This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted by
DPM-MVS90.70 290.52 591.24 189.68 15076.68 297.29 195.35 1082.87 1491.58 897.22 479.93 399.10 783.12 7297.64 297.94 1
SED-MVS89.94 790.36 788.70 1396.45 1169.38 4296.89 494.44 4071.65 18492.11 397.21 576.79 799.11 492.34 695.36 1297.62 2
OPU-MVS89.97 397.52 373.15 1196.89 497.00 983.82 299.15 295.72 197.63 397.62 2
DeepPCF-MVS81.17 189.72 891.38 384.72 12293.00 7358.16 27796.72 794.41 4386.50 590.25 1497.83 175.46 1298.67 1992.78 395.49 1197.32 4
LFMVS84.34 7082.73 9189.18 1194.76 3173.25 1094.99 4191.89 14071.90 17282.16 6993.49 10047.98 24097.05 8482.55 7984.82 13097.25 5
canonicalmvs86.85 3686.25 4288.66 1591.80 10771.92 1393.54 8591.71 14880.26 3887.55 2495.25 4963.59 9096.93 9988.18 3484.34 13697.11 6
MCST-MVS91.08 191.46 289.94 497.66 273.37 997.13 295.58 889.33 185.77 3996.26 2472.84 2299.38 192.64 495.93 897.08 7
DELS-MVS90.05 690.09 889.94 493.14 7073.88 897.01 394.40 4588.32 285.71 4194.91 6374.11 1698.91 1387.26 4495.94 797.03 8
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
CSCG86.87 3586.26 4188.72 1295.05 3070.79 2193.83 7695.33 1168.48 23477.63 11894.35 8173.04 2098.45 2584.92 6093.71 4596.92 9
MVS84.66 6682.86 8890.06 290.93 12774.56 687.91 25195.54 968.55 23272.35 17294.71 6959.78 12398.90 1481.29 9194.69 2896.74 10
alignmvs87.28 2686.97 3488.24 2091.30 12171.14 1995.61 2493.56 7279.30 4787.07 2995.25 4968.43 3496.93 9987.87 3684.33 13796.65 11
DeepC-MVS_fast79.48 287.95 1888.00 1887.79 2495.86 2468.32 6595.74 2094.11 5583.82 1183.49 6396.19 2664.53 7698.44 2683.42 7194.88 2296.61 12
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
test_241102_TWO94.41 4371.65 18492.07 597.21 574.58 1499.11 492.34 695.36 1296.59 13
TSAR-MVS + GP.87.96 1788.37 1686.70 5593.51 6065.32 14895.15 3493.84 5978.17 6685.93 3894.80 6775.80 1198.21 3189.38 2188.78 9896.59 13
CANet89.61 989.99 988.46 1794.39 3869.71 3896.53 1193.78 6086.89 489.68 1595.78 3165.94 6099.10 792.99 293.91 4096.58 15
WTY-MVS86.32 4385.81 4887.85 2292.82 7869.37 4495.20 3295.25 1282.71 1581.91 7094.73 6867.93 4297.63 5679.55 10082.25 14896.54 16
VNet86.20 4585.65 5287.84 2393.92 4769.99 3095.73 2295.94 678.43 6286.00 3793.07 10758.22 13797.00 8985.22 5784.33 13796.52 17
test_0728_SECOND88.70 1396.45 1170.43 2596.64 894.37 4799.15 291.91 1094.90 1996.51 18
ET-MVSNet_ETH3D84.01 7883.15 8486.58 5990.78 13370.89 2094.74 4594.62 3481.44 2758.19 29293.64 9673.64 1992.35 25582.66 7678.66 17496.50 19
IU-MVS96.46 1069.91 3495.18 1380.75 3395.28 192.34 695.36 1296.47 20
ETH3 D test640090.27 590.44 689.75 696.82 674.33 795.89 1694.80 2677.13 7889.13 1897.38 274.49 1598.48 2492.32 995.98 696.46 21
test_0728_THIRD72.48 15390.55 1296.93 1076.24 999.08 991.53 1294.99 1596.43 22
MSP-MVS90.38 391.87 185.88 8292.83 7664.03 18793.06 9994.33 4882.19 1993.65 296.15 2785.89 197.19 7991.02 1597.75 196.43 22
HY-MVS76.49 584.28 7183.36 8087.02 4492.22 9167.74 8184.65 27494.50 3779.15 5182.23 6887.93 18366.88 5196.94 9780.53 9582.20 14996.39 24
DPE-MVS88.77 1389.21 1387.45 3396.26 1867.56 8594.17 5294.15 5368.77 23090.74 1197.27 376.09 1098.49 2390.58 1794.91 1896.30 25
DVP-MVS89.41 1089.73 1188.45 1896.40 1469.99 3096.64 894.52 3671.92 17090.55 1296.93 1073.77 1799.08 991.91 1094.90 1996.29 26
MSLP-MVS++86.27 4485.91 4787.35 3692.01 9768.97 5295.04 4092.70 10879.04 5581.50 7496.50 1758.98 13496.78 10383.49 7093.93 3996.29 26
test_yl84.28 7183.16 8287.64 2694.52 3669.24 4595.78 1795.09 1869.19 22481.09 7892.88 11457.00 15197.44 6381.11 9281.76 15296.23 28
DCV-MVSNet84.28 7183.16 8287.64 2694.52 3669.24 4595.78 1795.09 1869.19 22481.09 7892.88 11457.00 15197.44 6381.11 9281.76 15296.23 28
CNVR-MVS90.32 490.89 488.61 1696.76 770.65 2296.47 1294.83 2384.83 889.07 1996.80 1270.86 2999.06 1192.64 495.71 996.12 30
HPM-MVS++copyleft89.37 1189.95 1087.64 2695.10 2968.23 7095.24 3194.49 3882.43 1788.90 2096.35 2171.89 2898.63 2088.76 3096.40 496.06 31
SD-MVS87.49 2487.49 2687.50 3293.60 5668.82 5593.90 6992.63 11476.86 8287.90 2395.76 3266.17 5797.63 5689.06 2691.48 7796.05 32
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
PHI-MVS86.83 3786.85 3786.78 5193.47 6165.55 14495.39 2995.10 1771.77 18185.69 4296.52 1562.07 10498.77 1786.06 5295.60 1096.03 33
APDe-MVS87.54 2387.84 2086.65 5696.07 2166.30 12494.84 4493.78 6069.35 22188.39 2196.34 2267.74 4597.66 5490.62 1693.44 4996.01 34
DWT-MVSNet_test83.95 8082.80 8987.41 3492.90 7570.07 2989.12 23494.42 4282.15 2077.64 11791.77 13470.81 3096.22 11765.03 22181.36 15695.94 35
lupinMVS87.74 2187.77 2187.63 3089.24 16071.18 1796.57 1092.90 10382.70 1687.13 2695.27 4764.99 7095.80 13389.34 2291.80 7195.93 36
NCCC89.07 1289.46 1287.91 2196.60 969.05 4996.38 1394.64 3384.42 986.74 3096.20 2566.56 5698.76 1889.03 2894.56 2995.92 37
testtj86.62 4086.66 3986.50 6396.95 565.70 13994.41 4893.45 7867.74 23686.19 3496.39 2064.38 7797.91 4287.33 4293.14 5395.90 38
SMA-MVScopyleft88.14 1488.29 1787.67 2593.21 6768.72 5793.85 7294.03 5674.18 11691.74 796.67 1365.61 6598.42 2889.24 2496.08 595.88 39
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
Anonymous20240521177.96 17875.33 19485.87 8493.73 5564.52 16894.85 4385.36 29562.52 27676.11 13290.18 15629.43 32397.29 7368.51 18577.24 19095.81 40
mvs_anonymous81.36 11879.99 12585.46 9990.39 13868.40 6386.88 26590.61 18874.41 11170.31 19284.67 21763.79 8592.32 25673.13 14285.70 12495.67 41
MG-MVS87.11 3086.27 4089.62 897.79 176.27 494.96 4294.49 3878.74 6083.87 6292.94 11064.34 7896.94 9775.19 13094.09 3695.66 42
PAPR85.15 5884.47 6287.18 3996.02 2268.29 6691.85 14793.00 10076.59 8679.03 10395.00 5661.59 10797.61 5878.16 11389.00 9795.63 43
VDD-MVS83.06 9381.81 10386.81 4990.86 13167.70 8295.40 2891.50 15775.46 9681.78 7192.34 12740.09 27697.13 8386.85 4882.04 15095.60 44
Effi-MVS+83.82 8382.76 9086.99 4589.56 15369.40 4191.35 17186.12 28972.59 15083.22 6492.81 11759.60 12596.01 13081.76 8387.80 10795.56 45
TSAR-MVS + MP.88.11 1688.64 1486.54 6191.73 10868.04 7390.36 20593.55 7382.89 1391.29 992.89 11372.27 2596.03 12887.99 3594.77 2395.54 46
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
SteuartSystems-ACMMP86.82 3886.90 3586.58 5990.42 13666.38 12196.09 1593.87 5877.73 7184.01 6195.66 3563.39 9297.94 3987.40 4193.55 4895.42 47
Skip Steuart: Steuart Systems R&D Blog.
casdiffmvs85.37 5584.87 6086.84 4788.25 18269.07 4893.04 10191.76 14581.27 2880.84 8392.07 13064.23 7996.06 12684.98 5987.43 11095.39 48
EIA-MVS84.84 6384.88 5984.69 12391.30 12162.36 22293.85 7292.04 13479.45 4579.33 9994.28 8562.42 10296.35 11480.05 9791.25 8195.38 49
GG-mvs-BLEND86.53 6291.91 10269.67 4075.02 32394.75 2878.67 11190.85 14477.91 594.56 17772.25 15293.74 4395.36 50
agg_prior286.41 4994.75 2695.33 51
3Dnovator+73.60 782.10 10980.60 11886.60 5790.89 13066.80 11195.20 3293.44 8074.05 11867.42 23092.49 12249.46 22597.65 5570.80 16491.68 7395.33 51
baseline85.01 6084.44 6486.71 5388.33 17968.73 5690.24 20991.82 14481.05 3281.18 7792.50 12063.69 8796.08 12484.45 6386.71 11895.32 53
ab-mvs80.18 13678.31 15185.80 8788.44 17665.49 14783.00 28992.67 11071.82 17977.36 12285.01 21354.50 18196.59 10876.35 12575.63 19895.32 53
CS-MVS86.61 4186.85 3785.88 8291.52 11666.25 12695.42 2792.25 12480.36 3784.10 5994.82 6662.88 9996.08 12488.25 3392.07 6995.30 55
test9_res89.41 2094.96 1695.29 56
EPNet87.84 2088.38 1586.23 7493.30 6366.05 12995.26 3094.84 2287.09 388.06 2294.53 7266.79 5397.34 7083.89 6891.68 7395.29 56
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
xxxxxxxxxxxxxcwj87.14 2987.19 3186.99 4593.84 4967.89 7795.05 3884.72 29978.19 6486.25 3196.44 1866.98 4997.79 4788.68 3194.56 2995.28 58
SF-MVS87.03 3287.09 3386.84 4792.70 8267.45 9193.64 8093.76 6370.78 20786.25 3196.44 1866.98 4997.79 4788.68 3194.56 2995.28 58
VDDNet80.50 13178.26 15287.21 3886.19 21769.79 3694.48 4791.31 16360.42 28979.34 9890.91 14338.48 28396.56 11182.16 8081.05 15895.27 60
MVSFormer83.75 8582.88 8786.37 6989.24 16071.18 1789.07 23590.69 18465.80 25087.13 2694.34 8264.99 7092.67 24272.83 14591.80 7195.27 60
jason86.40 4286.17 4387.11 4186.16 21870.54 2495.71 2392.19 13182.00 2384.58 5194.34 8261.86 10695.53 15387.76 3790.89 8495.27 60
jason: jason.
train_agg87.21 2887.42 2886.60 5794.18 4067.28 9494.16 5393.51 7471.87 17585.52 4395.33 4268.19 3697.27 7789.09 2594.90 1995.25 63
MVS_Test84.16 7683.20 8187.05 4391.56 11369.82 3589.99 21792.05 13377.77 7082.84 6686.57 19863.93 8396.09 12274.91 13689.18 9695.25 63
3Dnovator73.91 682.69 10080.82 11388.31 1989.57 15271.26 1692.60 11994.39 4678.84 5767.89 22492.48 12348.42 23598.52 2268.80 18494.40 3395.15 65
agg_prior187.02 3387.26 3086.28 7394.16 4466.97 10594.08 5893.31 8471.85 17784.49 5295.39 4068.91 3396.75 10588.84 2994.32 3495.13 66
Patchmatch-test65.86 28660.94 29880.62 22083.75 25358.83 27058.91 34475.26 33244.50 33950.95 31977.09 30058.81 13587.90 30735.13 33364.03 27395.12 67
ETH3D-3000-0.187.61 2287.89 1986.75 5293.58 5767.21 9694.31 5094.14 5472.92 14587.13 2696.62 1467.81 4497.94 3990.13 1894.42 3295.09 68
APD-MVScopyleft85.93 4985.99 4585.76 8995.98 2365.21 15193.59 8392.58 11666.54 24586.17 3595.88 3063.83 8497.00 8986.39 5092.94 5595.06 69
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
gg-mvs-nofinetune77.18 19074.31 20785.80 8791.42 11868.36 6471.78 32594.72 2949.61 32777.12 12545.92 34377.41 693.98 20467.62 19293.16 5295.05 70
test_prior387.38 2587.70 2286.42 6694.71 3367.35 9295.10 3693.10 9675.40 9985.25 4895.61 3767.94 4096.84 10187.47 3994.77 2395.05 70
test_prior86.42 6694.71 3367.35 9293.10 9696.84 10195.05 70
Patchmatch-RL test68.17 27264.49 28079.19 24971.22 33253.93 30570.07 32971.54 33969.22 22356.79 29962.89 33656.58 16088.61 29969.53 17552.61 32395.03 73
CHOSEN 1792x268884.98 6183.45 7489.57 989.94 14575.14 592.07 13692.32 12181.87 2475.68 13588.27 17660.18 11998.60 2180.46 9690.27 9194.96 74
ACMMP_NAP86.05 4785.80 4986.80 5091.58 11267.53 8791.79 14993.49 7774.93 10784.61 5095.30 4459.42 12797.92 4186.13 5194.92 1794.94 75
PAPM_NR82.97 9481.84 10186.37 6994.10 4666.76 11287.66 25592.84 10469.96 21574.07 15193.57 9863.10 9797.50 6170.66 16790.58 8894.85 76
CDPH-MVS85.71 5285.46 5386.46 6494.75 3267.19 9793.89 7092.83 10570.90 20383.09 6595.28 4563.62 8897.36 6880.63 9494.18 3594.84 77
test1287.09 4294.60 3568.86 5392.91 10282.67 6765.44 6697.55 5993.69 4694.84 77
PatchmatchNetpermissive77.46 18574.63 20085.96 8089.55 15470.35 2679.97 30989.55 22472.23 16270.94 18476.91 30257.03 14992.79 23754.27 27181.17 15794.74 79
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
EPMVS78.49 17075.98 18786.02 7891.21 12369.68 3980.23 30591.20 16775.25 10372.48 16878.11 29154.65 18093.69 21457.66 26183.04 14394.69 80
GSMVS94.68 81
sam_mvs157.85 14094.68 81
SCA75.82 21072.76 22585.01 11386.63 21070.08 2881.06 29989.19 23771.60 18970.01 19577.09 30045.53 25590.25 28460.43 24873.27 20894.68 81
ETH3D cwj APD-0.1687.06 3187.18 3286.71 5391.99 9867.48 9092.97 10494.21 5171.48 19585.72 4096.32 2368.13 3898.00 3889.06 2694.70 2794.65 84
Vis-MVSNetpermissive80.92 12679.98 12683.74 14388.48 17461.80 22893.44 8988.26 26973.96 12277.73 11591.76 13549.94 22194.76 16965.84 21290.37 9094.65 84
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
旧先验191.94 9960.74 24591.50 15794.36 7765.23 6791.84 7094.55 86
sss82.71 9982.38 9683.73 14589.25 15959.58 26292.24 12894.89 2177.96 6879.86 9392.38 12556.70 15797.05 8477.26 11980.86 16094.55 86
xiu_mvs_v2_base87.92 1987.38 2989.55 1091.41 12076.43 395.74 2093.12 9583.53 1289.55 1695.95 2953.45 19597.68 5091.07 1492.62 5994.54 88
PS-MVSNAJ88.14 1487.61 2489.71 792.06 9476.72 195.75 1993.26 8683.86 1089.55 1696.06 2853.55 19197.89 4491.10 1393.31 5094.54 88
ZNCC-MVS85.33 5685.08 5786.06 7793.09 7265.65 14193.89 7093.41 8273.75 12779.94 9194.68 7060.61 11698.03 3782.63 7893.72 4494.52 90
MAR-MVS84.18 7583.43 7586.44 6596.25 1965.93 13494.28 5194.27 5074.41 11179.16 10295.61 3753.99 18698.88 1669.62 17493.26 5194.50 91
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
HFP-MVS84.73 6484.40 6585.72 9093.75 5365.01 16093.50 8793.19 9072.19 16479.22 10094.93 6059.04 13297.67 5181.55 8592.21 6494.49 92
#test#84.98 6184.74 6185.72 9093.75 5365.01 16094.09 5793.19 9073.55 13379.22 10094.93 6059.04 13297.67 5182.66 7692.21 6494.49 92
ETV-MVS86.01 4886.11 4485.70 9390.21 14167.02 10493.43 9091.92 13981.21 2984.13 5894.07 9060.93 11395.63 14389.28 2389.81 9294.46 94
diffmvs84.28 7183.83 6985.61 9587.40 19968.02 7490.88 18989.24 23480.54 3581.64 7392.52 11959.83 12294.52 18187.32 4385.11 12894.29 95
Regformer-187.24 2787.60 2586.15 7695.14 2765.83 13793.95 6595.12 1582.11 2184.25 5495.73 3367.88 4398.35 2985.60 5488.64 10094.26 96
region2R84.36 6984.03 6885.36 10493.54 5964.31 18093.43 9092.95 10172.16 16778.86 10894.84 6556.97 15397.53 6081.38 8992.11 6894.24 97
Regformer-287.00 3487.43 2785.71 9295.14 2764.73 16693.95 6594.95 2081.69 2684.03 6095.73 3367.35 4798.19 3385.40 5688.64 10094.20 98
zzz-MVS84.73 6484.47 6285.50 9791.89 10365.16 15391.55 16092.23 12575.32 10180.53 8595.21 5156.06 16697.16 8184.86 6192.55 6194.18 99
MTAPA83.91 8183.38 7985.50 9791.89 10365.16 15381.75 29492.23 12575.32 10180.53 8595.21 5156.06 16697.16 8184.86 6192.55 6194.18 99
PMMVS81.98 11182.04 9981.78 19289.76 14956.17 29491.13 18290.69 18477.96 6880.09 9093.57 9846.33 25194.99 16381.41 8887.46 10994.17 101
CostFormer82.33 10381.15 10885.86 8589.01 16568.46 6282.39 29293.01 9875.59 9480.25 8881.57 25172.03 2794.96 16479.06 10577.48 18694.16 102
MVS_111021_HR86.19 4685.80 4987.37 3593.17 6969.79 3693.99 6393.76 6379.08 5478.88 10793.99 9162.25 10398.15 3485.93 5391.15 8294.15 103
PVSNet_Blended86.73 3986.86 3686.31 7293.76 5167.53 8796.33 1493.61 7082.34 1881.00 8193.08 10563.19 9597.29 7387.08 4591.38 7894.13 104
1112_ss80.56 13079.83 12882.77 16288.65 17160.78 24292.29 12688.36 26472.58 15172.46 16994.95 5865.09 6993.42 22066.38 20677.71 17994.10 105
IB-MVS77.80 482.18 10580.46 12187.35 3689.14 16270.28 2795.59 2595.17 1478.85 5670.19 19385.82 20670.66 3197.67 5172.19 15566.52 25594.09 106
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
PAPM85.89 5085.46 5387.18 3988.20 18472.42 1292.41 12592.77 10682.11 2180.34 8793.07 10768.27 3595.02 16278.39 11293.59 4794.09 106
MP-MVS-pluss85.24 5785.13 5685.56 9691.42 11865.59 14391.54 16192.51 11874.56 11080.62 8495.64 3659.15 13197.00 8986.94 4793.80 4194.07 108
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
MP-MVScopyleft85.02 5984.97 5885.17 11092.60 8464.27 18393.24 9492.27 12373.13 13979.63 9694.43 7561.90 10597.17 8085.00 5892.56 6094.06 109
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
DeepC-MVS77.85 385.52 5385.24 5586.37 6988.80 16966.64 11492.15 13093.68 6781.07 3176.91 12893.64 9662.59 10198.44 2685.50 5592.84 5794.03 110
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
ACMMPR84.37 6884.06 6785.28 10693.56 5864.37 17893.50 8793.15 9372.19 16478.85 10994.86 6456.69 15897.45 6281.55 8592.20 6694.02 111
无先验92.71 11392.61 11562.03 27997.01 8766.63 20093.97 112
XVS83.87 8283.47 7385.05 11193.22 6563.78 19092.92 10892.66 11173.99 11978.18 11294.31 8455.25 17297.41 6579.16 10391.58 7593.95 113
X-MVStestdata76.86 19274.13 21185.05 11193.22 6563.78 19092.92 10892.66 11173.99 11978.18 11210.19 35555.25 17297.41 6579.16 10391.58 7593.95 113
CP-MVS83.71 8683.40 7884.65 12493.14 7063.84 18894.59 4692.28 12271.03 20177.41 12194.92 6255.21 17596.19 11881.32 9090.70 8693.91 115
PVSNet73.49 880.05 13978.63 14784.31 13390.92 12864.97 16292.47 12491.05 17579.18 5072.43 17090.51 15037.05 29994.06 19768.06 18786.00 12393.90 116
GST-MVS84.63 6784.29 6685.66 9492.82 7865.27 14993.04 10193.13 9473.20 13778.89 10494.18 8759.41 12897.85 4681.45 8792.48 6393.86 117
Test_1112_low_res79.56 14878.60 14882.43 17088.24 18360.39 25192.09 13487.99 27372.10 16871.84 17787.42 19064.62 7593.04 22465.80 21377.30 18893.85 118
thisisatest051583.41 8882.49 9486.16 7589.46 15668.26 6893.54 8594.70 3074.31 11475.75 13490.92 14272.62 2396.52 11269.64 17281.50 15493.71 119
HyFIR lowres test81.03 12479.56 13385.43 10187.81 19268.11 7290.18 21090.01 21170.65 20972.95 15986.06 20463.61 8994.50 18275.01 13479.75 16493.67 120
CANet_DTU84.09 7783.52 7185.81 8690.30 13966.82 10991.87 14589.01 24785.27 686.09 3693.74 9547.71 24396.98 9377.90 11689.78 9493.65 121
mPP-MVS82.96 9582.44 9584.52 12892.83 7662.92 21392.76 11191.85 14271.52 19275.61 13894.24 8653.48 19496.99 9278.97 10690.73 8593.64 122
tpmrst80.57 12979.14 14484.84 11890.10 14268.28 6781.70 29589.72 22177.63 7375.96 13379.54 28264.94 7292.71 23975.43 12877.28 18993.55 123
tpm279.80 14577.95 15885.34 10588.28 18068.26 6881.56 29791.42 16070.11 21377.59 12080.50 26967.40 4694.26 19067.34 19477.35 18793.51 124
SR-MVS82.81 9682.58 9383.50 15393.35 6261.16 23892.23 12991.28 16664.48 25881.27 7695.28 4553.71 19095.86 13282.87 7488.77 9993.49 125
PGM-MVS83.25 9082.70 9284.92 11492.81 8064.07 18690.44 20192.20 13071.28 19677.23 12494.43 7555.17 17697.31 7279.33 10291.38 7893.37 126
新几何184.73 12092.32 8764.28 18291.46 15959.56 29679.77 9492.90 11256.95 15496.57 11063.40 23092.91 5693.34 127
HPM-MVScopyleft83.25 9082.95 8684.17 13692.25 9062.88 21590.91 18691.86 14170.30 21277.12 12593.96 9256.75 15696.28 11582.04 8191.34 8093.34 127
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
TESTMET0.1,182.41 10281.98 10083.72 14688.08 18563.74 19292.70 11493.77 6279.30 4777.61 11987.57 18858.19 13894.08 19573.91 14086.68 11993.33 129
112181.25 11980.05 12384.87 11792.30 8864.31 18087.91 25191.39 16159.44 29779.94 9192.91 11157.09 14797.01 8766.63 20092.81 5893.29 130
test117281.90 11281.83 10282.13 18493.23 6457.52 28591.61 15990.98 17864.32 26080.20 8995.00 5651.26 21195.61 14581.73 8488.13 10493.26 131
IS-MVSNet80.14 13779.41 13782.33 17587.91 19060.08 25691.97 14288.27 26772.90 14671.44 18391.73 13761.44 10893.66 21562.47 23886.53 12093.24 132
131480.70 12778.95 14585.94 8187.77 19367.56 8587.91 25192.55 11772.17 16667.44 22993.09 10450.27 21897.04 8671.68 16087.64 10893.23 133
CDS-MVSNet81.43 11780.74 11483.52 15186.26 21664.45 17292.09 13490.65 18775.83 9373.95 15389.81 16263.97 8292.91 23271.27 16182.82 14593.20 134
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
Fast-Effi-MVS+81.14 12180.01 12484.51 12990.24 14065.86 13594.12 5689.15 24073.81 12675.37 14188.26 17757.26 14594.53 18066.97 19984.92 12993.15 135
API-MVS82.28 10480.53 11987.54 3196.13 2070.59 2393.63 8191.04 17665.72 25275.45 14092.83 11656.11 16598.89 1564.10 22689.75 9593.15 135
test22289.77 14861.60 23289.55 22389.42 22956.83 30977.28 12392.43 12452.76 19891.14 8393.09 137
TAMVS80.37 13379.45 13683.13 15885.14 23163.37 20191.23 17690.76 18374.81 10972.65 16388.49 17160.63 11592.95 22769.41 17681.95 15193.08 138
testdata81.34 20389.02 16457.72 28189.84 21458.65 30185.32 4694.09 8857.03 14993.28 22169.34 17790.56 8993.03 139
tpm78.58 16877.03 17283.22 15685.94 22364.56 16783.21 28791.14 17178.31 6373.67 15479.68 28064.01 8192.09 26166.07 21071.26 22593.03 139
Regformer-385.80 5185.92 4685.46 9994.17 4265.09 15892.95 10695.11 1681.13 3081.68 7295.04 5465.82 6298.32 3083.02 7384.36 13492.97 141
GA-MVS78.33 17376.23 18484.65 12483.65 25566.30 12491.44 16290.14 20476.01 9170.32 19184.02 22342.50 26894.72 17270.98 16277.00 19192.94 142
BH-RMVSNet79.46 15177.65 16284.89 11591.68 11065.66 14093.55 8488.09 27172.93 14473.37 15591.12 14146.20 25396.12 12156.28 26585.61 12692.91 143
APD-MVS_3200maxsize81.64 11581.32 10782.59 16892.36 8658.74 27191.39 16791.01 17763.35 26679.72 9594.62 7151.82 20496.14 12079.71 9887.93 10692.89 144
Regformer-485.45 5485.69 5184.73 12094.17 4263.23 20492.95 10694.83 2380.66 3481.29 7595.04 5465.12 6898.08 3682.74 7584.36 13492.88 145
DP-MVS Recon82.73 9781.65 10485.98 7997.31 467.06 10195.15 3491.99 13669.08 22776.50 13193.89 9354.48 18298.20 3270.76 16585.66 12592.69 146
UGNet79.87 14378.68 14683.45 15589.96 14461.51 23392.13 13190.79 18176.83 8378.85 10986.33 20138.16 28596.17 11967.93 18987.17 11192.67 147
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
EPP-MVSNet81.79 11481.52 10582.61 16788.77 17060.21 25493.02 10393.66 6968.52 23372.90 16090.39 15272.19 2694.96 16474.93 13579.29 16892.67 147
PVSNet_Blended_VisFu83.97 7983.50 7285.39 10390.02 14366.59 11793.77 7791.73 14677.43 7777.08 12789.81 16263.77 8696.97 9479.67 9988.21 10392.60 149
MDTV_nov1_ep13_2view59.90 25880.13 30767.65 23972.79 16154.33 18459.83 25292.58 150
QAPM79.95 14277.39 16987.64 2689.63 15171.41 1593.30 9393.70 6665.34 25567.39 23291.75 13647.83 24198.96 1257.71 26089.81 9292.54 151
dp75.01 22172.09 23483.76 14289.28 15866.22 12879.96 31089.75 21671.16 19867.80 22677.19 29951.81 20592.54 24750.39 28271.44 22492.51 152
EPNet_dtu78.80 16179.26 14177.43 26988.06 18649.71 32591.96 14391.95 13877.67 7276.56 13091.28 14058.51 13690.20 28956.37 26480.95 15992.39 153
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
Anonymous2024052976.84 19474.15 21084.88 11691.02 12564.95 16393.84 7591.09 17353.57 31773.00 15787.42 19035.91 30397.32 7169.14 18072.41 21792.36 154
Vis-MVSNet (Re-imp)79.24 15379.57 13278.24 26188.46 17552.29 31290.41 20389.12 24274.24 11569.13 20391.91 13265.77 6390.09 29159.00 25788.09 10592.33 155
原ACMM184.42 13193.21 6764.27 18393.40 8365.39 25379.51 9792.50 12058.11 13996.69 10765.27 22093.96 3892.32 156
TR-MVS78.77 16377.37 17082.95 15990.49 13560.88 24093.67 7990.07 20670.08 21474.51 14591.37 13945.69 25495.70 14260.12 25180.32 16192.29 157
SR-MVS-dyc-post81.06 12380.70 11582.15 18292.02 9558.56 27390.90 18790.45 18962.76 27278.89 10494.46 7351.26 21195.61 14578.77 10986.77 11692.28 158
RE-MVS-def80.48 12092.02 9558.56 27390.90 18790.45 18962.76 27278.89 10494.46 7349.30 22778.77 10986.77 11692.28 158
LCM-MVSNet-Re72.93 23871.84 23676.18 28188.49 17348.02 32980.07 30870.17 34073.96 12252.25 31280.09 27749.98 22088.24 30467.35 19384.23 14092.28 158
MVS_111021_LR82.02 11081.52 10583.51 15288.42 17762.88 21589.77 22088.93 24976.78 8475.55 13993.10 10350.31 21795.38 15683.82 6987.02 11292.26 161
BH-w/o80.49 13279.30 14084.05 13990.83 13264.36 17993.60 8289.42 22974.35 11369.09 20490.15 15755.23 17495.61 14564.61 22386.43 12292.17 162
CVMVSNet74.04 22874.27 20873.33 29785.33 22743.94 33989.53 22588.39 26354.33 31670.37 19090.13 15849.17 23084.05 32261.83 24279.36 16691.99 163
tpm cat175.30 21772.21 23384.58 12788.52 17267.77 8078.16 31888.02 27261.88 28268.45 21876.37 30360.65 11494.03 20153.77 27474.11 20291.93 164
ACMMPcopyleft81.49 11680.67 11683.93 14091.71 10962.90 21492.13 13192.22 12971.79 18071.68 18193.49 10050.32 21696.96 9578.47 11184.22 14191.93 164
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
mvs-test178.74 16477.95 15881.14 20783.22 25957.13 28993.96 6487.78 27575.42 9772.68 16290.80 14545.08 25894.54 17975.08 13277.49 18591.74 166
test-LLR80.10 13879.56 13381.72 19486.93 20861.17 23692.70 11491.54 15471.51 19375.62 13686.94 19553.83 18792.38 25272.21 15384.76 13291.60 167
test-mter79.96 14179.38 13981.72 19486.93 20861.17 23692.70 11491.54 15473.85 12475.62 13686.94 19549.84 22392.38 25272.21 15384.76 13291.60 167
thisisatest053081.15 12080.07 12284.39 13288.26 18165.63 14291.40 16594.62 3471.27 19770.93 18589.18 16572.47 2496.04 12765.62 21576.89 19291.49 169
AUN-MVS78.37 17177.43 16681.17 20686.60 21157.45 28689.46 22791.16 16974.11 11774.40 14690.49 15155.52 17194.57 17574.73 13960.43 30391.48 170
MIMVSNet71.64 24968.44 25881.23 20581.97 27064.44 17373.05 32488.80 25369.67 21864.59 25274.79 31132.79 31187.82 30853.99 27276.35 19591.42 171
xiu_mvs_v1_base_debu82.16 10681.12 10985.26 10786.42 21268.72 5792.59 12190.44 19273.12 14084.20 5594.36 7738.04 28795.73 13784.12 6586.81 11391.33 172
xiu_mvs_v1_base82.16 10681.12 10985.26 10786.42 21268.72 5792.59 12190.44 19273.12 14084.20 5594.36 7738.04 28795.73 13784.12 6586.81 11391.33 172
xiu_mvs_v1_base_debi82.16 10681.12 10985.26 10786.42 21268.72 5792.59 12190.44 19273.12 14084.20 5594.36 7738.04 28795.73 13784.12 6586.81 11391.33 172
BH-untuned78.68 16577.08 17183.48 15489.84 14763.74 19292.70 11488.59 26071.57 19066.83 23888.65 17051.75 20695.39 15559.03 25684.77 13191.32 175
HPM-MVS_fast80.25 13579.55 13582.33 17591.55 11459.95 25791.32 17389.16 23965.23 25674.71 14493.07 10747.81 24295.74 13674.87 13888.23 10291.31 176
baseline181.84 11381.03 11284.28 13591.60 11166.62 11591.08 18391.66 15181.87 2474.86 14391.67 13869.98 3294.92 16771.76 15864.75 26791.29 177
baseline283.68 8783.42 7784.48 13087.37 20066.00 13190.06 21395.93 779.71 4369.08 20590.39 15277.92 496.28 11578.91 10781.38 15591.16 178
TAPA-MVS70.22 1274.94 22273.53 21879.17 25090.40 13752.07 31389.19 23289.61 22362.69 27470.07 19492.67 11848.89 23494.32 18538.26 32779.97 16291.12 179
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
AdaColmapbinary78.94 15877.00 17484.76 11996.34 1665.86 13592.66 11887.97 27462.18 27870.56 18692.37 12643.53 26597.35 6964.50 22482.86 14491.05 180
OMC-MVS78.67 16777.91 16080.95 21685.76 22557.40 28788.49 24388.67 25773.85 12472.43 17092.10 12949.29 22894.55 17872.73 14777.89 17890.91 181
EI-MVSNet-Vis-set83.77 8483.67 7084.06 13892.79 8163.56 20091.76 15294.81 2579.65 4477.87 11494.09 8863.35 9397.90 4379.35 10179.36 16690.74 182
cascas78.18 17475.77 19085.41 10287.14 20469.11 4792.96 10591.15 17066.71 24470.47 18786.07 20337.49 29396.48 11370.15 17079.80 16390.65 183
CR-MVSNet73.79 23270.82 24482.70 16483.15 26167.96 7570.25 32784.00 30673.67 13169.97 19772.41 31857.82 14189.48 29552.99 27773.13 20990.64 184
RPMNet70.42 25765.68 27084.63 12683.15 26167.96 7570.25 32790.45 18946.83 33569.97 19765.10 33456.48 16295.30 16035.79 33273.13 20990.64 184
PCF-MVS73.15 979.29 15277.63 16384.29 13486.06 21965.96 13387.03 26191.10 17269.86 21669.79 20090.64 14657.54 14496.59 10864.37 22582.29 14790.32 186
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
PVSNet_068.08 1571.81 24868.32 26082.27 17784.68 23762.31 22488.68 24090.31 19875.84 9257.93 29580.65 26837.85 29094.19 19169.94 17129.05 34690.31 187
tttt051779.50 14978.53 14982.41 17387.22 20261.43 23589.75 22194.76 2769.29 22267.91 22388.06 18272.92 2195.63 14362.91 23473.90 20690.16 188
CPTT-MVS79.59 14779.16 14380.89 21891.54 11559.80 25992.10 13388.54 26260.42 28972.96 15893.28 10248.27 23692.80 23678.89 10886.50 12190.06 189
EI-MVSNet-UG-set83.14 9282.96 8583.67 14892.28 8963.19 20691.38 16994.68 3179.22 4976.60 12993.75 9462.64 10097.76 4978.07 11478.01 17790.05 190
abl_679.82 14479.20 14281.70 19689.85 14658.34 27588.47 24490.07 20662.56 27577.71 11693.08 10547.65 24496.78 10377.94 11585.45 12789.99 191
XVG-OURS-SEG-HR74.70 22473.08 22279.57 24478.25 31057.33 28880.49 30187.32 27963.22 26868.76 21390.12 16044.89 26091.59 27070.55 16874.09 20389.79 192
114514_t79.17 15477.67 16183.68 14795.32 2665.53 14592.85 11091.60 15363.49 26567.92 22290.63 14846.65 24895.72 14167.01 19883.54 14289.79 192
UA-Net80.02 14079.65 13081.11 20989.33 15757.72 28186.33 26889.00 24877.44 7681.01 8089.15 16659.33 12995.90 13161.01 24584.28 13989.73 194
XVG-OURS74.25 22772.46 23179.63 24278.45 30957.59 28480.33 30387.39 27863.86 26368.76 21389.62 16440.50 27491.72 26869.00 18174.25 20189.58 195
UniMVSNet_ETH3D72.74 24270.53 24579.36 24778.62 30856.64 29285.01 27289.20 23663.77 26464.84 25184.44 22034.05 30891.86 26563.94 22770.89 22789.57 196
thres20079.66 14678.33 15083.66 14992.54 8565.82 13893.06 9996.31 374.90 10873.30 15688.66 16959.67 12495.61 14547.84 29278.67 17389.56 197
OpenMVScopyleft70.45 1178.54 16975.92 18886.41 6885.93 22471.68 1492.74 11292.51 11866.49 24664.56 25391.96 13143.88 26498.10 3554.61 26990.65 8789.44 198
CHOSEN 280x42077.35 18876.95 17578.55 25687.07 20562.68 21969.71 33082.95 31468.80 22971.48 18287.27 19466.03 5984.00 32476.47 12382.81 14688.95 199
thres100view90078.37 17177.01 17382.46 16991.89 10363.21 20591.19 18096.33 172.28 16070.45 18987.89 18460.31 11795.32 15745.16 30177.58 18288.83 200
tfpn200view978.79 16277.43 16682.88 16092.21 9264.49 16992.05 13796.28 473.48 13471.75 17988.26 17760.07 12095.32 15745.16 30177.58 18288.83 200
nrg03080.93 12579.86 12784.13 13783.69 25468.83 5493.23 9591.20 16775.55 9575.06 14288.22 18063.04 9894.74 17181.88 8266.88 25288.82 202
PatchT69.11 26565.37 27480.32 22382.07 26963.68 19667.96 33687.62 27750.86 32569.37 20165.18 33357.09 14788.53 30241.59 31666.60 25488.74 203
HQP4-MVS74.18 14795.61 14588.63 204
HQP-MVS81.14 12180.64 11782.64 16687.54 19563.66 19794.06 5991.70 14979.80 4074.18 14790.30 15451.63 20895.61 14577.63 11778.90 17088.63 204
VPNet78.82 16077.53 16582.70 16484.52 24166.44 12093.93 6792.23 12580.46 3672.60 16488.38 17449.18 22993.13 22372.47 15163.97 27588.55 206
Effi-MVS+-dtu76.14 20175.28 19578.72 25583.22 25955.17 30089.87 21887.78 27575.42 9767.98 22181.43 25345.08 25892.52 24875.08 13271.63 22088.48 207
RRT_test8_iter0580.61 12879.62 13183.60 15091.87 10666.90 10793.42 9293.68 6777.09 8068.83 21185.63 20966.82 5295.42 15476.46 12462.74 27988.48 207
CNLPA74.31 22672.30 23280.32 22391.49 11761.66 23190.85 19080.72 32056.67 31063.85 26190.64 14646.75 24790.84 27953.79 27375.99 19788.47 209
HQP_MVS80.34 13479.75 12982.12 18586.94 20662.42 22093.13 9791.31 16378.81 5872.53 16689.14 16750.66 21495.55 15176.74 12078.53 17588.39 210
plane_prior591.31 16395.55 15176.74 12078.53 17588.39 210
VPA-MVSNet79.03 15578.00 15682.11 18885.95 22164.48 17193.22 9694.66 3275.05 10674.04 15284.95 21452.17 20393.52 21774.90 13767.04 25188.32 212
CLD-MVS82.73 9782.35 9783.86 14187.90 19167.65 8495.45 2692.18 13285.06 772.58 16592.27 12852.46 20195.78 13484.18 6479.06 16988.16 213
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
XXY-MVS77.94 17976.44 18182.43 17082.60 26564.44 17392.01 13991.83 14373.59 13270.00 19685.82 20654.43 18394.76 16969.63 17368.02 24588.10 214
FIs79.47 15079.41 13779.67 24185.95 22159.40 26491.68 15693.94 5778.06 6768.96 20888.28 17566.61 5591.77 26766.20 20974.99 19987.82 215
Fast-Effi-MVS+-dtu75.04 22073.37 22080.07 23080.86 27659.52 26391.20 17985.38 29471.90 17265.20 24784.84 21541.46 27192.97 22666.50 20572.96 21187.73 216
UniMVSNet_NR-MVSNet78.15 17577.55 16479.98 23284.46 24360.26 25292.25 12793.20 8977.50 7568.88 20986.61 19766.10 5892.13 25966.38 20662.55 28087.54 217
MVSTER82.47 10182.05 9883.74 14392.68 8369.01 5091.90 14493.21 8779.83 3972.14 17385.71 20874.72 1394.72 17275.72 12672.49 21587.50 218
thres600view778.00 17676.66 17882.03 19091.93 10063.69 19591.30 17496.33 172.43 15570.46 18887.89 18460.31 11794.92 16742.64 31376.64 19387.48 219
thres40078.68 16577.43 16682.43 17092.21 9264.49 16992.05 13796.28 473.48 13471.75 17988.26 17760.07 12095.32 15745.16 30177.58 18287.48 219
TranMVSNet+NR-MVSNet75.86 20974.52 20479.89 23582.44 26660.64 24891.37 17091.37 16276.63 8567.65 22786.21 20252.37 20291.55 27161.84 24160.81 29887.48 219
FC-MVSNet-test77.99 17778.08 15577.70 26484.89 23655.51 29890.27 20793.75 6576.87 8166.80 23987.59 18765.71 6490.23 28862.89 23573.94 20487.37 222
DU-MVS76.86 19275.84 18979.91 23482.96 26360.26 25291.26 17591.54 15476.46 8868.88 20986.35 19956.16 16392.13 25966.38 20662.55 28087.35 223
NR-MVSNet76.05 20574.59 20180.44 22182.96 26362.18 22690.83 19191.73 14677.12 7960.96 27886.35 19959.28 13091.80 26660.74 24661.34 29587.35 223
FMVSNet377.73 18276.04 18682.80 16191.20 12468.99 5191.87 14591.99 13673.35 13667.04 23583.19 23256.62 15992.14 25859.80 25369.34 23487.28 225
PS-MVSNAJss77.26 18976.31 18380.13 22980.64 28059.16 26890.63 20091.06 17472.80 14768.58 21684.57 21953.55 19193.96 20572.97 14371.96 21987.27 226
FMVSNet276.07 20274.01 21382.26 17988.85 16667.66 8391.33 17291.61 15270.84 20465.98 24282.25 24048.03 23792.00 26358.46 25868.73 24087.10 227
ADS-MVSNet266.90 28163.44 28677.26 27388.06 18660.70 24668.01 33475.56 33057.57 30364.48 25469.87 32738.68 27984.10 32140.87 31867.89 24686.97 228
ADS-MVSNet68.54 26964.38 28281.03 21488.06 18666.90 10768.01 33484.02 30557.57 30364.48 25469.87 32738.68 27989.21 29740.87 31867.89 24686.97 228
testing_271.09 25367.32 26482.40 17469.82 33766.52 11983.64 27990.77 18272.21 16345.12 33371.07 32627.60 32893.74 21275.71 12769.96 22986.95 230
WR-MVS76.76 19675.74 19179.82 23784.60 23962.27 22592.60 11992.51 11876.06 9067.87 22585.34 21056.76 15590.24 28762.20 23963.69 27786.94 231
DSMNet-mixed56.78 30854.44 31163.79 32363.21 34329.44 35164.43 33964.10 34742.12 34151.32 31671.60 32331.76 31675.04 34236.23 32965.20 26286.87 232
UniMVSNet (Re)77.58 18476.78 17679.98 23284.11 24960.80 24191.76 15293.17 9276.56 8769.93 19984.78 21663.32 9492.36 25464.89 22262.51 28286.78 233
RRT_MVS77.38 18776.59 17979.77 23990.91 12963.61 19991.15 18190.91 17972.28 16072.06 17587.28 19343.92 26389.04 29873.32 14167.47 24986.67 234
GBi-Net75.65 21273.83 21581.10 21088.85 16665.11 15590.01 21490.32 19570.84 20467.04 23580.25 27448.03 23791.54 27259.80 25369.34 23486.64 235
test175.65 21273.83 21581.10 21088.85 16665.11 15590.01 21490.32 19570.84 20467.04 23580.25 27448.03 23791.54 27259.80 25369.34 23486.64 235
FMVSNet172.71 24369.91 25081.10 21083.60 25665.11 15590.01 21490.32 19563.92 26263.56 26380.25 27436.35 30291.54 27254.46 27066.75 25386.64 235
v2v48277.42 18675.65 19282.73 16380.38 28267.13 10091.85 14790.23 20175.09 10569.37 20183.39 23053.79 18994.44 18371.77 15765.00 26486.63 238
miper_enhance_ethall78.86 15977.97 15781.54 19988.00 18965.17 15291.41 16389.15 24075.19 10468.79 21283.98 22467.17 4892.82 23472.73 14765.30 25886.62 239
cl-mvsnet277.94 17976.78 17681.42 20187.57 19464.93 16490.67 19688.86 25272.45 15467.63 22882.68 23664.07 8092.91 23271.79 15665.30 25886.44 240
PLCcopyleft68.80 1475.23 21873.68 21779.86 23692.93 7458.68 27290.64 19888.30 26560.90 28664.43 25790.53 14942.38 26994.57 17556.52 26376.54 19486.33 241
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
EI-MVSNet78.97 15778.22 15381.25 20485.33 22762.73 21889.53 22593.21 8772.39 15772.14 17390.13 15860.99 11194.72 17267.73 19172.49 21586.29 242
IterMVS-LS76.49 19875.18 19680.43 22284.49 24262.74 21790.64 19888.80 25372.40 15665.16 24881.72 24760.98 11292.27 25767.74 19064.65 26986.29 242
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
miper_ehance_all_eth77.60 18376.44 18181.09 21385.70 22664.41 17690.65 19788.64 25972.31 15867.37 23382.52 23764.77 7492.64 24570.67 16665.30 25886.24 244
OPM-MVS79.00 15678.09 15481.73 19383.52 25763.83 18991.64 15890.30 19976.36 8971.97 17689.93 16146.30 25295.17 16175.10 13177.70 18086.19 245
cl-mvsnet176.07 20274.67 19880.28 22585.14 23161.75 23090.12 21188.73 25571.16 19865.42 24681.60 25061.15 10992.94 23166.54 20362.16 28686.14 246
eth_miper_zixun_eth75.96 20874.40 20680.66 21984.66 23863.02 20889.28 22988.27 26771.88 17465.73 24381.65 24859.45 12692.81 23568.13 18660.53 30186.14 246
cl-mvsnet_76.07 20274.67 19880.28 22585.15 23061.76 22990.12 21188.73 25571.16 19865.43 24581.57 25161.15 10992.95 22766.54 20362.17 28486.13 248
PatchMatch-RL72.06 24769.98 24778.28 25989.51 15555.70 29783.49 28183.39 31261.24 28563.72 26282.76 23434.77 30693.03 22553.37 27677.59 18186.12 249
cl_fuxian76.83 19575.47 19380.93 21785.02 23464.18 18590.39 20488.11 27071.66 18366.65 24081.64 24963.58 9192.56 24669.31 17862.86 27886.04 250
RPSCF64.24 29361.98 29571.01 31276.10 32245.00 33675.83 32275.94 32846.94 33458.96 28984.59 21831.40 31882.00 33747.76 29360.33 30486.04 250
Anonymous2023121173.08 23570.39 24681.13 20890.62 13463.33 20291.40 16590.06 20951.84 32264.46 25680.67 26736.49 30194.07 19663.83 22864.17 27285.98 252
test_part172.36 24669.25 25481.68 19779.94 28965.07 15990.68 19589.53 22552.32 31963.42 26579.21 28440.43 27594.01 20367.14 19660.59 30085.96 253
v119275.98 20773.92 21482.15 18279.73 29066.24 12791.22 17789.75 21672.67 14968.49 21781.42 25449.86 22294.27 18867.08 19765.02 26385.95 254
JIA-IIPM66.06 28562.45 29276.88 27681.42 27454.45 30457.49 34588.67 25749.36 32863.86 26046.86 34256.06 16690.25 28449.53 28668.83 23885.95 254
v192192075.63 21473.49 21982.06 18979.38 29566.35 12291.07 18589.48 22671.98 16967.99 22081.22 25949.16 23193.90 20866.56 20264.56 27085.92 256
v114476.73 19774.88 19782.27 17780.23 28766.60 11691.68 15690.21 20373.69 12969.06 20681.89 24452.73 19994.40 18469.21 17965.23 26185.80 257
v14419276.05 20574.03 21282.12 18579.50 29466.55 11891.39 16789.71 22272.30 15968.17 21981.33 25651.75 20694.03 20167.94 18864.19 27185.77 258
v124075.21 21972.98 22381.88 19179.20 29766.00 13190.75 19489.11 24371.63 18867.41 23181.22 25947.36 24593.87 20965.46 21864.72 26885.77 258
v14876.19 20074.47 20581.36 20280.05 28864.44 17391.75 15490.23 20173.68 13067.13 23480.84 26455.92 16993.86 21168.95 18261.73 29185.76 260
test0.0.03 172.76 24172.71 22772.88 30180.25 28647.99 33091.22 17789.45 22771.51 19362.51 27487.66 18653.83 18785.06 31950.16 28367.84 24885.58 261
test_djsdf73.76 23372.56 22977.39 27077.00 31853.93 30589.07 23590.69 18465.80 25063.92 25982.03 24343.14 26792.67 24272.83 14568.53 24185.57 262
ACMM69.62 1374.34 22572.73 22679.17 25084.25 24857.87 27990.36 20589.93 21263.17 26965.64 24486.04 20537.79 29194.10 19365.89 21171.52 22285.55 263
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
pmmvs573.35 23471.52 23978.86 25478.64 30760.61 24991.08 18386.90 28267.69 23763.32 26683.64 22644.33 26290.53 28162.04 24066.02 25685.46 264
jajsoiax73.05 23671.51 24077.67 26577.46 31554.83 30188.81 23890.04 21069.13 22662.85 27183.51 22831.16 31992.75 23870.83 16369.80 23085.43 265
ACMP71.68 1075.58 21574.23 20979.62 24384.97 23559.64 26090.80 19289.07 24570.39 21162.95 26987.30 19238.28 28493.87 20972.89 14471.45 22385.36 266
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
mvs_tets72.71 24371.11 24177.52 26677.41 31654.52 30388.45 24589.76 21568.76 23162.70 27283.26 23129.49 32292.71 23970.51 16969.62 23285.34 267
tpmvs72.88 24069.76 25282.22 18090.98 12667.05 10278.22 31788.30 26563.10 27064.35 25874.98 31055.09 17794.27 18843.25 30769.57 23385.34 267
miper_lstm_enhance73.05 23671.73 23877.03 27483.80 25258.32 27681.76 29388.88 25069.80 21761.01 27778.23 29057.19 14687.51 31065.34 21959.53 30585.27 269
LPG-MVS_test75.82 21074.58 20279.56 24584.31 24659.37 26590.44 20189.73 21969.49 21964.86 24988.42 17238.65 28194.30 18672.56 14972.76 21285.01 270
LGP-MVS_train79.56 24584.31 24659.37 26589.73 21969.49 21964.86 24988.42 17238.65 28194.30 18672.56 14972.76 21285.01 270
PVSNet_BlendedMVS83.38 8983.43 7583.22 15693.76 5167.53 8794.06 5993.61 7079.13 5281.00 8185.14 21263.19 9597.29 7387.08 4573.91 20584.83 272
V4276.46 19974.55 20382.19 18179.14 30067.82 7990.26 20889.42 22973.75 12768.63 21581.89 24451.31 21094.09 19471.69 15964.84 26584.66 273
IterMVS72.65 24570.83 24378.09 26282.17 26762.96 21087.64 25686.28 28671.56 19160.44 28078.85 28645.42 25786.66 31463.30 23161.83 28884.65 274
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
IterMVS-SCA-FT71.55 25069.97 24876.32 27981.48 27260.67 24787.64 25685.99 29066.17 24859.50 28478.88 28545.53 25583.65 32662.58 23761.93 28784.63 275
pm-mvs172.89 23971.09 24278.26 26079.10 30157.62 28390.80 19289.30 23267.66 23862.91 27081.78 24649.11 23292.95 22760.29 25058.89 30884.22 276
pmmvs473.92 23071.81 23780.25 22779.17 29865.24 15087.43 25887.26 28167.64 24063.46 26483.91 22548.96 23391.53 27562.94 23365.49 25783.96 277
v875.35 21673.26 22181.61 19880.67 27966.82 10989.54 22489.27 23371.65 18463.30 26780.30 27354.99 17894.06 19767.33 19562.33 28383.94 278
UnsupCasMVSNet_eth65.79 28763.10 28773.88 29370.71 33450.29 32381.09 29889.88 21372.58 15149.25 32374.77 31232.57 31387.43 31155.96 26641.04 33983.90 279
v1074.77 22372.54 23081.46 20080.33 28566.71 11389.15 23389.08 24470.94 20263.08 26879.86 27852.52 20094.04 20065.70 21462.17 28483.64 280
F-COLMAP70.66 25468.44 25877.32 27186.37 21555.91 29688.00 24986.32 28556.94 30857.28 29888.07 18133.58 30992.49 24951.02 28068.37 24283.55 281
lessismore_v073.72 29572.93 32947.83 33161.72 35045.86 33073.76 31328.63 32689.81 29247.75 29431.37 34583.53 282
v7n71.31 25168.65 25679.28 24876.40 32060.77 24386.71 26689.45 22764.17 26158.77 29178.24 28944.59 26193.54 21657.76 25961.75 29083.52 283
Anonymous2023120667.53 27865.78 26872.79 30274.95 32447.59 33288.23 24787.32 27961.75 28458.07 29477.29 29737.79 29187.29 31242.91 30963.71 27683.48 284
CP-MVSNet70.50 25669.91 25072.26 30680.71 27851.00 31987.23 26090.30 19967.84 23559.64 28382.69 23550.23 21982.30 33551.28 27959.28 30683.46 285
K. test v363.09 29859.61 30273.53 29676.26 32149.38 32783.27 28577.15 32664.35 25947.77 32672.32 32028.73 32487.79 30949.93 28536.69 34383.41 286
PS-CasMVS69.86 26169.13 25572.07 30980.35 28450.57 32187.02 26289.75 21667.27 24259.19 28782.28 23946.58 24982.24 33650.69 28159.02 30783.39 287
PEN-MVS69.46 26368.56 25772.17 30879.27 29649.71 32586.90 26489.24 23467.24 24359.08 28882.51 23847.23 24683.54 32748.42 29057.12 31083.25 288
anonymousdsp71.14 25269.37 25376.45 27872.95 32854.71 30284.19 27688.88 25061.92 28162.15 27579.77 27938.14 28691.44 27768.90 18367.45 25083.21 289
XVG-ACMP-BASELINE68.04 27365.53 27275.56 28374.06 32752.37 31178.43 31485.88 29162.03 27958.91 29081.21 26120.38 34191.15 27860.69 24768.18 24383.16 290
MSDG69.54 26265.73 26980.96 21585.11 23363.71 19484.19 27683.28 31356.95 30754.50 30384.03 22231.50 31796.03 12842.87 31169.13 23783.14 291
SixPastTwentyTwo64.92 28961.78 29674.34 29178.74 30549.76 32483.42 28479.51 32462.86 27150.27 32077.35 29530.92 32190.49 28245.89 29947.06 33182.78 292
testgi64.48 29262.87 29069.31 31571.24 33140.62 34385.49 27079.92 32265.36 25454.18 30583.49 22923.74 33684.55 32041.60 31560.79 29982.77 293
DTE-MVSNet68.46 27067.33 26371.87 31177.94 31349.00 32886.16 26988.58 26166.36 24758.19 29282.21 24146.36 25083.87 32544.97 30455.17 31782.73 294
WR-MVS_H70.59 25569.94 24972.53 30381.03 27551.43 31687.35 25992.03 13567.38 24160.23 28180.70 26555.84 17083.45 32846.33 29758.58 30982.72 295
ppachtmachnet_test67.72 27563.70 28479.77 23978.92 30266.04 13088.68 24082.90 31560.11 29355.45 30175.96 30639.19 27890.55 28039.53 32252.55 32482.71 296
LS3D69.17 26466.40 26777.50 26791.92 10156.12 29585.12 27180.37 32146.96 33356.50 30087.51 18937.25 29493.71 21332.52 34179.40 16582.68 297
our_test_368.29 27164.69 27779.11 25378.92 30264.85 16588.40 24685.06 29660.32 29152.68 31076.12 30540.81 27389.80 29444.25 30655.65 31582.67 298
FMVSNet568.04 27365.66 27175.18 28584.43 24457.89 27883.54 28086.26 28761.83 28353.64 30873.30 31537.15 29785.08 31848.99 28761.77 28982.56 299
MVS_030468.99 26667.23 26574.28 29280.36 28352.54 31087.01 26386.36 28459.89 29566.22 24173.56 31424.25 33388.03 30657.34 26270.11 22882.27 300
pmmvs667.57 27764.76 27676.00 28272.82 33053.37 30788.71 23986.78 28353.19 31857.58 29778.03 29235.33 30592.41 25155.56 26754.88 31982.21 301
EU-MVSNet64.01 29463.01 28867.02 32174.40 32638.86 34783.27 28586.19 28845.11 33754.27 30481.15 26236.91 30080.01 34048.79 28957.02 31182.19 302
ACMH63.93 1768.62 26764.81 27580.03 23185.22 22963.25 20387.72 25484.66 30060.83 28751.57 31579.43 28327.29 32994.96 16441.76 31464.84 26581.88 303
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
D2MVS73.80 23172.02 23579.15 25279.15 29962.97 20988.58 24290.07 20672.94 14359.22 28678.30 28842.31 27092.70 24165.59 21672.00 21881.79 304
DP-MVS69.90 26066.48 26680.14 22895.36 2562.93 21189.56 22276.11 32750.27 32657.69 29685.23 21139.68 27795.73 13733.35 33671.05 22681.78 305
Patchmtry67.53 27863.93 28378.34 25782.12 26864.38 17768.72 33184.00 30648.23 33259.24 28572.41 31857.82 14189.27 29646.10 29856.68 31481.36 306
Baseline_NR-MVSNet73.99 22972.83 22477.48 26880.78 27759.29 26791.79 14984.55 30168.85 22868.99 20780.70 26556.16 16392.04 26262.67 23660.98 29781.11 307
CMPMVSbinary48.56 2166.77 28264.41 28173.84 29470.65 33550.31 32277.79 31985.73 29345.54 33644.76 33482.14 24235.40 30490.14 29063.18 23274.54 20081.07 308
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
TransMVSNet (Re)70.07 25967.66 26177.31 27280.62 28159.13 26991.78 15184.94 29865.97 24960.08 28280.44 27050.78 21391.87 26448.84 28845.46 33380.94 309
ACMH+65.35 1667.65 27664.55 27876.96 27584.59 24057.10 29088.08 24880.79 31958.59 30253.00 30981.09 26326.63 33192.95 22746.51 29661.69 29380.82 310
USDC67.43 28064.51 27976.19 28077.94 31355.29 29978.38 31585.00 29773.17 13848.36 32580.37 27121.23 34092.48 25052.15 27864.02 27480.81 311
OurMVSNet-221017-064.68 29062.17 29472.21 30776.08 32347.35 33380.67 30081.02 31856.19 31151.60 31479.66 28127.05 33088.56 30153.60 27553.63 32280.71 312
MS-PatchMatch77.90 18176.50 18082.12 18585.99 22069.95 3391.75 15492.70 10873.97 12162.58 27384.44 22041.11 27295.78 13463.76 22992.17 6780.62 313
tfpnnormal70.10 25867.36 26278.32 25883.45 25860.97 23988.85 23792.77 10664.85 25760.83 27978.53 28743.52 26693.48 21831.73 34261.70 29280.52 314
MIMVSNet160.16 30557.33 30668.67 31669.71 33844.13 33878.92 31284.21 30255.05 31544.63 33571.85 32223.91 33581.54 33932.63 34055.03 31880.35 315
YYNet163.76 29760.14 30074.62 28878.06 31260.19 25583.46 28383.99 30856.18 31239.25 34171.56 32537.18 29683.34 32942.90 31048.70 33080.32 316
MDA-MVSNet_test_wron63.78 29660.16 29974.64 28778.15 31160.41 25083.49 28184.03 30456.17 31339.17 34271.59 32437.22 29583.24 33142.87 31148.73 32980.26 317
ITE_SJBPF70.43 31374.44 32547.06 33477.32 32560.16 29254.04 30683.53 22723.30 33784.01 32343.07 30861.58 29480.21 318
test20.0363.83 29562.65 29167.38 32070.58 33639.94 34486.57 26784.17 30363.29 26751.86 31377.30 29637.09 29882.47 33338.87 32654.13 32179.73 319
UnsupCasMVSNet_bld61.60 30157.71 30473.29 29868.73 34051.64 31478.61 31389.05 24657.20 30646.11 32761.96 33728.70 32588.60 30050.08 28438.90 34179.63 320
AllTest61.66 30058.06 30372.46 30479.57 29151.42 31780.17 30668.61 34251.25 32345.88 32881.23 25719.86 34286.58 31538.98 32457.01 31279.39 321
TestCases72.46 30479.57 29151.42 31768.61 34251.25 32345.88 32881.23 25719.86 34286.58 31538.98 32457.01 31279.39 321
ambc69.61 31461.38 34641.35 34149.07 34885.86 29250.18 32266.40 33110.16 35088.14 30545.73 30044.20 33479.32 323
MVP-Stereo77.12 19176.23 18479.79 23881.72 27166.34 12389.29 22890.88 18070.56 21062.01 27682.88 23349.34 22694.13 19265.55 21793.80 4178.88 324
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
pmmvs-eth3d65.53 28862.32 29375.19 28469.39 33959.59 26182.80 29083.43 31062.52 27651.30 31772.49 31632.86 31087.16 31355.32 26850.73 32778.83 325
OpenMVS_ROBcopyleft61.12 1866.39 28362.92 28976.80 27776.51 31957.77 28089.22 23083.41 31155.48 31453.86 30777.84 29326.28 33293.95 20634.90 33468.76 23978.68 326
LTVRE_ROB59.60 1966.27 28463.54 28574.45 28984.00 25151.55 31567.08 33783.53 30958.78 30054.94 30280.31 27234.54 30793.23 22240.64 32068.03 24478.58 327
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
PM-MVS59.40 30656.59 30767.84 31763.63 34241.86 34076.76 32063.22 34859.01 29951.07 31872.27 32111.72 34983.25 33061.34 24350.28 32878.39 328
N_pmnet50.55 31249.11 31554.88 32777.17 3174.02 36084.36 2752.00 35948.59 32945.86 33068.82 32932.22 31482.80 33231.58 34351.38 32677.81 329
new-patchmatchnet59.30 30756.48 30867.79 31865.86 34144.19 33782.47 29181.77 31659.94 29443.65 33866.20 33227.67 32781.68 33839.34 32341.40 33877.50 330
EG-PatchMatch MVS68.55 26865.41 27377.96 26378.69 30662.93 21189.86 21989.17 23860.55 28850.27 32077.73 29422.60 33894.06 19747.18 29572.65 21476.88 331
MVS-HIRNet60.25 30455.55 31074.35 29084.37 24556.57 29371.64 32674.11 33334.44 34445.54 33242.24 34631.11 32089.81 29240.36 32176.10 19676.67 332
MDA-MVSNet-bldmvs61.54 30257.70 30573.05 29979.53 29357.00 29183.08 28881.23 31757.57 30334.91 34472.45 31732.79 31186.26 31735.81 33141.95 33775.89 333
COLMAP_ROBcopyleft57.96 2062.98 29959.65 30172.98 30081.44 27353.00 30983.75 27875.53 33148.34 33148.81 32481.40 25524.14 33490.30 28332.95 33860.52 30275.65 334
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
TinyColmap60.32 30356.42 30972.00 31078.78 30453.18 30878.36 31675.64 32952.30 32041.59 34075.82 30814.76 34788.35 30335.84 33054.71 32074.46 335
pmmvs355.51 30951.50 31467.53 31957.90 34850.93 32080.37 30273.66 33440.63 34244.15 33764.75 33516.30 34478.97 34144.77 30540.98 34072.69 336
test_040264.54 29161.09 29774.92 28684.10 25060.75 24487.95 25079.71 32352.03 32152.41 31177.20 29832.21 31591.64 26923.14 34561.03 29672.36 337
LF4IMVS54.01 31152.12 31259.69 32462.41 34539.91 34568.59 33268.28 34442.96 34044.55 33675.18 30914.09 34868.39 34541.36 31751.68 32570.78 338
TDRefinement55.28 31051.58 31366.39 32259.53 34746.15 33576.23 32172.80 33544.60 33842.49 33976.28 30415.29 34582.39 33433.20 33743.75 33570.62 339
LCM-MVSNet40.54 31535.79 31854.76 32836.92 35530.81 35051.41 34669.02 34122.07 34824.63 34645.37 3444.56 35765.81 34733.67 33534.50 34467.67 340
ANet_high40.27 31635.20 31955.47 32634.74 35634.47 34963.84 34071.56 33848.42 33018.80 34941.08 3479.52 35264.45 35020.18 3468.66 35367.49 341
PMMVS237.93 31733.61 32050.92 33046.31 35224.76 35460.55 34350.05 35128.94 34720.93 34747.59 3414.41 35865.13 34825.14 34418.55 34862.87 342
new_pmnet49.31 31346.44 31657.93 32562.84 34440.74 34268.47 33362.96 34936.48 34335.09 34357.81 33914.97 34672.18 34332.86 33946.44 33260.88 343
FPMVS45.64 31443.10 31753.23 32951.42 35036.46 34864.97 33871.91 33729.13 34627.53 34561.55 3389.83 35165.01 34916.00 34855.58 31658.22 344
MVEpermissive24.84 2324.35 32119.77 32738.09 33334.56 35726.92 35326.57 35038.87 35511.73 35311.37 35327.44 3491.37 36050.42 35111.41 35014.60 34936.93 345
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
DeepMVS_CXcopyleft34.71 33451.45 34924.73 35528.48 35831.46 34517.49 35052.75 3405.80 35542.60 35418.18 34719.42 34736.81 346
PMVScopyleft26.43 2231.84 31928.16 32242.89 33225.87 35827.58 35250.92 34749.78 35221.37 34914.17 35240.81 3482.01 35966.62 3469.61 35138.88 34234.49 347
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
Gipumacopyleft34.91 31831.44 32145.30 33170.99 33339.64 34619.85 35272.56 33620.10 35016.16 35121.47 3525.08 35671.16 34413.07 34943.70 33625.08 348
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
tmp_tt22.26 32323.75 32517.80 3375.23 35912.06 35935.26 34939.48 3542.82 35518.94 34844.20 34522.23 33924.64 35536.30 3289.31 35216.69 349
E-PMN24.61 32024.00 32426.45 33543.74 35318.44 35760.86 34139.66 35315.11 3519.53 35422.10 3516.52 35446.94 3528.31 35210.14 35013.98 350
EMVS23.76 32223.20 32625.46 33641.52 35416.90 35860.56 34238.79 35614.62 3528.99 35520.24 3547.35 35345.82 3537.25 3539.46 35113.64 351
wuyk23d11.30 32510.95 32812.33 33848.05 35119.89 35625.89 3511.92 3603.58 3543.12 3561.37 3560.64 36115.77 3566.23 3547.77 3541.35 352
test1236.92 3289.21 3310.08 3390.03 3610.05 36181.65 2960.01 3620.02 3570.14 3580.85 3580.03 3620.02 3570.12 3560.00 3560.16 353
testmvs7.23 3279.62 3300.06 3400.04 3600.02 36284.98 2730.02 3610.03 3560.18 3571.21 3570.01 3630.02 3570.14 3550.01 3550.13 354
uanet_test0.00 3300.00 3330.00 3410.00 3620.00 3630.00 3530.00 3630.00 3580.00 3590.00 3590.00 3640.00 3590.00 3570.00 3560.00 355
cdsmvs_eth3d_5k19.86 32426.47 3230.00 3410.00 3620.00 3630.00 35393.45 780.00 3580.00 35995.27 4749.56 2240.00 3590.00 3570.00 3560.00 355
pcd_1.5k_mvsjas4.46 3295.95 3320.00 3410.00 3620.00 3630.00 3530.00 3630.00 3580.00 3590.00 35953.55 1910.00 3590.00 3570.00 3560.00 355
sosnet-low-res0.00 3300.00 3330.00 3410.00 3620.00 3630.00 3530.00 3630.00 3580.00 3590.00 3590.00 3640.00 3590.00 3570.00 3560.00 355
sosnet0.00 3300.00 3330.00 3410.00 3620.00 3630.00 3530.00 3630.00 3580.00 3590.00 3590.00 3640.00 3590.00 3570.00 3560.00 355
uncertanet0.00 3300.00 3330.00 3410.00 3620.00 3630.00 3530.00 3630.00 3580.00 3590.00 3590.00 3640.00 3590.00 3570.00 3560.00 355
Regformer0.00 3300.00 3330.00 3410.00 3620.00 3630.00 3530.00 3630.00 3580.00 3590.00 3590.00 3640.00 3590.00 3570.00 3560.00 355
ab-mvs-re7.91 32610.55 3290.00 3410.00 3620.00 3630.00 3530.00 3630.00 3580.00 35994.95 580.00 3640.00 3590.00 3570.00 3560.00 355
uanet0.00 3300.00 3330.00 3410.00 3620.00 3630.00 3530.00 3630.00 3580.00 3590.00 3590.00 3640.00 3590.00 3570.00 3560.00 355
ZD-MVS96.63 865.50 14693.50 7670.74 20885.26 4795.19 5364.92 7397.29 7387.51 3893.01 54
test_241102_ONE96.45 1169.38 4294.44 4071.65 18492.11 397.05 876.79 799.11 4
9.1487.63 2393.86 4894.41 4894.18 5272.76 14886.21 3396.51 1666.64 5497.88 4590.08 1994.04 37
save fliter93.84 4967.89 7795.05 3892.66 11178.19 64
test072696.40 1469.99 3096.76 694.33 4871.92 17091.89 697.11 773.77 17
test_part296.29 1768.16 7190.78 10
sam_mvs54.91 179
MTGPAbinary92.23 125
test_post178.95 31120.70 35353.05 19691.50 27660.43 248
test_post23.01 35056.49 16192.67 242
patchmatchnet-post67.62 33057.62 14390.25 284
MTMP93.77 7732.52 357
gm-plane-assit88.42 17767.04 10378.62 6191.83 13397.37 6776.57 122
TEST994.18 4067.28 9494.16 5393.51 7471.75 18285.52 4395.33 4268.01 3997.27 77
test_894.19 3967.19 9794.15 5593.42 8171.87 17585.38 4595.35 4168.19 3696.95 96
agg_prior94.16 4466.97 10593.31 8484.49 5296.75 105
test_prior467.18 9993.92 68
test_prior295.10 3675.40 9985.25 4895.61 3767.94 4087.47 3994.77 23
旧先验292.00 14159.37 29887.54 2593.47 21975.39 129
新几何291.41 163
原ACMM292.01 139
testdata296.09 12261.26 244
segment_acmp65.94 60
testdata189.21 23177.55 74
plane_prior786.94 20661.51 233
plane_prior687.23 20162.32 22350.66 214
plane_prior489.14 167
plane_prior361.95 22779.09 5372.53 166
plane_prior293.13 9778.81 58
plane_prior187.15 203
plane_prior62.42 22093.85 7279.38 4678.80 172
n20.00 363
nn0.00 363
door-mid66.01 346
test1193.01 98
door66.57 345
HQP5-MVS63.66 197
HQP-NCC87.54 19594.06 5979.80 4074.18 147
ACMP_Plane87.54 19594.06 5979.80 4074.18 147
BP-MVS77.63 117
HQP3-MVS91.70 14978.90 170
HQP2-MVS51.63 208
NP-MVS87.41 19863.04 20790.30 154
MDTV_nov1_ep1372.61 22889.06 16368.48 6180.33 30390.11 20571.84 17871.81 17875.92 30753.01 19793.92 20748.04 29173.38 207
ACMMP++_ref71.63 220
ACMMP++69.72 231
Test By Simon54.21 185