 359 | 0.00 382 | 0.00 383 | 0.00 370 | 85.44 240 | 0.00 377 | 0.00 378 | 82.82 311 | 81.46 114 | 0.00 378 | 0.00 376 | 0.00 376 | 0.00 374 |
|
pcd_1.5k_mvsjas | | | 6.41 343 | 8.55 346 | 0.00 359 | 0.00 382 | 0.00 383 | 0.00 370 | 0.00 383 | 0.00 377 | 0.00 378 | 0.00 377 | 76.94 160 | 0.00 378 | 0.00 376 | 0.00 376 | 0.00 374 |
|
sosnet-low-res | | | 0.00 346 | 0.00 349 | 0.00 359 | 0.00 382 | 0.00 383 | 0.00 370 | 0.00 383 | 0.00 377 | 0.00 378 | 0.00 377 | 0.00 382 | 0.00 378 | 0.00 376 | 0.00 376 | 0.00 374 |
|
sosnet | | | 0.00 346 | 0.00 349 | 0.00 359 | 0.00 382 | 0.00 383 | 0.00 370 | 0.00 383 | 0.00 377 | 0.00 378 | 0.00 377 | 0.00 382 | 0.00 378 | 0.00 376 | 0.00 376 | 0.00 374 |
|
uncertanet | | | 0.00 346 | 0.00 349 | 0.00 359 | 0.00 382 | 0.00 383 | 0.00 370 | 0.00 383 | 0.00 377 | 0.00 378 | 0.00 377 | 0.00 382 | 0.00 378 | 0.00 376 | 0.00 376 | 0.00 374 |
|
Regformer | | | 0.00 346 | 0.00 349 | 0.00 359 | 0.00 382 | 0.00 383 | 0.00 370 | 0.00 383 | 0.00 377 | 0.00 378 | 0.00 377 | 0.00 382 | 0.00 378 | 0.00 376 | 0.00 376 | 0.00 374 |
|
ab-mvs-re | | | 6.65 342 | 8.87 345 | 0.00 359 | 0.00 382 | 0.00 383 | 0.00 370 | 0.00 383 | 0.00 377 | 0.00 378 | 79.80 337 | 0.00 382 | 0.00 378 | 0.00 376 | 0.00 376 | 0.00 374 |
|
uanet | | | 0.00 346 | 0.00 349 | 0.00 359 | 0.00 382 | 0.00 383 | 0.00 370 | 0.00 383 | 0.00 377 | 0.00 378 | 0.00 377 | 0.00 382 | 0.00 378 | 0.00 376 | 0.00 376 | 0.00 374 |
|
PC_three_1452 | | | | | | | | | | 58.96 301 | 90.06 94 | 91.33 164 | 80.66 125 | 93.03 145 | 75.78 159 | 95.94 130 | 92.48 159 |
|
test_241102_TWO | | | | | | | | | 93.71 53 | 83.77 44 | 93.49 38 | 94.27 72 | 89.27 22 | 95.84 22 | 86.03 44 | 97.82 53 | 92.04 179 |
|
test_0728_THIRD | | | | | | | | | | 85.33 32 | 93.75 31 | 94.65 54 | 87.44 45 | 95.78 27 | 87.41 21 | 98.21 30 | 92.98 138 |
|
GSMVS | | | | | | | | | | | | | | | | | 83.88 300 |
|
sam_mvs1 | | | | | | | | | | | | | 46.11 329 | | | | 83.88 300 |
|
sam_mvs | | | | | | | | | | | | | 45.92 334 | | | | |
|
MTGPA |  | | | | | | | | 91.81 119 | | | | | | | | |
|
test_post1 | | | | | | | | 78.85 265 | | | | 3.13 373 | 45.19 343 | 80.13 326 | 58.11 298 | | |
|
test_post | | | | | | | | | | | | 3.10 374 | 45.43 339 | 77.22 334 | | | |
|
patchmatchnet-post | | | | | | | | | | | | 81.71 321 | 45.93 333 | 87.01 271 | | | |
|
MTMP | | | | | | | | 90.66 43 | 33.14 378 | | | | | | | | |
|
test9_res | | | | | | | | | | | | | | | 80.83 98 | 96.45 108 | 90.57 217 |
|
agg_prior2 | | | | | | | | | | | | | | | 79.68 111 | 96.16 120 | 90.22 224 |
|
test_prior4 | | | | | | | 78.97 84 | 84.59 146 | | | | | | | | | |
|
test_prior2 | | | | | | | | 83.37 180 | | 75.43 145 | 84.58 203 | 91.57 158 | 81.92 108 | | 79.54 113 | 96.97 88 | |
|
旧先验2 | | | | | | | | 81.73 221 | | 56.88 316 | 86.54 172 | | | 84.90 300 | 72.81 191 | | |
|
新几何2 | | | | | | | | 81.72 222 | | | | | | | | | |
|
无先验 | | | | | | | | 82.81 196 | 85.62 239 | 58.09 306 | | | | 91.41 190 | 67.95 234 | | 84.48 294 |
|
原ACMM2 | | | | | | | | 82.26 215 | | | | | | | | | |
|
testdata2 | | | | | | | | | | | | | | 86.43 284 | 63.52 263 | | |
|
segment_acmp | | | | | | | | | | | | | 81.94 105 | | | | |
|
testdata1 | | | | | | | | 79.62 250 | | 73.95 162 | | | | | | | |
|
plane_prior5 | | | | | | | | | 93.61 58 | | | | | 95.22 59 | 80.78 99 | 95.83 135 | 94.46 80 |
|
plane_prior4 | | | | | | | | | | | | 92.95 119 | | | | | |
|
plane_prior3 | | | | | | | 76.85 113 | | | 77.79 116 | 86.55 167 | | | | | | |
|
plane_prior2 | | | | | | | | 89.45 73 | | 79.44 97 | | | | | | | |
|
plane_prior | | | | | | | 76.42 118 | 87.15 108 | | 75.94 139 | | | | | | 95.03 163 | |
|
n2 | | | | | | | | | 0.00 383 | | | | | | | | |
|
nn | | | | | | | | | 0.00 383 | | | | | | | | |
|
door-mid | | | | | | | | | 74.45 316 | | | | | | | | |
|
test11 | | | | | | | | | 91.46 126 | | | | | | | | |
|
door | | | | | | | | | 72.57 331 | | | | | | | | |
|
HQP5-MVS | | | | | | | 70.66 168 | | | | | | | | | | |
|
BP-MVS | | | | | | | | | | | | | | | 77.30 144 | | |
|
HQP4-MVS | | | | | | | | | | | 80.56 265 | | | 94.61 80 | | | 93.56 121 |
|
HQP3-MVS | | | | | | | | | 92.68 97 | | | | | | | 94.47 179 | |
|
HQP2-MVS | | | | | | | | | | | | | 72.10 211 | | | | |
|
MDTV_nov1_ep13_2view | | | | | | | 27.60 376 | 70.76 331 | | 46.47 357 | 61.27 360 | | 45.20 342 | | 49.18 341 | | 83.75 305 |
|
ACMMP++_ref | | | | | | | | | | | | | | | | 95.74 141 | |
|
ACMMP++ | | | | | | | | | | | | | | | | 97.35 78 | |
|
Test By Simon | | | | | | | | | | | | | 79.09 137 | | | | |
|