LCM-MVSNet | | | 95.70 1 | 96.40 1 | 93.61 2 | 98.67 1 | 85.39 32 | 95.54 3 | 97.36 1 | 96.97 1 | 99.04 1 | 99.05 1 | 96.61 1 | 95.92 12 | 85.07 49 | 99.27 1 | 99.54 1 |
|
TDRefinement | | | 93.52 2 | 93.39 3 | 93.88 1 | 95.94 14 | 90.26 3 | 95.70 2 | 96.46 2 | 90.58 7 | 92.86 44 | 96.29 16 | 88.16 34 | 94.17 91 | 86.07 40 | 98.48 18 | 97.22 17 |
|
SF-MVS | | | 90.27 39 | 90.80 44 | 88.68 72 | 92.86 84 | 77.09 104 | 91.19 38 | 95.74 3 | 81.38 71 | 92.28 55 | 93.80 94 | 86.89 50 | 94.64 74 | 85.52 45 | 97.51 72 | 94.30 84 |
|
ACMH+ | | 77.89 11 | 90.73 30 | 91.50 23 | 88.44 76 | 93.00 79 | 76.26 115 | 89.65 62 | 95.55 4 | 87.72 22 | 93.89 26 | 94.94 44 | 91.62 4 | 93.44 124 | 78.35 120 | 98.76 4 | 95.61 47 |
|
LTVRE_ROB | | 86.10 1 | 93.04 3 | 93.44 2 | 91.82 23 | 93.73 63 | 85.72 31 | 96.79 1 | 95.51 5 | 88.86 13 | 95.63 7 | 96.99 8 | 84.81 68 | 93.16 134 | 91.10 1 | 97.53 71 | 96.58 29 |
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
AllTest | | | 87.97 76 | 87.40 85 | 89.68 54 | 91.59 120 | 83.40 48 | 89.50 67 | 95.44 6 | 79.47 91 | 88.00 136 | 93.03 108 | 82.66 88 | 91.47 177 | 70.81 193 | 96.14 117 | 94.16 89 |
|
TestCases | | | | | 89.68 54 | 91.59 120 | 83.40 48 | | 95.44 6 | 79.47 91 | 88.00 136 | 93.03 108 | 82.66 88 | 91.47 177 | 70.81 193 | 96.14 117 | 94.16 89 |
|
9.14 | | | | 89.29 61 | | 91.84 115 | | 88.80 80 | 95.32 8 | 75.14 145 | 91.07 75 | 92.89 115 | 87.27 45 | 93.78 107 | 83.69 65 | 97.55 67 | |
|
xxxxxxxxxxxxxcwj | | | 89.04 65 | 89.13 63 | 88.79 68 | 93.75 61 | 77.44 97 | 86.31 119 | 95.27 9 | 70.80 197 | 92.28 55 | 93.80 94 | 86.89 50 | 94.64 74 | 85.52 45 | 97.51 72 | 94.30 84 |
|
ETH3D-3000-0.1 | | | 88.85 68 | 88.96 68 | 88.52 73 | 91.94 111 | 77.27 103 | 88.71 82 | 95.26 10 | 76.08 127 | 90.66 84 | 92.69 122 | 84.48 71 | 93.83 106 | 83.38 67 | 97.48 74 | 94.47 76 |
|
COLMAP_ROB |  | 83.01 3 | 91.97 11 | 91.95 12 | 92.04 12 | 93.68 64 | 86.15 21 | 93.37 8 | 95.10 11 | 90.28 8 | 92.11 57 | 95.03 42 | 89.75 21 | 94.93 65 | 79.95 103 | 98.27 27 | 95.04 62 |
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
APD-MVS_3200maxsize | | | 92.05 10 | 92.24 10 | 91.48 24 | 93.02 78 | 85.17 34 | 92.47 24 | 95.05 12 | 87.65 23 | 93.21 39 | 94.39 67 | 90.09 18 | 95.08 61 | 86.67 30 | 97.60 64 | 94.18 88 |
|
CS-MVS | | | 83.43 157 | 83.04 158 | 84.59 142 | 87.87 195 | 66.61 193 | 85.57 128 | 94.90 13 | 73.02 174 | 81.12 248 | 78.56 331 | 80.00 126 | 95.52 39 | 73.04 181 | 93.29 194 | 91.62 185 |
|
test_part1 | | | 87.15 85 | 87.82 78 | 85.15 131 | 88.88 177 | 63.04 222 | 87.98 90 | 94.85 14 | 82.52 58 | 93.61 36 | 95.73 25 | 67.51 227 | 95.71 28 | 80.48 100 | 98.83 2 | 96.69 25 |
|
HPM-MVS |  | | 92.13 9 | 92.20 11 | 91.91 17 | 95.58 25 | 84.67 41 | 93.51 6 | 94.85 14 | 82.88 54 | 91.77 65 | 93.94 91 | 90.55 13 | 95.73 27 | 88.50 7 | 98.23 29 | 95.33 53 |
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023 |
LS3D | | | 90.60 33 | 90.34 49 | 91.38 27 | 89.03 173 | 84.23 45 | 93.58 4 | 94.68 16 | 90.65 6 | 90.33 88 | 93.95 90 | 84.50 70 | 95.37 49 | 80.87 93 | 95.50 137 | 94.53 75 |
|
ETH3D cwj APD-0.16 | | | 87.83 79 | 87.62 81 | 88.47 75 | 91.21 133 | 78.20 87 | 87.26 100 | 94.54 17 | 72.05 186 | 88.89 118 | 92.31 134 | 83.86 74 | 94.24 85 | 81.59 86 | 96.87 89 | 92.97 136 |
|
MP-MVS-pluss | | | 90.81 29 | 91.08 35 | 89.99 51 | 95.97 13 | 79.88 71 | 88.13 89 | 94.51 18 | 75.79 136 | 92.94 41 | 94.96 43 | 88.36 28 | 95.01 63 | 90.70 2 | 98.40 20 | 95.09 61 |
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss |
canonicalmvs | | | 85.50 109 | 86.14 103 | 83.58 165 | 87.97 192 | 67.13 187 | 87.55 96 | 94.32 19 | 73.44 163 | 88.47 128 | 87.54 231 | 86.45 57 | 91.06 192 | 75.76 150 | 93.76 184 | 92.54 152 |
|
LCM-MVSNet-Re | | | 83.48 154 | 85.06 120 | 78.75 244 | 85.94 237 | 55.75 295 | 80.05 234 | 94.27 20 | 76.47 123 | 96.09 4 | 94.54 56 | 83.31 82 | 89.75 230 | 59.95 276 | 94.89 160 | 90.75 201 |
|
LPG-MVS_test | | | 91.47 19 | 91.68 18 | 90.82 38 | 94.75 40 | 81.69 58 | 90.00 51 | 94.27 20 | 82.35 60 | 93.67 33 | 94.82 48 | 91.18 5 | 95.52 39 | 85.36 47 | 98.73 7 | 95.23 58 |
|
LGP-MVS_train | | | | | 90.82 38 | 94.75 40 | 81.69 58 | | 94.27 20 | 82.35 60 | 93.67 33 | 94.82 48 | 91.18 5 | 95.52 39 | 85.36 47 | 98.73 7 | 95.23 58 |
|
HPM-MVS_fast | | | 92.50 5 | 92.54 6 | 92.37 6 | 95.93 15 | 85.81 30 | 92.99 11 | 94.23 23 | 85.21 31 | 92.51 51 | 95.13 40 | 90.65 10 | 95.34 50 | 88.06 9 | 98.15 33 | 95.95 40 |
|
ZNCC-MVS | | | 91.26 23 | 91.34 29 | 91.01 35 | 95.73 20 | 83.05 52 | 92.18 26 | 94.22 24 | 80.14 85 | 91.29 73 | 93.97 84 | 87.93 39 | 95.87 15 | 88.65 4 | 97.96 45 | 94.12 91 |
|
nrg030 | | | 87.85 78 | 88.49 73 | 85.91 116 | 90.07 160 | 69.73 166 | 87.86 93 | 94.20 25 | 74.04 155 | 92.70 49 | 94.66 52 | 85.88 64 | 91.50 176 | 79.72 105 | 97.32 78 | 96.50 30 |
|
DeepC-MVS | | 82.31 4 | 89.15 62 | 89.08 64 | 89.37 61 | 93.64 65 | 79.07 80 | 88.54 85 | 94.20 25 | 73.53 161 | 89.71 102 | 94.82 48 | 85.09 66 | 95.77 26 | 84.17 60 | 98.03 37 | 93.26 123 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
abl_6 | | | 93.02 4 | 93.16 4 | 92.60 4 | 94.73 42 | 88.99 7 | 93.26 10 | 94.19 27 | 89.11 11 | 94.43 15 | 95.27 36 | 91.86 3 | 95.09 60 | 87.54 18 | 98.02 38 | 93.71 108 |
|
SR-MVS-dyc-post | | | 92.41 6 | 92.41 7 | 92.39 5 | 94.13 53 | 88.95 8 | 92.87 12 | 94.16 28 | 88.75 15 | 93.79 28 | 94.43 61 | 88.83 24 | 95.51 42 | 87.16 25 | 97.60 64 | 92.73 142 |
|
RE-MVS-def | | | | 92.61 5 | | 94.13 53 | 88.95 8 | 92.87 12 | 94.16 28 | 88.75 15 | 93.79 28 | 94.43 61 | 90.64 11 | | 87.16 25 | 97.60 64 | 92.73 142 |
|
RPMNet | | | 78.88 215 | 78.28 219 | 80.68 219 | 79.58 307 | 62.64 228 | 82.58 192 | 94.16 28 | 74.80 147 | 75.72 296 | 92.59 124 | 48.69 311 | 95.56 34 | 73.48 172 | 82.91 319 | 83.85 291 |
|
ACMMP |  | | 91.91 12 | 91.87 17 | 92.03 13 | 95.53 26 | 85.91 25 | 93.35 9 | 94.16 28 | 82.52 58 | 92.39 54 | 94.14 77 | 89.15 23 | 95.62 31 | 87.35 20 | 98.24 28 | 94.56 72 |
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
APDe-MVS | | | 91.22 24 | 91.92 13 | 89.14 64 | 92.97 80 | 78.04 89 | 92.84 14 | 94.14 32 | 83.33 48 | 93.90 24 | 95.73 25 | 88.77 26 | 96.41 1 | 87.60 16 | 97.98 42 | 92.98 133 |
|
3Dnovator+ | | 83.92 2 | 89.97 48 | 89.66 55 | 90.92 36 | 91.27 132 | 81.66 61 | 91.25 36 | 94.13 33 | 88.89 12 | 88.83 121 | 94.26 72 | 77.55 145 | 95.86 18 | 84.88 52 | 95.87 125 | 95.24 57 |
|
test_0728_SECOND | | | | | 86.79 96 | 94.25 47 | 72.45 142 | 90.54 43 | 94.10 34 | | | | | 95.88 14 | 86.42 31 | 97.97 43 | 92.02 171 |
|
DPE-MVS |  | | 90.53 35 | 91.08 35 | 88.88 66 | 93.38 70 | 78.65 85 | 89.15 73 | 94.05 35 | 84.68 35 | 93.90 24 | 94.11 79 | 88.13 35 | 96.30 3 | 84.51 57 | 97.81 52 | 91.70 182 |
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025 |
ACMP | | 79.16 10 | 90.54 34 | 90.60 47 | 90.35 46 | 94.36 45 | 80.98 64 | 89.16 72 | 94.05 35 | 79.03 99 | 92.87 43 | 93.74 98 | 90.60 12 | 95.21 57 | 82.87 73 | 98.76 4 | 94.87 63 |
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
XVG-ACMP-BASELINE | | | 89.98 46 | 89.84 53 | 90.41 44 | 94.91 37 | 84.50 44 | 89.49 68 | 93.98 37 | 79.68 89 | 92.09 58 | 93.89 92 | 83.80 76 | 93.10 138 | 82.67 75 | 98.04 35 | 93.64 112 |
|
baseline | | | 85.20 113 | 85.93 106 | 83.02 175 | 86.30 229 | 62.37 233 | 84.55 142 | 93.96 38 | 74.48 152 | 87.12 146 | 92.03 140 | 82.30 93 | 91.94 166 | 78.39 118 | 94.21 175 | 94.74 68 |
|
casdiffmvs | | | 85.21 112 | 85.85 108 | 83.31 170 | 86.17 234 | 62.77 226 | 83.03 183 | 93.93 39 | 74.69 149 | 88.21 134 | 92.68 123 | 82.29 94 | 91.89 169 | 77.87 129 | 93.75 186 | 95.27 56 |
|
XVG-OURS-SEG-HR | | | 89.59 54 | 89.37 60 | 90.28 47 | 94.47 44 | 85.95 24 | 86.84 107 | 93.91 40 | 80.07 86 | 86.75 157 | 93.26 104 | 93.64 2 | 90.93 195 | 84.60 56 | 90.75 247 | 93.97 95 |
|
test0726 | | | | | | 94.16 51 | 72.56 138 | 90.63 42 | 93.90 41 | 83.61 44 | 93.75 30 | 94.49 58 | 89.76 19 | | | | |
|
MSP-MVS | | | 89.08 64 | 88.16 75 | 91.83 21 | 95.76 17 | 86.14 22 | 92.75 15 | 93.90 41 | 78.43 107 | 89.16 116 | 92.25 137 | 72.03 208 | 96.36 2 | 88.21 8 | 90.93 242 | 92.98 133 |
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025 |
PGM-MVS | | | 91.20 25 | 90.95 41 | 91.93 15 | 95.67 22 | 85.85 28 | 90.00 51 | 93.90 41 | 80.32 82 | 91.74 66 | 94.41 64 | 88.17 33 | 95.98 9 | 86.37 33 | 97.99 40 | 93.96 96 |
|
SR-MVS | | | 92.23 8 | 92.34 9 | 91.91 17 | 94.89 38 | 87.85 11 | 92.51 22 | 93.87 44 | 88.20 20 | 93.24 38 | 94.02 82 | 90.15 17 | 95.67 30 | 86.82 29 | 97.34 77 | 92.19 167 |
|
ACMH | | 76.49 14 | 89.34 59 | 91.14 34 | 83.96 156 | 92.50 92 | 70.36 163 | 89.55 64 | 93.84 45 | 81.89 66 | 94.70 12 | 95.44 33 | 90.69 9 | 88.31 249 | 83.33 68 | 98.30 26 | 93.20 125 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
SD-MVS | | | 88.96 66 | 89.88 52 | 86.22 109 | 91.63 119 | 77.07 105 | 89.82 57 | 93.77 46 | 78.90 100 | 92.88 42 | 92.29 135 | 86.11 61 | 90.22 217 | 86.24 38 | 97.24 80 | 91.36 191 |
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
GST-MVS | | | 90.96 28 | 91.01 38 | 90.82 38 | 95.45 27 | 82.73 55 | 91.75 33 | 93.74 47 | 80.98 76 | 91.38 71 | 93.80 94 | 87.20 47 | 95.80 21 | 87.10 28 | 97.69 59 | 93.93 97 |
|
test_241102_TWO | | | | | | | | | 93.71 48 | 83.77 41 | 93.49 37 | 94.27 69 | 89.27 22 | 95.84 19 | 86.03 41 | 97.82 51 | 92.04 170 |
|
SED-MVS | | | 90.46 37 | 91.64 19 | 86.93 93 | 94.18 48 | 72.65 133 | 90.47 46 | 93.69 49 | 83.77 41 | 94.11 22 | 94.27 69 | 90.28 15 | 95.84 19 | 86.03 41 | 97.92 46 | 92.29 161 |
|
test_241102_ONE | | | | | | 94.18 48 | 72.65 133 | | 93.69 49 | 83.62 43 | 94.11 22 | 93.78 97 | 90.28 15 | 95.50 45 | | | |
|
ACMMP_NAP | | | 90.65 31 | 91.07 37 | 89.42 60 | 95.93 15 | 79.54 76 | 89.95 54 | 93.68 51 | 77.65 113 | 91.97 62 | 94.89 45 | 88.38 27 | 95.45 46 | 89.27 3 | 97.87 50 | 93.27 122 |
|
test1172 | | | 92.40 7 | 92.41 7 | 92.37 6 | 94.68 43 | 89.04 6 | 91.98 29 | 93.62 52 | 90.14 10 | 93.63 35 | 94.16 76 | 88.83 24 | 95.51 42 | 87.11 27 | 97.54 70 | 92.54 152 |
|
HQP_MVS | | | 87.75 81 | 87.43 84 | 88.70 71 | 93.45 67 | 76.42 113 | 89.45 69 | 93.61 53 | 79.44 93 | 86.55 161 | 92.95 113 | 74.84 171 | 95.22 55 | 80.78 95 | 95.83 126 | 94.46 77 |
|
plane_prior5 | | | | | | | | | 93.61 53 | | | | | 95.22 55 | 80.78 95 | 95.83 126 | 94.46 77 |
|
XVG-OURS | | | 89.18 61 | 88.83 70 | 90.23 48 | 94.28 46 | 86.11 23 | 85.91 122 | 93.60 55 | 80.16 84 | 89.13 117 | 93.44 102 | 83.82 75 | 90.98 193 | 83.86 63 | 95.30 145 | 93.60 114 |
|
testtj | | | 89.51 56 | 89.48 59 | 89.59 58 | 92.26 99 | 80.80 66 | 90.14 50 | 93.54 56 | 83.37 47 | 90.57 85 | 92.55 127 | 84.99 67 | 96.15 5 | 81.26 87 | 96.61 99 | 91.83 178 |
|
TAPA-MVS | | 77.73 12 | 85.71 108 | 84.83 125 | 88.37 78 | 88.78 179 | 79.72 73 | 87.15 103 | 93.50 57 | 69.17 213 | 85.80 178 | 89.56 200 | 80.76 117 | 92.13 159 | 73.21 179 | 95.51 136 | 93.25 124 |
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
SteuartSystems-ACMMP | | | 91.16 26 | 91.36 26 | 90.55 42 | 93.91 59 | 80.97 65 | 91.49 35 | 93.48 58 | 82.82 55 | 92.60 50 | 93.97 84 | 88.19 32 | 96.29 4 | 87.61 15 | 98.20 32 | 94.39 81 |
Skip Steuart: Steuart Systems R&D Blog. |
ETV-MVS | | | 84.31 133 | 83.91 147 | 85.52 125 | 88.58 181 | 70.40 162 | 84.50 146 | 93.37 59 | 78.76 104 | 84.07 207 | 78.72 330 | 80.39 121 | 95.13 59 | 73.82 168 | 92.98 203 | 91.04 193 |
|
CP-MVS | | | 91.67 14 | 91.58 21 | 91.96 14 | 95.29 31 | 87.62 12 | 93.38 7 | 93.36 60 | 83.16 50 | 91.06 76 | 94.00 83 | 88.26 31 | 95.71 28 | 87.28 23 | 98.39 21 | 92.55 151 |
|
ACMM | | 79.39 9 | 90.65 31 | 90.99 39 | 89.63 56 | 95.03 34 | 83.53 47 | 89.62 63 | 93.35 61 | 79.20 96 | 93.83 27 | 93.60 101 | 90.81 8 | 92.96 140 | 85.02 51 | 98.45 19 | 92.41 155 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
EIA-MVS | | | 82.19 172 | 81.23 184 | 85.10 132 | 87.95 193 | 69.17 176 | 83.22 180 | 93.33 62 | 70.42 201 | 78.58 274 | 79.77 327 | 77.29 147 | 94.20 88 | 71.51 190 | 88.96 265 | 91.93 176 |
|
XVS | | | 91.54 15 | 91.36 26 | 92.08 10 | 95.64 23 | 86.25 19 | 92.64 17 | 93.33 62 | 85.07 32 | 89.99 93 | 94.03 81 | 86.57 55 | 95.80 21 | 87.35 20 | 97.62 62 | 94.20 86 |
|
X-MVStestdata | | | 85.04 118 | 82.70 162 | 92.08 10 | 95.64 23 | 86.25 19 | 92.64 17 | 93.33 62 | 85.07 32 | 89.99 93 | 16.05 360 | 86.57 55 | 95.80 21 | 87.35 20 | 97.62 62 | 94.20 86 |
|
ETH3 D test6400 | | | 85.09 116 | 84.87 124 | 85.75 121 | 90.80 145 | 69.34 170 | 85.90 123 | 93.31 65 | 65.43 252 | 86.11 171 | 89.95 195 | 80.92 115 | 94.86 67 | 75.90 149 | 95.57 135 | 93.05 130 |
|
WR-MVS_H | | | 89.91 49 | 91.31 31 | 85.71 122 | 96.32 10 | 62.39 232 | 89.54 66 | 93.31 65 | 90.21 9 | 95.57 8 | 95.66 28 | 81.42 111 | 95.90 13 | 80.94 92 | 98.80 3 | 98.84 5 |
|
region2R | | | 91.44 20 | 91.30 32 | 91.87 19 | 95.75 18 | 85.90 26 | 92.63 19 | 93.30 67 | 81.91 65 | 90.88 81 | 94.21 74 | 87.75 40 | 95.87 15 | 87.60 16 | 97.71 58 | 93.83 101 |
|
HFP-MVS | | | 91.30 21 | 91.39 25 | 91.02 33 | 95.43 28 | 84.66 42 | 92.58 20 | 93.29 68 | 81.99 63 | 91.47 68 | 93.96 87 | 88.35 29 | 95.56 34 | 87.74 11 | 97.74 56 | 92.85 137 |
|
#test# | | | 90.49 36 | 90.31 50 | 91.02 33 | 95.43 28 | 84.66 42 | 90.65 41 | 93.29 68 | 77.00 120 | 91.47 68 | 93.96 87 | 88.35 29 | 95.56 34 | 84.88 52 | 97.74 56 | 92.85 137 |
|
ACMMPR | | | 91.49 17 | 91.35 28 | 91.92 16 | 95.74 19 | 85.88 27 | 92.58 20 | 93.25 70 | 81.99 63 | 91.40 70 | 94.17 75 | 87.51 43 | 95.87 15 | 87.74 11 | 97.76 54 | 93.99 94 |
|
SMA-MVS |  | | 90.31 38 | 90.48 48 | 89.83 52 | 95.31 30 | 79.52 77 | 90.98 39 | 93.24 71 | 75.37 143 | 92.84 45 | 95.28 35 | 85.58 65 | 96.09 7 | 87.92 10 | 97.76 54 | 93.88 99 |
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
PEN-MVS | | | 90.03 44 | 91.88 16 | 84.48 143 | 96.57 6 | 58.88 271 | 88.95 75 | 93.19 72 | 91.62 3 | 96.01 5 | 96.16 20 | 87.02 48 | 95.60 32 | 78.69 116 | 98.72 9 | 98.97 3 |
|
OMC-MVS | | | 88.19 73 | 87.52 82 | 90.19 49 | 91.94 111 | 81.68 60 | 87.49 98 | 93.17 73 | 76.02 130 | 88.64 124 | 91.22 159 | 84.24 73 | 93.37 127 | 77.97 128 | 97.03 85 | 95.52 48 |
|
OurMVSNet-221017-0 | | | 90.01 45 | 89.74 54 | 90.83 37 | 93.16 76 | 80.37 68 | 91.91 32 | 93.11 74 | 81.10 74 | 95.32 9 | 97.24 5 | 72.94 196 | 94.85 68 | 85.07 49 | 97.78 53 | 97.26 15 |
|
FC-MVSNet-test | | | 85.93 105 | 87.05 89 | 82.58 187 | 92.25 100 | 56.44 290 | 85.75 125 | 93.09 75 | 77.33 116 | 91.94 63 | 94.65 53 | 74.78 173 | 93.41 126 | 75.11 157 | 98.58 14 | 97.88 7 |
|
APD-MVS |  | | 89.54 55 | 89.63 56 | 89.26 63 | 92.57 89 | 81.34 63 | 90.19 49 | 93.08 76 | 80.87 77 | 91.13 74 | 93.19 105 | 86.22 60 | 95.97 10 | 82.23 79 | 97.18 82 | 90.45 210 |
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
FIs | | | 85.35 111 | 86.27 100 | 82.60 186 | 91.86 114 | 57.31 283 | 85.10 134 | 93.05 77 | 75.83 135 | 91.02 77 | 93.97 84 | 73.57 186 | 92.91 144 | 73.97 165 | 98.02 38 | 97.58 12 |
|
v7n | | | 90.13 40 | 90.96 40 | 87.65 88 | 91.95 109 | 71.06 158 | 89.99 53 | 93.05 77 | 86.53 26 | 94.29 18 | 96.27 17 | 82.69 87 | 94.08 95 | 86.25 37 | 97.63 61 | 97.82 8 |
|
PHI-MVS | | | 86.38 95 | 85.81 109 | 88.08 82 | 88.44 185 | 77.34 100 | 89.35 71 | 93.05 77 | 73.15 172 | 84.76 192 | 87.70 228 | 78.87 133 | 94.18 89 | 80.67 97 | 96.29 110 | 92.73 142 |
|
MP-MVS |  | | 91.14 27 | 90.91 42 | 91.83 21 | 96.18 11 | 86.88 14 | 92.20 25 | 93.03 80 | 82.59 57 | 88.52 127 | 94.37 68 | 86.74 52 | 95.41 48 | 86.32 34 | 98.21 30 | 93.19 126 |
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
Anonymous20231211 | | | 88.40 71 | 89.62 57 | 84.73 138 | 90.46 153 | 65.27 201 | 88.86 78 | 93.02 81 | 87.15 24 | 93.05 40 | 97.10 6 | 82.28 95 | 92.02 165 | 76.70 140 | 97.99 40 | 96.88 23 |
|
MSLP-MVS++ | | | 85.00 120 | 86.03 105 | 81.90 196 | 91.84 115 | 71.56 156 | 86.75 112 | 93.02 81 | 75.95 133 | 87.12 146 | 89.39 201 | 77.98 139 | 89.40 235 | 77.46 133 | 94.78 162 | 84.75 281 |
|
DP-MVS | | | 88.60 70 | 89.01 65 | 87.36 91 | 91.30 130 | 77.50 96 | 87.55 96 | 92.97 83 | 87.95 21 | 89.62 106 | 92.87 116 | 84.56 69 | 93.89 102 | 77.65 130 | 96.62 98 | 90.70 202 |
|
ANet_high | | | 83.17 161 | 85.68 112 | 75.65 281 | 81.24 288 | 45.26 348 | 79.94 236 | 92.91 84 | 83.83 40 | 91.33 72 | 96.88 10 | 80.25 123 | 85.92 278 | 68.89 215 | 95.89 124 | 95.76 42 |
|
UniMVSNet (Re) | | | 86.87 86 | 86.98 91 | 86.55 100 | 93.11 77 | 68.48 179 | 83.80 161 | 92.87 85 | 80.37 80 | 89.61 108 | 91.81 148 | 77.72 142 | 94.18 89 | 75.00 158 | 98.53 16 | 96.99 22 |
|
test_prior3 | | | 86.31 96 | 86.31 99 | 86.32 104 | 90.59 150 | 71.99 148 | 83.37 173 | 92.85 86 | 75.43 140 | 84.58 195 | 91.57 152 | 81.92 105 | 94.17 91 | 79.54 108 | 96.97 86 | 92.80 139 |
|
test_prior | | | | | 86.32 104 | 90.59 150 | 71.99 148 | | 92.85 86 | | | | | 94.17 91 | | | 92.80 139 |
|
DTE-MVSNet | | | 89.98 46 | 91.91 15 | 84.21 150 | 96.51 8 | 57.84 279 | 88.93 77 | 92.84 88 | 91.92 2 | 96.16 2 | 96.23 18 | 86.95 49 | 95.99 8 | 79.05 113 | 98.57 15 | 98.80 6 |
|
UA-Net | | | 91.49 17 | 91.53 22 | 91.39 26 | 94.98 35 | 82.95 54 | 93.52 5 | 92.79 89 | 88.22 19 | 88.53 126 | 97.64 2 | 83.45 80 | 94.55 80 | 86.02 43 | 98.60 13 | 96.67 26 |
|
OPM-MVS | | | 89.80 50 | 89.97 51 | 89.27 62 | 94.76 39 | 79.86 72 | 86.76 111 | 92.78 90 | 78.78 102 | 92.51 51 | 93.64 100 | 88.13 35 | 93.84 105 | 84.83 54 | 97.55 67 | 94.10 92 |
|
PS-CasMVS | | | 90.06 42 | 91.92 13 | 84.47 144 | 96.56 7 | 58.83 274 | 89.04 74 | 92.74 91 | 91.40 4 | 96.12 3 | 96.06 22 | 87.23 46 | 95.57 33 | 79.42 111 | 98.74 6 | 99.00 2 |
|
HQP3-MVS | | | | | | | | | 92.68 92 | | | | | | | 94.47 170 | |
|
HQP-MVS | | | 84.61 125 | 84.06 143 | 86.27 107 | 91.19 134 | 70.66 160 | 84.77 136 | 92.68 92 | 73.30 167 | 80.55 257 | 90.17 193 | 72.10 204 | 94.61 76 | 77.30 136 | 94.47 170 | 93.56 116 |
|
mPP-MVS | | | 91.69 13 | 91.47 24 | 92.37 6 | 96.04 12 | 88.48 10 | 92.72 16 | 92.60 94 | 83.09 51 | 91.54 67 | 94.25 73 | 87.67 42 | 95.51 42 | 87.21 24 | 98.11 34 | 93.12 128 |
|
CLD-MVS | | | 83.18 160 | 82.64 164 | 84.79 136 | 89.05 172 | 67.82 185 | 77.93 265 | 92.52 95 | 68.33 222 | 85.07 186 | 81.54 311 | 82.06 99 | 92.96 140 | 69.35 208 | 97.91 48 | 93.57 115 |
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
DELS-MVS | | | 81.44 182 | 81.25 182 | 82.03 194 | 84.27 257 | 62.87 225 | 76.47 287 | 92.49 96 | 70.97 196 | 81.64 243 | 83.83 285 | 75.03 168 | 92.70 147 | 74.29 160 | 92.22 219 | 90.51 209 |
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
Effi-MVS+ | | | 83.90 147 | 84.01 144 | 83.57 166 | 87.22 209 | 65.61 200 | 86.55 116 | 92.40 97 | 78.64 105 | 81.34 247 | 84.18 283 | 83.65 78 | 92.93 142 | 74.22 161 | 87.87 279 | 92.17 168 |
|
DP-MVS Recon | | | 84.05 142 | 83.22 153 | 86.52 101 | 91.73 118 | 75.27 119 | 83.23 179 | 92.40 97 | 72.04 187 | 82.04 234 | 88.33 218 | 77.91 141 | 93.95 100 | 66.17 234 | 95.12 151 | 90.34 212 |
|
DeepPCF-MVS | | 81.24 5 | 87.28 83 | 86.21 102 | 90.49 43 | 91.48 127 | 84.90 37 | 83.41 172 | 92.38 99 | 70.25 205 | 89.35 114 | 90.68 180 | 82.85 86 | 94.57 78 | 79.55 107 | 95.95 122 | 92.00 172 |
|
CPTT-MVS | | | 89.39 58 | 88.98 67 | 90.63 41 | 95.09 33 | 86.95 13 | 92.09 27 | 92.30 100 | 79.74 88 | 87.50 142 | 92.38 130 | 81.42 111 | 93.28 129 | 83.07 70 | 97.24 80 | 91.67 183 |
|
DU-MVS | | | 86.80 89 | 86.99 90 | 86.21 111 | 93.24 74 | 67.02 188 | 83.16 181 | 92.21 101 | 81.73 67 | 90.92 78 | 91.97 141 | 77.20 148 | 93.99 97 | 74.16 162 | 98.35 22 | 97.61 10 |
|
v10 | | | 86.54 92 | 87.10 87 | 84.84 135 | 88.16 191 | 63.28 219 | 86.64 114 | 92.20 102 | 75.42 142 | 92.81 47 | 94.50 57 | 74.05 181 | 94.06 96 | 83.88 62 | 96.28 111 | 97.17 18 |
|
MCST-MVS | | | 84.36 131 | 83.93 146 | 85.63 123 | 91.59 120 | 71.58 155 | 83.52 167 | 92.13 103 | 61.82 273 | 83.96 208 | 89.75 199 | 79.93 128 | 93.46 123 | 78.33 121 | 94.34 173 | 91.87 177 |
|
Vis-MVSNet |  | | 86.86 87 | 86.58 96 | 87.72 86 | 92.09 105 | 77.43 99 | 87.35 99 | 92.09 104 | 78.87 101 | 84.27 206 | 94.05 80 | 78.35 137 | 93.65 110 | 80.54 99 | 91.58 230 | 92.08 169 |
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
CP-MVSNet | | | 89.27 60 | 90.91 42 | 84.37 145 | 96.34 9 | 58.61 276 | 88.66 84 | 92.06 105 | 90.78 5 | 95.67 6 | 95.17 39 | 81.80 107 | 95.54 38 | 79.00 114 | 98.69 10 | 98.95 4 |
|
CDPH-MVS | | | 86.17 101 | 85.54 114 | 88.05 84 | 92.25 100 | 75.45 118 | 83.85 158 | 92.01 106 | 65.91 245 | 86.19 168 | 91.75 150 | 83.77 77 | 94.98 64 | 77.43 135 | 96.71 96 | 93.73 107 |
|
DeepC-MVS_fast | | 80.27 8 | 86.23 98 | 85.65 113 | 87.96 85 | 91.30 130 | 76.92 106 | 87.19 101 | 91.99 107 | 70.56 200 | 84.96 187 | 90.69 179 | 80.01 125 | 95.14 58 | 78.37 119 | 95.78 130 | 91.82 179 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
PS-MVSNAJss | | | 88.31 72 | 87.90 77 | 89.56 59 | 93.31 72 | 77.96 90 | 87.94 92 | 91.97 108 | 70.73 199 | 94.19 21 | 96.67 11 | 76.94 154 | 94.57 78 | 83.07 70 | 96.28 111 | 96.15 32 |
|
MVS_Test | | | 82.47 168 | 83.22 153 | 80.22 225 | 82.62 278 | 57.75 281 | 82.54 195 | 91.96 109 | 71.16 195 | 82.89 223 | 92.52 129 | 77.41 146 | 90.50 210 | 80.04 102 | 87.84 280 | 92.40 156 |
|
F-COLMAP | | | 84.97 121 | 83.42 150 | 89.63 56 | 92.39 94 | 83.40 48 | 88.83 79 | 91.92 110 | 73.19 171 | 80.18 263 | 89.15 207 | 77.04 152 | 93.28 129 | 65.82 239 | 92.28 216 | 92.21 166 |
|
ZD-MVS | | | | | | 92.22 102 | 80.48 67 | | 91.85 111 | 71.22 194 | 90.38 86 | 92.98 110 | 86.06 62 | 96.11 6 | 81.99 81 | 96.75 95 | |
|
CSCG | | | 86.26 97 | 86.47 97 | 85.60 124 | 90.87 143 | 74.26 124 | 87.98 90 | 91.85 111 | 80.35 81 | 89.54 112 | 88.01 222 | 79.09 131 | 92.13 159 | 75.51 151 | 95.06 153 | 90.41 211 |
|
PCF-MVS | | 74.62 15 | 82.15 173 | 80.92 189 | 85.84 119 | 89.43 166 | 72.30 144 | 80.53 229 | 91.82 113 | 57.36 302 | 87.81 139 | 89.92 197 | 77.67 143 | 93.63 112 | 58.69 281 | 95.08 152 | 91.58 187 |
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
zzz-MVS | | | 91.27 22 | 91.26 33 | 91.29 29 | 96.59 4 | 86.29 17 | 88.94 76 | 91.81 114 | 84.07 37 | 92.00 60 | 94.40 65 | 86.63 53 | 95.28 53 | 88.59 5 | 98.31 24 | 92.30 159 |
|
MTGPA |  | | | | | | | | 91.81 114 | | | | | | | | |
|
MTAPA | | | 91.52 16 | 91.60 20 | 91.29 29 | 96.59 4 | 86.29 17 | 92.02 28 | 91.81 114 | 84.07 37 | 92.00 60 | 94.40 65 | 86.63 53 | 95.28 53 | 88.59 5 | 98.31 24 | 92.30 159 |
|
PVSNet_Blended_VisFu | | | 81.55 181 | 80.49 193 | 84.70 140 | 91.58 123 | 73.24 130 | 84.21 148 | 91.67 117 | 62.86 266 | 80.94 250 | 87.16 238 | 67.27 229 | 92.87 145 | 69.82 205 | 88.94 266 | 87.99 246 |
|
UniMVSNet_NR-MVSNet | | | 86.84 88 | 87.06 88 | 86.17 113 | 92.86 84 | 67.02 188 | 82.55 194 | 91.56 118 | 83.08 52 | 90.92 78 | 91.82 147 | 78.25 138 | 93.99 97 | 74.16 162 | 98.35 22 | 97.49 13 |
|
v1240 | | | 84.30 134 | 84.51 135 | 83.65 163 | 87.65 201 | 61.26 243 | 82.85 188 | 91.54 119 | 67.94 228 | 90.68 83 | 90.65 182 | 71.71 210 | 93.64 111 | 82.84 74 | 94.78 162 | 96.07 35 |
|
原ACMM1 | | | | | 84.60 141 | 92.81 87 | 74.01 125 | | 91.50 120 | 62.59 267 | 82.73 225 | 90.67 181 | 76.53 161 | 94.25 84 | 69.24 209 | 95.69 133 | 85.55 272 |
|
test11 | | | | | | | | | 91.46 121 | | | | | | | | |
|
CANet | | | 83.79 148 | 82.85 160 | 86.63 98 | 86.17 234 | 72.21 147 | 83.76 162 | 91.43 122 | 77.24 118 | 74.39 306 | 87.45 233 | 75.36 166 | 95.42 47 | 77.03 139 | 92.83 206 | 92.25 165 |
|
v1192 | | | 84.57 126 | 84.69 130 | 84.21 150 | 87.75 198 | 62.88 224 | 83.02 184 | 91.43 122 | 69.08 215 | 89.98 95 | 90.89 173 | 72.70 200 | 93.62 115 | 82.41 76 | 94.97 157 | 96.13 33 |
|
alignmvs | | | 83.94 146 | 83.98 145 | 83.80 158 | 87.80 197 | 67.88 184 | 84.54 144 | 91.42 124 | 73.27 170 | 88.41 130 | 87.96 223 | 72.33 203 | 90.83 200 | 76.02 148 | 94.11 178 | 92.69 146 |
|
v8 | | | 86.22 99 | 86.83 94 | 84.36 146 | 87.82 196 | 62.35 234 | 86.42 117 | 91.33 125 | 76.78 122 | 92.73 48 | 94.48 59 | 73.41 190 | 93.72 109 | 83.10 69 | 95.41 138 | 97.01 21 |
|
TranMVSNet+NR-MVSNet | | | 87.86 77 | 88.76 72 | 85.18 130 | 94.02 56 | 64.13 211 | 84.38 147 | 91.29 126 | 84.88 34 | 92.06 59 | 93.84 93 | 86.45 57 | 93.73 108 | 73.22 174 | 98.66 11 | 97.69 9 |
|
HPM-MVS++ |  | | 88.93 67 | 88.45 74 | 90.38 45 | 94.92 36 | 85.85 28 | 89.70 58 | 91.27 127 | 78.20 109 | 86.69 159 | 92.28 136 | 80.36 122 | 95.06 62 | 86.17 39 | 96.49 104 | 90.22 213 |
|
CNVR-MVS | | | 87.81 80 | 87.68 80 | 88.21 81 | 92.87 82 | 77.30 102 | 85.25 132 | 91.23 128 | 77.31 117 | 87.07 150 | 91.47 156 | 82.94 85 | 94.71 71 | 84.67 55 | 96.27 113 | 92.62 149 |
|
v1921920 | | | 84.23 138 | 84.37 139 | 83.79 159 | 87.64 202 | 61.71 238 | 82.91 187 | 91.20 129 | 67.94 228 | 90.06 91 | 90.34 187 | 72.04 207 | 93.59 116 | 82.32 78 | 94.91 158 | 96.07 35 |
|
TSAR-MVS + MP. | | | 88.14 74 | 87.82 78 | 89.09 65 | 95.72 21 | 76.74 109 | 92.49 23 | 91.19 130 | 67.85 230 | 86.63 160 | 94.84 47 | 79.58 129 | 95.96 11 | 87.62 14 | 94.50 169 | 94.56 72 |
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
RPSCF | | | 88.00 75 | 86.93 92 | 91.22 31 | 90.08 159 | 89.30 5 | 89.68 60 | 91.11 131 | 79.26 95 | 89.68 103 | 94.81 51 | 82.44 90 | 87.74 253 | 76.54 142 | 88.74 269 | 96.61 28 |
|
NCCC | | | 87.36 82 | 86.87 93 | 88.83 67 | 92.32 98 | 78.84 83 | 86.58 115 | 91.09 132 | 78.77 103 | 84.85 191 | 90.89 173 | 80.85 116 | 95.29 51 | 81.14 89 | 95.32 142 | 92.34 157 |
|
v144192 | | | 84.24 137 | 84.41 137 | 83.71 162 | 87.59 203 | 61.57 239 | 82.95 186 | 91.03 133 | 67.82 231 | 89.80 100 | 90.49 185 | 73.28 193 | 93.51 121 | 81.88 84 | 94.89 160 | 96.04 37 |
|
DVP-MVS | | | 90.06 42 | 91.32 30 | 86.29 106 | 94.16 51 | 72.56 138 | 90.54 43 | 91.01 134 | 83.61 44 | 93.75 30 | 94.65 53 | 89.76 19 | 95.78 24 | 86.42 31 | 97.97 43 | 90.55 208 |
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025 |
v1144 | | | 84.54 129 | 84.72 128 | 84.00 154 | 87.67 200 | 62.55 230 | 82.97 185 | 90.93 135 | 70.32 204 | 89.80 100 | 90.99 168 | 73.50 187 | 93.48 122 | 81.69 85 | 94.65 167 | 95.97 38 |
|
DPM-MVS | | | 80.10 208 | 79.18 210 | 82.88 181 | 90.71 148 | 69.74 165 | 78.87 254 | 90.84 136 | 60.29 287 | 75.64 298 | 85.92 255 | 67.28 228 | 93.11 137 | 71.24 191 | 91.79 225 | 85.77 271 |
|
IU-MVS | | | | | | 94.18 48 | 72.64 135 | | 90.82 137 | 56.98 304 | 89.67 104 | | | | 85.78 44 | 97.92 46 | 93.28 121 |
|
PAPM_NR | | | 83.23 159 | 83.19 155 | 83.33 169 | 90.90 142 | 65.98 197 | 88.19 88 | 90.78 138 | 78.13 111 | 80.87 252 | 87.92 226 | 73.49 189 | 92.42 152 | 70.07 203 | 88.40 270 | 91.60 186 |
|
Anonymous20240529 | | | 86.20 100 | 87.13 86 | 83.42 168 | 90.19 157 | 64.55 208 | 84.55 142 | 90.71 139 | 85.85 29 | 89.94 96 | 95.24 38 | 82.13 97 | 90.40 212 | 69.19 212 | 96.40 107 | 95.31 54 |
|
test12 | | | | | 86.57 99 | 90.74 146 | 72.63 136 | | 90.69 140 | | 82.76 224 | | 79.20 130 | 94.80 69 | | 95.32 142 | 92.27 163 |
|
PLC |  | 73.85 16 | 82.09 174 | 80.31 195 | 87.45 90 | 90.86 144 | 80.29 69 | 85.88 124 | 90.65 141 | 68.17 224 | 76.32 289 | 86.33 248 | 73.12 195 | 92.61 150 | 61.40 268 | 90.02 255 | 89.44 224 |
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
mvs_tets | | | 89.78 51 | 89.27 62 | 91.30 28 | 93.51 66 | 84.79 39 | 89.89 56 | 90.63 142 | 70.00 208 | 94.55 14 | 96.67 11 | 87.94 38 | 93.59 116 | 84.27 59 | 95.97 121 | 95.52 48 |
|
114514_t | | | 83.10 162 | 82.54 167 | 84.77 137 | 92.90 81 | 69.10 177 | 86.65 113 | 90.62 143 | 54.66 313 | 81.46 244 | 90.81 176 | 76.98 153 | 94.38 81 | 72.62 183 | 96.18 115 | 90.82 200 |
|
PAPR | | | 78.84 216 | 78.10 221 | 81.07 210 | 85.17 244 | 60.22 256 | 82.21 206 | 90.57 144 | 62.51 268 | 75.32 301 | 84.61 279 | 74.99 169 | 92.30 156 | 59.48 279 | 88.04 277 | 90.68 203 |
|
NR-MVSNet | | | 86.00 102 | 86.22 101 | 85.34 128 | 93.24 74 | 64.56 207 | 82.21 206 | 90.46 145 | 80.99 75 | 88.42 129 | 91.97 141 | 77.56 144 | 93.85 103 | 72.46 185 | 98.65 12 | 97.61 10 |
|
PVSNet_BlendedMVS | | | 78.80 217 | 77.84 223 | 81.65 203 | 84.43 251 | 63.41 216 | 79.49 244 | 90.44 146 | 61.70 276 | 75.43 299 | 87.07 241 | 69.11 220 | 91.44 179 | 60.68 273 | 92.24 217 | 90.11 217 |
|
PVSNet_Blended | | | 76.49 243 | 75.40 247 | 79.76 230 | 84.43 251 | 63.41 216 | 75.14 299 | 90.44 146 | 57.36 302 | 75.43 299 | 78.30 333 | 69.11 220 | 91.44 179 | 60.68 273 | 87.70 282 | 84.42 284 |
|
Gipuma |  | | 84.44 130 | 86.33 98 | 78.78 243 | 84.20 260 | 73.57 127 | 89.55 64 | 90.44 146 | 84.24 36 | 84.38 199 | 94.89 45 | 76.35 163 | 80.40 313 | 76.14 146 | 96.80 94 | 82.36 312 |
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
QAPM | | | 82.59 166 | 82.59 166 | 82.58 187 | 86.44 222 | 66.69 192 | 89.94 55 | 90.36 149 | 67.97 227 | 84.94 189 | 92.58 126 | 72.71 199 | 92.18 158 | 70.63 199 | 87.73 281 | 88.85 238 |
|
TEST9 | | | | | | 92.34 96 | 79.70 74 | 83.94 154 | 90.32 150 | 65.41 256 | 84.49 197 | 90.97 169 | 82.03 101 | 93.63 112 | | | |
|
train_agg | | | 85.98 104 | 85.28 118 | 88.07 83 | 92.34 96 | 79.70 74 | 83.94 154 | 90.32 150 | 65.79 246 | 84.49 197 | 90.97 169 | 81.93 103 | 93.63 112 | 81.21 88 | 96.54 102 | 90.88 198 |
|
test_8 | | | | | | 92.09 105 | 78.87 82 | 83.82 159 | 90.31 152 | 65.79 246 | 84.36 200 | 90.96 171 | 81.93 103 | 93.44 124 | | | |
|
agg_prior1 | | | 85.72 107 | 85.20 119 | 87.28 92 | 91.58 123 | 77.69 93 | 83.69 164 | 90.30 153 | 66.29 242 | 84.32 201 | 91.07 166 | 82.13 97 | 93.18 132 | 81.02 90 | 96.36 108 | 90.98 194 |
|
agg_prior | | | | | | 91.58 123 | 77.69 93 | | 90.30 153 | | 84.32 201 | | | 93.18 132 | | | |
|
ITE_SJBPF | | | | | 90.11 50 | 90.72 147 | 84.97 36 | | 90.30 153 | 81.56 69 | 90.02 92 | 91.20 161 | 82.40 91 | 90.81 201 | 73.58 171 | 94.66 166 | 94.56 72 |
|
jajsoiax | | | 89.41 57 | 88.81 71 | 91.19 32 | 93.38 70 | 84.72 40 | 89.70 58 | 90.29 156 | 69.27 212 | 94.39 16 | 96.38 15 | 86.02 63 | 93.52 120 | 83.96 61 | 95.92 123 | 95.34 52 |
|
diffmvs | | | 80.40 199 | 80.48 194 | 80.17 226 | 79.02 316 | 60.04 257 | 77.54 272 | 90.28 157 | 66.65 240 | 82.40 228 | 87.33 236 | 73.50 187 | 87.35 257 | 77.98 127 | 89.62 258 | 93.13 127 |
|
V42 | | | 83.47 155 | 83.37 152 | 83.75 161 | 83.16 273 | 63.33 218 | 81.31 218 | 90.23 158 | 69.51 211 | 90.91 80 | 90.81 176 | 74.16 179 | 92.29 157 | 80.06 101 | 90.22 253 | 95.62 46 |
|
anonymousdsp | | | 89.73 52 | 88.88 69 | 92.27 9 | 89.82 164 | 86.67 15 | 90.51 45 | 90.20 159 | 69.87 209 | 95.06 10 | 96.14 21 | 84.28 72 | 93.07 139 | 87.68 13 | 96.34 109 | 97.09 19 |
|
cl_fuxian | | | 81.64 180 | 81.59 179 | 81.79 202 | 80.86 294 | 59.15 268 | 78.61 258 | 90.18 160 | 68.36 221 | 87.20 144 | 87.11 240 | 69.39 217 | 91.62 174 | 78.16 124 | 94.43 172 | 94.60 71 |
|
eth_miper_zixun_eth | | | 80.84 190 | 80.22 199 | 82.71 184 | 81.41 286 | 60.98 249 | 77.81 267 | 90.14 161 | 67.31 235 | 86.95 154 | 87.24 237 | 64.26 241 | 92.31 155 | 75.23 155 | 91.61 228 | 94.85 65 |
|
MVSFormer | | | 82.23 171 | 81.57 180 | 84.19 152 | 85.54 241 | 69.26 172 | 91.98 29 | 90.08 162 | 71.54 190 | 76.23 290 | 85.07 272 | 58.69 275 | 94.27 82 | 86.26 35 | 88.77 267 | 89.03 235 |
|
test_djsdf | | | 89.62 53 | 89.01 65 | 91.45 25 | 92.36 95 | 82.98 53 | 91.98 29 | 90.08 162 | 71.54 190 | 94.28 20 | 96.54 13 | 81.57 109 | 94.27 82 | 86.26 35 | 96.49 104 | 97.09 19 |
|
AdaColmap |  | | 83.66 150 | 83.69 149 | 83.57 166 | 90.05 161 | 72.26 145 | 86.29 121 | 90.00 164 | 78.19 110 | 81.65 242 | 87.16 238 | 83.40 81 | 94.24 85 | 61.69 264 | 94.76 165 | 84.21 286 |
|
3Dnovator | | 80.37 7 | 84.80 122 | 84.71 129 | 85.06 133 | 86.36 227 | 74.71 121 | 88.77 81 | 90.00 164 | 75.65 138 | 84.96 187 | 93.17 106 | 74.06 180 | 91.19 187 | 78.28 122 | 91.09 234 | 89.29 229 |
|
IterMVS-LS | | | 84.73 123 | 84.98 122 | 83.96 156 | 87.35 206 | 63.66 214 | 83.25 177 | 89.88 166 | 76.06 128 | 89.62 106 | 92.37 133 | 73.40 192 | 92.52 151 | 78.16 124 | 94.77 164 | 95.69 43 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
save fliter | | | | | | 93.75 61 | 77.44 97 | 86.31 119 | 89.72 167 | 70.80 197 | | | | | | | |
|
v2v482 | | | 84.09 140 | 84.24 141 | 83.62 164 | 87.13 211 | 61.40 240 | 82.71 191 | 89.71 168 | 72.19 185 | 89.55 110 | 91.41 157 | 70.70 215 | 93.20 131 | 81.02 90 | 93.76 184 | 96.25 31 |
|
miper_ehance_all_eth | | | 80.34 201 | 80.04 204 | 81.24 208 | 79.82 306 | 58.95 270 | 77.66 269 | 89.66 169 | 65.75 249 | 85.99 176 | 85.11 268 | 68.29 224 | 91.42 181 | 76.03 147 | 92.03 221 | 93.33 119 |
|
Fast-Effi-MVS+ | | | 81.04 187 | 80.57 190 | 82.46 191 | 87.50 204 | 63.22 220 | 78.37 261 | 89.63 170 | 68.01 225 | 81.87 236 | 82.08 306 | 82.31 92 | 92.65 149 | 67.10 227 | 88.30 275 | 91.51 189 |
|
Fast-Effi-MVS+-dtu | | | 82.54 167 | 81.41 181 | 85.90 117 | 85.60 239 | 76.53 112 | 83.07 182 | 89.62 171 | 73.02 174 | 79.11 271 | 83.51 288 | 80.74 118 | 90.24 216 | 68.76 216 | 89.29 260 | 90.94 196 |
|
PMVS |  | 80.48 6 | 90.08 41 | 90.66 46 | 88.34 79 | 96.71 3 | 92.97 1 | 90.31 48 | 89.57 172 | 88.51 18 | 90.11 90 | 95.12 41 | 90.98 7 | 88.92 239 | 77.55 132 | 97.07 84 | 83.13 304 |
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
OpenMVS |  | 76.72 13 | 81.98 177 | 82.00 174 | 81.93 195 | 84.42 253 | 68.22 181 | 88.50 86 | 89.48 173 | 66.92 237 | 81.80 240 | 91.86 143 | 72.59 201 | 90.16 219 | 71.19 192 | 91.25 233 | 87.40 254 |
|
test_0402 | | | 88.65 69 | 89.58 58 | 85.88 118 | 92.55 90 | 72.22 146 | 84.01 152 | 89.44 174 | 88.63 17 | 94.38 17 | 95.77 24 | 86.38 59 | 93.59 116 | 79.84 104 | 95.21 146 | 91.82 179 |
|
DIV-MVS_2432*1600 | | | 81.93 178 | 83.14 156 | 78.30 253 | 84.75 248 | 52.75 313 | 80.37 231 | 89.42 175 | 70.24 206 | 90.26 89 | 93.39 103 | 74.55 178 | 86.77 266 | 68.61 219 | 96.64 97 | 95.38 51 |
|
Regformer-2 | | | 86.74 90 | 86.08 104 | 88.73 69 | 84.18 261 | 79.20 79 | 83.52 167 | 89.33 176 | 83.33 48 | 89.92 97 | 85.07 272 | 83.23 83 | 93.16 134 | 83.39 66 | 92.72 210 | 93.83 101 |
|
MSDG | | | 80.06 209 | 79.99 205 | 80.25 224 | 83.91 266 | 68.04 183 | 77.51 273 | 89.19 177 | 77.65 113 | 81.94 235 | 83.45 290 | 76.37 162 | 86.31 273 | 63.31 253 | 86.59 289 | 86.41 263 |
|
ambc | | | | | 82.98 176 | 90.55 152 | 64.86 204 | 88.20 87 | 89.15 178 | | 89.40 113 | 93.96 87 | 71.67 211 | 91.38 184 | 78.83 115 | 96.55 101 | 92.71 145 |
|
pmmvs6 | | | 86.52 93 | 88.06 76 | 81.90 196 | 92.22 102 | 62.28 235 | 84.66 140 | 89.15 178 | 83.54 46 | 89.85 98 | 97.32 4 | 88.08 37 | 86.80 265 | 70.43 201 | 97.30 79 | 96.62 27 |
|
RRT_test8_iter05 | | | 78.08 224 | 77.52 225 | 79.75 231 | 80.84 295 | 52.54 317 | 80.61 228 | 88.96 180 | 67.77 232 | 84.62 194 | 89.29 203 | 33.89 356 | 92.10 162 | 77.59 131 | 94.15 177 | 94.62 69 |
|
miper_enhance_ethall | | | 77.83 226 | 76.93 233 | 80.51 220 | 76.15 333 | 58.01 278 | 75.47 297 | 88.82 181 | 58.05 296 | 83.59 213 | 80.69 315 | 64.41 240 | 91.20 186 | 73.16 180 | 92.03 221 | 92.33 158 |
|
CNLPA | | | 83.55 153 | 83.10 157 | 84.90 134 | 89.34 168 | 83.87 46 | 84.54 144 | 88.77 182 | 79.09 97 | 83.54 215 | 88.66 215 | 74.87 170 | 81.73 307 | 66.84 230 | 92.29 215 | 89.11 231 |
|
LF4IMVS | | | 82.75 164 | 81.93 175 | 85.19 129 | 82.08 279 | 80.15 70 | 85.53 129 | 88.76 183 | 68.01 225 | 85.58 181 | 87.75 227 | 71.80 209 | 86.85 264 | 74.02 164 | 93.87 183 | 88.58 240 |
|
VPA-MVSNet | | | 83.47 155 | 84.73 126 | 79.69 233 | 90.29 155 | 57.52 282 | 81.30 220 | 88.69 184 | 76.29 124 | 87.58 141 | 94.44 60 | 80.60 119 | 87.20 258 | 66.60 232 | 96.82 93 | 94.34 83 |
|
IS-MVSNet | | | 86.66 91 | 86.82 95 | 86.17 113 | 92.05 107 | 66.87 190 | 91.21 37 | 88.64 185 | 86.30 28 | 89.60 109 | 92.59 124 | 69.22 219 | 94.91 66 | 73.89 166 | 97.89 49 | 96.72 24 |
|
BH-untuned | | | 80.96 188 | 80.99 187 | 80.84 215 | 88.55 182 | 68.23 180 | 80.33 232 | 88.46 186 | 72.79 177 | 86.55 161 | 86.76 243 | 74.72 175 | 91.77 173 | 61.79 263 | 88.99 264 | 82.52 310 |
|
Effi-MVS+-dtu | | | 85.82 106 | 83.38 151 | 93.14 3 | 87.13 211 | 91.15 2 | 87.70 95 | 88.42 187 | 74.57 150 | 83.56 214 | 85.65 257 | 78.49 135 | 94.21 87 | 72.04 187 | 92.88 205 | 94.05 93 |
|
mvs-test1 | | | 84.55 127 | 82.12 171 | 91.84 20 | 87.13 211 | 89.54 4 | 85.05 135 | 88.42 187 | 74.57 150 | 80.60 254 | 82.98 294 | 78.49 135 | 93.98 99 | 72.04 187 | 89.77 256 | 92.00 172 |
|
UniMVSNet_ETH3D | | | 89.12 63 | 90.72 45 | 84.31 148 | 97.00 2 | 64.33 210 | 89.67 61 | 88.38 189 | 88.84 14 | 94.29 18 | 97.57 3 | 90.48 14 | 91.26 185 | 72.57 184 | 97.65 60 | 97.34 14 |
|
TinyColmap | | | 81.25 184 | 82.34 170 | 77.99 259 | 85.33 243 | 60.68 253 | 82.32 201 | 88.33 190 | 71.26 193 | 86.97 153 | 92.22 139 | 77.10 151 | 86.98 262 | 62.37 257 | 95.17 148 | 86.31 265 |
|
CANet_DTU | | | 77.81 228 | 77.05 231 | 80.09 227 | 81.37 287 | 59.90 259 | 83.26 176 | 88.29 191 | 69.16 214 | 67.83 332 | 83.72 286 | 60.93 257 | 89.47 231 | 69.22 211 | 89.70 257 | 90.88 198 |
|
GBi-Net | | | 82.02 175 | 82.07 172 | 81.85 198 | 86.38 224 | 61.05 246 | 86.83 108 | 88.27 192 | 72.43 180 | 86.00 173 | 95.64 29 | 63.78 245 | 90.68 205 | 65.95 235 | 93.34 191 | 93.82 103 |
|
test1 | | | 82.02 175 | 82.07 172 | 81.85 198 | 86.38 224 | 61.05 246 | 86.83 108 | 88.27 192 | 72.43 180 | 86.00 173 | 95.64 29 | 63.78 245 | 90.68 205 | 65.95 235 | 93.34 191 | 93.82 103 |
|
FMVSNet1 | | | 84.55 127 | 85.45 116 | 81.85 198 | 90.27 156 | 61.05 246 | 86.83 108 | 88.27 192 | 78.57 106 | 89.66 105 | 95.64 29 | 75.43 165 | 90.68 205 | 69.09 213 | 95.33 141 | 93.82 103 |
|
SixPastTwentyTwo | | | 87.20 84 | 87.45 83 | 86.45 102 | 92.52 91 | 69.19 175 | 87.84 94 | 88.05 195 | 81.66 68 | 94.64 13 | 96.53 14 | 65.94 236 | 94.75 70 | 83.02 72 | 96.83 92 | 95.41 50 |
|
USDC | | | 76.63 240 | 76.73 236 | 76.34 277 | 83.46 269 | 57.20 285 | 80.02 235 | 88.04 196 | 52.14 328 | 83.65 212 | 91.25 158 | 63.24 248 | 86.65 269 | 54.66 306 | 94.11 178 | 85.17 276 |
|
Regformer-4 | | | 86.41 94 | 85.71 111 | 88.52 73 | 84.27 257 | 77.57 95 | 84.07 150 | 88.00 197 | 82.82 55 | 89.84 99 | 85.48 260 | 82.06 99 | 92.77 146 | 83.83 64 | 91.04 236 | 95.22 60 |
|
EPP-MVSNet | | | 85.47 110 | 85.04 121 | 86.77 97 | 91.52 126 | 69.37 169 | 91.63 34 | 87.98 198 | 81.51 70 | 87.05 151 | 91.83 146 | 66.18 235 | 95.29 51 | 70.75 196 | 96.89 88 | 95.64 45 |
|
Regformer-1 | | | 86.00 102 | 85.50 115 | 87.49 89 | 84.18 261 | 76.90 107 | 83.52 167 | 87.94 199 | 82.18 62 | 89.19 115 | 85.07 272 | 82.28 95 | 91.89 169 | 82.40 77 | 92.72 210 | 93.69 109 |
|
MAR-MVS | | | 80.24 204 | 78.74 214 | 84.73 138 | 86.87 221 | 78.18 88 | 85.75 125 | 87.81 200 | 65.67 251 | 77.84 279 | 78.50 332 | 73.79 184 | 90.53 209 | 61.59 267 | 90.87 244 | 85.49 274 |
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
API-MVS | | | 82.28 170 | 82.61 165 | 81.30 205 | 86.29 230 | 69.79 164 | 88.71 82 | 87.67 201 | 78.42 108 | 82.15 233 | 84.15 284 | 77.98 139 | 91.59 175 | 65.39 241 | 92.75 207 | 82.51 311 |
|
pm-mvs1 | | | 83.69 149 | 84.95 123 | 79.91 228 | 90.04 162 | 59.66 261 | 82.43 198 | 87.44 202 | 75.52 139 | 87.85 138 | 95.26 37 | 81.25 113 | 85.65 282 | 68.74 217 | 96.04 120 | 94.42 80 |
|
cascas | | | 76.29 246 | 74.81 251 | 80.72 218 | 84.47 250 | 62.94 223 | 73.89 308 | 87.34 203 | 55.94 307 | 75.16 303 | 76.53 342 | 63.97 243 | 91.16 188 | 65.00 242 | 90.97 241 | 88.06 244 |
|
HyFIR lowres test | | | 75.12 254 | 72.66 272 | 82.50 190 | 91.44 129 | 65.19 202 | 72.47 315 | 87.31 204 | 46.79 344 | 80.29 260 | 84.30 282 | 52.70 302 | 92.10 162 | 51.88 322 | 86.73 288 | 90.22 213 |
|
TransMVSNet (Re) | | | 84.02 143 | 85.74 110 | 78.85 242 | 91.00 140 | 55.20 300 | 82.29 202 | 87.26 205 | 79.65 90 | 88.38 131 | 95.52 32 | 83.00 84 | 86.88 263 | 67.97 224 | 96.60 100 | 94.45 79 |
|
xiu_mvs_v1_base_debu | | | 80.84 190 | 80.14 201 | 82.93 178 | 88.31 186 | 71.73 151 | 79.53 241 | 87.17 206 | 65.43 252 | 79.59 265 | 82.73 301 | 76.94 154 | 90.14 222 | 73.22 174 | 88.33 271 | 86.90 260 |
|
xiu_mvs_v1_base | | | 80.84 190 | 80.14 201 | 82.93 178 | 88.31 186 | 71.73 151 | 79.53 241 | 87.17 206 | 65.43 252 | 79.59 265 | 82.73 301 | 76.94 154 | 90.14 222 | 73.22 174 | 88.33 271 | 86.90 260 |
|
xiu_mvs_v1_base_debi | | | 80.84 190 | 80.14 201 | 82.93 178 | 88.31 186 | 71.73 151 | 79.53 241 | 87.17 206 | 65.43 252 | 79.59 265 | 82.73 301 | 76.94 154 | 90.14 222 | 73.22 174 | 88.33 271 | 86.90 260 |
|
cl-mvsnet2 | | | 78.97 214 | 78.21 220 | 81.24 208 | 77.74 320 | 59.01 269 | 77.46 275 | 87.13 209 | 65.79 246 | 84.32 201 | 85.10 269 | 58.96 274 | 90.88 199 | 75.36 154 | 92.03 221 | 93.84 100 |
|
PS-MVSNAJ | | | 77.04 235 | 76.53 237 | 78.56 247 | 87.09 216 | 61.40 240 | 75.26 298 | 87.13 209 | 61.25 278 | 74.38 307 | 77.22 339 | 76.94 154 | 90.94 194 | 64.63 246 | 84.83 308 | 83.35 299 |
|
MVS_111021_HR | | | 84.63 124 | 84.34 140 | 85.49 127 | 90.18 158 | 75.86 117 | 79.23 250 | 87.13 209 | 73.35 164 | 85.56 182 | 89.34 202 | 83.60 79 | 90.50 210 | 76.64 141 | 94.05 180 | 90.09 218 |
|
xiu_mvs_v2_base | | | 77.19 233 | 76.75 235 | 78.52 248 | 87.01 217 | 61.30 242 | 75.55 296 | 87.12 212 | 61.24 279 | 74.45 305 | 78.79 329 | 77.20 148 | 90.93 195 | 64.62 247 | 84.80 309 | 83.32 300 |
|
1112_ss | | | 74.82 259 | 73.74 260 | 78.04 258 | 89.57 165 | 60.04 257 | 76.49 286 | 87.09 213 | 54.31 314 | 73.66 310 | 79.80 325 | 60.25 263 | 86.76 268 | 58.37 282 | 84.15 312 | 87.32 255 |
|
cl-mvsnet_ | | | 80.42 198 | 80.23 197 | 81.02 212 | 79.99 304 | 59.25 265 | 77.07 278 | 87.02 214 | 67.37 234 | 86.18 170 | 89.21 205 | 63.08 250 | 90.16 219 | 76.31 144 | 95.80 128 | 93.65 111 |
|
cl-mvsnet1 | | | 80.43 197 | 80.23 197 | 81.02 212 | 79.99 304 | 59.25 265 | 77.07 278 | 87.02 214 | 67.38 233 | 86.19 168 | 89.22 204 | 63.09 249 | 90.16 219 | 76.32 143 | 95.80 128 | 93.66 110 |
|
EG-PatchMatch MVS | | | 84.08 141 | 84.11 142 | 83.98 155 | 92.22 102 | 72.61 137 | 82.20 208 | 87.02 214 | 72.63 179 | 88.86 119 | 91.02 167 | 78.52 134 | 91.11 190 | 73.41 173 | 91.09 234 | 88.21 242 |
|
Baseline_NR-MVSNet | | | 84.00 144 | 85.90 107 | 78.29 254 | 91.47 128 | 53.44 309 | 82.29 202 | 87.00 217 | 79.06 98 | 89.55 110 | 95.72 27 | 77.20 148 | 86.14 276 | 72.30 186 | 98.51 17 | 95.28 55 |
|
RRT_MVS | | | 83.25 158 | 81.08 186 | 89.74 53 | 80.55 301 | 79.32 78 | 86.41 118 | 86.69 218 | 72.33 184 | 87.00 152 | 91.08 164 | 44.98 335 | 95.55 37 | 84.47 58 | 96.24 114 | 94.36 82 |
|
PAPM | | | 71.77 281 | 70.06 292 | 76.92 269 | 86.39 223 | 53.97 304 | 76.62 284 | 86.62 219 | 53.44 319 | 63.97 347 | 84.73 278 | 57.79 283 | 92.34 154 | 39.65 351 | 81.33 327 | 84.45 283 |
|
FMVSNet2 | | | 81.31 183 | 81.61 178 | 80.41 222 | 86.38 224 | 58.75 275 | 83.93 156 | 86.58 220 | 72.43 180 | 87.65 140 | 92.98 110 | 63.78 245 | 90.22 217 | 66.86 228 | 93.92 182 | 92.27 163 |
|
BH-w/o | | | 76.57 241 | 76.07 242 | 78.10 257 | 86.88 220 | 65.92 198 | 77.63 270 | 86.33 221 | 65.69 250 | 80.89 251 | 79.95 324 | 68.97 222 | 90.74 203 | 53.01 315 | 85.25 301 | 77.62 336 |
|
BH-RMVSNet | | | 80.53 195 | 80.22 199 | 81.49 204 | 87.19 210 | 66.21 196 | 77.79 268 | 86.23 222 | 74.21 154 | 83.69 210 | 88.50 216 | 73.25 194 | 90.75 202 | 63.18 254 | 87.90 278 | 87.52 252 |
|
Test_1112_low_res | | | 73.90 265 | 73.08 267 | 76.35 276 | 90.35 154 | 55.95 291 | 73.40 312 | 86.17 223 | 50.70 337 | 73.14 311 | 85.94 254 | 58.31 277 | 85.90 279 | 56.51 292 | 83.22 316 | 87.20 256 |
|
ab-mvs | | | 79.67 210 | 80.56 191 | 76.99 267 | 88.48 183 | 56.93 286 | 84.70 139 | 86.06 224 | 68.95 217 | 80.78 253 | 93.08 107 | 75.30 167 | 84.62 291 | 56.78 290 | 90.90 243 | 89.43 225 |
|
v148 | | | 82.31 169 | 82.48 168 | 81.81 201 | 85.59 240 | 59.66 261 | 81.47 216 | 86.02 225 | 72.85 176 | 88.05 135 | 90.65 182 | 70.73 214 | 90.91 197 | 75.15 156 | 91.79 225 | 94.87 63 |
|
Anonymous20240521 | | | 80.18 206 | 81.25 182 | 76.95 268 | 83.15 274 | 60.84 251 | 82.46 197 | 85.99 226 | 68.76 219 | 86.78 155 | 93.73 99 | 59.13 272 | 77.44 320 | 73.71 169 | 97.55 67 | 92.56 150 |
|
MVS | | | 73.21 270 | 72.59 273 | 75.06 285 | 80.97 291 | 60.81 252 | 81.64 213 | 85.92 227 | 46.03 347 | 71.68 318 | 77.54 335 | 68.47 223 | 89.77 229 | 55.70 297 | 85.39 298 | 74.60 341 |
|
FMVSNet3 | | | 78.80 217 | 78.55 215 | 79.57 235 | 82.89 277 | 56.89 288 | 81.76 210 | 85.77 228 | 69.04 216 | 86.00 173 | 90.44 186 | 51.75 303 | 90.09 225 | 65.95 235 | 93.34 191 | 91.72 181 |
|
UGNet | | | 82.78 163 | 81.64 177 | 86.21 111 | 86.20 233 | 76.24 116 | 86.86 106 | 85.68 229 | 77.07 119 | 73.76 309 | 92.82 117 | 69.64 216 | 91.82 172 | 69.04 214 | 93.69 187 | 90.56 207 |
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
无先验 | | | | | | | | 82.81 189 | 85.62 230 | 58.09 295 | | | | 91.41 182 | 67.95 225 | | 84.48 282 |
|
cdsmvs_eth3d_5k | | | 20.81 330 | 27.75 333 | 0.00 347 | 0.00 368 | 0.00 369 | 0.00 359 | 85.44 231 | 0.00 364 | 0.00 365 | 82.82 299 | 81.46 110 | 0.00 365 | 0.00 363 | 0.00 363 | 0.00 361 |
|
1314 | | | 73.22 269 | 72.56 275 | 75.20 283 | 80.41 303 | 57.84 279 | 81.64 213 | 85.36 232 | 51.68 331 | 73.10 312 | 76.65 341 | 61.45 256 | 85.19 285 | 63.54 250 | 79.21 335 | 82.59 307 |
|
test_yl | | | 78.71 219 | 78.51 216 | 79.32 238 | 84.32 255 | 58.84 272 | 78.38 259 | 85.33 233 | 75.99 131 | 82.49 226 | 86.57 244 | 58.01 278 | 90.02 227 | 62.74 255 | 92.73 208 | 89.10 232 |
|
DCV-MVSNet | | | 78.71 219 | 78.51 216 | 79.32 238 | 84.32 255 | 58.84 272 | 78.38 259 | 85.33 233 | 75.99 131 | 82.49 226 | 86.57 244 | 58.01 278 | 90.02 227 | 62.74 255 | 92.73 208 | 89.10 232 |
|
Regformer-3 | | | 85.06 117 | 84.67 131 | 86.22 109 | 84.27 257 | 73.43 128 | 84.07 150 | 85.26 235 | 80.77 78 | 88.62 125 | 85.48 260 | 80.56 120 | 90.39 213 | 81.99 81 | 91.04 236 | 94.85 65 |
|
MVP-Stereo | | | 75.81 249 | 73.51 264 | 82.71 184 | 89.35 167 | 73.62 126 | 80.06 233 | 85.20 236 | 60.30 286 | 73.96 308 | 87.94 224 | 57.89 282 | 89.45 233 | 52.02 318 | 74.87 345 | 85.06 278 |
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application. |
EI-MVSNet-Vis-set | | | 85.12 115 | 84.53 134 | 86.88 94 | 84.01 264 | 72.76 132 | 83.91 157 | 85.18 237 | 80.44 79 | 88.75 122 | 85.49 259 | 80.08 124 | 91.92 167 | 82.02 80 | 90.85 245 | 95.97 38 |
|
EI-MVSNet-UG-set | | | 85.04 118 | 84.44 136 | 86.85 95 | 83.87 267 | 72.52 140 | 83.82 159 | 85.15 238 | 80.27 83 | 88.75 122 | 85.45 263 | 79.95 127 | 91.90 168 | 81.92 83 | 90.80 246 | 96.13 33 |
|
EI-MVSNet | | | 82.61 165 | 82.42 169 | 83.20 172 | 83.25 271 | 63.66 214 | 83.50 170 | 85.07 239 | 76.06 128 | 86.55 161 | 85.10 269 | 73.41 190 | 90.25 214 | 78.15 126 | 90.67 249 | 95.68 44 |
|
MVSTER | | | 77.09 234 | 75.70 245 | 81.25 206 | 75.27 340 | 61.08 245 | 77.49 274 | 85.07 239 | 60.78 283 | 86.55 161 | 88.68 214 | 43.14 341 | 90.25 214 | 73.69 170 | 90.67 249 | 92.42 154 |
|
miper_lstm_enhance | | | 76.45 244 | 76.10 241 | 77.51 264 | 76.72 328 | 60.97 250 | 64.69 339 | 85.04 241 | 63.98 262 | 83.20 219 | 88.22 219 | 56.67 287 | 78.79 318 | 73.22 174 | 93.12 198 | 92.78 141 |
|
WR-MVS | | | 83.56 152 | 84.40 138 | 81.06 211 | 93.43 69 | 54.88 301 | 78.67 257 | 85.02 242 | 81.24 72 | 90.74 82 | 91.56 154 | 72.85 197 | 91.08 191 | 68.00 223 | 98.04 35 | 97.23 16 |
|
MG-MVS | | | 80.32 202 | 80.94 188 | 78.47 250 | 88.18 189 | 52.62 316 | 82.29 202 | 85.01 243 | 72.01 188 | 79.24 270 | 92.54 128 | 69.36 218 | 93.36 128 | 70.65 198 | 89.19 263 | 89.45 223 |
|
hse-mvs3 | | | 84.25 136 | 82.76 161 | 88.72 70 | 91.82 117 | 82.60 56 | 84.00 153 | 84.98 244 | 71.27 192 | 86.70 158 | 90.55 184 | 63.04 251 | 93.92 101 | 78.26 123 | 94.20 176 | 89.63 220 |
|
VDD-MVS | | | 84.23 138 | 84.58 133 | 83.20 172 | 91.17 137 | 65.16 203 | 83.25 177 | 84.97 245 | 79.79 87 | 87.18 145 | 94.27 69 | 74.77 174 | 90.89 198 | 69.24 209 | 96.54 102 | 93.55 118 |
|
mvs_anonymous | | | 78.13 223 | 78.76 213 | 76.23 279 | 79.24 313 | 50.31 334 | 78.69 256 | 84.82 246 | 61.60 277 | 83.09 222 | 92.82 117 | 73.89 183 | 87.01 259 | 68.33 222 | 86.41 291 | 91.37 190 |
|
D2MVS | | | 76.84 237 | 75.67 246 | 80.34 223 | 80.48 302 | 62.16 237 | 73.50 310 | 84.80 247 | 57.61 300 | 82.24 230 | 87.54 231 | 51.31 304 | 87.65 254 | 70.40 202 | 93.19 197 | 91.23 192 |
|
MIMVSNet1 | | | 83.63 151 | 84.59 132 | 80.74 216 | 94.06 55 | 62.77 226 | 82.72 190 | 84.53 248 | 77.57 115 | 90.34 87 | 95.92 23 | 76.88 160 | 85.83 280 | 61.88 262 | 97.42 75 | 93.62 113 |
|
VNet | | | 79.31 211 | 80.27 196 | 76.44 275 | 87.92 194 | 53.95 305 | 75.58 295 | 84.35 249 | 74.39 153 | 82.23 231 | 90.72 178 | 72.84 198 | 84.39 293 | 60.38 275 | 93.98 181 | 90.97 195 |
|
AUN-MVS | | | 81.18 185 | 78.78 212 | 88.39 77 | 90.93 141 | 82.14 57 | 82.51 196 | 83.67 250 | 64.69 260 | 80.29 260 | 85.91 256 | 51.07 305 | 92.38 153 | 76.29 145 | 93.63 189 | 90.65 205 |
|
MVS_111021_LR | | | 84.28 135 | 83.76 148 | 85.83 120 | 89.23 170 | 83.07 51 | 80.99 224 | 83.56 251 | 72.71 178 | 86.07 172 | 89.07 209 | 81.75 108 | 86.19 275 | 77.11 138 | 93.36 190 | 88.24 241 |
|
CHOSEN 1792x2688 | | | 72.45 275 | 70.56 286 | 78.13 256 | 90.02 163 | 63.08 221 | 68.72 328 | 83.16 252 | 42.99 353 | 75.92 294 | 85.46 262 | 57.22 286 | 85.18 286 | 49.87 327 | 81.67 324 | 86.14 266 |
|
TR-MVS | | | 76.77 239 | 75.79 243 | 79.72 232 | 86.10 236 | 65.79 199 | 77.14 276 | 83.02 253 | 65.20 257 | 81.40 245 | 82.10 305 | 66.30 233 | 90.73 204 | 55.57 298 | 85.27 300 | 82.65 306 |
|
GA-MVS | | | 75.83 248 | 74.61 252 | 79.48 237 | 81.87 281 | 59.25 265 | 73.42 311 | 82.88 254 | 68.68 220 | 79.75 264 | 81.80 308 | 50.62 307 | 89.46 232 | 66.85 229 | 85.64 297 | 89.72 219 |
|
tfpnnormal | | | 81.79 179 | 82.95 159 | 78.31 252 | 88.93 176 | 55.40 296 | 80.83 227 | 82.85 255 | 76.81 121 | 85.90 177 | 94.14 77 | 74.58 177 | 86.51 270 | 66.82 231 | 95.68 134 | 93.01 132 |
|
OpenMVS_ROB |  | 70.19 17 | 77.77 229 | 77.46 226 | 78.71 245 | 84.39 254 | 61.15 244 | 81.18 222 | 82.52 256 | 62.45 270 | 83.34 217 | 87.37 234 | 66.20 234 | 88.66 245 | 64.69 245 | 85.02 303 | 86.32 264 |
|
Anonymous202405211 | | | 80.51 196 | 81.19 185 | 78.49 249 | 88.48 183 | 57.26 284 | 76.63 283 | 82.49 257 | 81.21 73 | 84.30 204 | 92.24 138 | 67.99 225 | 86.24 274 | 62.22 258 | 95.13 149 | 91.98 175 |
|
EU-MVSNet | | | 75.12 254 | 74.43 256 | 77.18 266 | 83.11 275 | 59.48 263 | 85.71 127 | 82.43 258 | 39.76 356 | 85.64 180 | 88.76 212 | 44.71 337 | 87.88 252 | 73.86 167 | 85.88 296 | 84.16 287 |
|
CMPMVS |  | 59.41 20 | 75.12 254 | 73.57 262 | 79.77 229 | 75.84 335 | 67.22 186 | 81.21 221 | 82.18 259 | 50.78 336 | 76.50 286 | 87.66 229 | 55.20 296 | 82.99 301 | 62.17 261 | 90.64 252 | 89.09 234 |
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
CDS-MVSNet | | | 77.32 232 | 75.40 247 | 83.06 174 | 89.00 174 | 72.48 141 | 77.90 266 | 82.17 260 | 60.81 282 | 78.94 272 | 83.49 289 | 59.30 270 | 88.76 244 | 54.64 307 | 92.37 214 | 87.93 248 |
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
HY-MVS | | 64.64 18 | 73.03 271 | 72.47 276 | 74.71 286 | 83.36 270 | 54.19 303 | 82.14 209 | 81.96 261 | 56.76 306 | 69.57 326 | 86.21 252 | 60.03 264 | 84.83 290 | 49.58 328 | 82.65 321 | 85.11 277 |
|
jason | | | 77.42 231 | 75.75 244 | 82.43 192 | 87.10 215 | 69.27 171 | 77.99 264 | 81.94 262 | 51.47 332 | 77.84 279 | 85.07 272 | 60.32 262 | 89.00 237 | 70.74 197 | 89.27 262 | 89.03 235 |
jason: jason. |
旧先验1 | | | | | | 91.97 108 | 71.77 150 | | 81.78 263 | | | 91.84 145 | 73.92 182 | | | 93.65 188 | 83.61 294 |
|
VPNet | | | 80.25 203 | 81.68 176 | 75.94 280 | 92.46 93 | 47.98 340 | 76.70 282 | 81.67 264 | 73.45 162 | 84.87 190 | 92.82 117 | 74.66 176 | 86.51 270 | 61.66 265 | 96.85 90 | 93.33 119 |
|
TSAR-MVS + GP. | | | 83.95 145 | 82.69 163 | 87.72 86 | 89.27 169 | 81.45 62 | 83.72 163 | 81.58 265 | 74.73 148 | 85.66 179 | 86.06 253 | 72.56 202 | 92.69 148 | 75.44 153 | 95.21 146 | 89.01 237 |
|
VDDNet | | | 84.35 132 | 85.39 117 | 81.25 206 | 95.13 32 | 59.32 264 | 85.42 131 | 81.11 266 | 86.41 27 | 87.41 143 | 96.21 19 | 73.61 185 | 90.61 208 | 66.33 233 | 96.85 90 | 93.81 106 |
|
IterMVS-SCA-FT | | | 80.64 194 | 79.41 208 | 84.34 147 | 83.93 265 | 69.66 167 | 76.28 289 | 81.09 267 | 72.43 180 | 86.47 167 | 90.19 191 | 60.46 260 | 93.15 136 | 77.45 134 | 86.39 292 | 90.22 213 |
|
UnsupCasMVSNet_eth | | | 71.63 283 | 72.30 277 | 69.62 308 | 76.47 330 | 52.70 315 | 70.03 325 | 80.97 268 | 59.18 290 | 79.36 268 | 88.21 220 | 60.50 259 | 69.12 339 | 58.33 284 | 77.62 340 | 87.04 258 |
|
MVS_0304 | | | 78.17 222 | 77.23 230 | 80.99 214 | 84.13 263 | 69.07 178 | 81.39 217 | 80.81 269 | 76.28 125 | 67.53 334 | 89.11 208 | 62.87 252 | 86.77 266 | 60.90 272 | 92.01 224 | 87.13 257 |
|
lupinMVS | | | 76.37 245 | 74.46 255 | 82.09 193 | 85.54 241 | 69.26 172 | 76.79 280 | 80.77 270 | 50.68 338 | 76.23 290 | 82.82 299 | 58.69 275 | 88.94 238 | 69.85 204 | 88.77 267 | 88.07 243 |
|
CL-MVSNet_2432*1600 | | | 76.81 238 | 77.38 228 | 75.12 284 | 86.90 219 | 51.34 325 | 73.20 313 | 80.63 271 | 68.30 223 | 81.80 240 | 88.40 217 | 66.92 231 | 80.90 310 | 55.35 301 | 94.90 159 | 93.12 128 |
|
新几何1 | | | | | 82.95 177 | 93.96 57 | 78.56 86 | | 80.24 272 | 55.45 309 | 83.93 209 | 91.08 164 | 71.19 213 | 88.33 248 | 65.84 238 | 93.07 199 | 81.95 317 |
|
1121 | | | 80.86 189 | 79.81 206 | 84.02 153 | 93.93 58 | 78.70 84 | 81.64 213 | 80.18 273 | 55.43 310 | 83.67 211 | 91.15 162 | 71.29 212 | 91.41 182 | 67.95 225 | 93.06 200 | 81.96 316 |
|
testdata | | | | | 79.54 236 | 92.87 82 | 72.34 143 | | 80.14 274 | 59.91 289 | 85.47 184 | 91.75 150 | 67.96 226 | 85.24 284 | 68.57 221 | 92.18 220 | 81.06 330 |
|
TAMVS | | | 78.08 224 | 76.36 238 | 83.23 171 | 90.62 149 | 72.87 131 | 79.08 251 | 80.01 275 | 61.72 275 | 81.35 246 | 86.92 242 | 63.96 244 | 88.78 243 | 50.61 323 | 93.01 202 | 88.04 245 |
|
pmmvs-eth3d | | | 78.42 221 | 77.04 232 | 82.57 189 | 87.44 205 | 74.41 123 | 80.86 226 | 79.67 276 | 55.68 308 | 84.69 193 | 90.31 189 | 60.91 258 | 85.42 283 | 62.20 259 | 91.59 229 | 87.88 249 |
|
bset_n11_16_dypcd | | | 79.19 212 | 77.97 222 | 82.86 182 | 85.81 238 | 66.85 191 | 75.02 300 | 79.31 277 | 66.07 243 | 83.50 216 | 83.37 293 | 55.04 298 | 92.10 162 | 78.63 117 | 94.99 156 | 89.63 220 |
|
KD-MVS_2432*1600 | | | 66.87 305 | 65.81 310 | 70.04 304 | 67.50 357 | 47.49 342 | 62.56 343 | 79.16 278 | 61.21 280 | 77.98 277 | 80.61 316 | 25.29 366 | 82.48 303 | 53.02 313 | 84.92 304 | 80.16 333 |
|
miper_refine_blended | | | 66.87 305 | 65.81 310 | 70.04 304 | 67.50 357 | 47.49 342 | 62.56 343 | 79.16 278 | 61.21 280 | 77.98 277 | 80.61 316 | 25.29 366 | 82.48 303 | 53.02 313 | 84.92 304 | 80.16 333 |
|
IterMVS | | | 76.91 236 | 76.34 239 | 78.64 246 | 80.91 292 | 64.03 212 | 76.30 288 | 79.03 280 | 64.88 259 | 83.11 220 | 89.16 206 | 59.90 266 | 84.46 292 | 68.61 219 | 85.15 302 | 87.42 253 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
CVMVSNet | | | 72.62 274 | 71.41 284 | 76.28 278 | 83.25 271 | 60.34 255 | 83.50 170 | 79.02 281 | 37.77 357 | 76.33 288 | 85.10 269 | 49.60 310 | 87.41 256 | 70.54 200 | 77.54 341 | 81.08 328 |
|
ppachtmachnet_test | | | 74.73 260 | 74.00 259 | 76.90 270 | 80.71 298 | 56.89 288 | 71.53 319 | 78.42 282 | 58.24 294 | 79.32 269 | 82.92 298 | 57.91 281 | 84.26 294 | 65.60 240 | 91.36 232 | 89.56 222 |
|
FMVSNet5 | | | 72.10 279 | 71.69 280 | 73.32 291 | 81.57 284 | 53.02 312 | 76.77 281 | 78.37 283 | 63.31 263 | 76.37 287 | 91.85 144 | 36.68 353 | 78.98 316 | 47.87 335 | 92.45 213 | 87.95 247 |
|
MS-PatchMatch | | | 70.93 286 | 70.22 290 | 73.06 294 | 81.85 282 | 62.50 231 | 73.82 309 | 77.90 284 | 52.44 325 | 75.92 294 | 81.27 312 | 55.67 293 | 81.75 306 | 55.37 300 | 77.70 339 | 74.94 340 |
|
test222 | | | | | | 93.31 72 | 76.54 110 | 79.38 245 | 77.79 285 | 52.59 323 | 82.36 229 | 90.84 175 | 66.83 232 | | | 91.69 227 | 81.25 325 |
|
pmmvs4 | | | 74.92 257 | 72.98 269 | 80.73 217 | 84.95 245 | 71.71 154 | 76.23 290 | 77.59 286 | 52.83 322 | 77.73 282 | 86.38 246 | 56.35 290 | 84.97 287 | 57.72 288 | 87.05 286 | 85.51 273 |
|
EPNet | | | 80.37 200 | 78.41 218 | 86.23 108 | 76.75 327 | 73.28 129 | 87.18 102 | 77.45 287 | 76.24 126 | 68.14 329 | 88.93 211 | 65.41 238 | 93.85 103 | 69.47 207 | 96.12 119 | 91.55 188 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
XXY-MVS | | | 74.44 263 | 76.19 240 | 69.21 310 | 84.61 249 | 52.43 318 | 71.70 318 | 77.18 288 | 60.73 284 | 80.60 254 | 90.96 171 | 75.44 164 | 69.35 338 | 56.13 294 | 88.33 271 | 85.86 270 |
|
CR-MVSNet | | | 74.00 264 | 73.04 268 | 76.85 272 | 79.58 307 | 62.64 228 | 82.58 192 | 76.90 289 | 50.50 339 | 75.72 296 | 92.38 130 | 48.07 313 | 84.07 295 | 68.72 218 | 82.91 319 | 83.85 291 |
|
Patchmtry | | | 76.56 242 | 77.46 226 | 73.83 290 | 79.37 312 | 46.60 345 | 82.41 199 | 76.90 289 | 73.81 158 | 85.56 182 | 92.38 130 | 48.07 313 | 83.98 296 | 63.36 252 | 95.31 144 | 90.92 197 |
|
IB-MVS | | 62.13 19 | 71.64 282 | 68.97 296 | 79.66 234 | 80.80 297 | 62.26 236 | 73.94 307 | 76.90 289 | 63.27 264 | 68.63 328 | 76.79 340 | 33.83 357 | 91.84 171 | 59.28 280 | 87.26 284 | 84.88 279 |
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
K. test v3 | | | 85.14 114 | 84.73 126 | 86.37 103 | 91.13 138 | 69.63 168 | 85.45 130 | 76.68 292 | 84.06 39 | 92.44 53 | 96.99 8 | 62.03 254 | 94.65 73 | 80.58 98 | 93.24 195 | 94.83 67 |
|
ET-MVSNet_ETH3D | | | 75.28 251 | 72.77 270 | 82.81 183 | 83.03 276 | 68.11 182 | 77.09 277 | 76.51 293 | 60.67 285 | 77.60 283 | 80.52 319 | 38.04 350 | 91.15 189 | 70.78 195 | 90.68 248 | 89.17 230 |
|
N_pmnet | | | 70.20 289 | 68.80 298 | 74.38 288 | 80.91 292 | 84.81 38 | 59.12 349 | 76.45 294 | 55.06 311 | 75.31 302 | 82.36 304 | 55.74 292 | 54.82 356 | 47.02 337 | 87.24 285 | 83.52 295 |
|
thisisatest0530 | | | 79.07 213 | 77.33 229 | 84.26 149 | 87.13 211 | 64.58 206 | 83.66 165 | 75.95 295 | 68.86 218 | 85.22 185 | 87.36 235 | 38.10 349 | 93.57 119 | 75.47 152 | 94.28 174 | 94.62 69 |
|
EPNet_dtu | | | 72.87 273 | 71.33 285 | 77.49 265 | 77.72 321 | 60.55 254 | 82.35 200 | 75.79 296 | 66.49 241 | 58.39 357 | 81.06 314 | 53.68 300 | 85.98 277 | 53.55 310 | 92.97 204 | 85.95 268 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
UnsupCasMVSNet_bld | | | 69.21 298 | 69.68 293 | 67.82 317 | 79.42 310 | 51.15 328 | 67.82 333 | 75.79 296 | 54.15 315 | 77.47 284 | 85.36 267 | 59.26 271 | 70.64 335 | 48.46 332 | 79.35 333 | 81.66 319 |
|
MDA-MVSNet-bldmvs | | | 77.47 230 | 76.90 234 | 79.16 240 | 79.03 315 | 64.59 205 | 66.58 336 | 75.67 298 | 73.15 172 | 88.86 119 | 88.99 210 | 66.94 230 | 81.23 309 | 64.71 244 | 88.22 276 | 91.64 184 |
|
pmmvs5 | | | 70.73 287 | 70.07 291 | 72.72 295 | 77.03 326 | 52.73 314 | 74.14 305 | 75.65 299 | 50.36 340 | 72.17 316 | 85.37 266 | 55.42 295 | 80.67 312 | 52.86 316 | 87.59 283 | 84.77 280 |
|
tttt0517 | | | 81.07 186 | 79.58 207 | 85.52 125 | 88.99 175 | 66.45 195 | 87.03 105 | 75.51 300 | 73.76 159 | 88.32 133 | 90.20 190 | 37.96 351 | 94.16 94 | 79.36 112 | 95.13 149 | 95.93 41 |
|
tpmvs | | | 70.16 290 | 69.56 294 | 71.96 301 | 74.71 344 | 48.13 338 | 79.63 239 | 75.45 301 | 65.02 258 | 70.26 323 | 81.88 307 | 45.34 331 | 85.68 281 | 58.34 283 | 75.39 344 | 82.08 315 |
|
ADS-MVSNet2 | | | 65.87 312 | 63.64 317 | 72.55 298 | 73.16 349 | 56.92 287 | 67.10 334 | 74.81 302 | 49.74 341 | 66.04 337 | 82.97 295 | 46.71 315 | 77.26 321 | 42.29 346 | 69.96 352 | 83.46 296 |
|
new-patchmatchnet | | | 70.10 291 | 73.37 265 | 60.29 336 | 81.23 289 | 16.95 364 | 59.54 347 | 74.62 303 | 62.93 265 | 80.97 249 | 87.93 225 | 62.83 253 | 71.90 333 | 55.24 302 | 95.01 155 | 92.00 172 |
|
Anonymous20231206 | | | 71.38 284 | 71.88 279 | 69.88 306 | 86.31 228 | 54.37 302 | 70.39 323 | 74.62 303 | 52.57 324 | 76.73 285 | 88.76 212 | 59.94 265 | 72.06 332 | 44.35 344 | 93.23 196 | 83.23 302 |
|
CostFormer | | | 69.98 294 | 68.68 299 | 73.87 289 | 77.14 324 | 50.72 332 | 79.26 247 | 74.51 305 | 51.94 330 | 70.97 322 | 84.75 277 | 45.16 334 | 87.49 255 | 55.16 303 | 79.23 334 | 83.40 298 |
|
door-mid | | | | | | | | | 74.45 306 | | | | | | | | |
|
thisisatest0515 | | | 73.00 272 | 70.52 287 | 80.46 221 | 81.45 285 | 59.90 259 | 73.16 314 | 74.31 307 | 57.86 297 | 76.08 293 | 77.78 334 | 37.60 352 | 92.12 161 | 65.00 242 | 91.45 231 | 89.35 226 |
|
baseline1 | | | 73.26 268 | 73.54 263 | 72.43 299 | 84.92 246 | 47.79 341 | 79.89 237 | 74.00 308 | 65.93 244 | 78.81 273 | 86.28 251 | 56.36 289 | 81.63 308 | 56.63 291 | 79.04 336 | 87.87 250 |
|
tfpn200view9 | | | 74.86 258 | 74.23 257 | 76.74 273 | 86.24 231 | 52.12 319 | 79.24 248 | 73.87 309 | 73.34 165 | 81.82 238 | 84.60 280 | 46.02 320 | 88.80 240 | 51.98 319 | 90.99 238 | 89.31 227 |
|
thres400 | | | 75.14 252 | 74.23 257 | 77.86 261 | 86.24 231 | 52.12 319 | 79.24 248 | 73.87 309 | 73.34 165 | 81.82 238 | 84.60 280 | 46.02 320 | 88.80 240 | 51.98 319 | 90.99 238 | 92.66 147 |
|
LFMVS | | | 80.15 207 | 80.56 191 | 78.89 241 | 89.19 171 | 55.93 292 | 85.22 133 | 73.78 311 | 82.96 53 | 84.28 205 | 92.72 121 | 57.38 284 | 90.07 226 | 63.80 249 | 95.75 131 | 90.68 203 |
|
thres200 | | | 72.34 277 | 71.55 283 | 74.70 287 | 83.48 268 | 51.60 324 | 75.02 300 | 73.71 312 | 70.14 207 | 78.56 275 | 80.57 318 | 46.20 318 | 88.20 250 | 46.99 338 | 89.29 260 | 84.32 285 |
|
tpm cat1 | | | 66.76 307 | 65.21 313 | 71.42 302 | 77.09 325 | 50.62 333 | 78.01 263 | 73.68 313 | 44.89 349 | 68.64 327 | 79.00 328 | 45.51 328 | 82.42 305 | 49.91 326 | 70.15 351 | 81.23 327 |
|
testgi | | | 72.36 276 | 74.61 252 | 65.59 323 | 80.56 300 | 42.82 354 | 68.29 329 | 73.35 314 | 66.87 238 | 81.84 237 | 89.93 196 | 72.08 206 | 66.92 346 | 46.05 341 | 92.54 212 | 87.01 259 |
|
thres100view900 | | | 75.45 250 | 75.05 250 | 76.66 274 | 87.27 207 | 51.88 322 | 81.07 223 | 73.26 315 | 75.68 137 | 83.25 218 | 86.37 247 | 45.54 326 | 88.80 240 | 51.98 319 | 90.99 238 | 89.31 227 |
|
thres600view7 | | | 75.97 247 | 75.35 249 | 77.85 262 | 87.01 217 | 51.84 323 | 80.45 230 | 73.26 315 | 75.20 144 | 83.10 221 | 86.31 250 | 45.54 326 | 89.05 236 | 55.03 304 | 92.24 217 | 92.66 147 |
|
wuyk23d | | | 75.13 253 | 79.30 209 | 62.63 329 | 75.56 336 | 75.18 120 | 80.89 225 | 73.10 317 | 75.06 146 | 94.76 11 | 95.32 34 | 87.73 41 | 52.85 357 | 34.16 356 | 97.11 83 | 59.85 353 |
|
DWT-MVSNet_test | | | 66.43 308 | 64.37 314 | 72.63 296 | 74.86 343 | 50.86 331 | 76.52 285 | 72.74 318 | 54.06 316 | 65.50 339 | 68.30 353 | 32.13 359 | 84.84 289 | 61.63 266 | 73.59 346 | 82.19 313 |
|
WTY-MVS | | | 67.91 302 | 68.35 300 | 66.58 321 | 80.82 296 | 48.12 339 | 65.96 337 | 72.60 319 | 53.67 318 | 71.20 320 | 81.68 310 | 58.97 273 | 69.06 340 | 48.57 331 | 81.67 324 | 82.55 308 |
|
door | | | | | | | | | 72.57 320 | | | | | | | | |
|
PVSNet | | 58.17 21 | 66.41 309 | 65.63 312 | 68.75 313 | 81.96 280 | 49.88 336 | 62.19 345 | 72.51 321 | 51.03 334 | 68.04 330 | 75.34 345 | 50.84 306 | 74.77 328 | 45.82 342 | 82.96 317 | 81.60 320 |
|
MDTV_nov1_ep13 | | | | 68.29 301 | | 78.03 319 | 43.87 351 | 74.12 306 | 72.22 322 | 52.17 326 | 67.02 335 | 85.54 258 | 45.36 330 | 80.85 311 | 55.73 295 | 84.42 311 | |
|
test20.03 | | | 73.75 266 | 74.59 254 | 71.22 303 | 81.11 290 | 51.12 329 | 70.15 324 | 72.10 323 | 70.42 201 | 80.28 262 | 91.50 155 | 64.21 242 | 74.72 330 | 46.96 339 | 94.58 168 | 87.82 251 |
|
Vis-MVSNet (Re-imp) | | | 77.82 227 | 77.79 224 | 77.92 260 | 88.82 178 | 51.29 327 | 83.28 175 | 71.97 324 | 74.04 155 | 82.23 231 | 89.78 198 | 57.38 284 | 89.41 234 | 57.22 289 | 95.41 138 | 93.05 130 |
|
MIMVSNet | | | 71.09 285 | 71.59 281 | 69.57 309 | 87.23 208 | 50.07 335 | 78.91 252 | 71.83 325 | 60.20 288 | 71.26 319 | 91.76 149 | 55.08 297 | 76.09 324 | 41.06 349 | 87.02 287 | 82.54 309 |
|
tpm2 | | | 68.45 300 | 66.83 306 | 73.30 292 | 78.93 317 | 48.50 337 | 79.76 238 | 71.76 326 | 47.50 343 | 69.92 325 | 83.60 287 | 42.07 343 | 88.40 247 | 48.44 333 | 79.51 331 | 83.01 305 |
|
sss | | | 66.92 304 | 67.26 304 | 65.90 322 | 77.23 323 | 51.10 330 | 64.79 338 | 71.72 327 | 52.12 329 | 70.13 324 | 80.18 322 | 57.96 280 | 65.36 351 | 50.21 324 | 81.01 329 | 81.25 325 |
|
our_test_3 | | | 71.85 280 | 71.59 281 | 72.62 297 | 80.71 298 | 53.78 306 | 69.72 326 | 71.71 328 | 58.80 291 | 78.03 276 | 80.51 320 | 56.61 288 | 78.84 317 | 62.20 259 | 86.04 295 | 85.23 275 |
|
SCA | | | 73.32 267 | 72.57 274 | 75.58 282 | 81.62 283 | 55.86 293 | 78.89 253 | 71.37 329 | 61.73 274 | 74.93 304 | 83.42 291 | 60.46 260 | 87.01 259 | 58.11 286 | 82.63 323 | 83.88 288 |
|
lessismore_v0 | | | | | 85.95 115 | 91.10 139 | 70.99 159 | | 70.91 330 | | 91.79 64 | 94.42 63 | 61.76 255 | 92.93 142 | 79.52 110 | 93.03 201 | 93.93 97 |
|
tpmrst | | | 66.28 310 | 66.69 308 | 65.05 326 | 72.82 352 | 39.33 355 | 78.20 262 | 70.69 331 | 53.16 321 | 67.88 331 | 80.36 321 | 48.18 312 | 74.75 329 | 58.13 285 | 70.79 350 | 81.08 328 |
|
PatchMatch-RL | | | 74.48 261 | 73.22 266 | 78.27 255 | 87.70 199 | 85.26 33 | 75.92 292 | 70.09 332 | 64.34 261 | 76.09 292 | 81.25 313 | 65.87 237 | 78.07 319 | 53.86 309 | 83.82 313 | 71.48 344 |
|
PatchmatchNet |  | | 69.71 296 | 68.83 297 | 72.33 300 | 77.66 322 | 53.60 307 | 79.29 246 | 69.99 333 | 57.66 299 | 72.53 314 | 82.93 297 | 46.45 317 | 80.08 315 | 60.91 271 | 72.09 348 | 83.31 301 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
baseline2 | | | 69.77 295 | 66.89 305 | 78.41 251 | 79.51 309 | 58.09 277 | 76.23 290 | 69.57 334 | 57.50 301 | 64.82 345 | 77.45 337 | 46.02 320 | 88.44 246 | 53.08 312 | 77.83 338 | 88.70 239 |
|
Patchmatch-RL test | | | 74.48 261 | 73.68 261 | 76.89 271 | 84.83 247 | 66.54 194 | 72.29 316 | 69.16 335 | 57.70 298 | 86.76 156 | 86.33 248 | 45.79 325 | 82.59 302 | 69.63 206 | 90.65 251 | 81.54 321 |
|
FPMVS | | | 72.29 278 | 72.00 278 | 73.14 293 | 88.63 180 | 85.00 35 | 74.65 304 | 67.39 336 | 71.94 189 | 77.80 281 | 87.66 229 | 50.48 308 | 75.83 326 | 49.95 325 | 79.51 331 | 58.58 355 |
|
MDA-MVSNet_test_wron | | | 70.05 293 | 70.44 288 | 68.88 312 | 73.84 345 | 53.47 308 | 58.93 351 | 67.28 337 | 58.43 292 | 87.09 149 | 85.40 264 | 59.80 268 | 67.25 344 | 59.66 278 | 83.54 314 | 85.92 269 |
|
YYNet1 | | | 70.06 292 | 70.44 288 | 68.90 311 | 73.76 346 | 53.42 310 | 58.99 350 | 67.20 338 | 58.42 293 | 87.10 148 | 85.39 265 | 59.82 267 | 67.32 343 | 59.79 277 | 83.50 315 | 85.96 267 |
|
test-LLR | | | 67.21 303 | 66.74 307 | 68.63 314 | 76.45 331 | 55.21 298 | 67.89 330 | 67.14 339 | 62.43 271 | 65.08 342 | 72.39 347 | 43.41 339 | 69.37 336 | 61.00 269 | 84.89 306 | 81.31 323 |
|
test-mter | | | 65.00 313 | 63.79 316 | 68.63 314 | 76.45 331 | 55.21 298 | 67.89 330 | 67.14 339 | 50.98 335 | 65.08 342 | 72.39 347 | 28.27 363 | 69.37 336 | 61.00 269 | 84.89 306 | 81.31 323 |
|
tpm | | | 67.95 301 | 68.08 302 | 67.55 318 | 78.74 318 | 43.53 352 | 75.60 294 | 67.10 341 | 54.92 312 | 72.23 315 | 88.10 221 | 42.87 342 | 75.97 325 | 52.21 317 | 80.95 330 | 83.15 303 |
|
PM-MVS | | | 80.20 205 | 79.00 211 | 83.78 160 | 88.17 190 | 86.66 16 | 81.31 218 | 66.81 342 | 69.64 210 | 88.33 132 | 90.19 191 | 64.58 239 | 83.63 299 | 71.99 189 | 90.03 254 | 81.06 330 |
|
JIA-IIPM | | | 69.41 297 | 66.64 309 | 77.70 263 | 73.19 348 | 71.24 157 | 75.67 293 | 65.56 343 | 70.42 201 | 65.18 341 | 92.97 112 | 33.64 358 | 83.06 300 | 53.52 311 | 69.61 354 | 78.79 335 |
|
PatchT | | | 70.52 288 | 72.76 271 | 63.79 328 | 79.38 311 | 33.53 360 | 77.63 270 | 65.37 344 | 73.61 160 | 71.77 317 | 92.79 120 | 44.38 338 | 75.65 327 | 64.53 248 | 85.37 299 | 82.18 314 |
|
dp | | | 60.70 324 | 60.29 326 | 61.92 332 | 72.04 354 | 38.67 357 | 70.83 320 | 64.08 345 | 51.28 333 | 60.75 350 | 77.28 338 | 36.59 354 | 71.58 334 | 47.41 336 | 62.34 357 | 75.52 339 |
|
Patchmatch-test | | | 65.91 311 | 67.38 303 | 61.48 334 | 75.51 337 | 43.21 353 | 68.84 327 | 63.79 346 | 62.48 269 | 72.80 313 | 83.42 291 | 44.89 336 | 59.52 355 | 48.27 334 | 86.45 290 | 81.70 318 |
|
TESTMET0.1,1 | | | 61.29 320 | 60.32 325 | 64.19 327 | 72.06 353 | 51.30 326 | 67.89 330 | 62.09 347 | 45.27 348 | 60.65 351 | 69.01 350 | 27.93 364 | 64.74 352 | 56.31 293 | 81.65 326 | 76.53 337 |
|
PVSNet_0 | | 51.08 22 | 56.10 326 | 54.97 331 | 59.48 337 | 75.12 341 | 53.28 311 | 55.16 352 | 61.89 348 | 44.30 350 | 59.16 353 | 62.48 356 | 54.22 299 | 65.91 350 | 35.40 355 | 47.01 358 | 59.25 354 |
|
ADS-MVSNet | | | 61.90 317 | 62.19 320 | 61.03 335 | 73.16 349 | 36.42 358 | 67.10 334 | 61.75 349 | 49.74 341 | 66.04 337 | 82.97 295 | 46.71 315 | 63.21 353 | 42.29 346 | 69.96 352 | 83.46 296 |
|
PMMVS | | | 61.65 318 | 60.38 324 | 65.47 325 | 65.40 361 | 69.26 172 | 63.97 341 | 61.73 350 | 36.80 358 | 60.11 352 | 68.43 351 | 59.42 269 | 66.35 348 | 48.97 330 | 78.57 337 | 60.81 352 |
|
test0.0.03 1 | | | 64.66 314 | 64.36 315 | 65.57 324 | 75.03 342 | 46.89 344 | 64.69 339 | 61.58 351 | 62.43 271 | 71.18 321 | 77.54 335 | 43.41 339 | 68.47 341 | 40.75 350 | 82.65 321 | 81.35 322 |
|
E-PMN | | | 61.59 319 | 61.62 321 | 61.49 333 | 66.81 359 | 55.40 296 | 53.77 353 | 60.34 352 | 66.80 239 | 58.90 355 | 65.50 354 | 40.48 346 | 66.12 349 | 55.72 296 | 86.25 293 | 62.95 351 |
|
CHOSEN 280x420 | | | 59.08 325 | 56.52 330 | 66.76 320 | 76.51 329 | 64.39 209 | 49.62 355 | 59.00 353 | 43.86 351 | 55.66 359 | 68.41 352 | 35.55 355 | 68.21 342 | 43.25 345 | 76.78 343 | 67.69 349 |
|
EMVS | | | 61.10 322 | 60.81 323 | 61.99 331 | 65.96 360 | 55.86 293 | 53.10 354 | 58.97 354 | 67.06 236 | 56.89 358 | 63.33 355 | 40.98 344 | 67.03 345 | 54.79 305 | 86.18 294 | 63.08 350 |
|
pmmvs3 | | | 62.47 315 | 60.02 327 | 69.80 307 | 71.58 355 | 64.00 213 | 70.52 322 | 58.44 355 | 39.77 355 | 66.05 336 | 75.84 343 | 27.10 365 | 72.28 331 | 46.15 340 | 84.77 310 | 73.11 342 |
|
MVS-HIRNet | | | 61.16 321 | 62.92 318 | 55.87 339 | 79.09 314 | 35.34 359 | 71.83 317 | 57.98 356 | 46.56 345 | 59.05 354 | 91.14 163 | 49.95 309 | 76.43 323 | 38.74 352 | 71.92 349 | 55.84 356 |
|
gg-mvs-nofinetune | | | 68.96 299 | 69.11 295 | 68.52 316 | 76.12 334 | 45.32 347 | 83.59 166 | 55.88 357 | 86.68 25 | 64.62 346 | 97.01 7 | 30.36 361 | 83.97 297 | 44.78 343 | 82.94 318 | 76.26 338 |
|
GG-mvs-BLEND | | | | | 67.16 319 | 73.36 347 | 46.54 346 | 84.15 149 | 55.04 358 | | 58.64 356 | 61.95 357 | 29.93 362 | 83.87 298 | 38.71 353 | 76.92 342 | 71.07 345 |
|
EPMVS | | | 62.47 315 | 62.63 319 | 62.01 330 | 70.63 356 | 38.74 356 | 74.76 302 | 52.86 359 | 53.91 317 | 67.71 333 | 80.01 323 | 39.40 347 | 66.60 347 | 55.54 299 | 68.81 355 | 80.68 332 |
|
new_pmnet | | | 55.69 327 | 57.66 329 | 49.76 341 | 75.47 338 | 30.59 361 | 59.56 346 | 51.45 360 | 43.62 352 | 62.49 348 | 75.48 344 | 40.96 345 | 49.15 359 | 37.39 354 | 72.52 347 | 69.55 347 |
|
PMMVS2 | | | 55.64 328 | 59.27 328 | 44.74 342 | 64.30 362 | 12.32 365 | 40.60 356 | 49.79 361 | 53.19 320 | 65.06 344 | 84.81 276 | 53.60 301 | 49.76 358 | 32.68 358 | 89.41 259 | 72.15 343 |
|
DSMNet-mixed | | | 60.98 323 | 61.61 322 | 59.09 338 | 72.88 351 | 45.05 349 | 74.70 303 | 46.61 362 | 26.20 359 | 65.34 340 | 90.32 188 | 55.46 294 | 63.12 354 | 41.72 348 | 81.30 328 | 69.09 348 |
|
MVE |  | 40.22 23 | 51.82 329 | 50.47 332 | 55.87 339 | 62.66 363 | 51.91 321 | 31.61 358 | 39.28 363 | 40.65 354 | 50.76 360 | 74.98 346 | 56.24 291 | 44.67 360 | 33.94 357 | 64.11 356 | 71.04 346 |
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
MTMP | | | | | | | | 90.66 40 | 33.14 364 | | | | | | | | |
|
tmp_tt | | | 20.25 331 | 24.50 334 | 7.49 344 | 4.47 365 | 8.70 366 | 34.17 357 | 25.16 365 | 1.00 361 | 32.43 362 | 18.49 359 | 39.37 348 | 9.21 362 | 21.64 359 | 43.75 359 | 4.57 358 |
|
DeepMVS_CX |  | | | | 24.13 343 | 32.95 364 | 29.49 362 | | 21.63 366 | 12.07 360 | 37.95 361 | 45.07 358 | 30.84 360 | 19.21 361 | 17.94 360 | 33.06 360 | 23.69 357 |
|
test123 | | | 6.27 334 | 8.08 337 | 0.84 345 | 1.11 367 | 0.57 367 | 62.90 342 | 0.82 367 | 0.54 362 | 1.07 364 | 2.75 364 | 1.26 368 | 0.30 363 | 1.04 361 | 1.26 362 | 1.66 359 |
|
testmvs | | | 5.91 335 | 7.65 338 | 0.72 346 | 1.20 366 | 0.37 368 | 59.14 348 | 0.67 368 | 0.49 363 | 1.11 363 | 2.76 363 | 0.94 369 | 0.24 364 | 1.02 362 | 1.47 361 | 1.55 360 |
|
uanet_test | | | 0.00 336 | 0.00 339 | 0.00 347 | 0.00 368 | 0.00 369 | 0.00 359 | 0.00 369 | 0.00 364 | 0.00 365 | 0.00 365 | 0.00 370 | 0.00 365 | 0.00 363 | 0.00 363 | 0.00 361 |
|
pcd_1.5k_mvsjas | | | 6.41 333 | 8.55 336 | 0.00 347 | 0.00 368 | 0.00 369 | 0.00 359 | 0.00 369 | 0.00 364 | 0.00 365 | 0.00 365 | 76.94 154 | 0.00 365 | 0.00 363 | 0.00 363 | 0.00 361 |
|
sosnet-low-res | | | 0.00 336 | 0.00 339 | 0.00 347 | 0.00 368 | 0.00 369 | 0.00 359 | 0.00 369 | 0.00 364 | 0.00 365 | 0.00 365 | 0.00 370 | 0.00 365 | 0.00 363 | 0.00 363 | 0.00 361 |
|
sosnet | | | 0.00 336 | 0.00 339 | 0.00 347 | 0.00 368 | 0.00 369 | 0.00 359 | 0.00 369 | 0.00 364 | 0.00 365 | 0.00 365 | 0.00 370 | 0.00 365 | 0.00 363 | 0.00 363 | 0.00 361 |
|
uncertanet | | | 0.00 336 | 0.00 339 | 0.00 347 | 0.00 368 | 0.00 369 | 0.00 359 | 0.00 369 | 0.00 364 | 0.00 365 | 0.00 365 | 0.00 370 | 0.00 365 | 0.00 363 | 0.00 363 | 0.00 361 |
|
Regformer | | | 0.00 336 | 0.00 339 | 0.00 347 | 0.00 368 | 0.00 369 | 0.00 359 | 0.00 369 | 0.00 364 | 0.00 365 | 0.00 365 | 0.00 370 | 0.00 365 | 0.00 363 | 0.00 363 | 0.00 361 |
|
n2 | | | | | | | | | 0.00 369 | | | | | | | | |
|
nn | | | | | | | | | 0.00 369 | | | | | | | | |
|
ab-mvs-re | | | 6.65 332 | 8.87 335 | 0.00 347 | 0.00 368 | 0.00 369 | 0.00 359 | 0.00 369 | 0.00 364 | 0.00 365 | 79.80 325 | 0.00 370 | 0.00 365 | 0.00 363 | 0.00 363 | 0.00 361 |
|
uanet | | | 0.00 336 | 0.00 339 | 0.00 347 | 0.00 368 | 0.00 369 | 0.00 359 | 0.00 369 | 0.00 364 | 0.00 365 | 0.00 365 | 0.00 370 | 0.00 365 | 0.00 363 | 0.00 363 | 0.00 361 |
|
OPU-MVS | | | | | 88.27 80 | 91.89 113 | 77.83 91 | 90.47 46 | | | | 91.22 159 | 81.12 114 | 94.68 72 | 74.48 159 | 95.35 140 | 92.29 161 |
|
test_0728_THIRD | | | | | | | | | | 85.33 30 | 93.75 30 | 94.65 53 | 87.44 44 | 95.78 24 | 87.41 19 | 98.21 30 | 92.98 133 |
|
GSMVS | | | | | | | | | | | | | | | | | 83.88 288 |
|
test_part2 | | | | | | 93.86 60 | 77.77 92 | | | | 92.84 45 | | | | | | |
|
sam_mvs1 | | | | | | | | | | | | | 46.11 319 | | | | 83.88 288 |
|
sam_mvs | | | | | | | | | | | | | 45.92 324 | | | | |
|
test_post1 | | | | | | | | 78.85 255 | | | | 3.13 361 | 45.19 333 | 80.13 314 | 58.11 286 | | |
|
test_post | | | | | | | | | | | | 3.10 362 | 45.43 329 | 77.22 322 | | | |
|
patchmatchnet-post | | | | | | | | | | | | 81.71 309 | 45.93 323 | 87.01 259 | | | |
|
gm-plane-assit | | | | | | 75.42 339 | 44.97 350 | | | 52.17 326 | | 72.36 349 | | 87.90 251 | 54.10 308 | | |
|
test9_res | | | | | | | | | | | | | | | 80.83 94 | 96.45 106 | 90.57 206 |
|
agg_prior2 | | | | | | | | | | | | | | | 79.68 106 | 96.16 116 | 90.22 213 |
|
test_prior4 | | | | | | | 78.97 81 | 84.59 141 | | | | | | | | | |
|
test_prior2 | | | | | | | | 83.37 173 | | 75.43 140 | 84.58 195 | 91.57 152 | 81.92 105 | | 79.54 108 | 96.97 86 | |
|
旧先验2 | | | | | | | | 81.73 211 | | 56.88 305 | 86.54 166 | | | 84.90 288 | 72.81 182 | | |
|
新几何2 | | | | | | | | 81.72 212 | | | | | | | | | |
|
原ACMM2 | | | | | | | | 82.26 205 | | | | | | | | | |
|
testdata2 | | | | | | | | | | | | | | 86.43 272 | 63.52 251 | | |
|
segment_acmp | | | | | | | | | | | | | 81.94 102 | | | | |
|
testdata1 | | | | | | | | 79.62 240 | | 73.95 157 | | | | | | | |
|
plane_prior7 | | | | | | 93.45 67 | 77.31 101 | | | | | | | | | | |
|
plane_prior6 | | | | | | 92.61 88 | 76.54 110 | | | | | | 74.84 171 | | | | |
|
plane_prior4 | | | | | | | | | | | | 92.95 113 | | | | | |
|
plane_prior3 | | | | | | | 76.85 108 | | | 77.79 112 | 86.55 161 | | | | | | |
|
plane_prior2 | | | | | | | | 89.45 69 | | 79.44 93 | | | | | | | |
|
plane_prior1 | | | | | | 92.83 86 | | | | | | | | | | | |
|
plane_prior | | | | | | | 76.42 113 | 87.15 103 | | 75.94 134 | | | | | | 95.03 154 | |
|
HQP5-MVS | | | | | | | 70.66 160 | | | | | | | | | | |
|
HQP-NCC | | | | | | 91.19 134 | | 84.77 136 | | 73.30 167 | 80.55 257 | | | | | | |
|
ACMP_Plane | | | | | | 91.19 134 | | 84.77 136 | | 73.30 167 | 80.55 257 | | | | | | |
|
BP-MVS | | | | | | | | | | | | | | | 77.30 136 | | |
|
HQP4-MVS | | | | | | | | | | | 80.56 256 | | | 94.61 76 | | | 93.56 116 |
|
HQP2-MVS | | | | | | | | | | | | | 72.10 204 | | | | |
|
NP-MVS | | | | | | 91.95 109 | 74.55 122 | | | | | 90.17 193 | | | | | |
|
MDTV_nov1_ep13_2view | | | | | | | 27.60 363 | 70.76 321 | | 46.47 346 | 61.27 349 | | 45.20 332 | | 49.18 329 | | 83.75 293 |
|
ACMMP++_ref | | | | | | | | | | | | | | | | 95.74 132 | |
|
ACMMP++ | | | | | | | | | | | | | | | | 97.35 76 | |
|
Test By Simon | | | | | | | | | | | | | 79.09 131 | | | | |
|