This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
MSP-MVS90.38 491.87 185.88 8692.83 8164.03 19293.06 10494.33 5182.19 1993.65 396.15 3085.89 197.19 8391.02 1997.75 196.43 26
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
MCST-MVS91.08 191.46 289.94 497.66 273.37 997.13 295.58 889.33 185.77 4496.26 2772.84 2599.38 192.64 595.93 1097.08 9
DeepPCF-MVS81.17 189.72 991.38 384.72 12793.00 7858.16 29196.72 794.41 4586.50 590.25 1797.83 175.46 1498.67 2392.78 495.49 1397.32 6
DVP-MVS++90.53 391.09 488.87 1497.31 469.91 3893.96 6794.37 4972.48 16392.07 696.85 1283.82 299.15 291.53 1597.42 497.55 4
CNVR-MVS90.32 590.89 588.61 1996.76 1070.65 2596.47 1294.83 2584.83 889.07 2296.80 1570.86 3299.06 1592.64 595.71 1196.12 34
DPM-MVS90.70 290.52 691.24 189.68 15776.68 297.29 195.35 1082.87 1491.58 1097.22 479.93 599.10 983.12 7997.64 297.94 1
ETH3 D test640090.27 690.44 789.75 696.82 974.33 795.89 1794.80 2877.13 8689.13 2197.38 274.49 1798.48 2892.32 1095.98 896.46 25
SED-MVS89.94 890.36 888.70 1696.45 1469.38 4896.89 494.44 4271.65 19492.11 497.21 576.79 999.11 692.34 795.36 1497.62 2
DELS-MVS90.05 790.09 989.94 493.14 7573.88 897.01 394.40 4788.32 285.71 4694.91 6774.11 1998.91 1787.26 5095.94 997.03 10
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
CANet89.61 1089.99 1088.46 2094.39 4269.71 4496.53 1193.78 6486.89 489.68 1895.78 3465.94 6399.10 992.99 393.91 4496.58 17
HPM-MVS++copyleft89.37 1289.95 1187.64 2995.10 3368.23 7695.24 3294.49 4082.43 1788.90 2396.35 2471.89 3198.63 2488.76 3596.40 696.06 35
DVP-MVScopyleft89.41 1189.73 1288.45 2196.40 1769.99 3496.64 894.52 3871.92 18090.55 1596.93 1073.77 2099.08 1191.91 1394.90 2196.29 30
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
NCCC89.07 1389.46 1387.91 2496.60 1269.05 5596.38 1394.64 3584.42 986.74 3396.20 2866.56 5998.76 2289.03 3394.56 3395.92 41
DPE-MVScopyleft88.77 1489.21 1487.45 3696.26 2267.56 9194.17 5494.15 5768.77 24390.74 1397.27 376.09 1298.49 2790.58 2194.91 2096.30 29
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
TSAR-MVS + MP.88.11 1788.64 1586.54 6591.73 11468.04 7990.36 21493.55 7882.89 1391.29 1192.89 11872.27 2896.03 13287.99 3994.77 2595.54 50
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
EPNet87.84 2188.38 1686.23 7893.30 6866.05 13395.26 3194.84 2487.09 388.06 2594.53 7566.79 5697.34 7483.89 7591.68 7795.29 59
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
TSAR-MVS + GP.87.96 1888.37 1786.70 5993.51 6565.32 15295.15 3593.84 6378.17 6985.93 4394.80 7075.80 1398.21 3589.38 2588.78 10696.59 15
SMA-MVScopyleft88.14 1588.29 1887.67 2893.21 7268.72 6393.85 7794.03 6074.18 12591.74 996.67 1665.61 6898.42 3289.24 2896.08 795.88 43
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
DeepC-MVS_fast79.48 287.95 1988.00 1987.79 2795.86 2868.32 7195.74 2194.11 5983.82 1183.49 6896.19 2964.53 8198.44 3083.42 7894.88 2496.61 14
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
ETH3D-3000-0.187.61 2387.89 2086.75 5593.58 6267.21 10294.31 5294.14 5872.92 15487.13 2996.62 1767.81 4797.94 4390.13 2294.42 3695.09 71
APDe-MVS87.54 2487.84 2186.65 6096.07 2566.30 12994.84 4593.78 6469.35 23488.39 2496.34 2567.74 4897.66 5890.62 2093.44 5496.01 38
CS-MVS87.54 2487.81 2286.74 5690.46 14270.23 3196.34 1492.31 12781.40 3086.14 4095.17 5765.49 6995.92 13589.09 2993.91 4494.06 115
lupinMVS87.74 2287.77 2387.63 3389.24 16971.18 2096.57 1092.90 10882.70 1687.13 2995.27 5064.99 7495.80 13989.34 2691.80 7595.93 40
test_prior387.38 2787.70 2486.42 7094.71 3767.35 9895.10 3793.10 10175.40 10785.25 5395.61 4067.94 4396.84 10687.47 4594.77 2595.05 73
9.1487.63 2593.86 5394.41 5094.18 5572.76 15786.21 3796.51 1966.64 5797.88 4990.08 2394.04 41
PS-MVSNAJ88.14 1587.61 2689.71 792.06 10076.72 195.75 2093.26 9183.86 1089.55 1996.06 3153.55 20397.89 4891.10 1793.31 5594.54 93
Regformer-187.24 2987.60 2786.15 8095.14 3165.83 14193.95 7095.12 1582.11 2184.25 5995.73 3667.88 4698.35 3385.60 6088.64 10994.26 102
SD-MVS87.49 2687.49 2887.50 3593.60 6168.82 6193.90 7492.63 11976.86 9087.90 2695.76 3566.17 6097.63 6089.06 3191.48 8196.05 36
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
Regformer-287.00 3687.43 2985.71 9595.14 3164.73 17193.95 7094.95 2281.69 2684.03 6495.73 3667.35 5098.19 3785.40 6288.64 10994.20 104
train_agg87.21 3087.42 3086.60 6194.18 4467.28 10094.16 5593.51 7971.87 18585.52 4895.33 4568.19 3997.27 8189.09 2994.90 2195.25 66
xiu_mvs_v2_base87.92 2087.38 3189.55 1291.41 12576.43 395.74 2193.12 10083.53 1289.55 1995.95 3253.45 20797.68 5491.07 1892.62 6494.54 93
agg_prior187.02 3587.26 3286.28 7794.16 4866.97 11194.08 6193.31 8971.85 18784.49 5795.39 4368.91 3696.75 11088.84 3494.32 3895.13 69
xxxxxxxxxxxxxcwj87.14 3187.19 3386.99 4893.84 5467.89 8395.05 3984.72 31678.19 6786.25 3596.44 2166.98 5297.79 5188.68 3694.56 3395.28 61
ETH3D cwj APD-0.1687.06 3387.18 3486.71 5791.99 10467.48 9692.97 10994.21 5471.48 20585.72 4596.32 2668.13 4198.00 4289.06 3194.70 3194.65 89
SF-MVS87.03 3487.09 3586.84 5092.70 8767.45 9793.64 8593.76 6770.78 21886.25 3596.44 2166.98 5297.79 5188.68 3694.56 3395.28 61
alignmvs87.28 2886.97 3688.24 2391.30 12671.14 2295.61 2593.56 7779.30 5087.07 3295.25 5268.43 3796.93 10487.87 4084.33 14696.65 13
SteuartSystems-ACMMP86.82 4086.90 3786.58 6390.42 14366.38 12696.09 1693.87 6277.73 7784.01 6595.66 3863.39 9797.94 4387.40 4793.55 5395.42 51
Skip Steuart: Steuart Systems R&D Blog.
PVSNet_Blended86.73 4186.86 3886.31 7693.76 5667.53 9396.33 1593.61 7582.34 1881.00 8993.08 11063.19 10097.29 7787.08 5191.38 8394.13 110
PHI-MVS86.83 3986.85 3986.78 5493.47 6665.55 14895.39 2995.10 1771.77 19185.69 4796.52 1862.07 10998.77 2186.06 5895.60 1296.03 37
testtj86.62 4286.66 4086.50 6796.95 865.70 14394.41 5093.45 8367.74 24986.19 3896.39 2364.38 8297.91 4687.33 4893.14 5895.90 42
MG-MVS87.11 3286.27 4189.62 897.79 176.27 494.96 4394.49 4078.74 6383.87 6692.94 11564.34 8396.94 10275.19 13894.09 4095.66 46
CSCG86.87 3786.26 4288.72 1595.05 3470.79 2493.83 8195.33 1168.48 24777.63 12794.35 8473.04 2398.45 2984.92 6793.71 5096.92 11
canonicalmvs86.85 3886.25 4388.66 1891.80 11371.92 1593.54 9091.71 15480.26 4187.55 2795.25 5263.59 9596.93 10488.18 3884.34 14597.11 8
jason86.40 4386.17 4487.11 4486.16 23270.54 2795.71 2492.19 13682.00 2384.58 5694.34 8561.86 11195.53 15987.76 4190.89 9095.27 63
jason: jason.
ETV-MVS86.01 4986.11 4585.70 9690.21 14867.02 11093.43 9591.92 14481.21 3284.13 6394.07 9560.93 11895.63 14989.28 2789.81 9894.46 100
APD-MVScopyleft85.93 5085.99 4685.76 9295.98 2765.21 15693.59 8892.58 12166.54 26086.17 3995.88 3363.83 8997.00 9486.39 5692.94 6095.06 72
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
Regformer-385.80 5285.92 4785.46 10294.17 4665.09 16492.95 11195.11 1681.13 3381.68 8095.04 5865.82 6598.32 3483.02 8084.36 14392.97 151
MSLP-MVS++86.27 4585.91 4887.35 3992.01 10368.97 5895.04 4192.70 11379.04 5881.50 8296.50 2058.98 14296.78 10883.49 7793.93 4396.29 30
WTY-MVS86.32 4485.81 4987.85 2592.82 8369.37 5095.20 3395.25 1282.71 1581.91 7894.73 7167.93 4597.63 6079.55 10882.25 15796.54 18
ACMMP_NAP86.05 4885.80 5086.80 5391.58 11867.53 9391.79 15993.49 8274.93 11584.61 5595.30 4759.42 13597.92 4586.13 5794.92 1994.94 78
MVS_111021_HR86.19 4785.80 5087.37 3893.17 7469.79 4193.99 6693.76 6779.08 5778.88 11593.99 9662.25 10898.15 3885.93 5991.15 8794.15 109
Regformer-485.45 5585.69 5284.73 12594.17 4663.23 20992.95 11194.83 2580.66 3881.29 8395.04 5865.12 7298.08 4082.74 8284.36 14392.88 155
VNet86.20 4685.65 5387.84 2693.92 5269.99 3495.73 2395.94 678.43 6586.00 4293.07 11258.22 14697.00 9485.22 6484.33 14696.52 19
CS-MVS-test85.35 5785.55 5484.75 12490.77 13965.29 15395.38 3091.54 16078.03 7183.67 6794.32 8762.47 10695.81 13882.73 8391.00 8993.15 144
CDPH-MVS85.71 5385.46 5586.46 6894.75 3667.19 10393.89 7592.83 11070.90 21483.09 7195.28 4863.62 9397.36 7280.63 10294.18 3994.84 82
PAPM85.89 5185.46 5587.18 4288.20 19672.42 1492.41 13392.77 11182.11 2180.34 9593.07 11268.27 3895.02 17278.39 12093.59 5294.09 112
DeepC-MVS77.85 385.52 5485.24 5786.37 7388.80 17966.64 12092.15 13993.68 7281.07 3476.91 13793.64 10162.59 10598.44 3085.50 6192.84 6294.03 117
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
MP-MVS-pluss85.24 5985.13 5885.56 9991.42 12365.59 14791.54 17192.51 12374.56 11880.62 9295.64 3959.15 13997.00 9486.94 5393.80 4694.07 114
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
ZNCC-MVS85.33 5885.08 5986.06 8193.09 7765.65 14593.89 7593.41 8773.75 13679.94 9994.68 7360.61 12198.03 4182.63 8693.72 4994.52 95
DROMVSNet84.53 7085.04 6083.01 16989.34 16461.37 24694.42 4991.09 18277.91 7483.24 6994.20 9158.37 14595.40 16185.35 6391.41 8292.27 171
MP-MVScopyleft85.02 6184.97 6185.17 11392.60 8964.27 18893.24 9992.27 12973.13 14879.63 10494.43 7861.90 11097.17 8485.00 6592.56 6594.06 115
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
EIA-MVS84.84 6584.88 6284.69 12891.30 12662.36 22893.85 7792.04 13979.45 4879.33 10794.28 8962.42 10796.35 11980.05 10591.25 8695.38 53
casdiffmvs85.37 5684.87 6386.84 5088.25 19469.07 5493.04 10691.76 15181.27 3180.84 9192.07 13664.23 8496.06 13084.98 6687.43 11995.39 52
#test#84.98 6384.74 6485.72 9393.75 5865.01 16594.09 6093.19 9573.55 14279.22 10894.93 6459.04 14097.67 5582.66 8492.21 6994.49 98
zzz-MVS84.73 6684.47 6585.50 10091.89 10965.16 15891.55 17092.23 13075.32 10980.53 9395.21 5456.06 17597.16 8584.86 6892.55 6694.18 105
PAPR85.15 6084.47 6587.18 4296.02 2668.29 7291.85 15793.00 10576.59 9479.03 11195.00 6061.59 11297.61 6278.16 12289.00 10595.63 47
baseline85.01 6284.44 6786.71 5788.33 19168.73 6290.24 21891.82 15081.05 3581.18 8592.50 12563.69 9296.08 12984.45 7086.71 12795.32 57
HFP-MVS84.73 6684.40 6885.72 9393.75 5865.01 16593.50 9293.19 9572.19 17479.22 10894.93 6459.04 14097.67 5581.55 9392.21 6994.49 98
GST-MVS84.63 6984.29 6985.66 9792.82 8365.27 15493.04 10693.13 9973.20 14678.89 11294.18 9259.41 13697.85 5081.45 9592.48 6893.86 125
ACMMPR84.37 7184.06 7085.28 10993.56 6364.37 18393.50 9293.15 9872.19 17478.85 11794.86 6856.69 16797.45 6681.55 9392.20 7194.02 118
region2R84.36 7284.03 7185.36 10793.54 6464.31 18593.43 9592.95 10672.16 17778.86 11694.84 6956.97 16297.53 6481.38 9792.11 7394.24 103
diffmvs84.28 7483.83 7285.61 9887.40 21268.02 8090.88 19989.24 24680.54 3981.64 8192.52 12459.83 13094.52 19387.32 4985.11 13794.29 101
EI-MVSNet-Vis-set83.77 8783.67 7384.06 14592.79 8663.56 20591.76 16294.81 2779.65 4777.87 12394.09 9363.35 9897.90 4779.35 10979.36 17690.74 194
CANet_DTU84.09 8083.52 7485.81 8990.30 14666.82 11591.87 15589.01 25985.27 686.09 4193.74 10047.71 25696.98 9877.90 12589.78 10093.65 130
PVSNet_Blended_VisFu83.97 8283.50 7585.39 10690.02 15066.59 12393.77 8291.73 15277.43 8577.08 13689.81 17263.77 9196.97 9979.67 10788.21 11292.60 159
XVS83.87 8583.47 7685.05 11493.22 7063.78 19592.92 11392.66 11673.99 12878.18 12194.31 8855.25 18197.41 6979.16 11191.58 7993.95 120
CHOSEN 1792x268884.98 6383.45 7789.57 1189.94 15275.14 592.07 14592.32 12681.87 2475.68 14688.27 18760.18 12498.60 2580.46 10490.27 9794.96 77
PVSNet_BlendedMVS83.38 9283.43 7883.22 16693.76 5667.53 9394.06 6293.61 7579.13 5581.00 8985.14 22363.19 10097.29 7787.08 5173.91 21584.83 284
MAR-MVS84.18 7883.43 7886.44 6996.25 2365.93 13894.28 5394.27 5374.41 11979.16 11095.61 4053.99 19898.88 2069.62 18693.26 5694.50 97
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
baseline283.68 9083.42 8084.48 13587.37 21366.00 13590.06 22295.93 779.71 4669.08 21990.39 16277.92 696.28 12078.91 11581.38 16491.16 190
CP-MVS83.71 8983.40 8184.65 12993.14 7563.84 19394.59 4792.28 12871.03 21277.41 13094.92 6655.21 18496.19 12381.32 9890.70 9293.91 122
MTAPA83.91 8483.38 8285.50 10091.89 10965.16 15881.75 30692.23 13075.32 10980.53 9395.21 5456.06 17597.16 8584.86 6892.55 6694.18 105
HY-MVS76.49 584.28 7483.36 8387.02 4792.22 9767.74 8784.65 28694.50 3979.15 5482.23 7687.93 19466.88 5496.94 10280.53 10382.20 15896.39 28
MVS_Test84.16 7983.20 8487.05 4691.56 11969.82 4089.99 22792.05 13877.77 7682.84 7286.57 20963.93 8896.09 12774.91 14489.18 10495.25 66
test_yl84.28 7483.16 8587.64 2994.52 4069.24 5195.78 1895.09 1869.19 23781.09 8692.88 11957.00 16097.44 6781.11 10081.76 16196.23 32
DCV-MVSNet84.28 7483.16 8587.64 2994.52 4069.24 5195.78 1895.09 1869.19 23781.09 8692.88 11957.00 16097.44 6781.11 10081.76 16196.23 32
ET-MVSNet_ETH3D84.01 8183.15 8786.58 6390.78 13870.89 2394.74 4694.62 3681.44 2958.19 30693.64 10173.64 2292.35 26782.66 8478.66 18496.50 23
EI-MVSNet-UG-set83.14 9682.96 8883.67 15692.28 9563.19 21191.38 17994.68 3379.22 5276.60 13993.75 9962.64 10497.76 5378.07 12378.01 18790.05 202
HPM-MVScopyleft83.25 9482.95 8984.17 14392.25 9662.88 22190.91 19691.86 14770.30 22377.12 13493.96 9756.75 16596.28 12082.04 8991.34 8593.34 136
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
test250683.29 9382.92 9084.37 13888.39 18963.18 21292.01 14891.35 17077.66 7978.49 12091.42 14564.58 8095.09 17073.19 15189.23 10294.85 79
MVSFormer83.75 8882.88 9186.37 7389.24 16971.18 2089.07 24690.69 19465.80 26587.13 2994.34 8564.99 7492.67 25372.83 15591.80 7595.27 63
MVS84.66 6882.86 9290.06 290.93 13274.56 687.91 26395.54 968.55 24572.35 18394.71 7259.78 13198.90 1881.29 9994.69 3296.74 12
DWT-MVSNet_test83.95 8382.80 9387.41 3792.90 8070.07 3389.12 24594.42 4482.15 2077.64 12691.77 14070.81 3396.22 12265.03 23281.36 16595.94 39
Effi-MVS+83.82 8682.76 9486.99 4889.56 16069.40 4791.35 18186.12 30572.59 15983.22 7092.81 12259.60 13396.01 13481.76 9187.80 11695.56 49
LFMVS84.34 7382.73 9589.18 1394.76 3573.25 1094.99 4291.89 14671.90 18282.16 7793.49 10547.98 25397.05 8982.55 8784.82 13997.25 7
PGM-MVS83.25 9482.70 9684.92 11892.81 8564.07 19190.44 21092.20 13571.28 20777.23 13394.43 7855.17 18597.31 7679.33 11091.38 8393.37 135
SR-MVS82.81 10182.58 9783.50 16193.35 6761.16 24992.23 13891.28 17464.48 27381.27 8495.28 4853.71 20295.86 13782.87 8188.77 10793.49 134
h-mvs3383.01 9882.56 9884.35 13989.34 16462.02 23392.72 11893.76 6781.45 2782.73 7392.25 13460.11 12597.13 8787.69 4262.96 28893.91 122
thisisatest051583.41 9182.49 9986.16 7989.46 16368.26 7493.54 9094.70 3274.31 12275.75 14490.92 15172.62 2696.52 11769.64 18481.50 16393.71 128
mPP-MVS82.96 10082.44 10084.52 13392.83 8162.92 21992.76 11691.85 14871.52 20275.61 14994.24 9053.48 20696.99 9778.97 11490.73 9193.64 131
sss82.71 10482.38 10183.73 15389.25 16859.58 27692.24 13794.89 2377.96 7279.86 10192.38 13056.70 16697.05 8977.26 12880.86 16994.55 91
CLD-MVS82.73 10282.35 10283.86 14987.90 20367.65 9095.45 2792.18 13785.06 772.58 17692.27 13352.46 21395.78 14084.18 7179.06 17988.16 226
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
MVSTER82.47 10682.05 10383.74 15192.68 8869.01 5691.90 15493.21 9279.83 4272.14 18485.71 21974.72 1594.72 18275.72 13572.49 22587.50 231
PMMVS81.98 11682.04 10481.78 20289.76 15656.17 30991.13 19290.69 19477.96 7280.09 9893.57 10346.33 26694.99 17381.41 9687.46 11894.17 107
TESTMET0.1,182.41 10781.98 10583.72 15488.08 19763.74 19792.70 12093.77 6679.30 5077.61 12887.57 19958.19 14794.08 20773.91 14986.68 12893.33 138
PAPM_NR82.97 9981.84 10686.37 7394.10 5066.76 11887.66 26792.84 10969.96 22774.07 16293.57 10363.10 10297.50 6570.66 17990.58 9494.85 79
test117281.90 11781.83 10782.13 19493.23 6957.52 29991.61 16990.98 18964.32 27580.20 9795.00 6051.26 22395.61 15181.73 9288.13 11393.26 140
VDD-MVS83.06 9781.81 10886.81 5290.86 13667.70 8895.40 2891.50 16475.46 10481.78 7992.34 13240.09 29197.13 8786.85 5482.04 15995.60 48
DP-MVS Recon82.73 10281.65 10985.98 8397.31 467.06 10795.15 3591.99 14169.08 24076.50 14193.89 9854.48 19398.20 3670.76 17785.66 13492.69 156
MVS_111021_LR82.02 11581.52 11083.51 16088.42 18762.88 22189.77 23088.93 26176.78 9275.55 15093.10 10850.31 23095.38 16383.82 7687.02 12192.26 172
EPP-MVSNet81.79 11981.52 11082.61 17888.77 18060.21 26893.02 10893.66 7468.52 24672.90 17190.39 16272.19 2994.96 17474.93 14379.29 17892.67 157
APD-MVS_3200maxsize81.64 12081.32 11282.59 17992.36 9258.74 28591.39 17791.01 18863.35 28179.72 10394.62 7451.82 21696.14 12579.71 10687.93 11592.89 154
CostFormer82.33 10881.15 11385.86 8889.01 17468.46 6882.39 30493.01 10375.59 10280.25 9681.57 26472.03 3094.96 17479.06 11377.48 19694.16 108
xiu_mvs_v1_base_debu82.16 11181.12 11485.26 11086.42 22668.72 6392.59 12890.44 20273.12 14984.20 6094.36 8038.04 30295.73 14384.12 7286.81 12291.33 184
xiu_mvs_v1_base82.16 11181.12 11485.26 11086.42 22668.72 6392.59 12890.44 20273.12 14984.20 6094.36 8038.04 30295.73 14384.12 7286.81 12291.33 184
xiu_mvs_v1_base_debi82.16 11181.12 11485.26 11086.42 22668.72 6392.59 12890.44 20273.12 14984.20 6094.36 8038.04 30295.73 14384.12 7286.81 12291.33 184
hse-mvs281.12 12981.11 11781.16 21786.52 22557.48 30089.40 23891.16 17781.45 2782.73 7390.49 16060.11 12594.58 18687.69 4260.41 31591.41 183
baseline181.84 11881.03 11884.28 14291.60 11766.62 12191.08 19391.66 15781.87 2474.86 15491.67 14469.98 3594.92 17771.76 17064.75 27791.29 189
3Dnovator73.91 682.69 10580.82 11988.31 2289.57 15971.26 1992.60 12694.39 4878.84 6067.89 23892.48 12848.42 24898.52 2668.80 19694.40 3795.15 68
CDS-MVSNet81.43 12280.74 12083.52 15986.26 23064.45 17792.09 14390.65 19775.83 10173.95 16489.81 17263.97 8792.91 24371.27 17382.82 15493.20 143
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
SR-MVS-dyc-post81.06 13080.70 12182.15 19292.02 10158.56 28790.90 19790.45 19962.76 28778.89 11294.46 7651.26 22395.61 15178.77 11786.77 12592.28 168
ACMMPcopyleft81.49 12180.67 12283.93 14891.71 11562.90 22092.13 14092.22 13471.79 19071.68 19293.49 10550.32 22996.96 10078.47 11984.22 15091.93 175
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
HQP-MVS81.14 12780.64 12382.64 17787.54 20863.66 20294.06 6291.70 15579.80 4374.18 15890.30 16451.63 22095.61 15177.63 12678.90 18088.63 216
3Dnovator+73.60 782.10 11480.60 12486.60 6190.89 13566.80 11795.20 3393.44 8574.05 12767.42 24492.49 12749.46 23897.65 5970.80 17691.68 7795.33 55
API-MVS82.28 10980.53 12587.54 3496.13 2470.59 2693.63 8691.04 18765.72 26775.45 15192.83 12156.11 17498.89 1964.10 23789.75 10193.15 144
RE-MVS-def80.48 12692.02 10158.56 28790.90 19790.45 19962.76 28778.89 11294.46 7649.30 24078.77 11786.77 12592.28 168
IB-MVS77.80 482.18 11080.46 12787.35 3989.14 17170.28 3095.59 2695.17 1478.85 5970.19 20685.82 21770.66 3497.67 5572.19 16666.52 26494.09 112
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
ECVR-MVScopyleft81.29 12480.38 12884.01 14788.39 18961.96 23592.56 13186.79 29777.66 7976.63 13891.42 14546.34 26595.24 16874.36 14889.23 10294.85 79
thisisatest053081.15 12680.07 12984.39 13788.26 19365.63 14691.40 17594.62 3671.27 20870.93 19789.18 17672.47 2796.04 13165.62 22676.89 20291.49 180
112181.25 12580.05 13084.87 12192.30 9464.31 18587.91 26391.39 16859.44 31379.94 9992.91 11657.09 15697.01 9266.63 21192.81 6393.29 139
test111180.84 13480.02 13183.33 16487.87 20460.76 25792.62 12586.86 29677.86 7575.73 14591.39 14746.35 26494.70 18572.79 15788.68 10894.52 95
Fast-Effi-MVS+81.14 12780.01 13284.51 13490.24 14765.86 13994.12 5989.15 25273.81 13575.37 15288.26 18857.26 15494.53 19266.97 21084.92 13893.15 144
mvs_anonymous81.36 12379.99 13385.46 10290.39 14568.40 6986.88 27790.61 19874.41 11970.31 20584.67 22963.79 9092.32 26873.13 15285.70 13395.67 45
Vis-MVSNetpermissive80.92 13379.98 13483.74 15188.48 18461.80 23793.44 9488.26 28173.96 13177.73 12491.76 14149.94 23494.76 17965.84 22390.37 9694.65 89
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
nrg03080.93 13279.86 13584.13 14483.69 27068.83 6093.23 10091.20 17575.55 10375.06 15388.22 19163.04 10394.74 18181.88 9066.88 26188.82 214
1112_ss80.56 13879.83 13682.77 17388.65 18160.78 25592.29 13588.36 27672.58 16072.46 18094.95 6265.09 7393.42 23166.38 21777.71 18994.10 111
HQP_MVS80.34 14279.75 13782.12 19586.94 21962.42 22693.13 10291.31 17178.81 6172.53 17789.14 17850.66 22795.55 15776.74 12978.53 18588.39 222
UA-Net80.02 14879.65 13881.11 22089.33 16657.72 29586.33 28089.00 26077.44 8481.01 8889.15 17759.33 13795.90 13661.01 25784.28 14889.73 206
RRT_test8_iter0580.61 13679.62 13983.60 15891.87 11266.90 11393.42 9793.68 7277.09 8868.83 22585.63 22066.82 5595.42 16076.46 13362.74 29188.48 219
Vis-MVSNet (Re-imp)79.24 16279.57 14078.24 27288.46 18552.29 32890.41 21289.12 25474.24 12469.13 21791.91 13865.77 6690.09 30359.00 26988.09 11492.33 165
test-LLR80.10 14679.56 14181.72 20486.93 22161.17 24792.70 12091.54 16071.51 20375.62 14786.94 20653.83 19992.38 26472.21 16484.76 14191.60 178
HyFIR lowres test81.03 13179.56 14185.43 10487.81 20568.11 7890.18 21990.01 22370.65 22072.95 17086.06 21563.61 9494.50 19475.01 14279.75 17493.67 129
HPM-MVS_fast80.25 14379.55 14382.33 18591.55 12059.95 27191.32 18389.16 25165.23 27174.71 15593.07 11247.81 25595.74 14274.87 14688.23 11191.31 188
TAMVS80.37 14179.45 14483.13 16885.14 24763.37 20691.23 18690.76 19374.81 11772.65 17488.49 18260.63 12092.95 23869.41 18881.95 16093.08 148
FIs79.47 15979.41 14579.67 25285.95 23559.40 27891.68 16693.94 6178.06 7068.96 22288.28 18666.61 5891.77 27966.20 22074.99 20987.82 228
IS-MVSNet80.14 14579.41 14582.33 18587.91 20260.08 27091.97 15288.27 27972.90 15571.44 19491.73 14361.44 11393.66 22662.47 25086.53 12993.24 141
test-mter79.96 14979.38 14781.72 20486.93 22161.17 24792.70 12091.54 16073.85 13375.62 14786.94 20649.84 23692.38 26472.21 16484.76 14191.60 178
BH-w/o80.49 14079.30 14884.05 14690.83 13764.36 18493.60 8789.42 24174.35 12169.09 21890.15 16755.23 18395.61 15164.61 23486.43 13192.17 173
EPNet_dtu78.80 17179.26 14977.43 28088.06 19849.71 34191.96 15391.95 14377.67 7876.56 14091.28 14958.51 14490.20 30156.37 27680.95 16892.39 163
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
abl_679.82 15279.20 15081.70 20689.85 15358.34 28988.47 25690.07 21862.56 29077.71 12593.08 11047.65 25796.78 10877.94 12485.45 13689.99 203
CPTT-MVS79.59 15679.16 15180.89 22991.54 12159.80 27392.10 14288.54 27460.42 30572.96 16993.28 10748.27 24992.80 24778.89 11686.50 13090.06 201
tpmrst80.57 13779.14 15284.84 12290.10 14968.28 7381.70 30789.72 23477.63 8175.96 14379.54 29564.94 7692.71 25075.43 13677.28 19993.55 132
131480.70 13578.95 15385.94 8587.77 20667.56 9187.91 26392.55 12272.17 17667.44 24393.09 10950.27 23197.04 9171.68 17287.64 11793.23 142
UGNet79.87 15178.68 15483.45 16389.96 15161.51 24392.13 14090.79 19276.83 9178.85 11786.33 21238.16 30096.17 12467.93 20187.17 12092.67 157
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
PVSNet73.49 880.05 14778.63 15584.31 14090.92 13364.97 16792.47 13291.05 18679.18 5372.43 18190.51 15937.05 31494.06 20968.06 19986.00 13293.90 124
Test_1112_low_res79.56 15778.60 15682.43 18188.24 19560.39 26592.09 14387.99 28572.10 17871.84 18887.42 20164.62 7993.04 23565.80 22477.30 19893.85 126
tttt051779.50 15878.53 15782.41 18487.22 21561.43 24589.75 23194.76 2969.29 23567.91 23788.06 19372.92 2495.63 14962.91 24673.90 21690.16 200
thres20079.66 15478.33 15883.66 15792.54 9065.82 14293.06 10496.31 374.90 11673.30 16788.66 18059.67 13295.61 15147.84 30878.67 18389.56 209
ab-mvs80.18 14478.31 15985.80 9088.44 18665.49 15183.00 30192.67 11571.82 18977.36 13185.01 22454.50 19096.59 11376.35 13475.63 20895.32 57
VDDNet80.50 13978.26 16087.21 4186.19 23169.79 4194.48 4891.31 17160.42 30579.34 10690.91 15238.48 29896.56 11682.16 8881.05 16795.27 63
EI-MVSNet78.97 16678.22 16181.25 21485.33 24362.73 22489.53 23593.21 9272.39 16872.14 18490.13 16860.99 11694.72 18267.73 20372.49 22586.29 255
OPM-MVS79.00 16578.09 16281.73 20383.52 27363.83 19491.64 16890.30 20976.36 9771.97 18789.93 17146.30 26795.17 16975.10 13977.70 19086.19 258
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
FC-MVSNet-test77.99 18778.08 16377.70 27584.89 25255.51 31490.27 21693.75 7076.87 8966.80 25387.59 19865.71 6790.23 30062.89 24773.94 21487.37 235
VPA-MVSNet79.03 16478.00 16482.11 19885.95 23564.48 17693.22 10194.66 3475.05 11474.04 16384.95 22652.17 21593.52 22874.90 14567.04 26088.32 224
miper_enhance_ethall78.86 16977.97 16581.54 20888.00 20165.17 15791.41 17389.15 25275.19 11268.79 22683.98 23667.17 5192.82 24572.73 15865.30 26886.62 251
mvs-test178.74 17477.95 16681.14 21883.22 27557.13 30493.96 6787.78 28775.42 10572.68 17390.80 15445.08 27394.54 19175.08 14077.49 19591.74 177
tpm279.80 15377.95 16685.34 10888.28 19268.26 7481.56 30991.42 16770.11 22577.59 12980.50 28267.40 4994.26 20267.34 20677.35 19793.51 133
OMC-MVS78.67 17777.91 16880.95 22785.76 23957.40 30288.49 25588.67 26973.85 13372.43 18192.10 13549.29 24194.55 19072.73 15877.89 18890.91 193
test_part179.63 15577.86 16984.93 11792.50 9171.43 1794.15 5791.08 18472.51 16270.66 19884.98 22559.84 12995.07 17172.07 16762.94 28988.30 225
114514_t79.17 16377.67 17083.68 15595.32 3065.53 14992.85 11591.60 15963.49 28067.92 23690.63 15746.65 26195.72 14767.01 20983.54 15189.79 204
BH-RMVSNet79.46 16077.65 17184.89 11991.68 11665.66 14493.55 8988.09 28372.93 15373.37 16691.12 15046.20 26896.12 12656.28 27785.61 13592.91 153
PCF-MVS73.15 979.29 16177.63 17284.29 14186.06 23365.96 13787.03 27391.10 18169.86 22969.79 21490.64 15557.54 15396.59 11364.37 23682.29 15690.32 198
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
UniMVSNet_NR-MVSNet78.15 18577.55 17379.98 24384.46 25960.26 26692.25 13693.20 9477.50 8368.88 22386.61 20866.10 6192.13 27166.38 21762.55 29287.54 230
VPNet78.82 17077.53 17482.70 17584.52 25766.44 12593.93 7292.23 13080.46 4072.60 17588.38 18549.18 24293.13 23472.47 16263.97 28588.55 218
GeoE78.90 16877.43 17583.29 16588.95 17562.02 23392.31 13486.23 30370.24 22471.34 19589.27 17554.43 19494.04 21263.31 24280.81 17093.81 127
AUN-MVS78.37 18177.43 17581.17 21686.60 22457.45 30189.46 23791.16 17774.11 12674.40 15790.49 16055.52 18094.57 18774.73 14760.43 31491.48 181
tfpn200view978.79 17277.43 17582.88 17192.21 9864.49 17492.05 14696.28 473.48 14371.75 19088.26 18860.07 12795.32 16445.16 31877.58 19288.83 212
thres40078.68 17577.43 17582.43 18192.21 9864.49 17492.05 14696.28 473.48 14371.75 19088.26 18860.07 12795.32 16445.16 31877.58 19287.48 232
QAPM79.95 15077.39 17987.64 2989.63 15871.41 1893.30 9893.70 7165.34 27067.39 24691.75 14247.83 25498.96 1657.71 27289.81 9892.54 161
TR-MVS78.77 17377.37 18082.95 17090.49 14160.88 25393.67 8490.07 21870.08 22674.51 15691.37 14845.69 26995.70 14860.12 26380.32 17192.29 167
BH-untuned78.68 17577.08 18183.48 16289.84 15463.74 19792.70 12088.59 27271.57 20066.83 25288.65 18151.75 21895.39 16259.03 26884.77 14091.32 187
tpm78.58 17877.03 18283.22 16685.94 23764.56 17283.21 29991.14 18078.31 6673.67 16579.68 29364.01 8692.09 27366.07 22171.26 23593.03 149
thres100view90078.37 18177.01 18382.46 18091.89 10963.21 21091.19 19096.33 172.28 17170.45 20287.89 19560.31 12295.32 16445.16 31877.58 19288.83 212
AdaColmapbinary78.94 16777.00 18484.76 12396.34 1965.86 13992.66 12487.97 28662.18 29370.56 19992.37 13143.53 28097.35 7364.50 23582.86 15391.05 192
CHOSEN 280x42077.35 19876.95 18578.55 26787.07 21862.68 22569.71 34582.95 33268.80 24271.48 19387.27 20566.03 6284.00 34076.47 13282.81 15588.95 211
cl2277.94 18976.78 18681.42 21087.57 20764.93 16990.67 20588.86 26472.45 16567.63 24282.68 24964.07 8592.91 24371.79 16865.30 26886.44 252
UniMVSNet (Re)77.58 19476.78 18679.98 24384.11 26560.80 25491.76 16293.17 9776.56 9569.93 21284.78 22863.32 9992.36 26664.89 23362.51 29486.78 245
thres600view778.00 18676.66 18882.03 20091.93 10663.69 20091.30 18496.33 172.43 16670.46 20187.89 19560.31 12294.92 17742.64 33076.64 20387.48 232
RRT_MVS77.38 19776.59 18979.77 25090.91 13463.61 20491.15 19190.91 19072.28 17172.06 18687.28 20443.92 27889.04 31073.32 15067.47 25886.67 246
MS-PatchMatch77.90 19176.50 19082.12 19585.99 23469.95 3791.75 16492.70 11373.97 13062.58 28684.44 23241.11 28895.78 14063.76 24092.17 7280.62 328
miper_ehance_all_eth77.60 19376.44 19181.09 22485.70 24064.41 18190.65 20688.64 27172.31 16967.37 24782.52 25064.77 7892.64 25670.67 17865.30 26886.24 257
XXY-MVS77.94 18976.44 19182.43 18182.60 28164.44 17892.01 14891.83 14973.59 14170.00 20985.82 21754.43 19494.76 17969.63 18568.02 25488.10 227
PS-MVSNAJss77.26 19976.31 19380.13 24080.64 29659.16 28290.63 20991.06 18572.80 15668.58 23084.57 23153.55 20393.96 21772.97 15371.96 22987.27 239
MVP-Stereo77.12 20176.23 19479.79 24981.72 28766.34 12889.29 23990.88 19170.56 22162.01 28982.88 24649.34 23994.13 20465.55 22893.80 4678.88 341
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
GA-MVS78.33 18376.23 19484.65 12983.65 27166.30 12991.44 17290.14 21676.01 9970.32 20484.02 23542.50 28394.72 18270.98 17477.00 20192.94 152
FMVSNet377.73 19276.04 19682.80 17291.20 12968.99 5791.87 15591.99 14173.35 14567.04 24983.19 24556.62 16892.14 27059.80 26569.34 24387.28 238
EPMVS78.49 18075.98 19786.02 8291.21 12869.68 4580.23 31991.20 17575.25 11172.48 17978.11 30354.65 18993.69 22557.66 27383.04 15294.69 85
OpenMVScopyleft70.45 1178.54 17975.92 19886.41 7285.93 23871.68 1692.74 11792.51 12366.49 26164.56 26791.96 13743.88 27998.10 3954.61 28190.65 9389.44 210
DU-MVS76.86 20275.84 19979.91 24582.96 27960.26 26691.26 18591.54 16076.46 9668.88 22386.35 21056.16 17292.13 27166.38 21762.55 29287.35 236
cascas78.18 18475.77 20085.41 10587.14 21769.11 5392.96 11091.15 17966.71 25970.47 20086.07 21437.49 30896.48 11870.15 18279.80 17390.65 195
WR-MVS76.76 20675.74 20179.82 24884.60 25562.27 23192.60 12692.51 12376.06 9867.87 23985.34 22156.76 16490.24 29962.20 25163.69 28786.94 243
v2v48277.42 19675.65 20282.73 17480.38 29867.13 10691.85 15790.23 21375.09 11369.37 21583.39 24353.79 20194.44 19571.77 16965.00 27486.63 250
c3_l76.83 20575.47 20380.93 22885.02 25064.18 19090.39 21388.11 28271.66 19366.65 25481.64 26263.58 9692.56 25769.31 19062.86 29086.04 263
Anonymous20240521177.96 18875.33 20485.87 8793.73 6064.52 17394.85 4485.36 31162.52 29176.11 14290.18 16629.43 33997.29 7768.51 19777.24 20095.81 44
Effi-MVS+-dtu76.14 21175.28 20578.72 26683.22 27555.17 31689.87 22887.78 28775.42 10567.98 23581.43 26645.08 27392.52 25975.08 14071.63 23088.48 219
IterMVS-LS76.49 20875.18 20680.43 23384.49 25862.74 22390.64 20788.80 26572.40 16765.16 26281.72 26060.98 11792.27 26967.74 20264.65 27986.29 255
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
v114476.73 20774.88 20782.27 18780.23 30366.60 12291.68 16690.21 21573.69 13869.06 22081.89 25752.73 21194.40 19669.21 19165.23 27185.80 269
cl____76.07 21274.67 20880.28 23685.15 24661.76 23990.12 22088.73 26771.16 20965.43 25981.57 26461.15 11492.95 23866.54 21462.17 29686.13 261
DIV-MVS_self_test76.07 21274.67 20880.28 23685.14 24761.75 24090.12 22088.73 26771.16 20965.42 26081.60 26361.15 11492.94 24266.54 21462.16 29886.14 259
PatchmatchNetpermissive77.46 19574.63 21085.96 8489.55 16170.35 2979.97 32389.55 23772.23 17370.94 19676.91 31457.03 15892.79 24854.27 28381.17 16694.74 84
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
NR-MVSNet76.05 21574.59 21180.44 23282.96 27962.18 23290.83 20191.73 15277.12 8760.96 29286.35 21059.28 13891.80 27860.74 25861.34 30787.35 236
LPG-MVS_test75.82 22174.58 21279.56 25684.31 26259.37 27990.44 21089.73 23269.49 23264.86 26388.42 18338.65 29694.30 19872.56 16072.76 22285.01 282
V4276.46 20974.55 21382.19 19179.14 31567.82 8590.26 21789.42 24173.75 13668.63 22981.89 25751.31 22294.09 20671.69 17164.84 27584.66 285
TranMVSNet+NR-MVSNet75.86 22074.52 21479.89 24682.44 28260.64 26291.37 18091.37 16976.63 9367.65 24186.21 21352.37 21491.55 28361.84 25360.81 31087.48 232
v14876.19 21074.47 21581.36 21180.05 30464.44 17891.75 16490.23 21373.68 13967.13 24880.84 27755.92 17893.86 22368.95 19461.73 30385.76 272
eth_miper_zixun_eth75.96 21874.40 21680.66 23084.66 25463.02 21489.28 24088.27 27971.88 18465.73 25781.65 26159.45 13492.81 24668.13 19860.53 31286.14 259
gg-mvs-nofinetune77.18 20074.31 21785.80 9091.42 12368.36 7071.78 34094.72 3149.61 34477.12 13445.92 36077.41 893.98 21667.62 20493.16 5795.05 73
CVMVSNet74.04 23974.27 21873.33 31185.33 24343.94 35689.53 23588.39 27554.33 33370.37 20390.13 16849.17 24384.05 33861.83 25479.36 17691.99 174
ACMP71.68 1075.58 22674.23 21979.62 25484.97 25159.64 27490.80 20289.07 25770.39 22262.95 28287.30 20338.28 29993.87 22172.89 15471.45 23385.36 278
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
bset_n11_16_dypcd75.95 21974.16 22081.30 21376.91 33465.14 16088.89 24887.48 29074.30 12369.90 21383.40 24242.16 28692.42 26278.39 12066.03 26586.32 254
Anonymous2024052976.84 20474.15 22184.88 12091.02 13064.95 16893.84 8091.09 18253.57 33473.00 16887.42 20135.91 31897.32 7569.14 19272.41 22792.36 164
X-MVStestdata76.86 20274.13 22285.05 11493.22 7063.78 19592.92 11392.66 11673.99 12878.18 12110.19 37255.25 18197.41 6979.16 11191.58 7993.95 120
v14419276.05 21574.03 22382.12 19579.50 30966.55 12491.39 17789.71 23572.30 17068.17 23381.33 26951.75 21894.03 21467.94 20064.19 28185.77 270
FMVSNet276.07 21274.01 22482.26 18988.85 17667.66 8991.33 18291.61 15870.84 21565.98 25682.25 25348.03 25092.00 27558.46 27068.73 24987.10 240
v119275.98 21773.92 22582.15 19279.73 30566.24 13191.22 18789.75 22972.67 15868.49 23181.42 26749.86 23594.27 20067.08 20865.02 27385.95 266
GBi-Net75.65 22373.83 22681.10 22188.85 17665.11 16190.01 22490.32 20570.84 21567.04 24980.25 28748.03 25091.54 28459.80 26569.34 24386.64 247
test175.65 22373.83 22681.10 22188.85 17665.11 16190.01 22490.32 20570.84 21567.04 24980.25 28748.03 25091.54 28459.80 26569.34 24386.64 247
PLCcopyleft68.80 1475.23 22973.68 22879.86 24792.93 7958.68 28690.64 20788.30 27760.90 30264.43 27190.53 15842.38 28494.57 18756.52 27576.54 20486.33 253
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
TAPA-MVS70.22 1274.94 23373.53 22979.17 26190.40 14452.07 32989.19 24389.61 23662.69 28970.07 20792.67 12348.89 24794.32 19738.26 34479.97 17291.12 191
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
v192192075.63 22573.49 23082.06 19979.38 31066.35 12791.07 19589.48 23871.98 17967.99 23481.22 27249.16 24493.90 22066.56 21364.56 28085.92 268
Fast-Effi-MVS+-dtu75.04 23173.37 23180.07 24180.86 29259.52 27791.20 18985.38 31071.90 18265.20 26184.84 22741.46 28792.97 23766.50 21672.96 22187.73 229
v875.35 22773.26 23281.61 20780.67 29566.82 11589.54 23489.27 24571.65 19463.30 28080.30 28654.99 18794.06 20967.33 20762.33 29583.94 290
XVG-OURS-SEG-HR74.70 23573.08 23379.57 25578.25 32557.33 30380.49 31587.32 29263.22 28368.76 22790.12 17044.89 27591.59 28270.55 18074.09 21389.79 204
v124075.21 23072.98 23481.88 20179.20 31266.00 13590.75 20489.11 25571.63 19867.41 24581.22 27247.36 25893.87 22165.46 22964.72 27885.77 270
Baseline_NR-MVSNet73.99 24072.83 23577.48 27980.78 29359.29 28191.79 15984.55 31968.85 24168.99 22180.70 27856.16 17292.04 27462.67 24860.98 30981.11 322
SCA75.82 22172.76 23685.01 11686.63 22370.08 3281.06 31389.19 24971.60 19970.01 20877.09 31245.53 27090.25 29660.43 26073.27 21894.68 86
ACMM69.62 1374.34 23672.73 23779.17 26184.25 26457.87 29390.36 21489.93 22463.17 28465.64 25886.04 21637.79 30694.10 20565.89 22271.52 23285.55 275
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
test0.0.03 172.76 25272.71 23872.88 31580.25 30247.99 34791.22 18789.45 23971.51 20362.51 28787.66 19753.83 19985.06 33550.16 29567.84 25785.58 273
MDTV_nov1_ep1372.61 23989.06 17268.48 6780.33 31790.11 21771.84 18871.81 18975.92 32253.01 20993.92 21948.04 30573.38 217
test_djsdf73.76 24472.56 24077.39 28177.00 33353.93 32189.07 24690.69 19465.80 26563.92 27382.03 25643.14 28292.67 25372.83 15568.53 25085.57 274
v1074.77 23472.54 24181.46 20980.33 30166.71 11989.15 24489.08 25670.94 21363.08 28179.86 29152.52 21294.04 21265.70 22562.17 29683.64 292
XVG-OURS74.25 23872.46 24279.63 25378.45 32457.59 29880.33 31787.39 29163.86 27868.76 22789.62 17440.50 29091.72 28069.00 19374.25 21189.58 207
CNLPA74.31 23772.30 24380.32 23491.49 12261.66 24190.85 20080.72 33856.67 32763.85 27590.64 15546.75 26090.84 29153.79 28575.99 20788.47 221
tpm cat175.30 22872.21 24484.58 13288.52 18267.77 8678.16 33288.02 28461.88 29868.45 23276.37 31860.65 11994.03 21453.77 28674.11 21291.93 175
dp75.01 23272.09 24583.76 15089.28 16766.22 13279.96 32489.75 22971.16 20967.80 24077.19 31151.81 21792.54 25850.39 29471.44 23492.51 162
D2MVS73.80 24272.02 24679.15 26379.15 31462.97 21588.58 25490.07 21872.94 15259.22 30078.30 30042.31 28592.70 25265.59 22772.00 22881.79 319
LCM-MVSNet-Re72.93 24971.84 24776.18 29488.49 18348.02 34680.07 32270.17 35873.96 13152.25 32880.09 29049.98 23388.24 31667.35 20584.23 14992.28 168
pmmvs473.92 24171.81 24880.25 23879.17 31365.24 15587.43 27087.26 29467.64 25363.46 27883.91 23748.96 24691.53 28762.94 24565.49 26783.96 289
miper_lstm_enhance73.05 24771.73 24977.03 28583.80 26858.32 29081.76 30588.88 26269.80 23061.01 29178.23 30257.19 15587.51 32565.34 23059.53 31785.27 281
pmmvs573.35 24571.52 25078.86 26578.64 32260.61 26391.08 19386.90 29567.69 25063.32 27983.64 23844.33 27790.53 29362.04 25266.02 26685.46 276
jajsoiax73.05 24771.51 25177.67 27677.46 33054.83 31788.81 25090.04 22269.13 23962.85 28483.51 24031.16 33492.75 24970.83 17569.80 23985.43 277
mvs_tets72.71 25471.11 25277.52 27777.41 33154.52 31988.45 25789.76 22868.76 24462.70 28583.26 24429.49 33892.71 25070.51 18169.62 24185.34 279
pm-mvs172.89 25071.09 25378.26 27179.10 31657.62 29790.80 20289.30 24467.66 25162.91 28381.78 25949.11 24592.95 23860.29 26258.89 32084.22 288
IterMVS72.65 25670.83 25478.09 27382.17 28362.96 21687.64 26886.28 30171.56 20160.44 29478.85 29845.42 27286.66 32963.30 24361.83 30084.65 286
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
CR-MVSNet73.79 24370.82 25582.70 17583.15 27767.96 8170.25 34284.00 32473.67 14069.97 21072.41 33357.82 15089.48 30752.99 28973.13 21990.64 196
UniMVSNet_ETH3D72.74 25370.53 25679.36 25878.62 32356.64 30785.01 28489.20 24863.77 27964.84 26584.44 23234.05 32391.86 27763.94 23870.89 23789.57 208
Anonymous2023121173.08 24670.39 25781.13 21990.62 14063.33 20791.40 17590.06 22151.84 33864.46 27080.67 28036.49 31694.07 20863.83 23964.17 28285.98 265
PatchMatch-RL72.06 25769.98 25878.28 27089.51 16255.70 31383.49 29383.39 33061.24 30163.72 27682.76 24734.77 32193.03 23653.37 28877.59 19186.12 262
IterMVS-SCA-FT71.55 26069.97 25976.32 29281.48 28860.67 26187.64 26885.99 30666.17 26359.50 29878.88 29745.53 27083.65 34262.58 24961.93 29984.63 287
WR-MVS_H70.59 26469.94 26072.53 31781.03 29151.43 33287.35 27192.03 14067.38 25460.23 29580.70 27855.84 17983.45 34446.33 31458.58 32282.72 307
CP-MVSNet70.50 26569.91 26172.26 32080.71 29451.00 33587.23 27290.30 20967.84 24859.64 29782.69 24850.23 23282.30 35251.28 29159.28 31883.46 297
FMVSNet172.71 25469.91 26181.10 22183.60 27265.11 16190.01 22490.32 20563.92 27763.56 27780.25 28736.35 31791.54 28454.46 28266.75 26286.64 247
tpmvs72.88 25169.76 26382.22 19090.98 13167.05 10878.22 33188.30 27763.10 28564.35 27274.98 32555.09 18694.27 20043.25 32469.57 24285.34 279
anonymousdsp71.14 26269.37 26476.45 29172.95 34554.71 31884.19 28888.88 26261.92 29762.15 28879.77 29238.14 30191.44 28968.90 19567.45 25983.21 301
PS-CasMVS69.86 27169.13 26572.07 32380.35 30050.57 33787.02 27489.75 22967.27 25559.19 30182.28 25246.58 26282.24 35350.69 29359.02 31983.39 299
v7n71.31 26168.65 26679.28 25976.40 33660.77 25686.71 27889.45 23964.17 27658.77 30578.24 30144.59 27693.54 22757.76 27161.75 30283.52 295
PEN-MVS69.46 27368.56 26772.17 32279.27 31149.71 34186.90 27689.24 24667.24 25859.08 30282.51 25147.23 25983.54 34348.42 30357.12 32383.25 300
MIMVSNet71.64 25968.44 26881.23 21581.97 28664.44 17873.05 33988.80 26569.67 23164.59 26674.79 32632.79 32687.82 32053.99 28476.35 20591.42 182
F-COLMAP70.66 26368.44 26877.32 28286.37 22955.91 31188.00 26186.32 30056.94 32557.28 31488.07 19233.58 32492.49 26051.02 29268.37 25183.55 293
PVSNet_068.08 1571.81 25868.32 27082.27 18784.68 25362.31 23088.68 25290.31 20875.84 10057.93 31180.65 28137.85 30594.19 20369.94 18329.05 36490.31 199
CL-MVSNet_self_test69.92 26968.09 27175.41 29773.25 34455.90 31290.05 22389.90 22569.96 22761.96 29076.54 31551.05 22587.64 32249.51 29950.59 34182.70 309
TransMVSNet (Re)70.07 26867.66 27277.31 28380.62 29759.13 28391.78 16184.94 31565.97 26460.08 29680.44 28350.78 22691.87 27648.84 30145.46 34880.94 324
tfpnnormal70.10 26767.36 27378.32 26983.45 27460.97 25288.85 24992.77 11164.85 27260.83 29378.53 29943.52 28193.48 22931.73 36061.70 30480.52 329
DTE-MVSNet68.46 28267.33 27471.87 32577.94 32849.00 34486.16 28188.58 27366.36 26258.19 30682.21 25446.36 26383.87 34144.97 32155.17 33082.73 306
MVS_030468.99 27867.23 27574.28 30680.36 29952.54 32687.01 27586.36 29959.89 31166.22 25573.56 32924.25 34888.03 31857.34 27470.11 23882.27 315
DP-MVS69.90 27066.48 27680.14 23995.36 2962.93 21789.56 23276.11 34550.27 34357.69 31285.23 22239.68 29295.73 14333.35 35471.05 23681.78 320
LS3D69.17 27466.40 27777.50 27891.92 10756.12 31085.12 28380.37 33946.96 35056.50 31687.51 20037.25 30993.71 22432.52 35979.40 17582.68 310
KD-MVS_2432*160069.03 27666.37 27877.01 28685.56 24161.06 25081.44 31090.25 21167.27 25558.00 30976.53 31654.49 19187.63 32348.04 30535.77 35982.34 313
miper_refine_blended69.03 27666.37 27877.01 28685.56 24161.06 25081.44 31090.25 21167.27 25558.00 30976.53 31654.49 19187.63 32348.04 30535.77 35982.34 313
Anonymous2023120667.53 29065.78 28072.79 31674.95 34047.59 34988.23 25987.32 29261.75 30058.07 30877.29 30937.79 30687.29 32742.91 32663.71 28683.48 296
MSDG69.54 27265.73 28180.96 22685.11 24963.71 19984.19 28883.28 33156.95 32454.50 31984.03 23431.50 33296.03 13242.87 32869.13 24683.14 303
RPMNet70.42 26665.68 28284.63 13183.15 27767.96 8170.25 34290.45 19946.83 35269.97 21065.10 35056.48 17195.30 16735.79 34973.13 21990.64 196
FMVSNet568.04 28565.66 28375.18 29984.43 26057.89 29283.54 29286.26 30261.83 29953.64 32473.30 33037.15 31285.08 33448.99 30061.77 30182.56 312
XVG-ACMP-BASELINE68.04 28565.53 28475.56 29674.06 34352.37 32778.43 32885.88 30762.03 29558.91 30481.21 27420.38 35791.15 29060.69 25968.18 25283.16 302
EG-PatchMatch MVS68.55 28065.41 28577.96 27478.69 32162.93 21789.86 22989.17 25060.55 30450.27 33677.73 30622.60 35394.06 20947.18 31172.65 22476.88 348
PatchT69.11 27565.37 28680.32 23482.07 28563.68 20167.96 35187.62 28950.86 34169.37 21565.18 34957.09 15688.53 31441.59 33366.60 26388.74 215
ACMH63.93 1768.62 27964.81 28780.03 24285.22 24563.25 20887.72 26684.66 31860.83 30351.57 33179.43 29627.29 34494.96 17441.76 33164.84 27581.88 318
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
pmmvs667.57 28964.76 28876.00 29572.82 34753.37 32388.71 25186.78 29853.19 33557.58 31378.03 30435.33 32092.41 26355.56 27954.88 33282.21 316
our_test_368.29 28364.69 28979.11 26478.92 31764.85 17088.40 25885.06 31360.32 30752.68 32676.12 32040.81 28989.80 30644.25 32355.65 32882.67 311
ACMH+65.35 1667.65 28864.55 29076.96 28884.59 25657.10 30588.08 26080.79 33758.59 31853.00 32581.09 27626.63 34692.95 23846.51 31261.69 30580.82 325
USDC67.43 29264.51 29176.19 29377.94 32855.29 31578.38 32985.00 31473.17 14748.36 34280.37 28421.23 35592.48 26152.15 29064.02 28480.81 326
Patchmatch-RL test68.17 28464.49 29279.19 26071.22 34953.93 32170.07 34471.54 35769.22 23656.79 31562.89 35256.58 16988.61 31169.53 18752.61 33695.03 76
CMPMVSbinary48.56 2166.77 29464.41 29373.84 30870.65 35250.31 33877.79 33385.73 30945.54 35344.76 35182.14 25535.40 31990.14 30263.18 24474.54 21081.07 323
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
ADS-MVSNet68.54 28164.38 29481.03 22588.06 19866.90 11368.01 34984.02 32357.57 31964.48 26869.87 34238.68 29489.21 30940.87 33567.89 25586.97 241
Patchmtry67.53 29063.93 29578.34 26882.12 28464.38 18268.72 34684.00 32448.23 34959.24 29972.41 33357.82 15089.27 30846.10 31556.68 32781.36 321
ppachtmachnet_test67.72 28763.70 29679.77 25078.92 31766.04 13488.68 25282.90 33360.11 30955.45 31775.96 32139.19 29390.55 29239.53 33952.55 33782.71 308
LTVRE_ROB59.60 1966.27 29663.54 29774.45 30384.00 26751.55 33167.08 35283.53 32758.78 31654.94 31880.31 28534.54 32293.23 23340.64 33768.03 25378.58 344
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
ADS-MVSNet266.90 29363.44 29877.26 28488.06 19860.70 26068.01 34975.56 34857.57 31964.48 26869.87 34238.68 29484.10 33740.87 33567.89 25586.97 241
UnsupCasMVSNet_eth65.79 29963.10 29973.88 30770.71 35150.29 33981.09 31289.88 22672.58 16049.25 34074.77 32732.57 32887.43 32655.96 27841.04 35483.90 291
EU-MVSNet64.01 30663.01 30067.02 33774.40 34238.86 36583.27 29786.19 30445.11 35454.27 32081.15 27536.91 31580.01 35748.79 30257.02 32482.19 317
OpenMVS_ROBcopyleft61.12 1866.39 29562.92 30176.80 29076.51 33557.77 29489.22 24183.41 32955.48 33153.86 32377.84 30526.28 34793.95 21834.90 35168.76 24878.68 343
testgi64.48 30462.87 30269.31 33071.24 34840.62 36085.49 28279.92 34065.36 26954.18 32183.49 24123.74 35184.55 33641.60 33260.79 31182.77 305
test20.0363.83 30762.65 30367.38 33670.58 35339.94 36186.57 27984.17 32163.29 28251.86 32977.30 30837.09 31382.47 35038.87 34354.13 33479.73 335
JIA-IIPM66.06 29762.45 30476.88 28981.42 29054.45 32057.49 36088.67 26949.36 34563.86 27446.86 35956.06 17590.25 29649.53 29868.83 24785.95 266
pmmvs-eth3d65.53 30062.32 30575.19 29869.39 35559.59 27582.80 30283.43 32862.52 29151.30 33372.49 33132.86 32587.16 32855.32 28050.73 34078.83 342
OurMVSNet-221017-064.68 30262.17 30672.21 32176.08 33947.35 35080.67 31481.02 33656.19 32851.60 33079.66 29427.05 34588.56 31353.60 28753.63 33580.71 327
RPSCF64.24 30561.98 30771.01 32776.10 33845.00 35375.83 33675.94 34646.94 35158.96 30384.59 23031.40 33382.00 35447.76 30960.33 31686.04 263
SixPastTwentyTwo64.92 30161.78 30874.34 30578.74 32049.76 34083.42 29679.51 34262.86 28650.27 33677.35 30730.92 33690.49 29445.89 31647.06 34682.78 304
test_040264.54 30361.09 30974.92 30084.10 26660.75 25887.95 26279.71 34152.03 33752.41 32777.20 31032.21 33091.64 28123.14 36361.03 30872.36 355
Patchmatch-test65.86 29860.94 31080.62 23183.75 26958.83 28458.91 35975.26 35044.50 35650.95 33577.09 31258.81 14387.90 31935.13 35064.03 28395.12 70
MDA-MVSNet_test_wron63.78 30860.16 31174.64 30178.15 32660.41 26483.49 29384.03 32256.17 33039.17 35971.59 33937.22 31083.24 34742.87 32848.73 34380.26 332
YYNet163.76 30960.14 31274.62 30278.06 32760.19 26983.46 29583.99 32656.18 32939.25 35871.56 34037.18 31183.34 34542.90 32748.70 34480.32 331
COLMAP_ROBcopyleft57.96 2062.98 31159.65 31372.98 31481.44 28953.00 32583.75 29175.53 34948.34 34848.81 34181.40 26824.14 34990.30 29532.95 35660.52 31375.65 351
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
K. test v363.09 31059.61 31473.53 31076.26 33749.38 34383.27 29777.15 34464.35 27447.77 34472.32 33528.73 34087.79 32149.93 29736.69 35883.41 298
Anonymous2024052162.09 31259.08 31571.10 32667.19 35748.72 34583.91 29085.23 31250.38 34247.84 34371.22 34120.74 35685.51 33346.47 31358.75 32179.06 340
KD-MVS_self_test60.87 31658.60 31667.68 33466.13 35839.93 36275.63 33784.70 31757.32 32249.57 33968.45 34529.55 33782.87 34848.09 30447.94 34580.25 333
AllTest61.66 31358.06 31772.46 31879.57 30651.42 33380.17 32068.61 36051.25 33945.88 34681.23 27019.86 35886.58 33038.98 34157.01 32579.39 337
UnsupCasMVSNet_bld61.60 31457.71 31873.29 31268.73 35651.64 33078.61 32789.05 25857.20 32346.11 34561.96 35328.70 34188.60 31250.08 29638.90 35679.63 336
MDA-MVSNet-bldmvs61.54 31557.70 31973.05 31379.53 30857.00 30683.08 30081.23 33557.57 31934.91 36172.45 33232.79 32686.26 33235.81 34841.95 35275.89 350
MIMVSNet160.16 31957.33 32068.67 33169.71 35444.13 35578.92 32684.21 32055.05 33244.63 35271.85 33723.91 35081.54 35632.63 35855.03 33180.35 330
PM-MVS59.40 32056.59 32167.84 33263.63 36041.86 35776.76 33463.22 36659.01 31551.07 33472.27 33611.72 36583.25 34661.34 25550.28 34278.39 345
new-patchmatchnet59.30 32156.48 32267.79 33365.86 35944.19 35482.47 30381.77 33459.94 31043.65 35566.20 34827.67 34381.68 35539.34 34041.40 35377.50 347
TinyColmap60.32 31756.42 32372.00 32478.78 31953.18 32478.36 33075.64 34752.30 33641.59 35775.82 32314.76 36388.35 31535.84 34754.71 33374.46 352
MVS-HIRNet60.25 31855.55 32474.35 30484.37 26156.57 30871.64 34174.11 35134.44 36145.54 35042.24 36331.11 33589.81 30440.36 33876.10 20676.67 349
DSMNet-mixed56.78 32254.44 32563.79 33963.21 36129.44 36964.43 35464.10 36542.12 35851.32 33271.60 33831.76 33175.04 35936.23 34665.20 27286.87 244
LF4IMVS54.01 32552.12 32659.69 34062.41 36339.91 36368.59 34768.28 36242.96 35744.55 35375.18 32414.09 36468.39 36241.36 33451.68 33870.78 356
TDRefinement55.28 32451.58 32766.39 33859.53 36546.15 35276.23 33572.80 35344.60 35542.49 35676.28 31915.29 36182.39 35133.20 35543.75 35070.62 357
pmmvs355.51 32351.50 32867.53 33557.90 36650.93 33680.37 31673.66 35240.63 35944.15 35464.75 35116.30 36078.97 35844.77 32240.98 35572.69 353
N_pmnet50.55 32649.11 32954.88 34377.17 3324.02 37984.36 2872.00 37848.59 34645.86 34868.82 34432.22 32982.80 34931.58 36151.38 33977.81 346
new_pmnet49.31 32746.44 33057.93 34162.84 36240.74 35968.47 34862.96 36736.48 36035.09 36057.81 35514.97 36272.18 36032.86 35746.44 34760.88 361
FPMVS45.64 32843.10 33153.23 34551.42 36936.46 36664.97 35371.91 35529.13 36327.53 36361.55 3549.83 36765.01 36616.00 36655.58 32958.22 362
LCM-MVSNet40.54 32935.79 33254.76 34436.92 37430.81 36851.41 36169.02 35922.07 36524.63 36445.37 3614.56 37465.81 36433.67 35334.50 36167.67 358
ANet_high40.27 33035.20 33355.47 34234.74 37534.47 36763.84 35571.56 35648.42 34718.80 36741.08 3649.52 36864.45 36720.18 3648.66 37167.49 359
test_method38.59 33135.16 33448.89 34754.33 36721.35 37445.32 36453.71 3697.41 37128.74 36251.62 3578.70 36952.87 36833.73 35232.89 36272.47 354
PMMVS237.93 33233.61 33550.92 34646.31 37124.76 37260.55 35850.05 37028.94 36420.93 36547.59 3584.41 37565.13 36525.14 36218.55 36662.87 360
Gipumacopyleft34.91 33331.44 33645.30 34870.99 35039.64 36419.85 36872.56 35420.10 36716.16 36921.47 3695.08 37371.16 36113.07 36743.70 35125.08 366
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
PMVScopyleft26.43 2231.84 33428.16 33742.89 34925.87 37727.58 37050.92 36249.78 37121.37 36614.17 37040.81 3652.01 37666.62 3639.61 36938.88 35734.49 365
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
cdsmvs_eth3d_5k19.86 33926.47 3380.00 3580.00 3810.00 3820.00 36993.45 830.00 3760.00 37795.27 5049.56 2370.00 3770.00 3750.00 3740.00 373
E-PMN24.61 33524.00 33926.45 35243.74 37218.44 37660.86 35639.66 37215.11 3689.53 37222.10 3686.52 37146.94 3708.31 37010.14 36813.98 368
tmp_tt22.26 33823.75 34017.80 3545.23 37812.06 37835.26 36539.48 3732.82 37318.94 36644.20 36222.23 35424.64 37336.30 3459.31 37016.69 367
EMVS23.76 33723.20 34125.46 35341.52 37316.90 37760.56 35738.79 37514.62 3698.99 37320.24 3717.35 37045.82 3717.25 3719.46 36913.64 369
MVEpermissive24.84 2324.35 33619.77 34238.09 35034.56 37626.92 37126.57 36638.87 37411.73 37011.37 37127.44 3661.37 37750.42 36911.41 36814.60 36736.93 363
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
wuyk23d11.30 34010.95 34312.33 35548.05 37019.89 37525.89 3671.92 3793.58 3723.12 3741.37 3730.64 37815.77 3746.23 3727.77 3721.35 370
ab-mvs-re7.91 34110.55 3440.00 3580.00 3810.00 3820.00 3690.00 3820.00 3760.00 37794.95 620.00 3810.00 3770.00 3750.00 3740.00 373
testmvs7.23 3429.62 3450.06 3570.04 3790.02 38184.98 2850.02 3800.03 3740.18 3751.21 3740.01 3800.02 3750.14 3730.01 3730.13 372
test1236.92 3439.21 3460.08 3560.03 3800.05 38081.65 3080.01 3810.02 3750.14 3760.85 3750.03 3790.02 3750.12 3740.00 3740.16 371
pcd_1.5k_mvsjas4.46 3445.95 3470.00 3580.00 3810.00 3820.00 3690.00 3820.00 3760.00 3770.00 37653.55 2030.00 3770.00 3750.00 3740.00 373
test_blank0.00 3450.00 3480.00 3580.00 3810.00 3820.00 3690.00 3820.00 3760.00 3770.00 3760.00 3810.00 3770.00 3750.00 3740.00 373
uanet_test0.00 3450.00 3480.00 3580.00 3810.00 3820.00 3690.00 3820.00 3760.00 3770.00 3760.00 3810.00 3770.00 3750.00 3740.00 373
sosnet-low-res0.00 3450.00 3480.00 3580.00 3810.00 3820.00 3690.00 3820.00 3760.00 3770.00 3760.00 3810.00 3770.00 3750.00 3740.00 373
sosnet0.00 3450.00 3480.00 3580.00 3810.00 3820.00 3690.00 3820.00 3760.00 3770.00 3760.00 3810.00 3770.00 3750.00 3740.00 373
uncertanet0.00 3450.00 3480.00 3580.00 3810.00 3820.00 3690.00 3820.00 3760.00 3770.00 3760.00 3810.00 3770.00 3750.00 3740.00 373
Regformer0.00 3450.00 3480.00 3580.00 3810.00 3820.00 3690.00 3820.00 3760.00 3770.00 3760.00 3810.00 3770.00 3750.00 3740.00 373
uanet0.00 3450.00 3480.00 3580.00 3810.00 3820.00 3690.00 3820.00 3760.00 3770.00 3760.00 3810.00 3770.00 3750.00 3740.00 373
FOURS193.95 5161.77 23893.96 6791.92 14462.14 29486.57 34
MSC_two_6792asdad89.60 997.31 473.22 1195.05 2099.07 1392.01 1194.77 2596.51 20
PC_three_145280.91 3694.07 296.83 1483.57 499.12 595.70 297.42 497.55 4
No_MVS89.60 997.31 473.22 1195.05 2099.07 1392.01 1194.77 2596.51 20
test_one_060196.32 2069.74 4394.18 5571.42 20690.67 1496.85 1274.45 18
eth-test20.00 381
eth-test0.00 381
ZD-MVS96.63 1165.50 15093.50 8170.74 21985.26 5295.19 5664.92 7797.29 7787.51 4493.01 59
IU-MVS96.46 1369.91 3895.18 1380.75 3795.28 192.34 795.36 1496.47 24
OPU-MVS89.97 397.52 373.15 1396.89 497.00 983.82 299.15 295.72 197.63 397.62 2
test_241102_TWO94.41 4571.65 19492.07 697.21 574.58 1699.11 692.34 795.36 1496.59 15
test_241102_ONE96.45 1469.38 4894.44 4271.65 19492.11 497.05 876.79 999.11 6
save fliter93.84 5467.89 8395.05 3992.66 11678.19 67
test_0728_THIRD72.48 16390.55 1596.93 1076.24 1199.08 1191.53 1594.99 1796.43 26
test_0728_SECOND88.70 1696.45 1470.43 2896.64 894.37 4999.15 291.91 1394.90 2196.51 20
test072696.40 1769.99 3496.76 694.33 5171.92 18091.89 897.11 773.77 20
GSMVS94.68 86
test_part296.29 2168.16 7790.78 12
sam_mvs157.85 14994.68 86
sam_mvs54.91 188
ambc69.61 32961.38 36441.35 35849.07 36385.86 30850.18 33866.40 34710.16 36688.14 31745.73 31744.20 34979.32 339
MTGPAbinary92.23 130
test_post178.95 32520.70 37053.05 20891.50 28860.43 260
test_post23.01 36756.49 17092.67 253
patchmatchnet-post67.62 34657.62 15290.25 296
GG-mvs-BLEND86.53 6691.91 10869.67 4675.02 33894.75 3078.67 11990.85 15377.91 794.56 18972.25 16393.74 4895.36 54
MTMP93.77 8232.52 376
gm-plane-assit88.42 18767.04 10978.62 6491.83 13997.37 7176.57 131
test9_res89.41 2494.96 1895.29 59
TEST994.18 4467.28 10094.16 5593.51 7971.75 19285.52 4895.33 4568.01 4297.27 81
test_894.19 4367.19 10394.15 5793.42 8671.87 18585.38 5095.35 4468.19 3996.95 101
agg_prior286.41 5594.75 3095.33 55
agg_prior94.16 4866.97 11193.31 8984.49 5796.75 110
TestCases72.46 31879.57 30651.42 33368.61 36051.25 33945.88 34681.23 27019.86 35886.58 33038.98 34157.01 32579.39 337
test_prior467.18 10593.92 73
test_prior295.10 3775.40 10785.25 5395.61 4067.94 4387.47 4594.77 25
test_prior86.42 7094.71 3767.35 9893.10 10196.84 10695.05 73
旧先验292.00 15159.37 31487.54 2893.47 23075.39 137
新几何291.41 173
新几何184.73 12592.32 9364.28 18791.46 16659.56 31279.77 10292.90 11756.95 16396.57 11563.40 24192.91 6193.34 136
旧先验191.94 10560.74 25991.50 16494.36 8065.23 7191.84 7494.55 91
无先验92.71 11992.61 12062.03 29597.01 9266.63 21193.97 119
原ACMM292.01 148
原ACMM184.42 13693.21 7264.27 18893.40 8865.39 26879.51 10592.50 12558.11 14896.69 11265.27 23193.96 4292.32 166
test22289.77 15561.60 24289.55 23389.42 24156.83 32677.28 13292.43 12952.76 21091.14 8893.09 147
testdata296.09 12761.26 256
segment_acmp65.94 63
testdata81.34 21289.02 17357.72 29589.84 22758.65 31785.32 5194.09 9357.03 15893.28 23269.34 18990.56 9593.03 149
testdata189.21 24277.55 82
test1287.09 4594.60 3968.86 5992.91 10782.67 7565.44 7097.55 6393.69 5194.84 82
plane_prior786.94 21961.51 243
plane_prior687.23 21462.32 22950.66 227
plane_prior591.31 17195.55 15776.74 12978.53 18588.39 222
plane_prior489.14 178
plane_prior361.95 23679.09 5672.53 177
plane_prior293.13 10278.81 61
plane_prior187.15 216
plane_prior62.42 22693.85 7779.38 4978.80 182
n20.00 382
nn0.00 382
door-mid66.01 364
lessismore_v073.72 30972.93 34647.83 34861.72 36845.86 34873.76 32828.63 34289.81 30447.75 31031.37 36383.53 294
LGP-MVS_train79.56 25684.31 26259.37 27989.73 23269.49 23264.86 26388.42 18338.65 29694.30 19872.56 16072.76 22285.01 282
test1193.01 103
door66.57 363
HQP5-MVS63.66 202
HQP-NCC87.54 20894.06 6279.80 4374.18 158
ACMP_Plane87.54 20894.06 6279.80 4374.18 158
BP-MVS77.63 126
HQP4-MVS74.18 15895.61 15188.63 216
HQP3-MVS91.70 15578.90 180
HQP2-MVS51.63 220
NP-MVS87.41 21163.04 21390.30 164
MDTV_nov1_ep13_2view59.90 27280.13 32167.65 25272.79 17254.33 19659.83 26492.58 160
ACMMP++_ref71.63 230
ACMMP++69.72 240
Test By Simon54.21 197
ITE_SJBPF70.43 32874.44 34147.06 35177.32 34360.16 30854.04 32283.53 23923.30 35284.01 33943.07 32561.58 30680.21 334
DeepMVS_CXcopyleft34.71 35151.45 36824.73 37328.48 37731.46 36217.49 36852.75 3565.80 37242.60 37218.18 36519.42 36536.81 364