This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorcourty.delive.electrofacadekickermeadowofficepipesplaygr.reliefrelief.terraceterrai.
sorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
LTVRE_ROB86.82 191.55 394.43 388.19 1183.19 10786.35 6593.60 3678.79 1995.48 391.79 293.08 2497.21 2086.34 397.06 296.27 395.46 2395.56 2
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
COLMAP_ROBcopyleft85.66 291.85 295.01 288.16 1288.98 5192.86 295.51 2072.17 5894.95 491.27 394.11 1497.77 1184.22 896.49 495.27 596.79 293.60 11
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
3Dnovator+83.71 388.13 4390.00 5085.94 2986.82 7091.06 1394.26 3275.39 4588.85 4085.76 3785.74 10586.92 14078.02 4393.03 4092.21 3595.39 2592.21 34
DeepC-MVS83.59 490.37 1292.56 1787.82 1591.26 2792.33 394.72 2980.04 990.01 3084.61 4293.33 2094.22 7780.59 2892.90 4292.52 2995.69 2192.57 27
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
DeepC-MVS_fast81.78 587.38 4989.64 5184.75 4089.89 4290.70 2292.74 4274.45 4986.02 6482.16 6486.05 10191.99 10775.84 6291.16 6290.44 4893.41 4891.09 44
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
DeepPCF-MVS81.61 687.95 4790.29 4985.22 3887.48 6590.01 3093.79 3373.54 5388.93 3883.89 4589.40 6590.84 11780.26 3190.62 7190.19 5292.36 6892.03 35
ACMM80.67 790.67 792.46 1888.57 891.35 2289.93 3196.34 1277.36 3190.17 2786.88 2987.32 8796.63 2383.32 1395.79 1094.49 1096.19 992.91 25
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
ACMP80.00 890.12 1692.30 2487.58 1990.83 3491.10 1294.96 2776.06 4187.47 5185.33 3988.91 7497.65 1582.13 2095.31 1793.44 2096.14 1092.22 33
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
PMVScopyleft79.51 990.23 1492.67 1387.39 2190.16 3988.75 4093.64 3575.78 4390.00 3183.70 4792.97 2692.22 10086.13 497.01 396.79 294.94 2990.96 46
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
3Dnovator79.41 1082.21 9286.07 8477.71 10479.31 13584.61 7487.18 9761.02 15385.65 6676.11 9285.07 11185.38 14770.96 10187.22 9986.47 8391.66 7588.12 68
ACMH+79.05 1189.62 2693.08 785.58 3288.58 5489.26 3792.18 4474.23 5193.55 782.66 5892.32 3498.35 780.29 2995.28 1892.34 3295.52 2290.43 49
ACMH78.40 1288.94 3792.62 1584.65 4186.45 7387.16 5891.47 4768.79 8395.49 289.74 693.55 1798.50 277.96 4494.14 3289.57 6193.49 4689.94 53
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
TAPA-MVS78.00 1385.88 5888.37 6182.96 6084.69 8688.62 4190.62 5764.22 12389.15 3788.05 1578.83 13993.71 8176.20 5890.11 7688.22 7194.00 4189.97 52
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
PCF-MVS76.59 1484.11 7485.27 9182.76 6486.12 7688.30 4391.24 4969.10 7882.36 9184.45 4377.56 14790.40 12172.91 8685.88 11083.88 10892.72 6188.53 64
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
PLCcopyleft76.06 1585.38 6387.46 7182.95 6185.79 7988.84 3988.86 8268.70 8487.06 5683.60 4879.02 13590.05 12277.37 5190.88 6989.66 5993.37 4986.74 76
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
OpenMVScopyleft75.38 1678.44 12381.39 12874.99 12380.46 12679.85 10779.99 14658.31 16877.34 12973.85 10777.19 15082.33 15768.60 11484.67 12481.95 12488.72 11186.40 79
IB-MVS71.28 1775.21 14377.00 14973.12 13476.76 15577.45 12683.05 12558.92 16563.01 18864.31 15459.99 20687.57 13868.64 11386.26 10882.34 12387.05 13082.36 113
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
CMPMVSbinary55.74 1871.56 16176.26 15466.08 17368.11 18863.91 18663.17 20250.52 19468.79 16475.49 9570.78 18985.67 14463.54 13981.58 14577.20 15575.63 17585.86 81
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
MVEpermissive41.12 1951.80 20460.92 20041.16 20435.21 21334.14 21348.45 21341.39 20169.11 16219.53 21063.33 20273.80 18463.56 13867.19 19561.51 19538.85 21057.38 201
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
xxxxxxxxxxxxxcwj88.03 4691.29 4184.22 4888.17 5987.90 5190.80 5471.80 6089.28 3382.70 5689.90 5797.72 1277.91 4591.69 5290.04 5393.95 4392.47 28
SF-MVS87.85 4890.95 4484.22 4888.17 5987.90 5190.80 5471.80 6089.28 3382.70 5689.90 5795.37 5377.91 4591.69 5290.04 5393.95 4392.47 28
9.1489.43 124
uanet_test0.00 2090.00 2110.00 2110.00 2180.00 2180.00 2190.00 2150.00 2150.00 2180.00 2140.00 2210.00 2140.00 2130.00 2120.00 2160.00 214
ET-MVSNet_ETH3D74.71 14674.19 16675.31 11879.22 13775.29 14582.70 12964.05 12665.45 17770.96 12677.15 15157.70 20565.89 12884.40 12681.65 12789.03 10677.67 146
UniMVSNet_ETH3D85.39 6291.12 4378.71 9790.48 3783.72 8081.76 13582.41 693.84 564.43 15395.41 698.76 163.72 13793.63 3489.74 5789.47 10282.74 109
EIA-MVS78.57 12277.90 14179.35 9487.24 6880.71 10386.16 10764.03 12762.63 19273.49 11073.60 17476.12 17873.83 7988.49 8784.93 9891.36 7978.78 140
ETV-MVS79.01 12177.98 14080.22 8986.69 7179.73 11088.80 8368.27 9063.22 18771.56 12170.25 19273.63 18573.66 8190.30 7486.77 8292.33 6981.95 116
CS-MVS79.35 11777.74 14281.22 7485.59 8179.85 10788.78 8466.61 10067.63 16680.41 7367.82 19675.07 18373.27 8588.31 9084.36 10492.63 6281.18 120
MSP-MVS89.40 2792.69 1285.56 3489.01 5089.85 3293.72 3475.42 4492.28 1080.49 7294.36 1294.87 6581.46 2592.49 4891.42 4293.27 5093.54 16
SR-MVS91.82 1380.80 795.53 49
DPM-MVS81.42 9982.11 12480.62 8487.54 6485.30 7290.18 7168.96 8081.00 11079.15 8370.45 19083.29 15267.67 11982.81 13583.46 11190.19 9188.48 65
thisisatest053075.54 14275.95 15975.05 12075.08 16873.56 15582.15 13360.31 15669.17 16069.32 13279.02 13558.78 20472.17 9083.88 12883.08 11891.30 8184.20 93
Anonymous20240521184.68 10183.92 9779.45 11279.03 15467.79 9482.01 9488.77 7792.58 9555.93 16386.68 10384.26 10588.92 10878.98 138
DCV-MVSNet80.04 10885.67 8973.48 13082.91 11081.11 10280.44 14366.06 10685.01 7362.53 16078.84 13894.43 7558.51 15388.66 8485.91 8890.41 8985.73 83
tttt051775.86 14076.23 15575.42 11675.55 16774.06 15482.73 12860.31 15669.24 15970.24 12979.18 13458.79 20372.17 9084.49 12583.08 11891.54 7684.80 87
our_test_373.27 17270.91 16383.26 123
thisisatest051581.18 10484.32 10577.52 10876.73 16174.84 15085.06 11561.37 15081.05 10973.95 10688.79 7689.25 12875.49 6585.98 10984.78 10092.53 6685.56 85
SMA-MVS90.13 1592.26 2587.64 1891.68 1690.44 2695.22 2477.34 3390.79 2187.80 1790.42 5392.05 10579.05 3593.89 3393.59 1994.77 3394.62 4
DPE-MVS89.81 2292.34 2286.86 2489.69 4491.00 1695.53 1976.91 3488.18 4583.43 5393.48 1895.19 5681.07 2792.75 4492.07 3794.55 3693.74 10
test_part193.49 18
thres100view90069.86 16672.97 17366.24 17077.97 14872.49 15973.29 18159.12 16366.81 16950.82 19167.30 19775.67 18050.54 18678.24 16279.40 14385.71 14770.88 166
tfpnnormal77.16 12884.26 10668.88 15781.02 12475.02 14776.52 16663.30 13687.29 5352.40 18491.24 4793.97 7854.85 16985.46 11481.08 13085.18 15175.76 152
tfpn200view972.01 15975.40 16168.06 16277.97 14876.44 13577.04 16362.67 14266.81 16950.82 19167.30 19775.67 18052.46 18385.06 11782.64 12187.41 12673.86 158
CHOSEN 280x42056.32 20158.85 20753.36 19851.63 20739.91 21169.12 19638.61 20356.29 20336.79 20648.84 20862.59 19563.39 14173.61 18167.66 18460.61 19963.07 187
CANet82.84 8784.60 10280.78 7987.30 6685.20 7390.23 6969.00 7972.16 14978.73 8584.49 11490.70 11969.54 10987.65 9486.17 8589.87 9685.84 82
Fast-Effi-MVS+-dtu76.92 12977.18 14776.62 11179.55 13279.17 11384.80 11677.40 3064.46 18268.75 13870.81 18886.57 14163.36 14281.74 14481.76 12685.86 14475.78 151
Effi-MVS+-dtu82.04 9583.39 11880.48 8785.48 8286.57 6488.40 8668.28 8969.04 16373.13 11376.26 15791.11 11674.74 7288.40 8887.76 7392.84 6084.57 90
CANet_DTU75.04 14478.45 13671.07 14077.27 15277.96 12283.88 12258.00 16964.11 18368.67 13975.65 16488.37 13453.92 17482.05 14181.11 12984.67 15379.88 134
MVS_030484.73 7086.19 8183.02 5788.32 5586.71 6191.55 4670.87 6673.79 14182.88 5485.13 10993.35 8772.55 8788.62 8587.69 7491.93 7388.05 69
DVP-MVS88.51 4191.36 3885.19 3990.63 3692.01 495.29 2377.52 2890.48 2480.21 7790.21 5496.08 3476.38 5688.30 9191.42 4291.12 8591.01 45
IterMVS-SCA-FT77.23 12779.18 13574.96 12476.67 16279.85 10775.58 17661.34 15173.10 14273.79 10886.23 9879.61 16379.00 3680.28 15575.50 16483.41 16279.70 135
TSAR-MVS + MP.89.67 2492.25 2686.65 2691.53 1890.98 1796.15 1473.30 5587.88 4881.83 6692.92 2795.15 5982.23 1993.58 3592.25 3494.87 3093.01 24
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
OPM-MVS89.82 2192.24 2786.99 2390.86 3389.35 3695.07 2675.91 4291.16 1586.87 3091.07 4897.29 1879.13 3493.32 3691.99 3894.12 4091.49 41
ACMMP_NAP89.86 1991.96 3187.42 2091.00 3090.08 2996.00 1676.61 3789.28 3387.73 1890.04 5591.80 10878.71 3894.36 2993.82 1894.48 3794.32 5
ambc88.38 6091.62 1787.97 5084.48 11988.64 4387.93 1687.38 8694.82 6874.53 7389.14 8283.86 11085.94 14386.84 75
zzz-MVS90.38 1191.35 3989.25 593.08 386.59 6296.45 1179.00 1690.23 2689.30 1085.87 10394.97 6482.54 1895.05 2394.83 795.14 2791.94 36
Effi-MVS+82.33 9183.87 11280.52 8684.51 9081.32 9887.53 9368.05 9274.94 13979.67 7982.37 12592.31 9972.21 8985.06 11786.91 7991.18 8384.20 93
new-patchmatchnet62.59 18873.79 16949.53 20276.98 15453.57 19953.46 21054.64 17885.43 6928.81 20891.94 3596.41 2825.28 20776.80 16653.66 20557.99 20358.69 197
pmmvs680.46 10588.34 6371.26 13981.96 11877.51 12577.54 15968.83 8293.72 655.92 17293.94 1698.03 955.94 16289.21 8185.61 9187.36 12780.38 127
pmmvs568.91 17074.35 16562.56 18267.45 19266.78 17871.70 18451.47 19167.17 16856.25 17182.41 12388.59 13347.21 19273.21 18374.23 16681.30 16868.03 176
Fast-Effi-MVS+81.42 9983.82 11378.62 9982.24 11680.62 10487.72 9163.51 13473.01 14374.75 10183.80 11892.70 9473.44 8388.15 9385.26 9490.05 9283.17 101
Anonymous2023121179.37 11585.78 8771.89 13782.87 11279.66 11178.77 15663.93 13183.36 8259.39 16490.54 5094.66 7056.46 16087.38 9684.12 10689.92 9580.74 124
pmmvs-eth3d79.64 11282.06 12576.83 10980.05 12972.64 15887.47 9466.59 10180.83 11173.50 10989.32 6793.20 8967.78 11780.78 15181.64 12885.58 14876.01 149
GG-mvs-BLEND41.63 20660.36 20119.78 2070.14 21766.04 18055.66 2090.17 21457.64 2022.42 21551.82 20769.42 1900.28 21364.11 20358.29 19860.02 20055.18 202
Anonymous2023120667.28 17673.41 17160.12 18676.45 16463.61 18774.21 17956.52 17276.35 13142.23 19875.81 16390.47 12041.51 19874.52 17469.97 18069.83 19063.17 186
MTAPA89.37 994.85 66
MTMP90.54 595.16 58
gm-plane-assit71.56 16169.99 17573.39 13184.43 9173.21 15690.42 6851.36 19284.08 7976.00 9391.30 4537.09 21659.01 15173.65 18070.24 17979.09 17260.37 194
train_agg86.67 5387.73 6985.43 3591.51 1982.72 8794.47 3074.22 5281.71 9681.54 7089.20 6992.87 9278.33 4290.12 7588.47 6892.51 6789.04 60
gg-mvs-nofinetune72.68 15775.21 16369.73 15181.48 12169.04 17170.48 18876.67 3686.92 5767.80 14588.06 8164.67 19342.12 19777.60 16373.65 16879.81 16966.57 177
SCA68.54 17367.52 18269.73 15167.79 18975.04 14676.96 16468.94 8166.41 17167.86 14474.03 17160.96 19665.55 13068.99 19265.67 18771.30 18661.54 193
MS-PatchMatch71.18 16473.99 16867.89 16577.16 15371.76 16177.18 16256.38 17367.35 16755.04 17674.63 16975.70 17962.38 14376.62 16875.97 16279.22 17175.90 150
Patchmatch-RL test4.13 216
tmp_tt13.54 20816.73 2146.42 2158.49 2152.36 21128.69 21227.44 20918.40 21113.51 2183.70 21033.23 20936.26 20922.54 213
canonicalmvs81.22 10386.04 8575.60 11583.17 10883.18 8580.29 14465.82 11185.97 6567.98 14377.74 14591.51 11165.17 13188.62 8586.15 8691.17 8489.09 59
anonymousdsp85.62 5990.53 4679.88 9064.64 19976.35 13696.28 1353.53 18585.63 6781.59 6992.81 2897.71 1386.88 294.56 2692.83 2596.35 693.84 8
v14419283.43 8084.97 9781.63 7283.43 10381.23 10089.42 7866.04 10881.45 10486.40 3491.46 4395.70 4675.76 6382.14 13980.23 13988.74 11082.57 110
v192192083.49 7984.94 9881.80 6983.78 10081.20 10189.50 7665.91 10981.64 9887.18 2591.70 4095.39 5275.85 6181.56 14680.27 13888.60 11382.80 107
FC-MVSNet-train79.20 11986.29 8070.94 14384.06 9377.67 12485.68 10864.11 12582.90 8652.22 18692.57 3393.69 8249.52 18788.30 9186.93 7890.03 9381.95 116
UA-Net89.02 3391.44 3786.20 2894.88 189.84 3394.76 2877.45 2985.41 7074.79 10088.83 7588.90 13178.67 4096.06 795.45 496.66 395.58 1
v119283.61 7785.23 9281.72 7084.05 9482.15 9389.54 7566.20 10481.38 10586.76 3291.79 3996.03 3674.88 7181.81 14380.92 13288.91 10982.50 111
FC-MVSNet-test75.91 13983.59 11666.95 16876.63 16369.07 17085.33 11364.97 11784.87 7541.95 19993.17 2287.04 13947.78 19091.09 6585.56 9285.06 15274.34 155
v114483.22 8285.01 9581.14 7583.76 10181.60 9688.95 8165.58 11381.89 9585.80 3691.68 4195.84 4174.04 7782.12 14080.56 13588.70 11281.41 119
sosnet-low-res0.00 2090.00 2110.00 2110.00 2180.00 2180.00 2190.00 2150.00 2150.00 2180.00 2140.00 2210.00 2140.00 2130.00 2120.00 2160.00 214
HFP-MVS90.32 1392.37 2187.94 1491.46 2190.91 1895.69 1879.49 1289.94 3283.50 5089.06 7094.44 7481.68 2394.17 3194.19 1495.81 1793.87 6
v14879.33 11882.32 12375.84 11480.14 12875.74 14181.98 13457.06 17181.51 10279.36 8289.42 6496.42 2771.32 9681.54 14775.29 16585.20 15076.32 148
sosnet0.00 2090.00 2110.00 2110.00 2180.00 2180.00 2190.00 2150.00 2150.00 2180.00 2140.00 2210.00 2140.00 2130.00 2120.00 2160.00 214
v7n87.11 5090.46 4883.19 5685.22 8383.69 8190.03 7368.20 9191.01 1886.71 3394.80 998.46 477.69 4791.10 6485.98 8791.30 8188.19 66
DI_MVS_plusplus_trai77.64 12679.64 13275.31 11879.87 13176.89 13381.55 13863.64 13276.21 13372.03 11885.59 10682.97 15466.63 12479.27 15977.78 15088.14 11978.76 141
HPM-MVS++copyleft88.74 3989.54 5287.80 1692.58 785.69 7095.10 2578.01 2387.08 5587.66 2087.89 8292.07 10380.28 3090.97 6891.41 4493.17 5491.69 38
XVS91.28 2591.23 896.89 287.14 2694.53 7195.84 15
v124083.57 7884.94 9881.97 6784.05 9481.27 9989.46 7766.06 10681.31 10687.50 2191.88 3895.46 5176.25 5781.16 14880.51 13688.52 11682.98 105
pm-mvs178.21 12485.68 8869.50 15480.38 12775.73 14276.25 16765.04 11687.59 5054.47 17793.16 2395.99 4054.20 17186.37 10682.98 12086.64 13277.96 145
X-MVStestdata91.28 2591.23 896.89 287.14 2694.53 7195.84 15
X-MVS89.36 2890.73 4587.77 1791.50 2091.23 896.76 478.88 1887.29 5387.14 2678.98 13794.53 7176.47 5495.25 1994.28 1295.85 1493.55 15
v882.20 9384.56 10379.45 9282.42 11481.65 9587.26 9664.27 12279.36 12281.70 6891.04 4995.75 4473.30 8482.82 13479.18 14587.74 12382.09 114
v1083.17 8485.22 9380.78 7983.26 10682.99 8688.66 8566.49 10279.24 12383.60 4891.46 4395.47 5074.12 7582.60 13880.66 13388.53 11584.11 95
v2v48282.20 9384.26 10679.81 9182.67 11380.18 10687.67 9263.96 13081.69 9784.73 4191.27 4696.33 3172.05 9381.94 14279.56 14287.79 12278.84 139
V4279.59 11483.59 11674.93 12569.61 18477.05 13286.59 10555.84 17478.42 12677.29 8989.84 6095.08 6174.12 7583.05 13180.11 14086.12 13981.59 118
SD-MVS89.91 1892.23 2887.19 2291.31 2489.79 3494.31 3175.34 4689.26 3681.79 6792.68 2995.08 6183.88 1193.10 3992.69 2696.54 493.02 23
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
GA-MVS75.01 14576.39 15373.39 13178.37 14375.66 14380.03 14558.40 16770.51 15575.85 9483.24 11976.14 17763.75 13677.28 16576.62 15983.97 15775.30 154
MSLP-MVS++86.29 5789.10 5583.01 5885.71 8089.79 3487.04 10274.39 5085.17 7278.92 8477.59 14693.57 8482.60 1793.23 3791.88 4089.42 10392.46 30
APDe-MVS89.85 2092.91 986.29 2790.47 3891.34 796.04 1576.41 4091.11 1678.50 8693.44 1995.82 4281.55 2493.16 3891.90 3994.77 3393.58 14
TSAR-MVS + COLMAP85.51 6088.36 6282.19 6686.05 7787.69 5390.50 6470.60 6886.40 6082.33 5989.69 6292.52 9674.01 7887.53 9586.84 8189.63 9887.80 71
CVMVSNet75.65 14177.62 14573.35 13371.95 17769.89 16783.04 12660.84 15569.12 16168.76 13779.92 13378.93 16673.64 8281.02 14981.01 13181.86 16783.43 99
TSAR-MVS + ACMM89.14 2992.11 3085.67 3189.27 4790.61 2490.98 5079.48 1388.86 3979.80 7893.01 2593.53 8683.17 1592.75 4492.45 3091.32 8093.59 12
pmmvs475.92 13877.48 14674.10 12878.21 14670.94 16284.06 12064.78 11875.13 13868.47 14184.12 11583.32 15164.74 13475.93 17379.14 14684.31 15573.77 159
EU-MVSNet76.48 13380.53 13071.75 13867.62 19070.30 16581.74 13654.06 18275.47 13671.01 12580.10 13093.17 9173.67 8083.73 12977.85 14982.40 16483.07 102
test-LLR62.15 18959.46 20565.29 17779.07 13852.66 20169.46 19462.93 13950.76 20953.81 17963.11 20358.91 20152.87 17866.54 19862.34 19173.59 17761.87 190
TESTMET0.1,157.21 19759.46 20554.60 19750.95 20852.66 20169.46 19426.91 20850.76 20953.81 17963.11 20358.91 20152.87 17866.54 19862.34 19173.59 17761.87 190
test-mter59.39 19461.59 19856.82 19153.21 20654.82 19773.12 18326.57 20953.19 20756.31 17064.71 20060.47 19756.36 16168.69 19364.27 18975.38 17665.00 179
ACMMPR91.30 492.88 1089.46 491.92 1191.61 596.60 579.46 1490.08 2988.53 1489.54 6395.57 4784.25 795.24 2094.27 1395.97 1193.85 7
testgi68.20 17476.05 15759.04 18779.99 13067.32 17781.16 13951.78 19084.91 7439.36 20473.42 17595.19 5632.79 20576.54 17070.40 17869.14 19264.55 181
test20.0369.91 16576.20 15662.58 18184.01 9667.34 17675.67 17565.88 11079.98 11840.28 20382.65 12189.31 12739.63 19977.41 16473.28 16969.98 18963.40 185
thres600view774.34 14878.43 13769.56 15380.47 12576.28 13778.65 15762.56 14377.39 12852.53 18274.03 17176.78 17555.90 16485.06 11785.19 9587.25 12874.29 156
ADS-MVSNet56.89 19861.09 19952.00 20059.48 20248.10 20658.02 20654.37 18172.82 14549.19 19375.32 16665.97 19237.96 20059.34 20754.66 20352.99 20851.42 205
MP-MVScopyleft90.84 691.95 3289.55 392.92 590.90 1996.56 679.60 1186.83 5888.75 1389.00 7194.38 7684.01 994.94 2594.34 1195.45 2493.24 22
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
testmvs0.93 2081.37 2100.41 2100.36 2160.36 2170.62 2170.39 2121.48 2130.18 2172.41 2121.31 2200.41 2121.25 2121.08 2110.48 2141.68 212
thres40073.13 15476.99 15068.62 15879.46 13374.93 14977.23 16161.23 15275.54 13552.31 18572.20 17977.10 17354.89 16782.92 13282.62 12286.57 13473.66 161
test1231.06 2071.41 2090.64 2090.39 2150.48 2160.52 2180.25 2131.11 2141.37 2162.01 2131.98 2190.87 2111.43 2111.27 2100.46 2151.62 213
thres20072.41 15876.00 15868.21 16178.28 14476.28 13774.94 17762.56 14372.14 15051.35 19069.59 19476.51 17654.89 16785.06 11780.51 13687.25 12871.92 164
test0.0.03 161.79 19165.33 18757.65 19079.07 13864.09 18568.51 19762.93 13961.59 19533.71 20761.58 20571.58 18933.43 20470.95 18868.68 18368.26 19458.82 196
pmmvs362.72 18768.71 17955.74 19350.74 20957.10 19470.05 19028.82 20761.57 19657.39 16871.19 18685.73 14353.96 17373.36 18269.43 18273.47 17962.55 188
EMVS58.97 19662.63 19754.70 19666.26 19848.71 20561.74 20342.71 19972.80 14646.00 19673.01 17871.66 18757.91 15680.41 15450.68 20853.55 20741.11 210
E-PMN59.07 19562.79 19554.72 19567.01 19447.81 20760.44 20543.40 19872.95 14444.63 19770.42 19173.17 18658.73 15280.97 15051.98 20654.14 20642.26 209
PGM-MVS90.42 1091.58 3589.05 691.77 1491.06 1396.51 778.94 1785.41 7087.67 1987.02 9195.26 5583.62 1295.01 2493.94 1695.79 1993.40 20
MCST-MVS84.79 6986.48 7782.83 6387.30 6687.03 6090.46 6769.33 7783.14 8482.21 6381.69 12892.14 10275.09 6987.27 9884.78 10092.58 6389.30 58
MVS_Test76.72 13179.40 13473.60 12978.85 14174.99 14879.91 14761.56 14969.67 15772.44 11485.98 10290.78 11863.50 14078.30 16175.74 16385.33 14980.31 132
MDA-MVSNet-bldmvs76.51 13282.87 12169.09 15650.71 21074.72 15284.05 12160.27 15881.62 9971.16 12488.21 8091.58 10969.62 10892.78 4377.48 15378.75 17373.69 160
CDPH-MVS86.66 5488.52 5984.48 4489.61 4588.27 4492.86 4172.69 5780.55 11482.71 5586.92 9393.32 8875.55 6491.00 6789.85 5693.47 4789.71 54
casdiffmvs79.93 10984.11 11075.05 12081.41 12378.99 11582.95 12762.90 14181.53 10068.60 14091.94 3596.03 3665.84 12982.89 13377.07 15688.59 11480.34 131
diffmvs76.74 13081.61 12771.06 14175.64 16674.45 15380.68 14257.57 17077.48 12767.62 14688.95 7293.94 7961.98 14479.74 15676.18 16082.85 16380.50 126
baseline268.71 17268.34 18069.14 15575.69 16569.70 16976.60 16555.53 17660.13 19762.07 16266.76 19960.35 19860.77 14676.53 17174.03 16784.19 15670.88 166
baseline169.62 16773.55 17065.02 17978.95 14070.39 16471.38 18762.03 14670.97 15447.95 19478.47 14268.19 19147.77 19179.65 15876.94 15882.05 16570.27 168
PMMVS248.13 20564.06 19029.55 20644.06 21236.69 21251.95 21129.97 20674.75 1408.90 21476.02 16191.24 1157.53 20973.78 17955.91 20034.87 21140.01 211
PM-MVS80.42 10783.63 11576.67 11078.04 14772.37 16087.14 9860.18 15980.13 11671.75 12086.12 10093.92 8077.08 5286.56 10485.12 9685.83 14581.18 120
PS-CasMVS89.07 3293.23 684.21 5092.44 888.23 4690.54 6182.95 390.50 2375.31 9795.80 598.37 671.16 9796.30 593.32 2292.88 5890.11 51
UniMVSNet_NR-MVSNet84.62 7188.00 6780.68 8388.18 5883.83 7887.06 10076.47 3981.46 10370.49 12793.24 2195.56 4868.13 11590.43 7288.47 6893.78 4583.02 103
PEN-MVS88.86 3892.92 884.11 5292.92 588.05 4990.83 5382.67 591.04 1774.83 9995.97 398.47 370.38 10495.70 1392.43 3193.05 5788.78 63
TransMVSNet (Re)79.05 12086.66 7570.18 14983.32 10575.99 13977.54 15963.98 12990.68 2255.84 17394.80 996.06 3553.73 17586.27 10783.22 11786.65 13179.61 136
DTE-MVSNet88.99 3592.77 1184.59 4293.31 288.10 4790.96 5183.09 291.38 1376.21 9196.03 298.04 870.78 10395.65 1492.32 3393.18 5387.84 70
DU-MVS84.88 6888.27 6480.92 7788.30 5683.59 8287.06 10078.35 2080.64 11270.49 12792.67 3096.91 2168.13 11591.79 4989.29 6493.20 5283.02 103
UniMVSNet (Re)84.95 6788.53 5880.78 7987.82 6384.21 7688.03 8876.50 3881.18 10769.29 13392.63 3296.83 2269.07 11191.23 6189.60 6093.97 4284.00 96
CP-MVSNet88.71 4092.63 1484.13 5192.39 988.09 4890.47 6682.86 488.79 4175.16 9894.87 897.68 1471.05 9996.16 693.18 2492.85 5989.64 55
WR-MVS_H88.99 3593.28 583.99 5391.92 1189.13 3891.95 4583.23 190.14 2871.92 11995.85 498.01 1071.83 9495.82 993.19 2393.07 5690.83 48
WR-MVS89.79 2393.66 485.27 3791.32 2388.27 4493.49 3779.86 1092.75 875.37 9696.86 198.38 575.10 6895.93 894.07 1596.46 589.39 57
NR-MVSNet82.89 8687.43 7277.59 10683.91 9883.59 8287.10 9978.35 2080.64 11268.85 13692.67 3096.50 2454.19 17287.19 10188.68 6793.16 5582.75 108
Baseline_NR-MVSNet82.79 8886.51 7678.44 10188.30 5675.62 14487.81 9074.97 4781.53 10066.84 14894.71 1196.46 2566.90 12391.79 4983.37 11685.83 14582.09 114
TranMVSNet+NR-MVSNet85.23 6589.38 5380.39 8888.78 5383.77 7987.40 9576.75 3585.47 6868.99 13595.18 797.55 1667.13 12291.61 5589.13 6593.26 5182.95 106
TSAR-MVS + GP.85.32 6487.41 7382.89 6290.07 4185.69 7089.07 8072.99 5682.45 8974.52 10385.09 11087.67 13779.24 3391.11 6390.41 4991.45 7789.45 56
abl_679.30 9584.98 8585.78 6890.50 6466.88 9977.08 13074.02 10573.29 17789.34 12668.94 11290.49 8885.98 80
mPP-MVS93.05 495.77 43
SixPastTwentyTwo89.14 2992.19 2985.58 3284.62 8782.56 9090.53 6271.93 5991.95 1185.89 3594.22 1397.25 1985.42 595.73 1291.71 4195.08 2891.89 37
LGP-MVS_train90.56 992.38 2088.43 1090.88 3291.15 1195.35 2277.65 2686.26 6387.23 2490.45 5297.35 1783.20 1495.44 1693.41 2196.28 892.63 26
baseline69.33 16975.37 16262.28 18366.54 19566.67 17973.95 18048.07 19566.10 17259.26 16582.45 12286.30 14254.44 17074.42 17673.25 17071.42 18478.43 144
EPNet_dtu71.90 16073.03 17270.59 14578.28 14461.64 18982.44 13164.12 12463.26 18669.74 13071.47 18282.41 15551.89 18478.83 16078.01 14777.07 17475.60 153
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
CHOSEN 1792x268868.80 17171.09 17466.13 17269.11 18668.89 17278.98 15554.68 17761.63 19456.69 16971.56 18178.39 16867.69 11872.13 18472.01 17469.63 19173.02 163
EPNet79.36 11679.44 13379.27 9689.51 4677.20 13088.35 8777.35 3268.27 16574.29 10476.31 15579.22 16459.63 14985.02 12185.45 9386.49 13584.61 88
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
APD-MVScopyleft89.14 2991.25 4286.67 2591.73 1591.02 1595.50 2177.74 2584.04 8179.47 8191.48 4294.85 6681.14 2692.94 4192.20 3694.47 3892.24 32
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
CNVR-MVS86.93 5188.98 5684.54 4390.11 4087.41 5693.23 3973.47 5486.31 6282.25 6182.96 12092.15 10176.04 5991.69 5290.69 4692.17 7191.64 40
NCCC86.74 5287.97 6885.31 3690.64 3587.25 5793.27 3874.59 4886.50 5983.72 4675.92 16292.39 9877.08 5291.72 5190.68 4792.57 6591.30 43
CP-MVS91.09 592.33 2389.65 292.16 1090.41 2796.46 1080.38 888.26 4489.17 1187.00 9296.34 3083.95 1095.77 1194.72 895.81 1793.78 9
NP-MVS78.65 125
EG-PatchMatch MVS84.35 7287.55 7080.62 8486.38 7482.24 9286.75 10364.02 12884.24 7778.17 8889.38 6695.03 6378.78 3789.95 7786.33 8489.59 9985.65 84
tpm cat164.79 18362.74 19667.17 16674.61 17065.91 18176.18 16859.32 16264.88 18166.41 15071.21 18553.56 21359.17 15061.53 20458.16 19967.33 19563.95 182
SteuartSystems-ACMMP90.00 1791.73 3387.97 1391.21 2990.29 2896.51 778.00 2486.33 6185.32 4088.23 7994.67 6982.08 2195.13 2293.88 1794.72 3593.59 12
Skip Steuart: Steuart Systems R&D Blog.
CostFormer66.81 17866.94 18366.67 16972.79 17568.25 17379.55 15355.57 17565.52 17662.77 15876.98 15260.09 19956.73 15965.69 20062.35 19072.59 18069.71 171
CR-MVSNet69.56 16868.34 18070.99 14272.78 17667.63 17464.47 20067.74 9559.93 19872.30 11580.10 13056.77 20765.04 13271.64 18572.91 17183.61 16069.40 172
Patchmtry56.88 19664.47 20067.74 9572.30 115
PatchT66.25 17966.76 18465.67 17655.87 20560.75 19070.17 18959.00 16459.80 20072.30 11578.68 14054.12 21265.04 13271.64 18572.91 17171.63 18369.40 172
tpmrst59.42 19360.02 20358.71 18867.56 19153.10 20066.99 19851.88 18963.80 18557.68 16776.73 15356.49 20948.73 18856.47 20855.55 20159.43 20258.02 199
tpm62.79 18663.25 19362.26 18470.09 18353.78 19871.65 18547.31 19665.72 17576.70 9080.62 12956.40 21048.11 18964.20 20258.54 19759.70 20163.47 184
DELS-MVS79.71 11183.74 11475.01 12279.31 13582.68 8884.79 11760.06 16075.43 13769.09 13486.13 9989.38 12567.16 12185.12 11683.87 10989.65 9783.57 98
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
RPMNet67.02 17763.99 19170.56 14671.55 17967.63 17475.81 16969.44 7559.93 19863.24 15664.32 20147.51 21559.68 14870.37 18969.64 18183.64 15968.49 175
MVSTER68.08 17569.73 17666.16 17166.33 19770.06 16675.71 17452.36 18855.18 20658.64 16670.23 19356.72 20857.34 15779.68 15776.03 16186.61 13380.20 133
CPTT-MVS89.63 2590.52 4788.59 790.95 3190.74 2195.71 1779.13 1587.70 4985.68 3880.05 13295.74 4584.77 694.28 3092.68 2795.28 2692.45 31
GBi-Net73.17 15277.64 14367.95 16376.76 15577.36 12775.77 17164.57 11962.99 18951.83 18776.05 15877.76 17052.73 18085.57 11183.39 11386.04 14080.37 128
PVSNet_Blended_VisFu83.00 8584.16 10981.65 7182.17 11786.01 6688.03 8871.23 6476.05 13479.54 8083.88 11683.44 15077.49 5087.38 9684.93 9891.41 7887.40 74
PVSNet_BlendedMVS76.45 13478.12 13874.49 12676.76 15578.46 11879.65 15063.26 13765.42 17873.15 11175.05 16788.96 12966.51 12682.73 13677.66 15187.61 12478.60 142
PVSNet_Blended76.45 13478.12 13874.49 12676.76 15578.46 11879.65 15063.26 13765.42 17873.15 11175.05 16788.96 12966.51 12682.73 13677.66 15187.61 12478.60 142
FMVSNet556.37 20060.14 20251.98 20160.83 20159.58 19166.85 19942.37 20052.68 20841.33 20147.09 20954.68 21135.28 20273.88 17870.77 17765.24 19862.26 189
test173.17 15277.64 14367.95 16376.76 15577.36 12775.77 17164.57 11962.99 18951.83 18776.05 15877.76 17052.73 18085.57 11183.39 11386.04 14080.37 128
new_pmnet52.29 20363.16 19439.61 20558.89 20344.70 20948.78 21234.73 20565.88 17417.85 21173.42 17580.00 16223.06 20867.00 19662.28 19354.36 20548.81 206
FMVSNet371.40 16375.20 16466.97 16775.00 16976.59 13474.29 17864.57 11962.99 18951.83 18776.05 15877.76 17051.49 18576.58 16977.03 15784.62 15479.43 137
dps65.14 18064.50 18965.89 17571.41 18065.81 18271.44 18661.59 14858.56 20161.43 16375.45 16552.70 21458.06 15569.57 19164.65 18871.39 18564.77 180
FMVSNet274.43 14779.70 13168.27 16076.76 15577.36 12775.77 17165.36 11472.28 14752.97 18181.92 12685.61 14552.73 18080.66 15279.73 14186.04 14080.37 128
FMVSNet178.20 12584.83 10070.46 14778.62 14279.03 11477.90 15867.53 9783.02 8555.10 17587.19 9093.18 9055.65 16585.57 11183.39 11387.98 12082.40 112
N_pmnet54.95 20265.90 18542.18 20366.37 19643.86 21057.92 20739.79 20279.54 12117.24 21286.31 9687.91 13625.44 20664.68 20151.76 20746.33 20947.23 207
UGNet79.62 11385.91 8672.28 13673.52 17183.91 7786.64 10469.51 7379.85 11962.57 15985.82 10489.63 12353.18 17688.39 8987.35 7588.28 11886.43 78
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
MDTV_nov1_ep13_2view72.96 15675.59 16069.88 15071.15 18164.86 18382.31 13254.45 18076.30 13278.32 8786.52 9591.58 10961.35 14576.80 16666.83 18671.70 18166.26 178
MDTV_nov1_ep1364.96 18164.77 18865.18 17867.08 19362.46 18875.80 17051.10 19362.27 19369.74 13074.12 17062.65 19455.64 16668.19 19462.16 19471.70 18161.57 192
MIMVSNet173.40 15081.85 12663.55 18072.90 17464.37 18484.58 11853.60 18490.84 1953.92 17887.75 8396.10 3345.31 19385.37 11579.32 14470.98 18869.18 174
MIMVSNet63.02 18469.02 17856.01 19268.20 18759.26 19270.01 19153.79 18371.56 15241.26 20271.38 18382.38 15636.38 20171.43 18767.32 18566.45 19759.83 195
IterMVS-LS79.79 11082.56 12276.56 11281.83 11977.85 12379.90 14869.42 7678.93 12471.21 12390.47 5185.20 14870.86 10280.54 15380.57 13486.15 13884.36 91
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
CDS-MVSNet73.07 15577.02 14868.46 15981.62 12072.89 15779.56 15270.78 6769.56 15852.52 18377.37 14981.12 16042.60 19584.20 12783.93 10783.65 15870.07 170
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
IterMVS73.62 14976.53 15270.23 14871.83 17877.18 13180.69 14153.22 18672.23 14866.62 14985.21 10878.96 16569.54 10976.28 17271.63 17579.45 17074.25 157
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
MVS_111021_LR83.20 8385.33 9080.73 8282.88 11178.23 12189.61 7465.23 11582.08 9381.19 7185.31 10792.04 10675.22 6689.50 7885.90 8990.24 9084.23 92
HQP-MVS85.02 6686.41 7983.40 5489.19 4886.59 6291.28 4871.60 6382.79 8783.48 5178.65 14193.54 8572.55 8786.49 10585.89 9092.28 7090.95 47
QAPM80.43 10684.34 10475.86 11379.40 13482.06 9479.86 14961.94 14783.28 8374.73 10281.74 12785.44 14670.97 10084.99 12284.71 10288.29 11788.14 67
Vis-MVSNetpermissive83.32 8188.12 6677.71 10477.91 15083.44 8490.58 5869.49 7481.11 10867.10 14789.85 5991.48 11271.71 9591.34 5889.37 6289.48 10190.26 50
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
MVS-HIRNet59.74 19258.74 20860.92 18557.74 20445.81 20856.02 20858.69 16655.69 20465.17 15270.86 18771.66 18756.75 15861.11 20553.74 20471.17 18752.28 204
HyFIR lowres test73.29 15174.14 16772.30 13573.08 17378.33 12083.12 12462.41 14563.81 18462.13 16176.67 15478.50 16771.09 9874.13 17777.47 15481.98 16670.10 169
EPMVS56.62 19959.77 20452.94 19962.41 20050.55 20460.66 20452.83 18765.15 18041.80 20077.46 14857.28 20642.68 19459.81 20654.82 20257.23 20453.35 203
TAMVS63.02 18469.30 17755.70 19470.12 18256.89 19569.63 19245.13 19770.23 15638.00 20577.79 14375.15 18242.60 19574.48 17572.81 17368.70 19357.75 200
IS_MVSNet81.72 9785.01 9577.90 10386.19 7582.64 8985.56 10970.02 7080.11 11763.52 15587.28 8881.18 15967.26 12091.08 6689.33 6394.82 3283.42 100
RPSCF88.05 4592.61 1682.73 6584.24 9288.40 4290.04 7266.29 10391.46 1282.29 6088.93 7396.01 3879.38 3295.15 2194.90 694.15 3993.40 20
Vis-MVSNet (Re-imp)76.15 13680.84 12970.68 14483.66 10274.80 15181.66 13769.59 7180.48 11546.94 19587.44 8580.63 16153.14 17786.87 10284.56 10389.12 10571.12 165
MVS_111021_HR83.95 7586.10 8381.44 7384.62 8780.29 10590.51 6368.05 9284.07 8080.38 7584.74 11391.37 11374.23 7490.37 7387.25 7690.86 8784.59 89
CSCG88.12 4491.45 3684.23 4788.12 6190.59 2590.57 5968.60 8591.37 1483.45 5289.94 5695.14 6078.71 3891.45 5788.21 7295.96 1293.44 19
PatchMatch-RL76.05 13776.64 15175.36 11777.84 15169.87 16881.09 14063.43 13571.66 15168.34 14271.70 18081.76 15874.98 7084.83 12383.44 11286.45 13673.22 162
TDRefinement93.16 195.57 190.36 188.79 5293.57 197.27 178.23 2295.55 193.00 193.98 1596.01 3887.53 197.69 196.81 197.33 195.34 3
USDC81.39 10183.07 11979.43 9381.48 12178.95 11682.62 13066.17 10587.45 5290.73 482.40 12493.65 8366.57 12583.63 13077.97 14889.00 10777.45 147
EPP-MVSNet82.76 8986.47 7878.45 10086.00 7884.47 7585.39 11168.42 8784.17 7862.97 15789.26 6876.84 17472.13 9292.56 4790.40 5095.76 2087.56 73
PMMVS61.98 19065.61 18657.74 18945.03 21151.76 20369.54 19335.05 20455.49 20555.32 17468.23 19578.39 16858.09 15470.21 19071.56 17683.42 16163.66 183
ACMMPcopyleft90.63 892.40 1988.56 991.24 2891.60 696.49 977.53 2787.89 4786.87 3087.24 8996.46 2582.87 1695.59 1594.50 996.35 693.51 17
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
CNLPA85.50 6188.58 5781.91 6884.55 8987.52 5590.89 5263.56 13388.18 4584.06 4483.85 11791.34 11476.46 5591.27 5989.00 6691.96 7288.88 62
PatchmatchNetpermissive64.81 18263.74 19266.06 17469.21 18558.62 19373.16 18260.01 16165.92 17366.19 15176.27 15659.09 20060.45 14766.58 19761.47 19667.33 19558.24 198
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
PHI-MVS86.37 5688.14 6584.30 4686.65 7287.56 5490.76 5670.16 6982.55 8889.65 784.89 11292.40 9775.97 6090.88 6989.70 5892.58 6389.03 61
OMC-MVS88.16 4291.34 4084.46 4586.85 6990.63 2393.01 4067.00 9890.35 2587.40 2286.86 9496.35 2977.66 4892.63 4690.84 4594.84 3191.68 39
AdaColmapbinary84.15 7385.14 9483.00 5989.08 4987.14 5990.56 6070.90 6582.40 9080.41 7373.82 17384.69 14975.19 6791.58 5689.90 5591.87 7486.48 77
DeepMVS_CXcopyleft17.78 21420.40 2146.69 21031.41 2119.80 21338.61 21034.88 21733.78 20328.41 21023.59 21245.77 208
TinyColmap83.79 7686.12 8281.07 7683.42 10481.44 9785.42 11068.55 8688.71 4289.46 887.60 8492.72 9370.34 10589.29 8081.94 12589.20 10481.12 122
MAR-MVS81.98 9682.92 12080.88 7885.18 8485.85 6789.13 7969.52 7271.21 15382.25 6171.28 18488.89 13269.69 10688.71 8386.96 7789.52 10087.57 72
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
MSDG81.39 10184.23 10878.09 10282.40 11582.47 9185.31 11460.91 15479.73 12080.26 7686.30 9788.27 13569.67 10787.20 10084.98 9789.97 9480.67 125
LS3D89.02 3391.69 3485.91 3089.72 4390.81 2092.56 4371.69 6290.83 2087.24 2389.71 6192.07 10378.37 4194.43 2892.59 2895.86 1391.35 42
CLD-MVS82.75 9087.22 7477.54 10788.01 6285.76 6990.23 6954.52 17982.28 9282.11 6588.48 7895.27 5463.95 13589.41 7988.29 7086.45 13681.01 123
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
FPMVS81.56 9884.04 11178.66 9882.92 10975.96 14086.48 10665.66 11284.67 7671.47 12277.78 14483.22 15377.57 4991.24 6090.21 5187.84 12185.21 86
Gipumacopyleft86.47 5589.25 5483.23 5583.88 9978.78 11785.35 11268.42 8792.69 989.03 1291.94 3596.32 3281.80 2294.45 2786.86 8090.91 8683.69 97
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015