This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
LCM-MVSNet95.70 196.40 193.61 298.67 185.39 2995.54 397.36 196.97 199.04 199.05 196.61 195.92 1185.07 4699.27 199.54 1
UniMVSNet_ETH3D89.12 6190.72 4284.31 14397.00 264.33 20389.67 5888.38 18488.84 1394.29 1897.57 390.48 1391.26 17872.57 17697.65 5997.34 14
PMVScopyleft80.48 690.08 3990.66 4388.34 7596.71 392.97 190.31 4589.57 16888.51 1590.11 8595.12 4090.98 788.92 23277.55 12597.07 7983.13 295
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
zzz-MVS91.27 2091.26 3091.29 2796.59 486.29 1488.94 7391.81 10984.07 3492.00 5694.40 6386.63 5095.28 4888.59 598.31 2392.30 153
MTAPA91.52 1491.60 1791.29 2796.59 486.29 1492.02 2691.81 10984.07 3492.00 5694.40 6386.63 5095.28 4888.59 598.31 2392.30 153
PEN-MVS90.03 4291.88 1384.48 13896.57 658.88 26388.95 7293.19 6891.62 396.01 596.16 2087.02 4595.60 3078.69 11198.72 898.97 3
PS-CasMVS90.06 4091.92 1084.47 13996.56 758.83 26689.04 7192.74 8791.40 496.12 396.06 2287.23 4395.57 3179.42 10698.74 599.00 2
DTE-MVSNet89.98 4491.91 1284.21 14596.51 857.84 27188.93 7492.84 8491.92 296.16 296.23 1886.95 4695.99 779.05 10898.57 1498.80 6
CP-MVSNet89.27 5890.91 3984.37 14096.34 958.61 26888.66 8192.06 10190.78 595.67 695.17 3881.80 10395.54 3579.00 10998.69 998.95 4
WR-MVS_H89.91 4791.31 2885.71 11896.32 1062.39 22589.54 6393.31 6190.21 995.57 895.66 2781.42 10795.90 1280.94 8898.80 298.84 5
MP-MVScopyleft91.14 2590.91 3991.83 1996.18 1186.88 1192.20 2393.03 7682.59 5488.52 12294.37 6686.74 4995.41 4386.32 3198.21 2993.19 125
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
mPP-MVS91.69 1191.47 2192.37 596.04 1288.48 792.72 1492.60 9083.09 4891.54 6494.25 7187.67 3995.51 3987.21 2498.11 3393.12 127
MP-MVS-pluss90.81 2791.08 3289.99 4995.97 1379.88 6588.13 8694.51 1775.79 13292.94 3794.96 4288.36 2595.01 5890.70 298.40 1995.09 59
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
TDRefinement93.52 293.39 393.88 195.94 1490.26 395.70 296.46 290.58 792.86 4096.29 1688.16 3194.17 8686.07 3798.48 1797.22 17
ACMMP_NAP90.65 2991.07 3489.42 5895.93 1579.54 7089.95 5193.68 4877.65 10991.97 5894.89 4488.38 2495.45 4189.27 397.87 4993.27 121
HPM-MVS_fast92.50 592.54 592.37 595.93 1585.81 2792.99 1194.23 2285.21 2892.51 4795.13 3990.65 1095.34 4588.06 998.15 3295.95 39
MSP-MVS89.08 6288.16 7291.83 1995.76 1786.14 1992.75 1393.90 3878.43 10389.16 11192.25 13172.03 20496.36 288.21 890.93 23292.98 131
region2R91.44 1891.30 2991.87 1795.75 1885.90 2392.63 1793.30 6381.91 6190.88 7894.21 7287.75 3795.87 1487.60 1697.71 5793.83 100
ACMMPR91.49 1591.35 2591.92 1495.74 1985.88 2492.58 1893.25 6681.99 5991.40 6794.17 7387.51 4095.87 1487.74 1197.76 5393.99 93
ZNCC-MVS91.26 2191.34 2691.01 3395.73 2083.05 4992.18 2494.22 2380.14 8191.29 7093.97 8187.93 3695.87 1488.65 497.96 4494.12 90
TSAR-MVS + MP.88.14 7287.82 7589.09 6395.72 2176.74 10392.49 2191.19 12567.85 22186.63 15394.84 4679.58 12595.96 1087.62 1494.50 16194.56 70
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
PGM-MVS91.20 2390.95 3891.93 1395.67 2285.85 2590.00 4893.90 3880.32 7891.74 6294.41 6288.17 3095.98 886.37 3097.99 3993.96 95
XVS91.54 1391.36 2392.08 895.64 2386.25 1692.64 1593.33 5885.07 2989.99 8894.03 7886.57 5295.80 2087.35 2097.62 6194.20 85
X-MVStestdata85.04 11582.70 15792.08 895.64 2386.25 1692.64 1593.33 5885.07 2989.99 8816.05 34886.57 5295.80 2087.35 2097.62 6194.20 85
HPM-MVScopyleft92.13 792.20 891.91 1595.58 2584.67 3893.51 694.85 1482.88 5191.77 6193.94 8890.55 1295.73 2688.50 798.23 2895.33 51
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
ACMMPcopyleft91.91 1091.87 1492.03 1195.53 2685.91 2293.35 994.16 2782.52 5592.39 5094.14 7489.15 2295.62 2987.35 2098.24 2794.56 70
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
GST-MVS90.96 2691.01 3590.82 3695.45 2782.73 5291.75 3093.74 4480.98 7291.38 6893.80 9187.20 4495.80 2087.10 2597.69 5893.93 96
HFP-MVS91.30 1991.39 2291.02 3195.43 2884.66 3992.58 1893.29 6481.99 5991.47 6593.96 8488.35 2695.56 3287.74 1197.74 5592.85 135
#test#90.49 3490.31 4791.02 3195.43 2884.66 3990.65 3893.29 6477.00 11691.47 6593.96 8488.35 2695.56 3284.88 4997.74 5592.85 135
SMA-MVS90.31 3690.48 4589.83 5095.31 3079.52 7190.98 3693.24 6775.37 13992.84 4195.28 3485.58 6196.09 687.92 1097.76 5393.88 98
CP-MVS91.67 1291.58 1891.96 1295.29 3187.62 993.38 793.36 5683.16 4791.06 7394.00 8088.26 2895.71 2787.28 2398.39 2092.55 146
VDDNet84.35 13085.39 11381.25 20195.13 3259.32 25685.42 12781.11 25886.41 2487.41 13896.21 1973.61 18190.61 20166.33 22496.85 8593.81 105
CPTT-MVS89.39 5688.98 6490.63 3995.09 3386.95 1092.09 2592.30 9679.74 8487.50 13792.38 12481.42 10793.28 12383.07 6797.24 7591.67 177
ACMM79.39 990.65 2990.99 3689.63 5495.03 3483.53 4489.62 6093.35 5779.20 9293.83 2793.60 9790.81 892.96 13485.02 4898.45 1892.41 149
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
UA-Net91.49 1591.53 1991.39 2494.98 3582.95 5193.52 592.79 8588.22 1688.53 12197.64 283.45 7694.55 7586.02 4098.60 1296.67 25
HPM-MVS++copyleft88.93 6588.45 7190.38 4394.92 3685.85 2589.70 5591.27 12278.20 10586.69 15292.28 13080.36 11895.06 5786.17 3696.49 9790.22 206
XVG-ACMP-BASELINE89.98 4489.84 5090.41 4294.91 3784.50 4189.49 6593.98 3379.68 8592.09 5493.89 8983.80 7293.10 13282.67 7298.04 3493.64 111
SR-MVS92.23 692.34 691.91 1594.89 3887.85 892.51 2093.87 4188.20 1793.24 3494.02 7990.15 1695.67 2886.82 2697.34 7292.19 161
OPM-MVS89.80 4889.97 4889.27 6094.76 3979.86 6686.76 10792.78 8678.78 9892.51 4793.64 9688.13 3293.84 9984.83 5197.55 6494.10 91
LPG-MVS_test91.47 1791.68 1590.82 3694.75 4081.69 5390.00 4894.27 1982.35 5693.67 3194.82 4791.18 595.52 3685.36 4498.73 695.23 56
LGP-MVS_train90.82 3694.75 4081.69 5394.27 1982.35 5693.67 3194.82 4791.18 595.52 3685.36 4498.73 695.23 56
abl_693.02 493.16 492.60 494.73 4288.99 693.26 1094.19 2689.11 1094.43 1595.27 3591.86 395.09 5587.54 1898.02 3793.71 107
XVG-OURS-SEG-HR89.59 5289.37 5790.28 4594.47 4385.95 2186.84 10393.91 3780.07 8286.75 15193.26 9993.64 290.93 18884.60 5390.75 23793.97 94
ACMP79.16 1090.54 3290.60 4490.35 4494.36 4480.98 5989.16 6994.05 3179.03 9592.87 3993.74 9590.60 1195.21 5282.87 7098.76 394.87 61
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
XVG-OURS89.18 5988.83 6790.23 4694.28 4586.11 2085.91 11893.60 5180.16 8089.13 11293.44 9883.82 7190.98 18683.86 6095.30 13893.60 113
test_0728_SECOND86.79 9294.25 4672.45 13690.54 4094.10 3095.88 1386.42 2897.97 4292.02 165
SED-MVS90.46 3591.64 1686.93 8994.18 4772.65 12790.47 4393.69 4683.77 3894.11 2294.27 6790.28 1495.84 1886.03 3897.92 4592.29 155
IU-MVS94.18 4772.64 12990.82 13256.98 29289.67 9985.78 4197.92 4593.28 120
test_241102_ONE94.18 4772.65 12793.69 4683.62 4094.11 2293.78 9490.28 1495.50 40
DVP-MVS90.06 4091.32 2786.29 10294.16 5072.56 13290.54 4091.01 12983.61 4193.75 2894.65 5289.76 1895.78 2386.42 2897.97 4290.55 201
test072694.16 5072.56 13290.63 3993.90 3883.61 4193.75 2894.49 5889.76 18
MIMVSNet183.63 14884.59 12980.74 21194.06 5262.77 21982.72 18684.53 24177.57 11190.34 8395.92 2376.88 15685.83 27261.88 25397.42 7093.62 112
TranMVSNet+NR-MVSNet87.86 7588.76 6985.18 12694.02 5364.13 20484.38 14491.29 12184.88 3192.06 5593.84 9086.45 5493.73 10273.22 16698.66 1097.69 9
新几何182.95 17393.96 5478.56 8080.24 26355.45 29783.93 20291.08 15871.19 20988.33 24165.84 22993.07 18981.95 308
112180.86 18479.81 20084.02 14893.93 5578.70 7881.64 20780.18 26455.43 29883.67 20491.15 15671.29 20891.41 17567.95 21693.06 19081.96 307
SteuartSystems-ACMMP91.16 2491.36 2390.55 4093.91 5680.97 6091.49 3293.48 5482.82 5292.60 4693.97 8188.19 2996.29 487.61 1598.20 3194.39 80
Skip Steuart: Steuart Systems R&D Blog.
test_part293.86 5777.77 8692.84 41
xxxxxxxxxxxxxcwj89.04 6389.13 6088.79 6693.75 5877.44 9186.31 11595.27 970.80 19192.28 5193.80 9186.89 4794.64 6985.52 4297.51 6794.30 83
save fliter93.75 5877.44 9186.31 11589.72 16370.80 191
LTVRE_ROB86.10 193.04 393.44 291.82 2193.73 6085.72 2896.79 195.51 588.86 1295.63 796.99 884.81 6493.16 12891.10 197.53 6696.58 28
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
COLMAP_ROBcopyleft83.01 391.97 991.95 992.04 1093.68 6186.15 1893.37 895.10 1190.28 892.11 5395.03 4189.75 2094.93 6079.95 9898.27 2695.04 60
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
DeepC-MVS82.31 489.15 6089.08 6189.37 5993.64 6279.07 7488.54 8294.20 2473.53 15789.71 9794.82 4785.09 6295.77 2584.17 5798.03 3693.26 122
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
mvs_tets89.78 4989.27 5991.30 2693.51 6384.79 3689.89 5390.63 13770.00 20194.55 1496.67 1187.94 3593.59 11084.27 5695.97 11495.52 47
HQP_MVS87.75 7987.43 8088.70 6893.45 6476.42 10789.45 6693.61 4979.44 8986.55 15492.95 10774.84 16895.22 5080.78 9195.83 11994.46 76
plane_prior793.45 6477.31 95
WR-MVS83.56 14984.40 13581.06 20693.43 6654.88 29378.67 25085.02 23681.24 6890.74 7991.56 14872.85 19391.08 18468.00 21498.04 3497.23 16
DPE-MVS90.53 3391.08 3288.88 6493.38 6778.65 7989.15 7094.05 3184.68 3293.90 2494.11 7688.13 3296.30 384.51 5497.81 5191.70 176
jajsoiax89.41 5588.81 6891.19 3093.38 6784.72 3789.70 5590.29 15269.27 20594.39 1696.38 1586.02 5993.52 11483.96 5895.92 11695.34 50
PS-MVSNAJss88.31 7087.90 7489.56 5793.31 6977.96 8487.94 8891.97 10470.73 19394.19 2196.67 1176.94 15094.57 7383.07 6796.28 10496.15 31
test22293.31 6976.54 10479.38 23877.79 27352.59 31182.36 22190.84 16966.83 22691.69 21781.25 316
DU-MVS86.80 8686.99 8686.21 10793.24 7167.02 18283.16 17792.21 9781.73 6390.92 7591.97 13577.20 14493.99 9274.16 15598.35 2197.61 10
NR-MVSNet86.00 9986.22 9785.34 12493.24 7164.56 20082.21 20090.46 14080.99 7188.42 12491.97 13577.56 14093.85 9772.46 17798.65 1197.61 10
OurMVSNet-221017-090.01 4389.74 5190.83 3593.16 7380.37 6291.91 2993.11 7081.10 7095.32 997.24 572.94 19294.85 6385.07 4697.78 5297.26 15
UniMVSNet (Re)86.87 8386.98 8786.55 9693.11 7468.48 17383.80 15792.87 8180.37 7689.61 10391.81 14277.72 13894.18 8475.00 15198.53 1596.99 22
APD-MVS_3200maxsize92.05 892.24 791.48 2293.02 7585.17 3192.47 2295.05 1287.65 2093.21 3594.39 6590.09 1795.08 5686.67 2797.60 6394.18 87
ACMH+77.89 1190.73 2891.50 2088.44 7393.00 7676.26 10989.65 5995.55 487.72 1993.89 2694.94 4391.62 493.44 11878.35 11498.76 395.61 46
APDe-MVS91.22 2291.92 1089.14 6292.97 7778.04 8392.84 1294.14 2883.33 4593.90 2495.73 2588.77 2396.41 187.60 1697.98 4192.98 131
114514_t83.10 15982.54 16284.77 13292.90 7869.10 17186.65 10990.62 13854.66 30181.46 23590.81 17076.98 14994.38 7672.62 17596.18 10890.82 194
testdata79.54 23092.87 7972.34 13780.14 26559.91 27785.47 17791.75 14467.96 22285.24 27668.57 21292.18 21081.06 321
CNVR-MVS87.81 7887.68 7688.21 7792.87 7977.30 9685.25 12891.23 12377.31 11387.07 14591.47 15082.94 8194.71 6684.67 5296.27 10692.62 145
SF-MVS90.27 3790.80 4188.68 6992.86 8177.09 9891.19 3595.74 381.38 6792.28 5193.80 9186.89 4794.64 6985.52 4297.51 6794.30 83
UniMVSNet_NR-MVSNet86.84 8587.06 8486.17 10992.86 8167.02 18282.55 19091.56 11383.08 4990.92 7591.82 14178.25 13493.99 9274.16 15598.35 2197.49 13
plane_prior192.83 83
原ACMM184.60 13692.81 8474.01 11991.50 11562.59 25782.73 21790.67 17576.53 15794.25 7969.24 20195.69 12685.55 263
plane_prior692.61 8576.54 10474.84 168
APD-MVScopyleft89.54 5389.63 5389.26 6192.57 8681.34 5890.19 4693.08 7280.87 7391.13 7193.19 10086.22 5795.97 982.23 7697.18 7790.45 203
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
test_040288.65 6789.58 5585.88 11492.55 8772.22 14084.01 14989.44 17088.63 1494.38 1795.77 2486.38 5693.59 11079.84 9995.21 13991.82 173
SixPastTwentyTwo87.20 8287.45 7986.45 9892.52 8869.19 16987.84 9088.05 19081.66 6494.64 1396.53 1465.94 23094.75 6583.02 6996.83 8795.41 49
ACMH76.49 1489.34 5791.14 3183.96 15192.50 8970.36 15789.55 6193.84 4281.89 6294.70 1295.44 3290.69 988.31 24283.33 6598.30 2593.20 124
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
VPNet80.25 19881.68 17175.94 27392.46 9047.98 33076.70 27581.67 25673.45 15884.87 18392.82 11174.66 17386.51 26261.66 25696.85 8593.33 118
F-COLMAP84.97 11883.42 14789.63 5492.39 9183.40 4588.83 7691.92 10673.19 16780.18 25389.15 20077.04 14893.28 12365.82 23092.28 20692.21 160
test_djsdf89.62 5189.01 6291.45 2392.36 9282.98 5091.98 2790.08 15871.54 18694.28 2096.54 1381.57 10594.27 7786.26 3296.49 9797.09 19
TEST992.34 9379.70 6883.94 15090.32 14565.41 24784.49 19090.97 16382.03 9793.63 106
train_agg85.98 10185.28 11488.07 7992.34 9379.70 6883.94 15090.32 14565.79 23784.49 19090.97 16381.93 9993.63 10681.21 8496.54 9590.88 192
NCCC87.36 8086.87 8988.83 6592.32 9578.84 7786.58 11191.09 12778.77 9984.85 18490.89 16780.85 11295.29 4681.14 8595.32 13592.34 151
testtj89.51 5489.48 5689.59 5692.26 9680.80 6190.14 4793.54 5283.37 4490.57 8292.55 12184.99 6396.15 581.26 8396.61 9291.83 172
FC-MVSNet-test85.93 10287.05 8582.58 18292.25 9756.44 28285.75 12193.09 7177.33 11291.94 5994.65 5274.78 17093.41 12075.11 15098.58 1397.88 7
CDPH-MVS86.17 9885.54 11088.05 8092.25 9775.45 11283.85 15492.01 10265.91 23686.19 16191.75 14483.77 7394.98 5977.43 12896.71 9093.73 106
pmmvs686.52 9088.06 7381.90 19192.22 9962.28 22884.66 13689.15 17383.54 4389.85 9397.32 488.08 3486.80 25870.43 19397.30 7496.62 26
EG-PatchMatch MVS84.08 13884.11 13983.98 15092.22 9972.61 13182.20 20287.02 20972.63 17588.86 11491.02 16178.52 13091.11 18373.41 16591.09 22488.21 233
test_892.09 10178.87 7683.82 15590.31 14765.79 23784.36 19390.96 16581.93 9993.44 118
Vis-MVSNetpermissive86.86 8486.58 9287.72 8292.09 10177.43 9387.35 9592.09 10078.87 9784.27 19994.05 7778.35 13393.65 10480.54 9591.58 22092.08 163
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
IS-MVSNet86.66 8886.82 9186.17 10992.05 10366.87 18491.21 3488.64 18086.30 2589.60 10492.59 11869.22 21594.91 6173.89 15997.89 4896.72 24
旧先验191.97 10471.77 14481.78 25591.84 13973.92 17893.65 17983.61 285
v7n90.13 3890.96 3787.65 8491.95 10571.06 15289.99 5093.05 7386.53 2394.29 1896.27 1782.69 8394.08 9086.25 3497.63 6097.82 8
NP-MVS91.95 10574.55 11690.17 186
ETH3D-3000-0.188.85 6688.96 6588.52 7091.94 10777.27 9788.71 7995.26 1076.08 12390.66 8192.69 11684.48 6793.83 10083.38 6497.48 6994.47 75
OMC-MVS88.19 7187.52 7890.19 4791.94 10781.68 5587.49 9493.17 6976.02 12688.64 11991.22 15384.24 6993.37 12177.97 12197.03 8095.52 47
OPU-MVS88.27 7691.89 10977.83 8590.47 4391.22 15381.12 11094.68 6774.48 15295.35 13392.29 155
FIs85.35 10886.27 9682.60 18191.86 11057.31 27585.10 13093.05 7375.83 13191.02 7493.97 8173.57 18292.91 13873.97 15898.02 3797.58 12
9.1489.29 5891.84 11188.80 7795.32 875.14 14191.07 7292.89 10987.27 4293.78 10183.69 6297.55 64
MSLP-MVS++85.00 11786.03 10181.90 19191.84 11171.56 15086.75 10893.02 7775.95 12987.12 14189.39 19477.98 13589.40 22877.46 12694.78 15484.75 272
DP-MVS Recon84.05 13983.22 15086.52 9791.73 11375.27 11383.23 17592.40 9372.04 18382.04 22688.33 21077.91 13793.95 9566.17 22595.12 14490.34 205
SD-MVS88.96 6489.88 4986.22 10591.63 11477.07 9989.82 5493.77 4378.90 9692.88 3892.29 12986.11 5890.22 21086.24 3597.24 7591.36 185
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
AllTest87.97 7487.40 8189.68 5291.59 11583.40 4589.50 6495.44 679.47 8788.00 13193.03 10382.66 8491.47 17070.81 18596.14 11094.16 88
TestCases89.68 5291.59 11583.40 4595.44 679.47 8788.00 13193.03 10382.66 8491.47 17070.81 18596.14 11094.16 88
MCST-MVS84.36 12883.93 14385.63 11991.59 11571.58 14983.52 16392.13 9961.82 26383.96 20189.75 19279.93 12493.46 11778.33 11594.34 16591.87 171
agg_prior185.72 10485.20 11587.28 8891.58 11877.69 8783.69 16090.30 14966.29 23384.32 19491.07 16082.13 9393.18 12681.02 8696.36 10190.98 188
agg_prior91.58 11877.69 8790.30 14984.32 19493.18 126
PVSNet_Blended_VisFu81.55 17780.49 18784.70 13591.58 11873.24 12484.21 14591.67 11262.86 25680.94 24187.16 23067.27 22492.87 13969.82 19788.94 25687.99 237
EPP-MVSNet85.47 10785.04 11786.77 9391.52 12169.37 16391.63 3187.98 19381.51 6687.05 14691.83 14066.18 22995.29 4670.75 18896.89 8395.64 44
DeepPCF-MVS81.24 587.28 8186.21 9890.49 4191.48 12284.90 3483.41 16892.38 9570.25 19989.35 10990.68 17482.85 8294.57 7379.55 10295.95 11592.00 166
Baseline_NR-MVSNet84.00 14185.90 10378.29 24791.47 12353.44 30182.29 19687.00 21279.06 9489.55 10595.72 2677.20 14486.14 26872.30 17898.51 1695.28 53
HyFIR lowres test75.12 24672.66 26382.50 18591.44 12465.19 19572.47 30687.31 19946.79 33280.29 25184.30 27352.70 29392.10 15551.88 31086.73 27890.22 206
DP-MVS88.60 6889.01 6287.36 8791.30 12577.50 9087.55 9292.97 7987.95 1889.62 10192.87 11084.56 6593.89 9677.65 12396.62 9190.70 196
DeepC-MVS_fast80.27 886.23 9585.65 10987.96 8191.30 12576.92 10087.19 9791.99 10370.56 19484.96 18090.69 17380.01 12195.14 5378.37 11395.78 12391.82 173
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
3Dnovator+83.92 289.97 4689.66 5290.92 3491.27 12781.66 5691.25 3394.13 2988.89 1188.83 11694.26 7077.55 14195.86 1784.88 4995.87 11895.24 55
ETH3D cwj APD-0.1687.83 7787.62 7788.47 7291.21 12878.20 8187.26 9694.54 1672.05 18288.89 11392.31 12883.86 7094.24 8081.59 8296.87 8492.97 134
HQP-NCC91.19 12984.77 13273.30 16380.55 248
ACMP_Plane91.19 12984.77 13273.30 16380.55 248
HQP-MVS84.61 12284.06 14086.27 10391.19 12970.66 15484.77 13292.68 8873.30 16380.55 24890.17 18672.10 20094.61 7177.30 12994.47 16293.56 115
VDD-MVS84.23 13584.58 13083.20 16891.17 13265.16 19683.25 17384.97 23879.79 8387.18 14094.27 6774.77 17190.89 19169.24 20196.54 9593.55 117
K. test v385.14 11184.73 12286.37 9991.13 13369.63 16285.45 12676.68 28084.06 3692.44 4996.99 862.03 24794.65 6880.58 9493.24 18594.83 65
lessismore_v085.95 11191.10 13470.99 15370.91 31991.79 6094.42 6161.76 24892.93 13679.52 10593.03 19193.93 96
TransMVSNet (Re)84.02 14085.74 10678.85 23691.00 13555.20 29282.29 19687.26 20079.65 8688.38 12695.52 3183.00 8086.88 25667.97 21596.60 9394.45 78
PAPM_NR83.23 15683.19 15283.33 16590.90 13665.98 19088.19 8590.78 13378.13 10780.87 24387.92 21873.49 18592.42 14670.07 19588.40 26091.60 180
CSCG86.26 9486.47 9385.60 12090.87 13774.26 11887.98 8791.85 10780.35 7789.54 10788.01 21479.09 12792.13 15275.51 14495.06 14690.41 204
PLCcopyleft73.85 1682.09 17180.31 18987.45 8690.86 13880.29 6385.88 12090.65 13668.17 21576.32 27786.33 24073.12 19192.61 14461.40 25990.02 24589.44 215
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
ETH3 D test640085.09 11384.87 12085.75 11790.80 13969.34 16485.90 11993.31 6165.43 24386.11 16489.95 18880.92 11194.86 6275.90 14295.57 12893.05 128
test1286.57 9590.74 14072.63 13090.69 13582.76 21679.20 12694.80 6495.32 13592.27 157
ITE_SJBPF90.11 4890.72 14184.97 3390.30 14981.56 6590.02 8791.20 15582.40 8790.81 19473.58 16394.66 15894.56 70
DPM-MVS80.10 20279.18 20482.88 17790.71 14269.74 15978.87 24790.84 13160.29 27575.64 28685.92 24767.28 22393.11 13171.24 18391.79 21585.77 262
TAMVS78.08 21676.36 22883.23 16790.62 14372.87 12579.08 24480.01 26661.72 26581.35 23786.92 23463.96 23888.78 23650.61 31193.01 19288.04 236
test_prior386.31 9386.31 9586.32 10090.59 14471.99 14283.37 16992.85 8275.43 13684.58 18891.57 14681.92 10194.17 8679.54 10396.97 8192.80 137
test_prior86.32 10090.59 14471.99 14292.85 8294.17 8692.80 137
ambc82.98 17290.55 14664.86 19788.20 8489.15 17389.40 10893.96 8471.67 20791.38 17778.83 11096.55 9492.71 141
Anonymous2023121188.40 6989.62 5484.73 13390.46 14765.27 19488.86 7593.02 7787.15 2193.05 3697.10 682.28 9192.02 15776.70 13497.99 3996.88 23
Test_1112_low_res73.90 25773.08 25876.35 26990.35 14855.95 28373.40 30486.17 21850.70 32573.14 29985.94 24658.31 26985.90 27156.51 28383.22 30487.20 247
VPA-MVSNet83.47 15284.73 12279.69 22790.29 14957.52 27481.30 21488.69 17976.29 12087.58 13694.44 6080.60 11587.20 25166.60 22396.82 8894.34 82
FMVSNet184.55 12485.45 11281.85 19390.27 15061.05 23986.83 10488.27 18778.57 10289.66 10095.64 2875.43 16290.68 19869.09 20595.33 13493.82 102
Anonymous2024052986.20 9787.13 8283.42 16490.19 15164.55 20184.55 13990.71 13485.85 2689.94 9195.24 3782.13 9390.40 20569.19 20496.40 10095.31 52
MVS_111021_HR84.63 12184.34 13785.49 12390.18 15275.86 11179.23 24387.13 20473.35 16085.56 17589.34 19583.60 7590.50 20376.64 13594.05 17190.09 211
RPSCF88.00 7386.93 8891.22 2990.08 15389.30 589.68 5791.11 12679.26 9189.68 9894.81 5082.44 8687.74 24676.54 13688.74 25996.61 27
nrg03087.85 7688.49 7085.91 11290.07 15469.73 16087.86 8994.20 2474.04 15192.70 4594.66 5185.88 6091.50 16979.72 10097.32 7396.50 29
AdaColmapbinary83.66 14783.69 14683.57 16190.05 15572.26 13986.29 11790.00 16078.19 10681.65 23387.16 23083.40 7794.24 8061.69 25594.76 15784.21 277
pm-mvs183.69 14684.95 11979.91 22290.04 15659.66 25382.43 19287.44 19775.52 13587.85 13395.26 3681.25 10985.65 27468.74 20996.04 11394.42 79
CHOSEN 1792x268872.45 26770.56 27778.13 24990.02 15763.08 21568.72 31983.16 24442.99 34175.92 28285.46 25357.22 27885.18 27849.87 31581.67 31286.14 257
anonymousdsp89.73 5088.88 6692.27 789.82 15886.67 1290.51 4290.20 15569.87 20295.06 1096.14 2184.28 6893.07 13387.68 1396.34 10297.09 19
1112_ss74.82 25173.74 25178.04 25189.57 15960.04 24976.49 27987.09 20854.31 30273.66 29879.80 31360.25 25686.76 26058.37 27384.15 30087.32 246
PCF-MVS74.62 1582.15 17080.92 18385.84 11589.43 16072.30 13880.53 22391.82 10857.36 29087.81 13489.92 19077.67 13993.63 10658.69 27295.08 14591.58 181
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
MVP-Stereo75.81 24173.51 25582.71 17989.35 16173.62 12080.06 22685.20 23060.30 27473.96 29687.94 21657.89 27489.45 22652.02 30674.87 33385.06 269
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
CNLPA83.55 15083.10 15384.90 12989.34 16283.87 4384.54 14188.77 17779.09 9383.54 20888.66 20874.87 16781.73 29866.84 22192.29 20589.11 222
TSAR-MVS + GP.83.95 14282.69 15887.72 8289.27 16381.45 5783.72 15981.58 25774.73 14485.66 17286.06 24572.56 19892.69 14275.44 14695.21 13989.01 228
MVS_111021_LR84.28 13383.76 14585.83 11689.23 16483.07 4880.99 21883.56 24372.71 17486.07 16589.07 20281.75 10486.19 26777.11 13193.36 18088.24 232
LFMVS80.15 20180.56 18578.89 23589.19 16555.93 28485.22 12973.78 29982.96 5084.28 19892.72 11557.38 27690.07 21963.80 24095.75 12490.68 197
CLD-MVS83.18 15782.64 15984.79 13189.05 16667.82 17977.93 25892.52 9168.33 21485.07 17981.54 30182.06 9592.96 13469.35 20097.91 4793.57 114
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
LS3D90.60 3190.34 4691.38 2589.03 16784.23 4293.58 494.68 1590.65 690.33 8493.95 8784.50 6695.37 4480.87 8995.50 13094.53 74
CDS-MVSNet77.32 22475.40 23883.06 17089.00 16872.48 13577.90 25982.17 25260.81 27078.94 26283.49 28059.30 26388.76 23754.64 29792.37 20487.93 239
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
tttt051781.07 18179.58 20185.52 12188.99 16966.45 18887.03 10175.51 28873.76 15588.32 12890.20 18337.96 34194.16 8979.36 10795.13 14295.93 40
tfpnnormal81.79 17582.95 15578.31 24688.93 17055.40 28880.83 22182.85 24776.81 11785.90 17094.14 7474.58 17486.51 26266.82 22295.68 12793.01 130
Vis-MVSNet (Re-imp)77.82 21977.79 21577.92 25388.82 17151.29 31783.28 17171.97 31274.04 15182.23 22389.78 19157.38 27689.41 22757.22 28095.41 13193.05 128
TAPA-MVS77.73 1285.71 10584.83 12188.37 7488.78 17279.72 6787.15 9993.50 5369.17 20685.80 17189.56 19380.76 11392.13 15273.21 17195.51 12993.25 123
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
FPMVS72.29 27072.00 26973.14 28588.63 17385.00 3274.65 29667.39 32571.94 18577.80 26987.66 22150.48 29875.83 31549.95 31379.51 31958.58 344
ETV-MVS84.31 13183.91 14485.52 12188.58 17470.40 15684.50 14393.37 5578.76 10084.07 20078.72 31880.39 11795.13 5473.82 16192.98 19391.04 187
BH-untuned80.96 18380.99 18180.84 21088.55 17568.23 17480.33 22588.46 18172.79 17386.55 15486.76 23574.72 17291.77 16661.79 25488.99 25482.52 301
Anonymous20240521180.51 19181.19 17978.49 24388.48 17657.26 27676.63 27682.49 24981.21 6984.30 19792.24 13267.99 22186.24 26662.22 24995.13 14291.98 169
ab-mvs79.67 20480.56 18576.99 26088.48 17656.93 27884.70 13586.06 21968.95 21080.78 24493.08 10275.30 16484.62 28356.78 28190.90 23389.43 216
PHI-MVS86.38 9285.81 10588.08 7888.44 17877.34 9489.35 6893.05 7373.15 16884.76 18587.70 22078.87 12994.18 8480.67 9396.29 10392.73 140
xiu_mvs_v1_base_debu80.84 18580.14 19582.93 17488.31 17971.73 14579.53 23487.17 20165.43 24379.59 25582.73 29176.94 15090.14 21573.22 16688.33 26186.90 251
xiu_mvs_v1_base80.84 18580.14 19582.93 17488.31 17971.73 14579.53 23487.17 20165.43 24379.59 25582.73 29176.94 15090.14 21573.22 16688.33 26186.90 251
xiu_mvs_v1_base_debi80.84 18580.14 19582.93 17488.31 17971.73 14579.53 23487.17 20165.43 24379.59 25582.73 29176.94 15090.14 21573.22 16688.33 26186.90 251
MG-MVS80.32 19780.94 18278.47 24488.18 18252.62 30782.29 19685.01 23772.01 18479.24 26092.54 12269.36 21493.36 12270.65 19089.19 25389.45 214
PM-MVS80.20 20079.00 20583.78 15588.17 18386.66 1381.31 21266.81 33169.64 20388.33 12790.19 18464.58 23383.63 29271.99 18190.03 24481.06 321
v1086.54 8987.10 8384.84 13088.16 18463.28 21386.64 11092.20 9875.42 13892.81 4394.50 5774.05 17794.06 9183.88 5996.28 10497.17 18
canonicalmvs85.50 10686.14 9983.58 16087.97 18567.13 18187.55 9294.32 1873.44 15988.47 12387.54 22386.45 5491.06 18575.76 14393.76 17592.54 147
EIA-MVS82.19 16981.23 17885.10 12787.95 18669.17 17083.22 17693.33 5870.42 19578.58 26479.77 31577.29 14394.20 8371.51 18288.96 25591.93 170
VNet79.31 20580.27 19076.44 26887.92 18753.95 29775.58 28884.35 24274.39 14982.23 22390.72 17272.84 19484.39 28560.38 26693.98 17290.97 189
CS-MVS83.43 15483.04 15484.59 13787.87 18866.61 18685.57 12494.90 1373.02 17081.12 23978.56 31980.00 12295.52 3673.04 17393.29 18491.62 179
v886.22 9686.83 9084.36 14187.82 18962.35 22786.42 11391.33 12076.78 11892.73 4494.48 5973.41 18693.72 10383.10 6695.41 13197.01 21
alignmvs83.94 14383.98 14283.80 15387.80 19067.88 17884.54 14191.42 11973.27 16688.41 12587.96 21572.33 19990.83 19376.02 14194.11 16992.69 142
v119284.57 12384.69 12684.21 14587.75 19162.88 21783.02 18091.43 11769.08 20889.98 9090.89 16772.70 19693.62 10982.41 7394.97 14996.13 32
PatchMatch-RL74.48 25373.22 25778.27 24887.70 19285.26 3075.92 28570.09 32164.34 25176.09 28081.25 30365.87 23178.07 30953.86 29983.82 30171.48 333
v114484.54 12684.72 12484.00 14987.67 19362.55 22382.97 18190.93 13070.32 19889.80 9590.99 16273.50 18393.48 11681.69 8194.65 15995.97 37
v124084.30 13284.51 13283.65 15887.65 19461.26 23682.85 18491.54 11467.94 21990.68 8090.65 17671.71 20693.64 10582.84 7194.78 15496.07 34
v192192084.23 13584.37 13683.79 15487.64 19561.71 23182.91 18391.20 12467.94 21990.06 8690.34 18072.04 20393.59 11082.32 7594.91 15096.07 34
v14419284.24 13484.41 13483.71 15787.59 19661.57 23282.95 18291.03 12867.82 22289.80 9590.49 17873.28 18993.51 11581.88 8094.89 15196.04 36
Fast-Effi-MVS+81.04 18280.57 18482.46 18687.50 19763.22 21478.37 25489.63 16668.01 21681.87 22882.08 29682.31 8892.65 14367.10 21888.30 26591.51 183
pmmvs-eth3d78.42 21377.04 22282.57 18487.44 19874.41 11780.86 22079.67 26755.68 29684.69 18690.31 18260.91 25185.42 27562.20 25091.59 21987.88 240
IterMVS-LS84.73 12084.98 11883.96 15187.35 19963.66 20883.25 17389.88 16276.06 12489.62 10192.37 12773.40 18892.52 14578.16 11794.77 15695.69 42
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
thres100view90075.45 24275.05 24176.66 26787.27 20051.88 31381.07 21773.26 30375.68 13383.25 21086.37 23945.54 31688.80 23351.98 30790.99 22889.31 218
MIMVSNet71.09 27771.59 27269.57 29987.23 20150.07 32578.91 24571.83 31360.20 27671.26 30791.76 14355.08 28976.09 31341.06 33787.02 27782.54 300
Effi-MVS+83.90 14484.01 14183.57 16187.22 20265.61 19386.55 11292.40 9378.64 10181.34 23884.18 27483.65 7492.93 13674.22 15487.87 26992.17 162
BH-RMVSNet80.53 19080.22 19381.49 19987.19 20366.21 18977.79 26186.23 21774.21 15083.69 20388.50 20973.25 19090.75 19563.18 24587.90 26887.52 243
thisisatest053079.07 20677.33 21984.26 14487.13 20464.58 19983.66 16175.95 28368.86 21185.22 17887.36 22738.10 33993.57 11375.47 14594.28 16694.62 67
Effi-MVS+-dtu85.82 10383.38 14893.14 387.13 20491.15 287.70 9188.42 18274.57 14683.56 20785.65 24878.49 13194.21 8272.04 17992.88 19594.05 92
mvs-test184.55 12482.12 16691.84 1887.13 20489.54 485.05 13188.42 18274.57 14680.60 24582.98 28478.49 13193.98 9472.04 17989.77 24692.00 166
v2v48284.09 13784.24 13883.62 15987.13 20461.40 23382.71 18789.71 16472.19 18189.55 10591.41 15170.70 21193.20 12581.02 8693.76 17596.25 30
jason77.42 22375.75 23582.43 18787.10 20869.27 16577.99 25781.94 25451.47 32077.84 26785.07 26360.32 25589.00 23070.74 18989.27 25289.03 226
jason: jason.
PS-MVSNAJ77.04 22776.53 22778.56 24187.09 20961.40 23375.26 29187.13 20461.25 26874.38 29577.22 32776.94 15090.94 18764.63 23784.83 29683.35 290
xiu_mvs_v2_base77.19 22576.75 22578.52 24287.01 21061.30 23575.55 28987.12 20761.24 26974.45 29378.79 31777.20 14490.93 18864.62 23884.80 29783.32 291
thres600view775.97 23975.35 24077.85 25587.01 21051.84 31480.45 22473.26 30375.20 14083.10 21386.31 24245.54 31689.05 22955.03 29492.24 20792.66 143
BH-w/o76.57 23276.07 23278.10 25086.88 21265.92 19177.63 26386.33 21665.69 24180.89 24279.95 31268.97 21890.74 19653.01 30385.25 29177.62 325
MAR-MVS80.24 19978.74 20784.73 13386.87 21378.18 8285.75 12187.81 19565.67 24277.84 26778.50 32073.79 18090.53 20261.59 25890.87 23485.49 265
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
testing_284.36 12884.64 12883.50 16386.74 21463.97 20784.56 13890.31 14766.22 23491.62 6394.55 5575.88 16091.95 15877.02 13394.89 15194.56 70
QAPM82.59 16382.59 16182.58 18286.44 21566.69 18589.94 5290.36 14467.97 21884.94 18292.58 12072.71 19592.18 15170.63 19187.73 27188.85 229
PAPM71.77 27370.06 28376.92 26186.39 21653.97 29676.62 27786.62 21453.44 30763.97 33584.73 26957.79 27592.34 14739.65 33981.33 31584.45 274
GBi-Net82.02 17282.07 16781.85 19386.38 21761.05 23986.83 10488.27 18772.43 17686.00 16695.64 2863.78 23990.68 19865.95 22693.34 18193.82 102
test182.02 17282.07 16781.85 19386.38 21761.05 23986.83 10488.27 18772.43 17686.00 16695.64 2863.78 23990.68 19865.95 22693.34 18193.82 102
FMVSNet281.31 17981.61 17380.41 21686.38 21758.75 26783.93 15286.58 21572.43 17687.65 13592.98 10563.78 23990.22 21066.86 21993.92 17392.27 157
3Dnovator80.37 784.80 11984.71 12585.06 12886.36 22074.71 11588.77 7890.00 16075.65 13484.96 18093.17 10174.06 17691.19 18078.28 11691.09 22489.29 220
Anonymous2023120671.38 27671.88 27069.88 29686.31 22154.37 29470.39 31474.62 29152.57 31276.73 27388.76 20559.94 25872.06 32144.35 33293.23 18683.23 293
baseline85.20 11085.93 10283.02 17186.30 22262.37 22684.55 13993.96 3474.48 14887.12 14192.03 13482.30 8991.94 15978.39 11294.21 16794.74 66
API-MVS82.28 16782.61 16081.30 20086.29 22369.79 15888.71 7987.67 19678.42 10482.15 22584.15 27577.98 13591.59 16865.39 23292.75 19782.51 302
tfpn200view974.86 25074.23 24876.74 26686.24 22452.12 31079.24 24173.87 29773.34 16181.82 23084.60 27146.02 31088.80 23351.98 30790.99 22889.31 218
thres40075.14 24474.23 24877.86 25486.24 22452.12 31079.24 24173.87 29773.34 16181.82 23084.60 27146.02 31088.80 23351.98 30790.99 22892.66 143
UGNet82.78 16081.64 17286.21 10786.20 22676.24 11086.86 10285.68 22377.07 11573.76 29792.82 11169.64 21291.82 16569.04 20693.69 17890.56 200
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
CANet83.79 14582.85 15686.63 9486.17 22772.21 14183.76 15891.43 11777.24 11474.39 29487.45 22575.36 16395.42 4277.03 13292.83 19692.25 159
casdiffmvs85.21 10985.85 10483.31 16686.17 22762.77 21983.03 17993.93 3574.69 14588.21 12992.68 11782.29 9091.89 16277.87 12293.75 17795.27 54
TR-MVS76.77 23075.79 23379.72 22686.10 22965.79 19277.14 26983.02 24565.20 24881.40 23682.10 29566.30 22790.73 19755.57 28985.27 29082.65 297
LCM-MVSNet-Re83.48 15185.06 11678.75 23885.94 23055.75 28780.05 22794.27 1976.47 11996.09 494.54 5683.31 7889.75 22359.95 26794.89 15190.75 195
Fast-Effi-MVS+-dtu82.54 16481.41 17685.90 11385.60 23176.53 10683.07 17889.62 16773.02 17079.11 26183.51 27980.74 11490.24 20968.76 20889.29 25090.94 190
v14882.31 16682.48 16381.81 19685.59 23259.66 25381.47 21086.02 22072.85 17288.05 13090.65 17670.73 21090.91 19075.15 14991.79 21594.87 61
MVSFormer82.23 16881.57 17584.19 14785.54 23369.26 16691.98 2790.08 15871.54 18676.23 27885.07 26358.69 26794.27 7786.26 3288.77 25789.03 226
lupinMVS76.37 23674.46 24682.09 18885.54 23369.26 16676.79 27380.77 26250.68 32676.23 27882.82 28958.69 26788.94 23169.85 19688.77 25788.07 234
TinyColmap81.25 18082.34 16577.99 25285.33 23560.68 24582.32 19588.33 18571.26 18886.97 14892.22 13377.10 14786.98 25562.37 24895.17 14186.31 256
PAPR78.84 20878.10 21381.07 20585.17 23660.22 24882.21 20090.57 13962.51 25875.32 28984.61 27074.99 16692.30 14959.48 27088.04 26790.68 197
pmmvs474.92 24972.98 26080.73 21284.95 23771.71 14876.23 28377.59 27452.83 31077.73 27086.38 23856.35 28284.97 27957.72 27987.05 27685.51 264
baseline173.26 26073.54 25472.43 29184.92 23847.79 33179.89 23074.00 29665.93 23578.81 26386.28 24356.36 28181.63 29956.63 28279.04 32487.87 241
Patchmatch-RL test74.48 25373.68 25276.89 26384.83 23966.54 18772.29 30769.16 32457.70 28686.76 15086.33 24045.79 31582.59 29569.63 19890.65 24181.54 312
XXY-MVS74.44 25576.19 23069.21 30084.61 24052.43 30971.70 30977.18 27660.73 27280.60 24590.96 16575.44 16169.35 32756.13 28588.33 26185.86 261
cascas76.29 23774.81 24280.72 21384.47 24162.94 21673.89 30087.34 19855.94 29575.16 29176.53 33063.97 23791.16 18165.00 23390.97 23188.06 235
PVSNet_BlendedMVS78.80 20977.84 21481.65 19884.43 24263.41 21079.49 23790.44 14161.70 26675.43 28787.07 23369.11 21691.44 17260.68 26492.24 20790.11 210
PVSNet_Blended76.49 23475.40 23879.76 22484.43 24263.41 21075.14 29290.44 14157.36 29075.43 28778.30 32169.11 21691.44 17260.68 26487.70 27284.42 275
OpenMVScopyleft76.72 1381.98 17482.00 16981.93 19084.42 24468.22 17588.50 8389.48 16966.92 22881.80 23291.86 13772.59 19790.16 21271.19 18491.25 22387.40 245
OpenMVS_ROBcopyleft70.19 1777.77 22177.46 21778.71 23984.39 24561.15 23781.18 21682.52 24862.45 26083.34 20987.37 22666.20 22888.66 23864.69 23685.02 29386.32 255
test_yl78.71 21178.51 20979.32 23284.32 24658.84 26478.38 25285.33 22775.99 12782.49 21886.57 23658.01 27090.02 22062.74 24692.73 19889.10 223
DCV-MVSNet78.71 21178.51 20979.32 23284.32 24658.84 26478.38 25285.33 22775.99 12782.49 21886.57 23658.01 27090.02 22062.74 24692.73 19889.10 223
Regformer-385.06 11484.67 12786.22 10584.27 24873.43 12284.07 14785.26 22980.77 7488.62 12085.48 25180.56 11690.39 20681.99 7891.04 22694.85 63
Regformer-486.41 9185.71 10788.52 7084.27 24877.57 8984.07 14788.00 19282.82 5289.84 9485.48 25182.06 9592.77 14083.83 6191.04 22695.22 58
DELS-MVS81.44 17881.25 17782.03 18984.27 24862.87 21876.47 28092.49 9270.97 19081.64 23483.83 27675.03 16592.70 14174.29 15392.22 20990.51 202
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
Gipumacopyleft84.44 12786.33 9478.78 23784.20 25173.57 12189.55 6190.44 14184.24 3384.38 19294.89 4476.35 15980.40 30376.14 13996.80 8982.36 303
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
Regformer-186.00 9985.50 11187.49 8584.18 25276.90 10183.52 16387.94 19482.18 5889.19 11085.07 26382.28 9191.89 16282.40 7492.72 20093.69 108
Regformer-286.74 8786.08 10088.73 6784.18 25279.20 7383.52 16389.33 17183.33 4589.92 9285.07 26383.23 7993.16 12883.39 6392.72 20093.83 100
MVS_030478.17 21477.23 22080.99 20984.13 25469.07 17281.39 21180.81 26176.28 12167.53 32289.11 20162.87 24586.77 25960.90 26392.01 21487.13 248
EI-MVSNet-Vis-set85.12 11284.53 13186.88 9084.01 25572.76 12683.91 15385.18 23180.44 7588.75 11785.49 25080.08 12091.92 16082.02 7790.85 23595.97 37
IterMVS-SCA-FT80.64 18979.41 20284.34 14283.93 25669.66 16176.28 28281.09 25972.43 17686.47 16090.19 18460.46 25393.15 13077.45 12786.39 28290.22 206
MSDG80.06 20379.99 19980.25 21883.91 25768.04 17777.51 26689.19 17277.65 10981.94 22783.45 28176.37 15886.31 26563.31 24486.59 27986.41 254
EI-MVSNet-UG-set85.04 11584.44 13386.85 9183.87 25872.52 13483.82 15585.15 23280.27 7988.75 11785.45 25479.95 12391.90 16181.92 7990.80 23696.13 32
thres20072.34 26971.55 27474.70 27983.48 25951.60 31575.02 29373.71 30070.14 20078.56 26580.57 30646.20 30888.20 24346.99 32689.29 25084.32 276
USDC76.63 23176.73 22676.34 27083.46 26057.20 27780.02 22888.04 19152.14 31683.65 20591.25 15263.24 24286.65 26154.66 29694.11 16985.17 267
HY-MVS64.64 1873.03 26372.47 26774.71 27883.36 26154.19 29582.14 20381.96 25356.76 29469.57 31486.21 24460.03 25784.83 28249.58 31682.65 30985.11 268
EI-MVSNet82.61 16282.42 16483.20 16883.25 26263.66 20883.50 16685.07 23376.06 12486.55 15485.10 26073.41 18690.25 20778.15 11990.67 23995.68 43
CVMVSNet72.62 26671.41 27576.28 27183.25 26260.34 24783.50 16679.02 26937.77 34576.33 27685.10 26049.60 30087.41 24970.54 19277.54 32981.08 319
V4283.47 15283.37 14983.75 15683.16 26463.33 21281.31 21290.23 15469.51 20490.91 7790.81 17074.16 17592.29 15080.06 9690.22 24395.62 45
EU-MVSNet75.12 24674.43 24777.18 25983.11 26559.48 25585.71 12382.43 25039.76 34485.64 17388.76 20544.71 32787.88 24573.86 16085.88 28684.16 278
ET-MVSNet_ETH3D75.28 24372.77 26182.81 17883.03 26668.11 17677.09 27076.51 28160.67 27377.60 27180.52 30738.04 34091.15 18270.78 18790.68 23889.17 221
FMVSNet378.80 20978.55 20879.57 22982.89 26756.89 28081.76 20485.77 22269.04 20986.00 16690.44 17951.75 29490.09 21865.95 22693.34 18191.72 175
MVS_Test82.47 16583.22 15080.22 21982.62 26857.75 27382.54 19191.96 10571.16 18982.89 21592.52 12377.41 14290.50 20380.04 9787.84 27092.40 150
LF4IMVS82.75 16181.93 17085.19 12582.08 26980.15 6485.53 12588.76 17868.01 21685.58 17487.75 21971.80 20586.85 25774.02 15793.87 17488.58 231
PVSNet58.17 2166.41 29965.63 30168.75 30381.96 27049.88 32662.19 33472.51 30951.03 32268.04 31875.34 33350.84 29674.77 31745.82 33082.96 30581.60 311
GA-MVS75.83 24074.61 24379.48 23181.87 27159.25 25773.42 30382.88 24668.68 21279.75 25481.80 29850.62 29789.46 22566.85 22085.64 28789.72 212
MS-PatchMatch70.93 27870.22 28173.06 28681.85 27262.50 22473.82 30177.90 27252.44 31375.92 28281.27 30255.67 28581.75 29755.37 29177.70 32774.94 329
SCA73.32 25972.57 26575.58 27581.62 27355.86 28578.89 24671.37 31861.73 26474.93 29283.42 28260.46 25387.01 25258.11 27782.63 31183.88 279
FMVSNet572.10 27171.69 27173.32 28381.57 27453.02 30476.77 27478.37 27163.31 25376.37 27591.85 13836.68 34378.98 30647.87 32392.45 20387.95 238
thisisatest051573.00 26470.52 27880.46 21581.45 27559.90 25173.16 30574.31 29557.86 28576.08 28177.78 32237.60 34292.12 15465.00 23391.45 22189.35 217
eth_miper_zixun_eth80.84 18580.22 19382.71 17981.41 27660.98 24277.81 26090.14 15767.31 22686.95 14987.24 22964.26 23592.31 14875.23 14891.61 21894.85 63
CANet_DTU77.81 22077.05 22180.09 22181.37 27759.90 25183.26 17288.29 18669.16 20767.83 32083.72 27760.93 25089.47 22469.22 20389.70 24790.88 192
ANet_high83.17 15885.68 10875.65 27481.24 27845.26 33679.94 22992.91 8083.83 3791.33 6996.88 1080.25 11985.92 27068.89 20795.89 11795.76 41
new-patchmatchnet70.10 28373.37 25660.29 32681.23 27916.95 35259.54 33674.62 29162.93 25580.97 24087.93 21762.83 24671.90 32255.24 29295.01 14892.00 166
test20.0373.75 25874.59 24571.22 29581.11 28051.12 31970.15 31572.10 31170.42 19580.28 25291.50 14964.21 23674.72 31946.96 32794.58 16087.82 242
MVS73.21 26272.59 26475.06 27780.97 28160.81 24481.64 20785.92 22146.03 33571.68 30677.54 32368.47 21989.77 22255.70 28885.39 28874.60 330
N_pmnet70.20 28168.80 28974.38 28080.91 28284.81 3559.12 33876.45 28255.06 29975.31 29082.36 29455.74 28454.82 34547.02 32587.24 27583.52 286
IterMVS76.91 22876.34 22978.64 24080.91 28264.03 20576.30 28179.03 26864.88 25083.11 21289.16 19959.90 25984.46 28468.61 21185.15 29287.42 244
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
cl_fuxian81.64 17681.59 17481.79 19780.86 28459.15 26078.61 25190.18 15668.36 21387.20 13987.11 23269.39 21391.62 16778.16 11794.43 16494.60 69
RRT_test8_iter0578.08 21677.52 21679.75 22580.84 28552.54 30880.61 22288.96 17567.77 22384.62 18789.29 19633.89 34692.10 15577.59 12494.15 16894.62 67
WTY-MVS67.91 29468.35 29166.58 31180.82 28648.12 32965.96 32872.60 30753.67 30671.20 30881.68 30058.97 26569.06 32948.57 31981.67 31282.55 299
IB-MVS62.13 1971.64 27468.97 28779.66 22880.80 28762.26 22973.94 29976.90 27763.27 25468.63 31676.79 32833.83 34791.84 16459.28 27187.26 27484.88 270
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
our_test_371.85 27271.59 27272.62 28980.71 28853.78 29869.72 31771.71 31758.80 27978.03 26680.51 30856.61 28078.84 30762.20 25086.04 28585.23 266
ppachtmachnet_test74.73 25274.00 25076.90 26280.71 28856.89 28071.53 31078.42 27058.24 28279.32 25982.92 28857.91 27384.26 28665.60 23191.36 22289.56 213
testgi72.36 26874.61 24365.59 31380.56 29042.82 34268.29 32073.35 30266.87 22981.84 22989.93 18972.08 20266.92 33546.05 32992.54 20287.01 250
RRT_MVS83.25 15581.08 18089.74 5180.55 29179.32 7286.41 11486.69 21372.33 18087.00 14791.08 15844.98 32595.55 3484.47 5596.24 10794.36 81
D2MVS76.84 22975.67 23780.34 21780.48 29262.16 23073.50 30284.80 24057.61 28882.24 22287.54 22351.31 29587.65 24770.40 19493.19 18791.23 186
131473.22 26172.56 26675.20 27680.41 29357.84 27181.64 20785.36 22651.68 31973.10 30076.65 32961.45 24985.19 27763.54 24179.21 32382.59 298
cl-mvsnet_80.42 19380.23 19181.02 20779.99 29459.25 25777.07 27187.02 20967.37 22586.18 16389.21 19863.08 24490.16 21276.31 13895.80 12193.65 110
cl-mvsnet180.43 19280.23 19181.02 20779.99 29459.25 25777.07 27187.02 20967.38 22486.19 16189.22 19763.09 24390.16 21276.32 13795.80 12193.66 109
miper_ehance_all_eth80.34 19680.04 19881.24 20379.82 29658.95 26277.66 26289.66 16565.75 24085.99 16985.11 25968.29 22091.42 17476.03 14092.03 21193.33 118
CR-MVSNet74.00 25673.04 25976.85 26479.58 29762.64 22182.58 18876.90 27750.50 32775.72 28492.38 12448.07 30384.07 28768.72 21082.91 30783.85 282
RPMNet76.06 23875.79 23376.85 26479.58 29762.64 22182.58 18871.75 31574.80 14375.72 28492.59 11848.69 30184.07 28773.48 16482.91 30783.85 282
baseline269.77 28766.89 29678.41 24579.51 29958.09 26976.23 28369.57 32357.50 28964.82 33377.45 32546.02 31088.44 23953.08 30277.83 32688.70 230
UnsupCasMVSNet_bld69.21 29069.68 28467.82 30779.42 30051.15 31867.82 32475.79 28454.15 30377.47 27285.36 25859.26 26470.64 32448.46 32079.35 32181.66 310
PatchT70.52 28072.76 26263.79 31879.38 30133.53 34877.63 26365.37 33373.61 15671.77 30592.79 11444.38 32875.65 31664.53 23985.37 28982.18 305
Patchmtry76.56 23377.46 21773.83 28279.37 30246.60 33382.41 19376.90 27773.81 15485.56 17592.38 12448.07 30383.98 28963.36 24395.31 13790.92 191
mvs_anonymous78.13 21578.76 20676.23 27279.24 30350.31 32478.69 24984.82 23961.60 26783.09 21492.82 11173.89 17987.01 25268.33 21386.41 28191.37 184
MVS-HIRNet61.16 31162.92 30755.87 32979.09 30435.34 34771.83 30857.98 34546.56 33359.05 34291.14 15749.95 29976.43 31238.74 34071.92 33755.84 345
MDA-MVSNet-bldmvs77.47 22276.90 22479.16 23479.03 30564.59 19866.58 32775.67 28673.15 16888.86 11488.99 20366.94 22581.23 30064.71 23588.22 26691.64 178
diffmvs80.40 19480.48 18880.17 22079.02 30660.04 24977.54 26590.28 15366.65 23182.40 22087.33 22873.50 18387.35 25077.98 12089.62 24893.13 126
tpm268.45 29266.83 29773.30 28478.93 30748.50 32779.76 23171.76 31447.50 33169.92 31383.60 27842.07 33388.40 24048.44 32179.51 31983.01 296
tpm67.95 29368.08 29367.55 30878.74 30843.53 34075.60 28767.10 33054.92 30072.23 30388.10 21342.87 33275.97 31452.21 30580.95 31883.15 294
MDTV_nov1_ep1368.29 29278.03 30943.87 33974.12 29872.22 31052.17 31467.02 32385.54 24945.36 32080.85 30155.73 28684.42 299
cl-mvsnet278.97 20778.21 21281.24 20377.74 31059.01 26177.46 26887.13 20465.79 23784.32 19485.10 26058.96 26690.88 19275.36 14792.03 21193.84 99
EPNet_dtu72.87 26571.33 27677.49 25877.72 31160.55 24682.35 19475.79 28466.49 23258.39 34581.06 30453.68 29185.98 26953.55 30092.97 19485.95 259
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
PatchmatchNetpermissive69.71 28868.83 28872.33 29277.66 31253.60 29979.29 23969.99 32257.66 28772.53 30282.93 28746.45 30780.08 30560.91 26272.09 33683.31 292
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
sss66.92 29667.26 29565.90 31277.23 31351.10 32064.79 32971.72 31652.12 31770.13 31280.18 31057.96 27265.36 34050.21 31281.01 31781.25 316
CostFormer69.98 28668.68 29073.87 28177.14 31450.72 32279.26 24074.51 29351.94 31870.97 31084.75 26845.16 32487.49 24855.16 29379.23 32283.40 289
tpm cat166.76 29765.21 30271.42 29477.09 31550.62 32378.01 25673.68 30144.89 33768.64 31579.00 31645.51 31882.42 29649.91 31470.15 33981.23 318
pmmvs570.73 27970.07 28272.72 28777.03 31652.73 30574.14 29775.65 28750.36 32872.17 30485.37 25755.42 28780.67 30252.86 30487.59 27384.77 271
EPNet80.37 19578.41 21186.23 10476.75 31773.28 12387.18 9877.45 27576.24 12268.14 31788.93 20465.41 23293.85 9769.47 19996.12 11291.55 182
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
miper_lstm_enhance76.45 23576.10 23177.51 25776.72 31860.97 24364.69 33085.04 23563.98 25283.20 21188.22 21156.67 27978.79 30873.22 16693.12 18892.78 139
CHOSEN 280x42059.08 31556.52 31966.76 31076.51 31964.39 20249.62 34459.00 34243.86 33955.66 34768.41 34035.55 34568.21 33143.25 33376.78 33167.69 338
UnsupCasMVSNet_eth71.63 27572.30 26869.62 29876.47 32052.70 30670.03 31680.97 26059.18 27879.36 25888.21 21260.50 25269.12 32858.33 27577.62 32887.04 249
test-LLR67.21 29566.74 29868.63 30476.45 32155.21 29067.89 32167.14 32862.43 26165.08 33072.39 33543.41 32969.37 32561.00 26084.89 29481.31 314
test-mter65.00 30363.79 30568.63 30476.45 32155.21 29067.89 32167.14 32850.98 32365.08 33072.39 33528.27 35369.37 32561.00 26084.89 29481.31 314
miper_enhance_ethall77.83 21876.93 22380.51 21476.15 32358.01 27075.47 29088.82 17658.05 28483.59 20680.69 30564.41 23491.20 17973.16 17292.03 21192.33 152
gg-mvs-nofinetune68.96 29169.11 28668.52 30676.12 32445.32 33583.59 16255.88 34686.68 2264.62 33497.01 730.36 35183.97 29044.78 33182.94 30676.26 327
CMPMVSbinary59.41 2075.12 24673.57 25379.77 22375.84 32567.22 18081.21 21582.18 25150.78 32476.50 27487.66 22155.20 28882.99 29462.17 25290.64 24289.09 225
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
wuyk23d75.13 24579.30 20362.63 31975.56 32675.18 11480.89 21973.10 30575.06 14294.76 1195.32 3387.73 3852.85 34634.16 34497.11 7859.85 342
Patchmatch-test65.91 30167.38 29461.48 32475.51 32743.21 34168.84 31863.79 33562.48 25972.80 30183.42 28244.89 32659.52 34448.27 32286.45 28081.70 309
new_pmnet55.69 31757.66 31849.76 33175.47 32830.59 34959.56 33551.45 34943.62 34062.49 33675.48 33240.96 33549.15 34837.39 34272.52 33569.55 336
gm-plane-assit75.42 32944.97 33852.17 31472.36 33787.90 24454.10 298
MVSTER77.09 22675.70 23681.25 20175.27 33061.08 23877.49 26785.07 23360.78 27186.55 15488.68 20743.14 33190.25 20773.69 16290.67 23992.42 148
PVSNet_051.08 2256.10 31654.97 32059.48 32775.12 33153.28 30355.16 34161.89 33744.30 33859.16 34162.48 34454.22 29065.91 33935.40 34347.01 34659.25 343
test0.0.03 164.66 30464.36 30465.57 31475.03 33246.89 33264.69 33061.58 34062.43 26171.18 30977.54 32343.41 32968.47 33040.75 33882.65 30981.35 313
DWT-MVSNet_test66.43 29864.37 30372.63 28874.86 33350.86 32176.52 27872.74 30654.06 30465.50 32768.30 34132.13 34984.84 28161.63 25773.59 33482.19 304
tpmvs70.16 28269.56 28571.96 29374.71 33448.13 32879.63 23275.45 28965.02 24970.26 31181.88 29745.34 32185.68 27358.34 27475.39 33282.08 306
MDA-MVSNet_test_wron70.05 28570.44 27968.88 30273.84 33553.47 30058.93 34067.28 32658.43 28087.09 14485.40 25559.80 26167.25 33359.66 26983.54 30285.92 260
YYNet170.06 28470.44 27968.90 30173.76 33653.42 30258.99 33967.20 32758.42 28187.10 14385.39 25659.82 26067.32 33259.79 26883.50 30385.96 258
GG-mvs-BLEND67.16 30973.36 33746.54 33484.15 14655.04 34758.64 34461.95 34529.93 35283.87 29138.71 34176.92 33071.07 334
JIA-IIPM69.41 28966.64 30077.70 25673.19 33871.24 15175.67 28665.56 33270.42 19565.18 32992.97 10633.64 34883.06 29353.52 30169.61 34278.79 324
ADS-MVSNet265.87 30263.64 30672.55 29073.16 33956.92 27967.10 32574.81 29049.74 32966.04 32582.97 28546.71 30577.26 31042.29 33469.96 34083.46 287
ADS-MVSNet61.90 30762.19 30961.03 32573.16 33936.42 34667.10 32561.75 33849.74 32966.04 32582.97 28546.71 30563.21 34242.29 33469.96 34083.46 287
DSMNet-mixed60.98 31361.61 31159.09 32872.88 34145.05 33774.70 29546.61 35126.20 34765.34 32890.32 18155.46 28663.12 34341.72 33681.30 31669.09 337
tpmrst66.28 30066.69 29965.05 31672.82 34239.33 34378.20 25570.69 32053.16 30967.88 31980.36 30948.18 30274.75 31858.13 27670.79 33881.08 319
TESTMET0.1,161.29 31060.32 31464.19 31772.06 34351.30 31667.89 32162.09 33645.27 33660.65 33969.01 33827.93 35464.74 34156.31 28481.65 31476.53 326
dp60.70 31460.29 31561.92 32272.04 34438.67 34570.83 31164.08 33451.28 32160.75 33877.28 32636.59 34471.58 32347.41 32462.34 34575.52 328
pmmvs362.47 30560.02 31669.80 29771.58 34564.00 20670.52 31358.44 34439.77 34366.05 32475.84 33127.10 35572.28 32046.15 32884.77 29873.11 331
EPMVS62.47 30562.63 30862.01 32070.63 34638.74 34474.76 29452.86 34853.91 30567.71 32180.01 31139.40 33766.60 33655.54 29068.81 34380.68 323
E-PMN61.59 30961.62 31061.49 32366.81 34755.40 28853.77 34260.34 34166.80 23058.90 34365.50 34240.48 33666.12 33855.72 28786.25 28362.95 340
EMVS61.10 31260.81 31261.99 32165.96 34855.86 28553.10 34358.97 34367.06 22756.89 34663.33 34340.98 33467.03 33454.79 29586.18 28463.08 339
PMMVS61.65 30860.38 31365.47 31565.40 34969.26 16663.97 33261.73 33936.80 34660.11 34068.43 33959.42 26266.35 33748.97 31878.57 32560.81 341
PMMVS255.64 31859.27 31744.74 33264.30 35012.32 35340.60 34549.79 35053.19 30865.06 33284.81 26753.60 29249.76 34732.68 34689.41 24972.15 332
MVEpermissive40.22 2351.82 31950.47 32155.87 32962.66 35151.91 31231.61 34739.28 35240.65 34250.76 34874.98 33456.24 28344.67 34933.94 34564.11 34471.04 335
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
DeepMVS_CXcopyleft24.13 33332.95 35229.49 35021.63 35512.07 34837.95 34945.07 34630.84 35019.21 35017.94 34833.06 34823.69 346
tmp_tt20.25 32124.50 3237.49 3344.47 3538.70 35434.17 34625.16 3541.00 34932.43 35018.49 34739.37 3389.21 35121.64 34743.75 3474.57 347
testmvs5.91 3257.65 3270.72 3361.20 3540.37 35659.14 3370.67 3570.49 3511.11 3512.76 3510.94 3570.24 3531.02 3501.47 3491.55 349
test1236.27 3248.08 3260.84 3351.11 3550.57 35562.90 3330.82 3560.54 3501.07 3522.75 3521.26 3560.30 3521.04 3491.26 3501.66 348
uanet_test0.00 3260.00 3280.00 3370.00 3560.00 3570.00 3480.00 3580.00 3520.00 3530.00 3530.00 3580.00 3540.00 3510.00 3510.00 350
cdsmvs_eth3d_5k20.81 32027.75 3220.00 3370.00 3560.00 3570.00 34885.44 2250.00 3520.00 35382.82 28981.46 1060.00 3540.00 3510.00 3510.00 350
pcd_1.5k_mvsjas6.41 3238.55 3250.00 3370.00 3560.00 3570.00 3480.00 3580.00 3520.00 3530.00 35376.94 1500.00 3540.00 3510.00 3510.00 350
sosnet-low-res0.00 3260.00 3280.00 3370.00 3560.00 3570.00 3480.00 3580.00 3520.00 3530.00 3530.00 3580.00 3540.00 3510.00 3510.00 350
sosnet0.00 3260.00 3280.00 3370.00 3560.00 3570.00 3480.00 3580.00 3520.00 3530.00 3530.00 3580.00 3540.00 3510.00 3510.00 350
uncertanet0.00 3260.00 3280.00 3370.00 3560.00 3570.00 3480.00 3580.00 3520.00 3530.00 3530.00 3580.00 3540.00 3510.00 3510.00 350
Regformer0.00 3260.00 3280.00 3370.00 3560.00 3570.00 3480.00 3580.00 3520.00 3530.00 3530.00 3580.00 3540.00 3510.00 3510.00 350
ab-mvs-re6.65 3228.87 3240.00 3370.00 3560.00 3570.00 3480.00 3580.00 3520.00 35379.80 3130.00 3580.00 3540.00 3510.00 3510.00 350
uanet0.00 3260.00 3280.00 3370.00 3560.00 3570.00 3480.00 3580.00 3520.00 3530.00 3530.00 3580.00 3540.00 3510.00 3510.00 350
test_241102_TWO93.71 4583.77 3893.49 3394.27 6789.27 2195.84 1886.03 3897.82 5092.04 164
test_0728_THIRD85.33 2793.75 2894.65 5287.44 4195.78 2387.41 1998.21 2992.98 131
GSMVS83.88 279
test_part10.00 3370.00 3570.00 34893.93 350.00 3580.00 3540.00 3510.00 3510.00 350
sam_mvs146.11 30983.88 279
sam_mvs45.92 314
MTGPAbinary91.81 109
test_post178.85 2483.13 34945.19 32380.13 30458.11 277
test_post3.10 35045.43 31977.22 311
patchmatchnet-post81.71 29945.93 31387.01 252
MTMP90.66 3733.14 353
test9_res80.83 9096.45 9990.57 199
agg_prior279.68 10196.16 10990.22 206
test_prior478.97 7584.59 137
test_prior283.37 16975.43 13684.58 18891.57 14681.92 10179.54 10396.97 81
旧先验281.73 20556.88 29386.54 15984.90 28072.81 174
新几何281.72 206
无先验82.81 18585.62 22458.09 28391.41 17567.95 21684.48 273
原ACMM282.26 199
testdata286.43 26463.52 242
segment_acmp81.94 98
testdata179.62 23373.95 153
plane_prior593.61 4995.22 5080.78 9195.83 11994.46 76
plane_prior492.95 107
plane_prior376.85 10277.79 10886.55 154
plane_prior289.45 6679.44 89
plane_prior76.42 10787.15 9975.94 13095.03 147
n20.00 358
nn0.00 358
door-mid74.45 294
test1191.46 116
door72.57 308
HQP5-MVS70.66 154
BP-MVS77.30 129
HQP4-MVS80.56 24794.61 7193.56 115
HQP3-MVS92.68 8894.47 162
HQP2-MVS72.10 200
MDTV_nov1_ep13_2view27.60 35170.76 31246.47 33461.27 33745.20 32249.18 31783.75 284
ACMMP++_ref95.74 125
ACMMP++97.35 71
Test By Simon79.09 127