This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorcourty.delive.electrofacadekickermeadowofficepipesplaygr.reliefrelief.terraceterrai.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort by
TDRefinement93.16 195.57 190.36 188.79 5293.57 197.27 178.23 2295.55 293.00 193.98 1796.01 3987.53 197.69 196.81 197.33 195.34 3
COLMAP_ROBcopyleft85.66 291.85 295.01 288.16 1288.98 5192.86 295.51 2072.17 5994.95 591.27 394.11 1697.77 1284.22 896.49 495.27 596.79 293.60 11
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
UA-Net89.02 3391.44 3986.20 2894.88 189.84 3394.76 2977.45 2985.41 7274.79 10588.83 7888.90 13878.67 4096.06 795.45 496.66 395.58 1
SD-MVS89.91 1892.23 3087.19 2291.31 2489.79 3494.31 3275.34 4789.26 3881.79 6992.68 3195.08 6283.88 1193.10 3992.69 2696.54 493.02 23
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
WR-MVS89.79 2393.66 485.27 3791.32 2388.27 4593.49 3879.86 1092.75 975.37 10196.86 198.38 675.10 7095.93 894.07 1596.46 589.39 58
anonymousdsp85.62 6190.53 4879.88 9264.64 20576.35 14196.28 1353.53 19085.63 6981.59 7192.81 3097.71 1486.88 294.56 2692.83 2596.35 693.84 8
ACMMPcopyleft90.63 892.40 2088.56 991.24 2891.60 696.49 977.53 2787.89 4986.87 3187.24 9396.46 2682.87 1695.59 1594.50 996.35 693.51 17
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
LGP-MVS_train90.56 992.38 2188.43 1090.88 3291.15 1195.35 2277.65 2686.26 6587.23 2490.45 5497.35 1883.20 1495.44 1693.41 2196.28 892.63 26
ACMM80.67 790.67 792.46 1988.57 891.35 2289.93 3196.34 1277.36 3190.17 2986.88 3087.32 9196.63 2483.32 1395.79 1094.49 1096.19 992.91 25
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
ACMP80.00 890.12 1692.30 2687.58 1990.83 3491.10 1294.96 2876.06 4187.47 5385.33 4088.91 7797.65 1682.13 2095.31 1793.44 2096.14 1092.22 33
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
ACMMPR91.30 492.88 1189.46 491.92 1191.61 596.60 579.46 1490.08 3188.53 1489.54 6595.57 4884.25 795.24 2094.27 1395.97 1193.85 7
CSCG88.12 4591.45 3884.23 4888.12 6290.59 2590.57 6168.60 8791.37 1583.45 5489.94 5895.14 6178.71 3891.45 6088.21 7595.96 1293.44 18
LS3D89.02 3391.69 3685.91 3089.72 4390.81 2092.56 4471.69 6390.83 2187.24 2389.71 6392.07 10878.37 4194.43 2892.59 2895.86 1391.35 42
X-MVS89.36 2890.73 4787.77 1791.50 2091.23 896.76 478.88 1887.29 5587.14 2678.98 14394.53 7276.47 5695.25 1994.28 1295.85 1493.55 15
XVS91.28 2591.23 896.89 287.14 2694.53 7295.84 15
X-MVStestdata91.28 2591.23 896.89 287.14 2694.53 7295.84 15
HFP-MVS90.32 1392.37 2287.94 1491.46 2190.91 1895.69 1879.49 1289.94 3483.50 5189.06 7394.44 7681.68 2394.17 3194.19 1495.81 1793.87 6
CP-MVS91.09 592.33 2589.65 292.16 1090.41 2796.46 1080.38 888.26 4689.17 1187.00 9696.34 3183.95 1095.77 1194.72 895.81 1793.78 9
PGM-MVS90.42 1091.58 3789.05 691.77 1491.06 1396.51 778.94 1785.41 7287.67 1987.02 9595.26 5683.62 1295.01 2493.94 1695.79 1993.40 19
EPP-MVSNet82.76 9286.47 8178.45 10586.00 8084.47 7785.39 11668.42 8984.17 8062.97 16389.26 7176.84 18172.13 9592.56 4990.40 5295.76 2087.56 74
DeepC-MVS83.59 490.37 1292.56 1887.82 1591.26 2792.33 394.72 3080.04 990.01 3284.61 4393.33 2294.22 7980.59 2892.90 4492.52 2995.69 2192.57 27
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
ACMH+79.05 1189.62 2693.08 885.58 3288.58 5589.26 3892.18 4574.23 5293.55 882.66 6092.32 3698.35 880.29 2995.28 1892.34 3295.52 2290.43 50
LTVRE_ROB86.82 191.55 394.43 388.19 1183.19 11186.35 6793.60 3778.79 1995.48 491.79 293.08 2697.21 2186.34 397.06 296.27 395.46 2395.56 2
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
MP-MVScopyleft90.84 691.95 3489.55 392.92 590.90 1996.56 679.60 1186.83 6088.75 1389.00 7494.38 7884.01 994.94 2594.34 1195.45 2493.24 22
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
3Dnovator+83.71 388.13 4490.00 5285.94 2986.82 7291.06 1394.26 3375.39 4688.85 4285.76 3885.74 10986.92 14778.02 4393.03 4092.21 3595.39 2592.21 34
CPTT-MVS89.63 2590.52 4988.59 790.95 3190.74 2195.71 1779.13 1587.70 5185.68 3980.05 13895.74 4684.77 694.28 3092.68 2795.28 2692.45 31
zzz-MVS90.38 1191.35 4189.25 593.08 386.59 6496.45 1179.00 1690.23 2889.30 1085.87 10794.97 6582.54 1895.05 2394.83 795.14 2791.94 36
SixPastTwentyTwo89.14 2992.19 3185.58 3284.62 9082.56 9290.53 6471.93 6091.95 1285.89 3694.22 1497.25 2085.42 595.73 1291.71 4195.08 2891.89 37
test_part187.86 4993.26 681.56 7587.23 7086.76 6290.91 5370.06 7196.50 176.74 9396.63 298.62 269.45 11592.93 4390.92 4694.98 2990.46 49
PMVScopyleft79.51 990.23 1492.67 1487.39 2190.16 3988.75 4193.64 3675.78 4490.00 3383.70 4892.97 2892.22 10586.13 497.01 396.79 294.94 3090.96 46
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
TSAR-MVS + MP.89.67 2492.25 2886.65 2691.53 1890.98 1796.15 1473.30 5687.88 5081.83 6892.92 2995.15 6082.23 1993.58 3592.25 3494.87 3193.01 24
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
OMC-MVS88.16 4391.34 4284.46 4686.85 7190.63 2393.01 4167.00 10090.35 2787.40 2286.86 9896.35 3077.66 4892.63 4890.84 4794.84 3291.68 39
IS_MVSNet81.72 10185.01 9877.90 10886.19 7782.64 9185.56 11470.02 7280.11 12063.52 16187.28 9281.18 16667.26 12591.08 6989.33 6594.82 3383.42 103
SMA-MVScopyleft90.13 1592.26 2787.64 1891.68 1690.44 2695.22 2477.34 3390.79 2287.80 1790.42 5592.05 11079.05 3593.89 3393.59 1994.77 3494.62 4
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
APDe-MVS89.85 2092.91 1086.29 2790.47 3891.34 796.04 1576.41 4091.11 1778.50 8893.44 2195.82 4381.55 2493.16 3891.90 3994.77 3493.58 14
CS-MVS-test84.94 7087.32 7682.17 6885.81 8181.60 9888.59 8863.65 13480.19 11883.48 5289.54 6592.96 9476.74 5492.10 5188.42 7294.72 3686.44 79
SteuartSystems-ACMMP90.00 1791.73 3587.97 1391.21 2990.29 2896.51 778.00 2486.33 6385.32 4188.23 8294.67 7082.08 2195.13 2293.88 1794.72 3693.59 12
Skip Steuart: Steuart Systems R&D Blog.
DPE-MVScopyleft89.81 2292.34 2486.86 2489.69 4491.00 1695.53 1976.91 3488.18 4783.43 5593.48 2095.19 5781.07 2792.75 4692.07 3794.55 3893.74 10
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
ACMMP_NAP89.86 1991.96 3387.42 2091.00 3090.08 2996.00 1676.61 3789.28 3587.73 1890.04 5791.80 11378.71 3894.36 2993.82 1894.48 3994.32 5
APD-MVScopyleft89.14 2991.25 4486.67 2591.73 1591.02 1595.50 2177.74 2584.04 8379.47 8391.48 4494.85 6781.14 2692.94 4192.20 3694.47 4092.24 32
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
RPSCF88.05 4692.61 1782.73 6684.24 9588.40 4390.04 7466.29 10491.46 1382.29 6288.93 7696.01 3979.38 3295.15 2194.90 694.15 4193.40 19
OPM-MVS89.82 2192.24 2986.99 2390.86 3389.35 3795.07 2775.91 4391.16 1686.87 3191.07 5097.29 1979.13 3493.32 3691.99 3894.12 4291.49 41
TAPA-MVS78.00 1385.88 6088.37 6382.96 6184.69 8888.62 4290.62 5964.22 12589.15 3988.05 1578.83 14593.71 8376.20 6090.11 7988.22 7494.00 4389.97 53
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
UniMVSNet (Re)84.95 6988.53 6080.78 8187.82 6484.21 7888.03 9176.50 3881.18 10969.29 13992.63 3496.83 2369.07 11691.23 6489.60 6293.97 4484.00 98
xxxxxxxxxxxxxcwj88.03 4791.29 4384.22 4988.17 6087.90 5290.80 5671.80 6189.28 3582.70 5889.90 5997.72 1377.91 4591.69 5590.04 5593.95 4592.47 28
SF-MVS87.85 5090.95 4684.22 4988.17 6087.90 5290.80 5671.80 6189.28 3582.70 5889.90 5995.37 5477.91 4591.69 5590.04 5593.95 4592.47 28
UniMVSNet_NR-MVSNet84.62 7488.00 6980.68 8588.18 5983.83 8087.06 10476.47 3981.46 10570.49 13393.24 2395.56 4968.13 12090.43 7588.47 7093.78 4783.02 107
ACMH78.40 1288.94 3892.62 1684.65 4286.45 7587.16 5991.47 4868.79 8595.49 389.74 693.55 1998.50 377.96 4494.14 3289.57 6393.49 4889.94 54
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
CDPH-MVS86.66 5688.52 6184.48 4589.61 4588.27 4592.86 4272.69 5880.55 11682.71 5786.92 9793.32 9075.55 6691.00 7089.85 5893.47 4989.71 55
SED-MVS88.96 3792.37 2284.99 4088.64 5489.65 3695.11 2575.98 4290.73 2380.15 7994.21 1594.51 7576.59 5592.94 4191.17 4593.46 5093.37 21
DeepC-MVS_fast81.78 587.38 5189.64 5384.75 4189.89 4290.70 2292.74 4374.45 5086.02 6682.16 6686.05 10591.99 11275.84 6491.16 6590.44 5093.41 5191.09 44
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
PLCcopyleft76.06 1585.38 6587.46 7382.95 6285.79 8288.84 4088.86 8568.70 8687.06 5883.60 4979.02 14190.05 12877.37 5190.88 7289.66 6193.37 5286.74 77
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
DVP-MVS89.40 2792.69 1385.56 3489.01 5089.85 3293.72 3575.42 4592.28 1180.49 7494.36 1394.87 6681.46 2592.49 5091.42 4293.27 5393.54 16
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
TranMVSNet+NR-MVSNet85.23 6789.38 5580.39 9088.78 5383.77 8187.40 9976.75 3585.47 7068.99 14195.18 897.55 1767.13 12791.61 5889.13 6793.26 5482.95 110
DU-MVS84.88 7188.27 6680.92 7988.30 5783.59 8487.06 10478.35 2080.64 11470.49 13392.67 3296.91 2268.13 12091.79 5289.29 6693.20 5583.02 107
DTE-MVSNet88.99 3592.77 1284.59 4393.31 288.10 4890.96 5283.09 291.38 1476.21 9596.03 398.04 970.78 10795.65 1492.32 3393.18 5687.84 71
HPM-MVS++copyleft88.74 4089.54 5487.80 1692.58 785.69 7295.10 2678.01 2387.08 5787.66 2087.89 8592.07 10880.28 3090.97 7191.41 4493.17 5791.69 38
NR-MVSNet82.89 8987.43 7477.59 11183.91 10283.59 8487.10 10378.35 2080.64 11468.85 14292.67 3296.50 2554.19 17787.19 10588.68 6993.16 5882.75 112
WR-MVS_H88.99 3593.28 583.99 5491.92 1189.13 3991.95 4683.23 190.14 3071.92 12595.85 598.01 1171.83 9895.82 993.19 2393.07 5990.83 48
PEN-MVS88.86 3992.92 984.11 5392.92 588.05 5090.83 5582.67 591.04 1874.83 10495.97 498.47 470.38 10895.70 1392.43 3193.05 6088.78 64
PS-CasMVS89.07 3293.23 784.21 5192.44 888.23 4790.54 6382.95 390.50 2575.31 10295.80 698.37 771.16 10196.30 593.32 2292.88 6190.11 52
CP-MVSNet88.71 4192.63 1584.13 5292.39 988.09 4990.47 6882.86 488.79 4375.16 10394.87 997.68 1571.05 10396.16 693.18 2492.85 6289.64 56
Effi-MVS+-dtu82.04 9883.39 12380.48 8985.48 8486.57 6688.40 8968.28 9169.04 16973.13 11976.26 16491.11 12174.74 7488.40 9187.76 7692.84 6384.57 92
PCF-MVS76.59 1484.11 7785.27 9482.76 6586.12 7888.30 4491.24 5069.10 8082.36 9384.45 4477.56 15490.40 12772.91 8885.88 11583.88 11292.72 6488.53 65
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
MCST-MVS84.79 7286.48 8082.83 6487.30 6787.03 6190.46 6969.33 7983.14 8682.21 6581.69 13492.14 10775.09 7187.27 10284.78 10492.58 6589.30 59
PHI-MVS86.37 5888.14 6784.30 4786.65 7487.56 5590.76 5870.16 7082.55 9089.65 784.89 11692.40 10175.97 6290.88 7289.70 6092.58 6589.03 62
NCCC86.74 5487.97 7085.31 3690.64 3587.25 5893.27 3974.59 4986.50 6183.72 4775.92 16992.39 10277.08 5291.72 5490.68 4992.57 6791.30 43
thisisatest051581.18 10984.32 10877.52 11376.73 16674.84 15585.06 12061.37 15481.05 11173.95 11288.79 7989.25 13575.49 6785.98 11484.78 10492.53 6885.56 87
train_agg86.67 5587.73 7185.43 3591.51 1982.72 8994.47 3174.22 5381.71 9881.54 7289.20 7292.87 9578.33 4290.12 7888.47 7092.51 6989.04 61
DeepPCF-MVS81.61 687.95 4890.29 5185.22 3887.48 6690.01 3093.79 3473.54 5488.93 4083.89 4689.40 6890.84 12280.26 3190.62 7490.19 5492.36 7092.03 35
CS-MVS79.80 11580.83 13578.60 10484.11 9678.49 12285.82 11258.91 17065.79 18077.94 9178.53 14889.70 12972.51 9187.89 9784.32 10892.34 7181.12 125
ETV-MVS79.01 12677.98 14680.22 9186.69 7379.73 11488.80 8668.27 9263.22 19371.56 12770.25 19973.63 19173.66 8390.30 7786.77 8592.33 7281.95 120
HQP-MVS85.02 6886.41 8283.40 5589.19 4886.59 6491.28 4971.60 6482.79 8983.48 5278.65 14793.54 8772.55 8986.49 11085.89 9392.28 7390.95 47
CNVR-MVS86.93 5388.98 5884.54 4490.11 4087.41 5793.23 4073.47 5586.31 6482.25 6382.96 12692.15 10676.04 6191.69 5590.69 4892.17 7491.64 40
CNLPA85.50 6388.58 5981.91 7084.55 9287.52 5690.89 5463.56 13688.18 4784.06 4583.85 12291.34 11976.46 5791.27 6289.00 6891.96 7588.88 63
MVS_030484.73 7386.19 8483.02 5888.32 5686.71 6391.55 4770.87 6773.79 14682.88 5685.13 11393.35 8972.55 8988.62 8887.69 7791.93 7688.05 70
AdaColmapbinary84.15 7685.14 9783.00 6089.08 4987.14 6090.56 6270.90 6682.40 9280.41 7573.82 18084.69 15675.19 6991.58 5989.90 5791.87 7786.48 78
3Dnovator79.41 1082.21 9586.07 8777.71 10979.31 14084.61 7687.18 10161.02 15785.65 6876.11 9685.07 11585.38 15470.96 10587.22 10386.47 8691.66 7888.12 69
tttt051775.86 14576.23 16075.42 12175.55 17274.06 15982.73 13360.31 16069.24 16570.24 13579.18 14058.79 20972.17 9384.49 13083.08 12391.54 7984.80 89
TSAR-MVS + GP.85.32 6687.41 7582.89 6390.07 4185.69 7289.07 8372.99 5782.45 9174.52 10985.09 11487.67 14479.24 3391.11 6690.41 5191.45 8089.45 57
PVSNet_Blended_VisFu83.00 8884.16 11281.65 7382.17 12286.01 6888.03 9171.23 6576.05 13979.54 8283.88 12183.44 15777.49 5087.38 10084.93 10291.41 8187.40 75
EIA-MVS78.57 12777.90 14779.35 9787.24 6980.71 10686.16 11164.03 12962.63 19873.49 11673.60 18176.12 18573.83 8188.49 9084.93 10291.36 8278.78 144
TSAR-MVS + ACMM89.14 2992.11 3285.67 3189.27 4790.61 2490.98 5179.48 1388.86 4179.80 8093.01 2793.53 8883.17 1592.75 4692.45 3091.32 8393.59 12
thisisatest053075.54 14775.95 16475.05 12575.08 17373.56 16082.15 13860.31 16069.17 16669.32 13879.02 14158.78 21072.17 9383.88 13383.08 12391.30 8484.20 95
v7n87.11 5290.46 5083.19 5785.22 8583.69 8390.03 7568.20 9391.01 1986.71 3494.80 1098.46 577.69 4791.10 6785.98 9091.30 8488.19 67
Effi-MVS+82.33 9483.87 11580.52 8884.51 9381.32 10187.53 9768.05 9474.94 14479.67 8182.37 13192.31 10372.21 9285.06 12286.91 8291.18 8684.20 95
canonicalmvs81.22 10886.04 8875.60 12083.17 11283.18 8780.29 14965.82 11385.97 6767.98 14977.74 15291.51 11665.17 13688.62 8886.15 8991.17 8789.09 60
MSP-MVS88.51 4291.36 4085.19 3990.63 3692.01 495.29 2377.52 2890.48 2680.21 7890.21 5696.08 3576.38 5888.30 9391.42 4291.12 8891.01 45
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
Gipumacopyleft86.47 5789.25 5683.23 5683.88 10378.78 12185.35 11768.42 8992.69 1089.03 1291.94 3796.32 3381.80 2294.45 2786.86 8390.91 8983.69 100
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
MVS_111021_HR83.95 7886.10 8681.44 7684.62 9080.29 10990.51 6568.05 9484.07 8280.38 7684.74 11791.37 11874.23 7690.37 7687.25 7990.86 9084.59 91
abl_679.30 9884.98 8785.78 7090.50 6666.88 10177.08 13474.02 11173.29 18489.34 13368.94 11790.49 9185.98 82
DCV-MVSNet80.04 11385.67 9273.48 13582.91 11481.11 10580.44 14866.06 10785.01 7562.53 16678.84 14494.43 7758.51 15888.66 8785.91 9190.41 9285.73 85
MVS_111021_LR83.20 8685.33 9380.73 8482.88 11578.23 12689.61 7765.23 11782.08 9581.19 7385.31 11192.04 11175.22 6889.50 8185.90 9290.24 9384.23 94
DPM-MVS81.42 10382.11 12980.62 8687.54 6585.30 7490.18 7368.96 8281.00 11279.15 8570.45 19783.29 15967.67 12482.81 14083.46 11690.19 9488.48 66
Fast-Effi-MVS+81.42 10383.82 11778.62 10282.24 12080.62 10787.72 9463.51 13773.01 14874.75 10683.80 12392.70 9773.44 8588.15 9585.26 9790.05 9583.17 104
DROMVSNet81.42 10383.82 11778.62 10282.24 12080.62 10787.72 9463.51 13773.01 14874.75 10683.80 12392.70 9773.44 8588.15 9585.26 9790.05 9583.17 104
FC-MVSNet-train79.20 12486.29 8370.94 14884.06 9777.67 12985.68 11364.11 12782.90 8852.22 19292.57 3593.69 8449.52 19288.30 9386.93 8190.03 9781.95 120
MSDG81.39 10684.23 11178.09 10782.40 11982.47 9385.31 11960.91 15879.73 12380.26 7786.30 10188.27 14269.67 11187.20 10484.98 10189.97 9880.67 129
Anonymous2023121179.37 12185.78 9071.89 14282.87 11679.66 11578.77 16163.93 13383.36 8459.39 17090.54 5294.66 7156.46 16587.38 10084.12 11089.92 9980.74 128
CANet82.84 9084.60 10580.78 8187.30 6785.20 7590.23 7169.00 8172.16 15578.73 8784.49 11990.70 12569.54 11387.65 9886.17 8889.87 10085.84 84
GeoE81.92 10083.87 11579.66 9484.64 8979.87 11189.75 7665.90 11176.12 13875.87 9884.62 11892.23 10471.96 9786.83 10783.60 11589.83 10183.81 99
DELS-MVS79.71 11783.74 11975.01 12779.31 14082.68 9084.79 12260.06 16475.43 14269.09 14086.13 10389.38 13267.16 12685.12 12183.87 11389.65 10283.57 101
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
TSAR-MVS + COLMAP85.51 6288.36 6482.19 6786.05 7987.69 5490.50 6670.60 6986.40 6282.33 6189.69 6492.52 10074.01 8087.53 9986.84 8489.63 10387.80 72
EG-PatchMatch MVS84.35 7587.55 7280.62 8686.38 7682.24 9486.75 10764.02 13084.24 7978.17 9089.38 6995.03 6478.78 3789.95 8086.33 8789.59 10485.65 86
MAR-MVS81.98 9982.92 12580.88 8085.18 8685.85 6989.13 8269.52 7471.21 15982.25 6371.28 19188.89 13969.69 11088.71 8686.96 8089.52 10587.57 73
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
Vis-MVSNetpermissive83.32 8488.12 6877.71 10977.91 15583.44 8690.58 6069.49 7681.11 11067.10 15389.85 6191.48 11771.71 9991.34 6189.37 6489.48 10690.26 51
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
UniMVSNet_ETH3D85.39 6491.12 4578.71 10090.48 3783.72 8281.76 14082.41 693.84 664.43 15995.41 798.76 163.72 14293.63 3489.74 5989.47 10782.74 113
MSLP-MVS++86.29 5989.10 5783.01 5985.71 8389.79 3487.04 10674.39 5185.17 7478.92 8677.59 15393.57 8682.60 1793.23 3791.88 4089.42 10892.46 30
TinyColmap83.79 7986.12 8581.07 7883.42 10881.44 10085.42 11568.55 8888.71 4489.46 887.60 8792.72 9670.34 10989.29 8381.94 13089.20 10981.12 125
Vis-MVSNet (Re-imp)76.15 14180.84 13470.68 14983.66 10674.80 15681.66 14269.59 7380.48 11746.94 20187.44 8980.63 16853.14 18286.87 10684.56 10789.12 11071.12 169
ET-MVSNet_ETH3D74.71 15174.19 17175.31 12379.22 14275.29 15082.70 13464.05 12865.45 18370.96 13277.15 15857.70 21165.89 13384.40 13181.65 13289.03 11177.67 150
USDC81.39 10683.07 12479.43 9681.48 12678.95 12082.62 13566.17 10687.45 5490.73 482.40 13093.65 8566.57 13083.63 13577.97 15389.00 11277.45 151
Anonymous20240521184.68 10483.92 10179.45 11679.03 15967.79 9682.01 9688.77 8092.58 9955.93 16886.68 10884.26 10988.92 11378.98 142
v119283.61 8085.23 9581.72 7284.05 9882.15 9589.54 7866.20 10581.38 10786.76 3391.79 4196.03 3774.88 7381.81 14880.92 13788.91 11482.50 115
v14419283.43 8384.97 10081.63 7483.43 10781.23 10389.42 8166.04 10981.45 10686.40 3591.46 4595.70 4775.76 6582.14 14480.23 14488.74 11582.57 114
OpenMVScopyleft75.38 1678.44 12881.39 13374.99 12880.46 13179.85 11279.99 15158.31 17377.34 13373.85 11377.19 15782.33 16468.60 11984.67 12981.95 12988.72 11686.40 81
v114483.22 8585.01 9881.14 7783.76 10581.60 9888.95 8465.58 11581.89 9785.80 3791.68 4395.84 4274.04 7982.12 14580.56 14088.70 11781.41 123
v192192083.49 8284.94 10181.80 7183.78 10481.20 10489.50 7965.91 11081.64 10087.18 2591.70 4295.39 5375.85 6381.56 15180.27 14388.60 11882.80 111
casdiffmvs79.93 11484.11 11375.05 12581.41 12878.99 11982.95 13262.90 14581.53 10268.60 14691.94 3796.03 3765.84 13482.89 13877.07 16188.59 11980.34 135
v1083.17 8785.22 9680.78 8183.26 11082.99 8888.66 8766.49 10379.24 12683.60 4991.46 4595.47 5174.12 7782.60 14380.66 13888.53 12084.11 97
v124083.57 8184.94 10181.97 6984.05 9881.27 10289.46 8066.06 10781.31 10887.50 2191.88 4095.46 5276.25 5981.16 15380.51 14188.52 12182.98 109
QAPM80.43 11184.34 10775.86 11879.40 13982.06 9679.86 15461.94 15183.28 8574.73 10881.74 13385.44 15370.97 10484.99 12784.71 10688.29 12288.14 68
UGNet79.62 11985.91 8972.28 14173.52 17683.91 7986.64 10869.51 7579.85 12262.57 16585.82 10889.63 13053.18 18188.39 9287.35 7888.28 12386.43 80
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
DI_MVS_plusplus_trai77.64 13179.64 13875.31 12379.87 13676.89 13881.55 14363.64 13576.21 13772.03 12485.59 11082.97 16166.63 12979.27 16477.78 15588.14 12478.76 145
FMVSNet178.20 13084.83 10370.46 15278.62 14779.03 11877.90 16367.53 9983.02 8755.10 18187.19 9493.18 9255.65 17085.57 11683.39 11887.98 12582.40 116
FPMVS81.56 10284.04 11478.66 10182.92 11375.96 14586.48 11065.66 11484.67 7871.47 12877.78 15183.22 16077.57 4991.24 6390.21 5387.84 12685.21 88
v2v48282.20 9684.26 10979.81 9382.67 11780.18 11087.67 9663.96 13281.69 9984.73 4291.27 4896.33 3272.05 9681.94 14779.56 14787.79 12778.84 143
v882.20 9684.56 10679.45 9582.42 11881.65 9787.26 10064.27 12479.36 12581.70 7091.04 5195.75 4573.30 8782.82 13979.18 15087.74 12882.09 118
PVSNet_BlendedMVS76.45 13978.12 14474.49 13176.76 16078.46 12379.65 15563.26 14165.42 18473.15 11775.05 17488.96 13666.51 13182.73 14177.66 15687.61 12978.60 146
PVSNet_Blended76.45 13978.12 14474.49 13176.76 16078.46 12379.65 15563.26 14165.42 18473.15 11775.05 17488.96 13666.51 13182.73 14177.66 15687.61 12978.60 146
tfpn200view972.01 16475.40 16668.06 16777.97 15376.44 14077.04 16862.67 14666.81 17450.82 19767.30 20375.67 18752.46 18885.06 12282.64 12687.41 13173.86 162
pmmvs680.46 11088.34 6571.26 14481.96 12377.51 13077.54 16468.83 8493.72 755.92 17893.94 1898.03 1055.94 16789.21 8485.61 9487.36 13280.38 131
thres600view774.34 15378.43 14369.56 15880.47 13076.28 14278.65 16262.56 14777.39 13252.53 18874.03 17876.78 18255.90 16985.06 12285.19 9987.25 13374.29 160
thres20072.41 16376.00 16368.21 16678.28 14976.28 14274.94 18262.56 14772.14 15651.35 19669.59 20176.51 18354.89 17285.06 12280.51 14187.25 13371.92 168
IB-MVS71.28 1775.21 14877.00 15473.12 13976.76 16077.45 13183.05 13058.92 16963.01 19464.31 16059.99 21287.57 14568.64 11886.26 11382.34 12887.05 13582.36 117
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
TransMVSNet (Re)79.05 12586.66 7870.18 15483.32 10975.99 14477.54 16463.98 13190.68 2455.84 17994.80 1096.06 3653.73 18086.27 11283.22 12286.65 13679.61 140
pm-mvs178.21 12985.68 9169.50 15980.38 13275.73 14776.25 17265.04 11887.59 5254.47 18393.16 2595.99 4154.20 17686.37 11182.98 12586.64 13777.96 149
MVSTER68.08 18069.73 18266.16 17666.33 20370.06 17175.71 17952.36 19355.18 21258.64 17270.23 20056.72 21457.34 16279.68 16276.03 16686.61 13880.20 137
thres40073.13 15976.99 15568.62 16379.46 13874.93 15477.23 16661.23 15675.54 14052.31 19172.20 18677.10 18054.89 17282.92 13782.62 12786.57 13973.66 165
EPNet79.36 12279.44 13979.27 9989.51 4677.20 13588.35 9077.35 3268.27 17174.29 11076.31 16279.22 17159.63 15485.02 12685.45 9686.49 14084.61 90
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
PatchMatch-RL76.05 14276.64 15675.36 12277.84 15669.87 17381.09 14563.43 13971.66 15768.34 14871.70 18781.76 16574.98 7284.83 12883.44 11786.45 14173.22 166
CLD-MVS82.75 9387.22 7777.54 11288.01 6385.76 7190.23 7154.52 18482.28 9482.11 6788.48 8195.27 5563.95 14089.41 8288.29 7386.45 14181.01 127
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
IterMVS-LS79.79 11682.56 12776.56 11781.83 12477.85 12879.90 15369.42 7878.93 12871.21 12990.47 5385.20 15570.86 10680.54 15880.57 13986.15 14384.36 93
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
V4279.59 12083.59 12174.93 13069.61 18977.05 13786.59 10955.84 17978.42 13077.29 9289.84 6295.08 6274.12 7783.05 13680.11 14586.12 14481.59 122
GBi-Net73.17 15777.64 14867.95 16876.76 16077.36 13275.77 17664.57 12162.99 19551.83 19376.05 16577.76 17752.73 18585.57 11683.39 11886.04 14580.37 132
test173.17 15777.64 14867.95 16876.76 16077.36 13275.77 17664.57 12162.99 19551.83 19376.05 16577.76 17752.73 18585.57 11683.39 11886.04 14580.37 132
FMVSNet274.43 15279.70 13768.27 16576.76 16077.36 13275.77 17665.36 11672.28 15352.97 18781.92 13285.61 15252.73 18580.66 15779.73 14686.04 14580.37 132
ambc88.38 6291.62 1787.97 5184.48 12488.64 4587.93 1687.38 9094.82 6974.53 7589.14 8583.86 11485.94 14886.84 76
Fast-Effi-MVS+-dtu76.92 13477.18 15276.62 11679.55 13779.17 11784.80 12177.40 3064.46 18868.75 14470.81 19586.57 14863.36 14781.74 14981.76 13185.86 14975.78 155
PM-MVS80.42 11283.63 12076.67 11578.04 15272.37 16587.14 10260.18 16380.13 11971.75 12686.12 10493.92 8277.08 5286.56 10985.12 10085.83 15081.18 124
Baseline_NR-MVSNet82.79 9186.51 7978.44 10688.30 5775.62 14987.81 9374.97 4881.53 10266.84 15494.71 1296.46 2666.90 12891.79 5283.37 12185.83 15082.09 118
thres100view90069.86 17172.97 17866.24 17577.97 15372.49 16473.29 18659.12 16766.81 17450.82 19767.30 20375.67 18750.54 19178.24 16779.40 14885.71 15270.88 170
pmmvs-eth3d79.64 11882.06 13076.83 11480.05 13472.64 16387.47 9866.59 10280.83 11373.50 11589.32 7093.20 9167.78 12280.78 15681.64 13385.58 15376.01 153
MVS_Test76.72 13679.40 14073.60 13478.85 14674.99 15379.91 15261.56 15369.67 16372.44 12085.98 10690.78 12363.50 14578.30 16675.74 16885.33 15480.31 136
v14879.33 12382.32 12875.84 11980.14 13375.74 14681.98 13957.06 17681.51 10479.36 8489.42 6796.42 2871.32 10081.54 15275.29 17085.20 15576.32 152
tfpnnormal77.16 13384.26 10968.88 16281.02 12975.02 15276.52 17163.30 14087.29 5552.40 19091.24 4993.97 8054.85 17485.46 11981.08 13585.18 15675.76 156
FC-MVSNet-test75.91 14483.59 12166.95 17376.63 16869.07 17585.33 11864.97 11984.87 7741.95 20693.17 2487.04 14647.78 19591.09 6885.56 9585.06 15774.34 159
CANet_DTU75.04 14978.45 14271.07 14577.27 15777.96 12783.88 12758.00 17464.11 18968.67 14575.65 17188.37 14153.92 17982.05 14681.11 13484.67 15879.88 138
FMVSNet371.40 16875.20 16966.97 17275.00 17476.59 13974.29 18364.57 12162.99 19551.83 19376.05 16577.76 17751.49 19076.58 17477.03 16284.62 15979.43 141
pmmvs475.92 14377.48 15174.10 13378.21 15170.94 16784.06 12564.78 12075.13 14368.47 14784.12 12083.32 15864.74 13975.93 17879.14 15184.31 16073.77 163
baseline268.71 17768.34 18669.14 16075.69 17069.70 17476.60 17055.53 18160.13 20362.07 16866.76 20560.35 20460.77 15176.53 17674.03 17284.19 16170.88 170
GA-MVS75.01 15076.39 15873.39 13678.37 14875.66 14880.03 15058.40 17270.51 16175.85 9983.24 12576.14 18463.75 14177.28 17076.62 16483.97 16275.30 158
CDS-MVSNet73.07 16077.02 15368.46 16481.62 12572.89 16279.56 15770.78 6869.56 16452.52 18977.37 15681.12 16742.60 20084.20 13283.93 11183.65 16370.07 174
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
RPMNet67.02 18263.99 19770.56 15171.55 18467.63 17975.81 17469.44 7759.93 20463.24 16264.32 20747.51 22259.68 15370.37 19569.64 18683.64 16468.49 179
CR-MVSNet69.56 17368.34 18670.99 14772.78 18167.63 17964.47 20567.74 9759.93 20472.30 12180.10 13656.77 21365.04 13771.64 19072.91 17683.61 16569.40 176
PMMVS61.98 19665.61 19257.74 19445.03 21751.76 20869.54 19835.05 21055.49 21155.32 18068.23 20278.39 17558.09 15970.21 19671.56 18183.42 16663.66 187
IterMVS-SCA-FT77.23 13279.18 14174.96 12976.67 16779.85 11275.58 18161.34 15573.10 14773.79 11486.23 10279.61 17079.00 3680.28 16075.50 16983.41 16779.70 139
diffmvs76.74 13581.61 13271.06 14675.64 17174.45 15880.68 14757.57 17577.48 13167.62 15288.95 7593.94 8161.98 14979.74 16176.18 16582.85 16880.50 130
EU-MVSNet76.48 13880.53 13671.75 14367.62 19570.30 17081.74 14154.06 18775.47 14171.01 13180.10 13693.17 9373.67 8283.73 13477.85 15482.40 16983.07 106
baseline169.62 17273.55 17565.02 18478.95 14570.39 16971.38 19262.03 15070.97 16047.95 20078.47 14968.19 19747.77 19679.65 16376.94 16382.05 17070.27 172
HyFIR lowres test73.29 15674.14 17272.30 14073.08 17878.33 12583.12 12962.41 14963.81 19062.13 16776.67 16178.50 17471.09 10274.13 18277.47 15981.98 17170.10 173
CVMVSNet75.65 14677.62 15073.35 13871.95 18269.89 17283.04 13160.84 15969.12 16768.76 14379.92 13978.93 17373.64 8481.02 15481.01 13681.86 17283.43 102
pmmvs568.91 17574.35 17062.56 18767.45 19766.78 18371.70 18951.47 19667.17 17356.25 17782.41 12988.59 14047.21 19773.21 18874.23 17181.30 17368.03 180
gg-mvs-nofinetune72.68 16275.21 16869.73 15681.48 12669.04 17670.48 19376.67 3686.92 5967.80 15188.06 8464.67 19942.12 20277.60 16873.65 17379.81 17466.57 181
IterMVS73.62 15476.53 15770.23 15371.83 18377.18 13680.69 14653.22 19172.23 15466.62 15585.21 11278.96 17269.54 11376.28 17771.63 18079.45 17574.25 161
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
MS-PatchMatch71.18 16973.99 17367.89 17077.16 15871.76 16677.18 16756.38 17867.35 17255.04 18274.63 17675.70 18662.38 14876.62 17375.97 16779.22 17675.90 154
gm-plane-assit71.56 16669.99 18173.39 13684.43 9473.21 16190.42 7051.36 19784.08 8176.00 9791.30 4737.09 22359.01 15673.65 18570.24 18479.09 17760.37 198
MDA-MVSNet-bldmvs76.51 13782.87 12669.09 16150.71 21674.72 15784.05 12660.27 16281.62 10171.16 13088.21 8391.58 11469.62 11292.78 4577.48 15878.75 17873.69 164
EPNet_dtu71.90 16573.03 17770.59 15078.28 14961.64 19482.44 13664.12 12663.26 19269.74 13671.47 18982.41 16251.89 18978.83 16578.01 15277.07 17975.60 157
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
CMPMVSbinary55.74 1871.56 16676.26 15966.08 17868.11 19363.91 19163.17 20750.52 19968.79 17075.49 10070.78 19685.67 15163.54 14481.58 15077.20 16075.63 18085.86 83
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
test-mter59.39 20061.59 20456.82 19653.21 21254.82 20273.12 18826.57 21553.19 21356.31 17664.71 20660.47 20356.36 16668.69 19964.27 19475.38 18165.00 183
test-LLR62.15 19559.46 21165.29 18279.07 14352.66 20669.46 19962.93 14350.76 21553.81 18563.11 20958.91 20752.87 18366.54 20462.34 19673.59 18261.87 194
TESTMET0.1,157.21 20359.46 21154.60 20250.95 21452.66 20669.46 19926.91 21450.76 21553.81 18563.11 20958.91 20752.87 18366.54 20462.34 19673.59 18261.87 194
pmmvs362.72 19268.71 18555.74 19850.74 21557.10 19970.05 19528.82 21361.57 20257.39 17471.19 19385.73 15053.96 17873.36 18769.43 18773.47 18462.55 192
CostFormer66.81 18366.94 18966.67 17472.79 18068.25 17879.55 15855.57 18065.52 18262.77 16476.98 15960.09 20556.73 16465.69 20662.35 19572.59 18569.71 175
MDTV_nov1_ep13_2view72.96 16175.59 16569.88 15571.15 18664.86 18882.31 13754.45 18576.30 13678.32 8986.52 9991.58 11461.35 15076.80 17166.83 19171.70 18666.26 182
MDTV_nov1_ep1364.96 18664.77 19465.18 18367.08 19862.46 19375.80 17551.10 19862.27 19969.74 13674.12 17762.65 20055.64 17168.19 20062.16 19971.70 18661.57 196
PatchT66.25 18466.76 19065.67 18155.87 21160.75 19570.17 19459.00 16859.80 20672.30 12178.68 14654.12 21865.04 13771.64 19072.91 17671.63 18869.40 176
baseline69.33 17475.37 16762.28 18866.54 20166.67 18473.95 18548.07 20066.10 17759.26 17182.45 12886.30 14954.44 17574.42 18173.25 17571.42 18978.43 148
dps65.14 18564.50 19565.89 18071.41 18565.81 18771.44 19161.59 15258.56 20761.43 16975.45 17252.70 22058.06 16069.57 19764.65 19371.39 19064.77 184
SCA68.54 17867.52 18869.73 15667.79 19475.04 15176.96 16968.94 8366.41 17667.86 15074.03 17860.96 20265.55 13568.99 19865.67 19271.30 19161.54 197
MVS-HIRNet59.74 19858.74 21460.92 19057.74 21045.81 21456.02 21458.69 17155.69 21065.17 15870.86 19471.66 19356.75 16361.11 21153.74 21071.17 19252.28 209
MIMVSNet173.40 15581.85 13163.55 18572.90 17964.37 18984.58 12353.60 18990.84 2053.92 18487.75 8696.10 3445.31 19885.37 12079.32 14970.98 19369.18 178
test20.0369.91 17076.20 16162.58 18684.01 10067.34 18175.67 18065.88 11279.98 12140.28 21082.65 12789.31 13439.63 20577.41 16973.28 17469.98 19463.40 189
Anonymous2023120667.28 18173.41 17660.12 19176.45 16963.61 19274.21 18456.52 17776.35 13542.23 20575.81 17090.47 12641.51 20374.52 17969.97 18569.83 19563.17 190
CHOSEN 1792x268868.80 17671.09 17966.13 17769.11 19168.89 17778.98 16054.68 18261.63 20056.69 17571.56 18878.39 17567.69 12372.13 18972.01 17969.63 19673.02 167
testgi68.20 17976.05 16259.04 19279.99 13567.32 18281.16 14451.78 19584.91 7639.36 21173.42 18295.19 5732.79 21176.54 17570.40 18369.14 19764.55 185
TAMVS63.02 18969.30 18355.70 19970.12 18756.89 20069.63 19745.13 20370.23 16238.00 21277.79 15075.15 18942.60 20074.48 18072.81 17868.70 19857.75 205
test0.0.03 161.79 19765.33 19357.65 19579.07 14364.09 19068.51 20262.93 14361.59 20133.71 21461.58 21171.58 19533.43 21070.95 19368.68 18868.26 19958.82 201
tpm cat164.79 18862.74 20267.17 17174.61 17565.91 18676.18 17359.32 16664.88 18766.41 15671.21 19253.56 21959.17 15561.53 21058.16 20467.33 20063.95 186
PatchmatchNetpermissive64.81 18763.74 19866.06 17969.21 19058.62 19873.16 18760.01 16565.92 17866.19 15776.27 16359.09 20660.45 15266.58 20361.47 20167.33 20058.24 203
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
MIMVSNet63.02 18969.02 18456.01 19768.20 19259.26 19770.01 19653.79 18871.56 15841.26 20971.38 19082.38 16336.38 20771.43 19267.32 19066.45 20259.83 200
FMVSNet556.37 20660.14 20851.98 20760.83 20759.58 19666.85 20442.37 20652.68 21441.33 20847.09 21554.68 21735.28 20873.88 18370.77 18265.24 20362.26 193
CHOSEN 280x42056.32 20758.85 21353.36 20351.63 21339.91 21769.12 20138.61 20956.29 20936.79 21348.84 21462.59 20163.39 14673.61 18667.66 18960.61 20463.07 191
GG-mvs-BLEND41.63 21260.36 20719.78 2130.14 22466.04 18555.66 2150.17 22157.64 2082.42 22351.82 21369.42 1960.28 22064.11 20958.29 20360.02 20555.18 207
tpm62.79 19163.25 19962.26 18970.09 18853.78 20371.65 19047.31 20165.72 18176.70 9480.62 13556.40 21648.11 19464.20 20858.54 20259.70 20663.47 188
tpmrst59.42 19960.02 20958.71 19367.56 19653.10 20566.99 20351.88 19463.80 19157.68 17376.73 16056.49 21548.73 19356.47 21455.55 20759.43 20758.02 204
pmnet_mix0262.60 19370.81 18053.02 20466.56 20050.44 21062.81 20846.84 20279.13 12743.76 20487.45 8890.75 12439.85 20470.48 19457.09 20558.27 20860.32 199
new-patchmatchnet62.59 19473.79 17449.53 20876.98 15953.57 20453.46 21654.64 18385.43 7128.81 21591.94 3796.41 2925.28 21376.80 17153.66 21157.99 20958.69 202
EPMVS56.62 20559.77 21052.94 20562.41 20650.55 20960.66 21052.83 19265.15 18641.80 20777.46 15557.28 21242.68 19959.81 21254.82 20857.23 21053.35 208
new_pmnet52.29 20963.16 20039.61 21158.89 20944.70 21548.78 21834.73 21165.88 17917.85 21973.42 18280.00 16923.06 21467.00 20262.28 19854.36 21148.81 211
E-PMN59.07 20162.79 20154.72 20067.01 19947.81 21360.44 21143.40 20472.95 15044.63 20370.42 19873.17 19258.73 15780.97 15551.98 21254.14 21242.26 214
EMVS58.97 20262.63 20354.70 20166.26 20448.71 21161.74 20942.71 20572.80 15246.00 20273.01 18571.66 19357.91 16180.41 15950.68 21453.55 21341.11 215
ADS-MVSNet56.89 20461.09 20552.00 20659.48 20848.10 21258.02 21254.37 18672.82 15149.19 19975.32 17365.97 19837.96 20659.34 21354.66 20952.99 21451.42 210
N_pmnet54.95 20865.90 19142.18 20966.37 20243.86 21657.92 21339.79 20879.54 12417.24 22086.31 10087.91 14325.44 21264.68 20751.76 21346.33 21547.23 212
MVEpermissive41.12 1951.80 21060.92 20641.16 21035.21 21934.14 21948.45 21941.39 20769.11 16819.53 21863.33 20873.80 19063.56 14367.19 20161.51 20038.85 21657.38 206
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
PMMVS248.13 21164.06 19629.55 21244.06 21836.69 21851.95 21729.97 21274.75 1458.90 22276.02 16891.24 1207.53 21673.78 18455.91 20634.87 21740.01 216
test_method22.69 21326.99 21517.67 2142.13 2214.31 22227.50 2204.53 21737.94 21724.52 21736.20 21751.40 22115.26 21529.86 21617.09 21632.07 21812.16 217
DeepMVS_CXcopyleft17.78 22020.40 2216.69 21631.41 2189.80 22138.61 21634.88 22433.78 20928.41 21723.59 21945.77 213
tmp_tt13.54 21516.73 2206.42 2218.49 2222.36 21828.69 21927.44 21618.40 21813.51 2253.70 21733.23 21536.26 21522.54 220
testmvs0.93 2151.37 2170.41 2170.36 2230.36 2240.62 2240.39 2191.48 2200.18 2252.41 2191.31 2270.41 2191.25 2191.08 2180.48 2211.68 218
test1231.06 2141.41 2160.64 2160.39 2220.48 2230.52 2250.25 2201.11 2211.37 2242.01 2201.98 2260.87 2181.43 2181.27 2170.46 2221.62 219
uanet_test0.00 2160.00 2180.00 2180.00 2250.00 2250.00 2260.00 2220.00 2220.00 2260.00 2210.00 2280.00 2210.00 2200.00 2190.00 2230.00 220
sosnet-low-res0.00 2160.00 2180.00 2180.00 2250.00 2250.00 2260.00 2220.00 2220.00 2260.00 2210.00 2280.00 2210.00 2200.00 2190.00 2230.00 220
sosnet0.00 2160.00 2180.00 2180.00 2250.00 2250.00 2260.00 2220.00 2220.00 2260.00 2210.00 2280.00 2210.00 2200.00 2190.00 2230.00 220
RE-MVS-def87.10 29
9.1489.43 131
SR-MVS91.82 1380.80 795.53 50
our_test_373.27 17770.91 16883.26 128
MTAPA89.37 994.85 67
MTMP90.54 595.16 59
Patchmatch-RL test4.13 223
mPP-MVS93.05 495.77 44
NP-MVS78.65 129
Patchmtry56.88 20164.47 20567.74 9772.30 121