PS-MVSNAJ | | | 88.14 15 | 87.61 26 | 89.71 7 | 92.06 100 | 76.72 1 | 95.75 20 | 93.26 91 | 83.86 10 | 89.55 19 | 96.06 31 | 53.55 203 | 97.89 48 | 91.10 17 | 93.31 55 | 94.54 93 |
|
DPM-MVS | | | 90.70 2 | 90.52 6 | 91.24 1 | 89.68 157 | 76.68 2 | 97.29 1 | 95.35 10 | 82.87 14 | 91.58 10 | 97.22 4 | 79.93 5 | 99.10 9 | 83.12 79 | 97.64 2 | 97.94 1 |
|
xiu_mvs_v2_base | | | 87.92 20 | 87.38 31 | 89.55 12 | 91.41 125 | 76.43 3 | 95.74 21 | 93.12 100 | 83.53 12 | 89.55 19 | 95.95 32 | 53.45 207 | 97.68 54 | 91.07 18 | 92.62 64 | 94.54 93 |
|
MG-MVS | | | 87.11 32 | 86.27 41 | 89.62 8 | 97.79 1 | 76.27 4 | 94.96 43 | 94.49 40 | 78.74 63 | 83.87 66 | 92.94 115 | 64.34 83 | 96.94 102 | 75.19 138 | 94.09 40 | 95.66 46 |
|
CHOSEN 1792x2688 | | | 84.98 63 | 83.45 77 | 89.57 11 | 89.94 152 | 75.14 5 | 92.07 145 | 92.32 126 | 81.87 24 | 75.68 146 | 88.27 187 | 60.18 124 | 98.60 25 | 80.46 104 | 90.27 97 | 94.96 77 |
|
MVS | | | 84.66 68 | 82.86 92 | 90.06 2 | 90.93 132 | 74.56 6 | 87.91 263 | 95.54 9 | 68.55 245 | 72.35 183 | 94.71 72 | 59.78 131 | 98.90 18 | 81.29 99 | 94.69 32 | 96.74 12 |
|
ETH3 D test6400 | | | 90.27 6 | 90.44 7 | 89.75 6 | 96.82 9 | 74.33 7 | 95.89 17 | 94.80 28 | 77.13 86 | 89.13 21 | 97.38 2 | 74.49 17 | 98.48 28 | 92.32 10 | 95.98 8 | 96.46 25 |
|
DELS-MVS | | | 90.05 7 | 90.09 9 | 89.94 4 | 93.14 75 | 73.88 8 | 97.01 3 | 94.40 47 | 88.32 2 | 85.71 46 | 94.91 67 | 74.11 19 | 98.91 17 | 87.26 50 | 95.94 9 | 97.03 10 |
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
MCST-MVS | | | 91.08 1 | 91.46 2 | 89.94 4 | 97.66 2 | 73.37 9 | 97.13 2 | 95.58 8 | 89.33 1 | 85.77 44 | 96.26 27 | 72.84 25 | 99.38 1 | 92.64 5 | 95.93 10 | 97.08 9 |
|
LFMVS | | | 84.34 73 | 82.73 95 | 89.18 13 | 94.76 35 | 73.25 10 | 94.99 42 | 91.89 146 | 71.90 182 | 82.16 77 | 93.49 105 | 47.98 253 | 97.05 89 | 82.55 87 | 84.82 139 | 97.25 7 |
|
MSC_two_6792asdad | | | | | 89.60 9 | 97.31 4 | 73.22 11 | | 95.05 20 | | | | | 99.07 13 | 92.01 11 | 94.77 25 | 96.51 20 |
|
No_MVS | | | | | 89.60 9 | 97.31 4 | 73.22 11 | | 95.05 20 | | | | | 99.07 13 | 92.01 11 | 94.77 25 | 96.51 20 |
|
OPU-MVS | | | | | 89.97 3 | 97.52 3 | 73.15 13 | 96.89 4 | | | | 97.00 9 | 83.82 2 | 99.15 2 | 95.72 1 | 97.63 3 | 97.62 2 |
|
PAPM | | | 85.89 51 | 85.46 55 | 87.18 42 | 88.20 196 | 72.42 14 | 92.41 133 | 92.77 111 | 82.11 21 | 80.34 95 | 93.07 112 | 68.27 38 | 95.02 172 | 78.39 120 | 93.59 52 | 94.09 112 |
|
canonicalmvs | | | 86.85 38 | 86.25 43 | 88.66 18 | 91.80 113 | 71.92 15 | 93.54 90 | 91.71 154 | 80.26 41 | 87.55 27 | 95.25 52 | 63.59 95 | 96.93 104 | 88.18 38 | 84.34 145 | 97.11 8 |
|
OpenMVS |  | 70.45 11 | 78.54 179 | 75.92 198 | 86.41 72 | 85.93 238 | 71.68 16 | 92.74 117 | 92.51 123 | 66.49 261 | 64.56 267 | 91.96 137 | 43.88 279 | 98.10 39 | 54.61 281 | 90.65 93 | 89.44 210 |
|
test_part1 | | | 79.63 155 | 77.86 169 | 84.93 117 | 92.50 91 | 71.43 17 | 94.15 57 | 91.08 184 | 72.51 162 | 70.66 198 | 84.98 225 | 59.84 129 | 95.07 171 | 72.07 167 | 62.94 289 | 88.30 225 |
|
QAPM | | | 79.95 150 | 77.39 179 | 87.64 29 | 89.63 158 | 71.41 18 | 93.30 98 | 93.70 71 | 65.34 270 | 67.39 246 | 91.75 142 | 47.83 254 | 98.96 16 | 57.71 272 | 89.81 98 | 92.54 161 |
|
3Dnovator | | 73.91 6 | 82.69 105 | 80.82 119 | 88.31 22 | 89.57 159 | 71.26 19 | 92.60 126 | 94.39 48 | 78.84 60 | 67.89 238 | 92.48 128 | 48.42 248 | 98.52 26 | 68.80 196 | 94.40 37 | 95.15 68 |
|
MVSFormer | | | 83.75 88 | 82.88 91 | 86.37 73 | 89.24 169 | 71.18 20 | 89.07 246 | 90.69 194 | 65.80 265 | 87.13 29 | 94.34 85 | 64.99 74 | 92.67 253 | 72.83 155 | 91.80 75 | 95.27 63 |
|
lupinMVS | | | 87.74 22 | 87.77 23 | 87.63 33 | 89.24 169 | 71.18 20 | 96.57 10 | 92.90 108 | 82.70 16 | 87.13 29 | 95.27 50 | 64.99 74 | 95.80 139 | 89.34 26 | 91.80 75 | 95.93 40 |
|
alignmvs | | | 87.28 28 | 86.97 36 | 88.24 23 | 91.30 126 | 71.14 22 | 95.61 25 | 93.56 77 | 79.30 50 | 87.07 32 | 95.25 52 | 68.43 37 | 96.93 104 | 87.87 40 | 84.33 146 | 96.65 13 |
|
ET-MVSNet_ETH3D | | | 84.01 81 | 83.15 87 | 86.58 63 | 90.78 138 | 70.89 23 | 94.74 46 | 94.62 36 | 81.44 29 | 58.19 306 | 93.64 101 | 73.64 22 | 92.35 267 | 82.66 84 | 78.66 184 | 96.50 23 |
|
CSCG | | | 86.87 37 | 86.26 42 | 88.72 15 | 95.05 34 | 70.79 24 | 93.83 81 | 95.33 11 | 68.48 247 | 77.63 127 | 94.35 84 | 73.04 23 | 98.45 29 | 84.92 67 | 93.71 50 | 96.92 11 |
|
CNVR-MVS | | | 90.32 5 | 90.89 5 | 88.61 19 | 96.76 10 | 70.65 25 | 96.47 12 | 94.83 25 | 84.83 8 | 89.07 22 | 96.80 15 | 70.86 32 | 99.06 15 | 92.64 5 | 95.71 11 | 96.12 34 |
|
API-MVS | | | 82.28 109 | 80.53 125 | 87.54 34 | 96.13 24 | 70.59 26 | 93.63 86 | 91.04 187 | 65.72 267 | 75.45 151 | 92.83 121 | 56.11 174 | 98.89 19 | 64.10 237 | 89.75 101 | 93.15 144 |
|
jason | | | 86.40 43 | 86.17 44 | 87.11 44 | 86.16 232 | 70.54 27 | 95.71 24 | 92.19 136 | 82.00 23 | 84.58 56 | 94.34 85 | 61.86 111 | 95.53 159 | 87.76 41 | 90.89 90 | 95.27 63 |
jason: jason. |
test_0728_SECOND | | | | | 88.70 16 | 96.45 14 | 70.43 28 | 96.64 8 | 94.37 49 | | | | | 99.15 2 | 91.91 13 | 94.90 21 | 96.51 20 |
|
PatchmatchNet |  | | 77.46 195 | 74.63 210 | 85.96 84 | 89.55 161 | 70.35 29 | 79.97 323 | 89.55 237 | 72.23 173 | 70.94 196 | 76.91 314 | 57.03 158 | 92.79 248 | 54.27 283 | 81.17 166 | 94.74 84 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
IB-MVS | | 77.80 4 | 82.18 110 | 80.46 127 | 87.35 39 | 89.14 171 | 70.28 30 | 95.59 26 | 95.17 14 | 78.85 59 | 70.19 206 | 85.82 217 | 70.66 34 | 97.67 55 | 72.19 166 | 66.52 264 | 94.09 112 |
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
CS-MVS | | | 87.54 24 | 87.81 22 | 86.74 56 | 90.46 142 | 70.23 31 | 96.34 14 | 92.31 127 | 81.40 30 | 86.14 40 | 95.17 57 | 65.49 69 | 95.92 135 | 89.09 29 | 93.91 44 | 94.06 115 |
|
SCA | | | 75.82 221 | 72.76 236 | 85.01 116 | 86.63 223 | 70.08 32 | 81.06 313 | 89.19 249 | 71.60 199 | 70.01 208 | 77.09 312 | 45.53 270 | 90.25 296 | 60.43 260 | 73.27 218 | 94.68 86 |
|
DWT-MVSNet_test | | | 83.95 83 | 82.80 93 | 87.41 37 | 92.90 80 | 70.07 33 | 89.12 245 | 94.42 44 | 82.15 20 | 77.64 126 | 91.77 140 | 70.81 33 | 96.22 122 | 65.03 232 | 81.36 165 | 95.94 39 |
|
DVP-MVS |  | | 89.41 11 | 89.73 12 | 88.45 21 | 96.40 17 | 69.99 34 | 96.64 8 | 94.52 38 | 71.92 180 | 90.55 15 | 96.93 10 | 73.77 20 | 99.08 11 | 91.91 13 | 94.90 21 | 96.29 30 |
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025 |
test0726 | | | | | | 96.40 17 | 69.99 34 | 96.76 6 | 94.33 51 | 71.92 180 | 91.89 8 | 97.11 7 | 73.77 20 | | | | |
|
VNet | | | 86.20 46 | 85.65 53 | 87.84 26 | 93.92 52 | 69.99 34 | 95.73 23 | 95.94 6 | 78.43 65 | 86.00 42 | 93.07 112 | 58.22 146 | 97.00 94 | 85.22 64 | 84.33 146 | 96.52 19 |
|
MS-PatchMatch | | | 77.90 191 | 76.50 190 | 82.12 195 | 85.99 234 | 69.95 37 | 91.75 164 | 92.70 113 | 73.97 130 | 62.58 286 | 84.44 232 | 41.11 288 | 95.78 140 | 63.76 240 | 92.17 72 | 80.62 328 |
|
DVP-MVS++ | | | 90.53 3 | 91.09 4 | 88.87 14 | 97.31 4 | 69.91 38 | 93.96 67 | 94.37 49 | 72.48 163 | 92.07 6 | 96.85 12 | 83.82 2 | 99.15 2 | 91.53 15 | 97.42 4 | 97.55 4 |
|
IU-MVS | | | | | | 96.46 13 | 69.91 38 | | 95.18 13 | 80.75 37 | 95.28 1 | | | | 92.34 7 | 95.36 14 | 96.47 24 |
|
MVS_Test | | | 84.16 79 | 83.20 84 | 87.05 46 | 91.56 119 | 69.82 40 | 89.99 227 | 92.05 138 | 77.77 76 | 82.84 72 | 86.57 209 | 63.93 88 | 96.09 127 | 74.91 144 | 89.18 104 | 95.25 66 |
|
VDDNet | | | 80.50 139 | 78.26 160 | 87.21 41 | 86.19 231 | 69.79 41 | 94.48 48 | 91.31 171 | 60.42 305 | 79.34 106 | 90.91 152 | 38.48 298 | 96.56 116 | 82.16 88 | 81.05 167 | 95.27 63 |
|
MVS_111021_HR | | | 86.19 47 | 85.80 50 | 87.37 38 | 93.17 74 | 69.79 41 | 93.99 66 | 93.76 67 | 79.08 57 | 78.88 115 | 93.99 96 | 62.25 108 | 98.15 38 | 85.93 59 | 91.15 87 | 94.15 109 |
|
test_one_0601 | | | | | | 96.32 20 | 69.74 43 | | 94.18 55 | 71.42 206 | 90.67 14 | 96.85 12 | 74.45 18 | | | | |
|
CANet | | | 89.61 10 | 89.99 10 | 88.46 20 | 94.39 42 | 69.71 44 | 96.53 11 | 93.78 64 | 86.89 4 | 89.68 18 | 95.78 34 | 65.94 63 | 99.10 9 | 92.99 3 | 93.91 44 | 96.58 17 |
|
EPMVS | | | 78.49 180 | 75.98 197 | 86.02 82 | 91.21 128 | 69.68 45 | 80.23 319 | 91.20 175 | 75.25 111 | 72.48 179 | 78.11 303 | 54.65 189 | 93.69 225 | 57.66 273 | 83.04 152 | 94.69 85 |
|
GG-mvs-BLEND | | | | | 86.53 66 | 91.91 108 | 69.67 46 | 75.02 338 | 94.75 30 | | 78.67 119 | 90.85 153 | 77.91 7 | 94.56 189 | 72.25 163 | 93.74 48 | 95.36 54 |
|
Effi-MVS+ | | | 83.82 86 | 82.76 94 | 86.99 48 | 89.56 160 | 69.40 47 | 91.35 181 | 86.12 305 | 72.59 159 | 83.22 70 | 92.81 122 | 59.60 133 | 96.01 134 | 81.76 91 | 87.80 116 | 95.56 49 |
|
SED-MVS | | | 89.94 8 | 90.36 8 | 88.70 16 | 96.45 14 | 69.38 48 | 96.89 4 | 94.44 42 | 71.65 194 | 92.11 4 | 97.21 5 | 76.79 9 | 99.11 6 | 92.34 7 | 95.36 14 | 97.62 2 |
|
test_241102_ONE | | | | | | 96.45 14 | 69.38 48 | | 94.44 42 | 71.65 194 | 92.11 4 | 97.05 8 | 76.79 9 | 99.11 6 | | | |
|
WTY-MVS | | | 86.32 44 | 85.81 49 | 87.85 25 | 92.82 83 | 69.37 50 | 95.20 33 | 95.25 12 | 82.71 15 | 81.91 78 | 94.73 71 | 67.93 45 | 97.63 60 | 79.55 108 | 82.25 157 | 96.54 18 |
|
test_yl | | | 84.28 74 | 83.16 85 | 87.64 29 | 94.52 40 | 69.24 51 | 95.78 18 | 95.09 18 | 69.19 237 | 81.09 86 | 92.88 119 | 57.00 160 | 97.44 67 | 81.11 100 | 81.76 161 | 96.23 32 |
|
DCV-MVSNet | | | 84.28 74 | 83.16 85 | 87.64 29 | 94.52 40 | 69.24 51 | 95.78 18 | 95.09 18 | 69.19 237 | 81.09 86 | 92.88 119 | 57.00 160 | 97.44 67 | 81.11 100 | 81.76 161 | 96.23 32 |
|
cascas | | | 78.18 184 | 75.77 200 | 85.41 105 | 87.14 217 | 69.11 53 | 92.96 110 | 91.15 179 | 66.71 259 | 70.47 200 | 86.07 214 | 37.49 308 | 96.48 118 | 70.15 182 | 79.80 173 | 90.65 195 |
|
casdiffmvs | | | 85.37 56 | 84.87 63 | 86.84 50 | 88.25 194 | 69.07 54 | 93.04 106 | 91.76 151 | 81.27 31 | 80.84 91 | 92.07 136 | 64.23 84 | 96.06 130 | 84.98 66 | 87.43 119 | 95.39 52 |
|
NCCC | | | 89.07 13 | 89.46 13 | 87.91 24 | 96.60 12 | 69.05 55 | 96.38 13 | 94.64 35 | 84.42 9 | 86.74 33 | 96.20 28 | 66.56 59 | 98.76 22 | 89.03 33 | 94.56 33 | 95.92 41 |
|
MVSTER | | | 82.47 106 | 82.05 103 | 83.74 151 | 92.68 88 | 69.01 56 | 91.90 154 | 93.21 92 | 79.83 42 | 72.14 184 | 85.71 219 | 74.72 15 | 94.72 182 | 75.72 135 | 72.49 225 | 87.50 231 |
|
FMVSNet3 | | | 77.73 192 | 76.04 196 | 82.80 172 | 91.20 129 | 68.99 57 | 91.87 155 | 91.99 141 | 73.35 145 | 67.04 249 | 83.19 245 | 56.62 168 | 92.14 270 | 59.80 265 | 69.34 243 | 87.28 238 |
|
MSLP-MVS++ | | | 86.27 45 | 85.91 48 | 87.35 39 | 92.01 103 | 68.97 58 | 95.04 41 | 92.70 113 | 79.04 58 | 81.50 82 | 96.50 20 | 58.98 142 | 96.78 108 | 83.49 77 | 93.93 43 | 96.29 30 |
|
test12 | | | | | 87.09 45 | 94.60 39 | 68.86 59 | | 92.91 107 | | 82.67 75 | | 65.44 70 | 97.55 63 | | 93.69 51 | 94.84 82 |
|
nrg030 | | | 80.93 132 | 79.86 135 | 84.13 144 | 83.69 270 | 68.83 60 | 93.23 100 | 91.20 175 | 75.55 103 | 75.06 153 | 88.22 191 | 63.04 103 | 94.74 181 | 81.88 90 | 66.88 261 | 88.82 214 |
|
SD-MVS | | | 87.49 26 | 87.49 28 | 87.50 35 | 93.60 61 | 68.82 61 | 93.90 74 | 92.63 119 | 76.86 90 | 87.90 26 | 95.76 35 | 66.17 60 | 97.63 60 | 89.06 31 | 91.48 81 | 96.05 36 |
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
baseline | | | 85.01 62 | 84.44 67 | 86.71 57 | 88.33 191 | 68.73 62 | 90.24 218 | 91.82 150 | 81.05 35 | 81.18 85 | 92.50 125 | 63.69 92 | 96.08 129 | 84.45 70 | 86.71 127 | 95.32 57 |
|
SMA-MVS |  | | 88.14 15 | 88.29 18 | 87.67 28 | 93.21 72 | 68.72 63 | 93.85 77 | 94.03 60 | 74.18 125 | 91.74 9 | 96.67 16 | 65.61 68 | 98.42 32 | 89.24 28 | 96.08 7 | 95.88 43 |
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
xiu_mvs_v1_base_debu | | | 82.16 111 | 81.12 114 | 85.26 110 | 86.42 226 | 68.72 63 | 92.59 128 | 90.44 202 | 73.12 149 | 84.20 60 | 94.36 80 | 38.04 302 | 95.73 143 | 84.12 72 | 86.81 122 | 91.33 184 |
|
xiu_mvs_v1_base | | | 82.16 111 | 81.12 114 | 85.26 110 | 86.42 226 | 68.72 63 | 92.59 128 | 90.44 202 | 73.12 149 | 84.20 60 | 94.36 80 | 38.04 302 | 95.73 143 | 84.12 72 | 86.81 122 | 91.33 184 |
|
xiu_mvs_v1_base_debi | | | 82.16 111 | 81.12 114 | 85.26 110 | 86.42 226 | 68.72 63 | 92.59 128 | 90.44 202 | 73.12 149 | 84.20 60 | 94.36 80 | 38.04 302 | 95.73 143 | 84.12 72 | 86.81 122 | 91.33 184 |
|
MDTV_nov1_ep13 | | | | 72.61 239 | | 89.06 172 | 68.48 67 | 80.33 317 | 90.11 217 | 71.84 188 | 71.81 189 | 75.92 322 | 53.01 209 | 93.92 219 | 48.04 305 | 73.38 217 | |
|
CostFormer | | | 82.33 108 | 81.15 113 | 85.86 88 | 89.01 174 | 68.46 68 | 82.39 304 | 93.01 103 | 75.59 102 | 80.25 96 | 81.57 264 | 72.03 30 | 94.96 174 | 79.06 113 | 77.48 196 | 94.16 108 |
|
mvs_anonymous | | | 81.36 123 | 79.99 133 | 85.46 102 | 90.39 145 | 68.40 69 | 86.88 277 | 90.61 198 | 74.41 119 | 70.31 205 | 84.67 229 | 63.79 90 | 92.32 268 | 73.13 152 | 85.70 133 | 95.67 45 |
|
gg-mvs-nofinetune | | | 77.18 200 | 74.31 217 | 85.80 90 | 91.42 123 | 68.36 70 | 71.78 340 | 94.72 31 | 49.61 344 | 77.12 134 | 45.92 360 | 77.41 8 | 93.98 216 | 67.62 204 | 93.16 57 | 95.05 73 |
|
DeepC-MVS_fast | | 79.48 2 | 87.95 19 | 88.00 19 | 87.79 27 | 95.86 28 | 68.32 71 | 95.74 21 | 94.11 59 | 83.82 11 | 83.49 68 | 96.19 29 | 64.53 81 | 98.44 30 | 83.42 78 | 94.88 24 | 96.61 14 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
PAPR | | | 85.15 60 | 84.47 65 | 87.18 42 | 96.02 26 | 68.29 72 | 91.85 157 | 93.00 105 | 76.59 94 | 79.03 111 | 95.00 60 | 61.59 112 | 97.61 62 | 78.16 122 | 89.00 105 | 95.63 47 |
|
tpmrst | | | 80.57 137 | 79.14 152 | 84.84 122 | 90.10 149 | 68.28 73 | 81.70 307 | 89.72 234 | 77.63 81 | 75.96 143 | 79.54 295 | 64.94 76 | 92.71 250 | 75.43 136 | 77.28 199 | 93.55 132 |
|
thisisatest0515 | | | 83.41 91 | 82.49 99 | 86.16 79 | 89.46 163 | 68.26 74 | 93.54 90 | 94.70 32 | 74.31 122 | 75.75 144 | 90.92 151 | 72.62 26 | 96.52 117 | 69.64 184 | 81.50 163 | 93.71 128 |
|
tpm2 | | | 79.80 153 | 77.95 166 | 85.34 108 | 88.28 192 | 68.26 74 | 81.56 309 | 91.42 167 | 70.11 225 | 77.59 129 | 80.50 282 | 67.40 49 | 94.26 202 | 67.34 206 | 77.35 197 | 93.51 133 |
|
HPM-MVS++ |  | | 89.37 12 | 89.95 11 | 87.64 29 | 95.10 33 | 68.23 76 | 95.24 32 | 94.49 40 | 82.43 17 | 88.90 23 | 96.35 24 | 71.89 31 | 98.63 24 | 88.76 35 | 96.40 6 | 96.06 35 |
|
test_part2 | | | | | | 96.29 21 | 68.16 77 | | | | 90.78 12 | | | | | | |
|
HyFIR lowres test | | | 81.03 131 | 79.56 141 | 85.43 104 | 87.81 205 | 68.11 78 | 90.18 219 | 90.01 223 | 70.65 220 | 72.95 170 | 86.06 215 | 63.61 94 | 94.50 194 | 75.01 142 | 79.75 174 | 93.67 129 |
|
TSAR-MVS + MP. | | | 88.11 17 | 88.64 15 | 86.54 65 | 91.73 114 | 68.04 79 | 90.36 214 | 93.55 78 | 82.89 13 | 91.29 11 | 92.89 118 | 72.27 28 | 96.03 132 | 87.99 39 | 94.77 25 | 95.54 50 |
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
diffmvs | | | 84.28 74 | 83.83 72 | 85.61 98 | 87.40 212 | 68.02 80 | 90.88 199 | 89.24 246 | 80.54 39 | 81.64 81 | 92.52 124 | 59.83 130 | 94.52 193 | 87.32 49 | 85.11 137 | 94.29 101 |
|
CR-MVSNet | | | 73.79 243 | 70.82 255 | 82.70 175 | 83.15 277 | 67.96 81 | 70.25 342 | 84.00 324 | 73.67 140 | 69.97 210 | 72.41 333 | 57.82 150 | 89.48 307 | 52.99 289 | 73.13 219 | 90.64 196 |
|
RPMNet | | | 70.42 266 | 65.68 282 | 84.63 131 | 83.15 277 | 67.96 81 | 70.25 342 | 90.45 199 | 46.83 352 | 69.97 210 | 65.10 350 | 56.48 171 | 95.30 167 | 35.79 349 | 73.13 219 | 90.64 196 |
|
xxxxxxxxxxxxxcwj | | | 87.14 31 | 87.19 33 | 86.99 48 | 93.84 54 | 67.89 83 | 95.05 39 | 84.72 316 | 78.19 67 | 86.25 35 | 96.44 21 | 66.98 52 | 97.79 51 | 88.68 36 | 94.56 33 | 95.28 61 |
|
save fliter | | | | | | 93.84 54 | 67.89 83 | 95.05 39 | 92.66 116 | 78.19 67 | | | | | | | |
|
V42 | | | 76.46 209 | 74.55 213 | 82.19 191 | 79.14 315 | 67.82 85 | 90.26 217 | 89.42 241 | 73.75 136 | 68.63 229 | 81.89 257 | 51.31 222 | 94.09 206 | 71.69 171 | 64.84 275 | 84.66 285 |
|
tpm cat1 | | | 75.30 228 | 72.21 244 | 84.58 132 | 88.52 182 | 67.77 86 | 78.16 332 | 88.02 284 | 61.88 298 | 68.45 232 | 76.37 318 | 60.65 119 | 94.03 214 | 53.77 286 | 74.11 212 | 91.93 175 |
|
HY-MVS | | 76.49 5 | 84.28 74 | 83.36 83 | 87.02 47 | 92.22 97 | 67.74 87 | 84.65 286 | 94.50 39 | 79.15 54 | 82.23 76 | 87.93 194 | 66.88 54 | 96.94 102 | 80.53 103 | 82.20 158 | 96.39 28 |
|
VDD-MVS | | | 83.06 97 | 81.81 108 | 86.81 52 | 90.86 136 | 67.70 88 | 95.40 28 | 91.50 164 | 75.46 104 | 81.78 79 | 92.34 132 | 40.09 291 | 97.13 87 | 86.85 54 | 82.04 159 | 95.60 48 |
|
FMVSNet2 | | | 76.07 212 | 74.01 224 | 82.26 189 | 88.85 176 | 67.66 89 | 91.33 182 | 91.61 158 | 70.84 215 | 65.98 256 | 82.25 253 | 48.03 250 | 92.00 275 | 58.46 270 | 68.73 249 | 87.10 240 |
|
CLD-MVS | | | 82.73 102 | 82.35 102 | 83.86 149 | 87.90 203 | 67.65 90 | 95.45 27 | 92.18 137 | 85.06 7 | 72.58 176 | 92.27 133 | 52.46 213 | 95.78 140 | 84.18 71 | 79.06 179 | 88.16 226 |
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
DPE-MVS |  | | 88.77 14 | 89.21 14 | 87.45 36 | 96.26 22 | 67.56 91 | 94.17 54 | 94.15 57 | 68.77 243 | 90.74 13 | 97.27 3 | 76.09 12 | 98.49 27 | 90.58 21 | 94.91 20 | 96.30 29 |
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025 |
1314 | | | 80.70 135 | 78.95 153 | 85.94 85 | 87.77 206 | 67.56 91 | 87.91 263 | 92.55 122 | 72.17 176 | 67.44 243 | 93.09 109 | 50.27 231 | 97.04 91 | 71.68 172 | 87.64 117 | 93.23 142 |
|
ACMMP_NAP | | | 86.05 48 | 85.80 50 | 86.80 53 | 91.58 118 | 67.53 93 | 91.79 159 | 93.49 82 | 74.93 115 | 84.61 55 | 95.30 47 | 59.42 135 | 97.92 45 | 86.13 57 | 94.92 19 | 94.94 78 |
|
PVSNet_BlendedMVS | | | 83.38 92 | 83.43 78 | 83.22 166 | 93.76 56 | 67.53 93 | 94.06 62 | 93.61 75 | 79.13 55 | 81.00 89 | 85.14 223 | 63.19 100 | 97.29 77 | 87.08 51 | 73.91 215 | 84.83 284 |
|
PVSNet_Blended | | | 86.73 41 | 86.86 38 | 86.31 76 | 93.76 56 | 67.53 93 | 96.33 15 | 93.61 75 | 82.34 18 | 81.00 89 | 93.08 110 | 63.19 100 | 97.29 77 | 87.08 51 | 91.38 83 | 94.13 110 |
|
ETH3D cwj APD-0.16 | | | 87.06 33 | 87.18 34 | 86.71 57 | 91.99 104 | 67.48 96 | 92.97 109 | 94.21 54 | 71.48 205 | 85.72 45 | 96.32 26 | 68.13 41 | 98.00 42 | 89.06 31 | 94.70 31 | 94.65 89 |
|
SF-MVS | | | 87.03 34 | 87.09 35 | 86.84 50 | 92.70 87 | 67.45 97 | 93.64 85 | 93.76 67 | 70.78 218 | 86.25 35 | 96.44 21 | 66.98 52 | 97.79 51 | 88.68 36 | 94.56 33 | 95.28 61 |
|
test_prior3 | | | 87.38 27 | 87.70 24 | 86.42 70 | 94.71 37 | 67.35 98 | 95.10 37 | 93.10 101 | 75.40 107 | 85.25 53 | 95.61 40 | 67.94 43 | 96.84 106 | 87.47 45 | 94.77 25 | 95.05 73 |
|
test_prior | | | | | 86.42 70 | 94.71 37 | 67.35 98 | | 93.10 101 | | | | | 96.84 106 | | | 95.05 73 |
|
TEST9 | | | | | | 94.18 44 | 67.28 100 | 94.16 55 | 93.51 79 | 71.75 192 | 85.52 48 | 95.33 45 | 68.01 42 | 97.27 81 | | | |
|
train_agg | | | 87.21 30 | 87.42 30 | 86.60 61 | 94.18 44 | 67.28 100 | 94.16 55 | 93.51 79 | 71.87 185 | 85.52 48 | 95.33 45 | 68.19 39 | 97.27 81 | 89.09 29 | 94.90 21 | 95.25 66 |
|
ETH3D-3000-0.1 | | | 87.61 23 | 87.89 20 | 86.75 55 | 93.58 62 | 67.21 102 | 94.31 52 | 94.14 58 | 72.92 154 | 87.13 29 | 96.62 17 | 67.81 47 | 97.94 43 | 90.13 22 | 94.42 36 | 95.09 71 |
|
test_8 | | | | | | 94.19 43 | 67.19 103 | 94.15 57 | 93.42 86 | 71.87 185 | 85.38 50 | 95.35 44 | 68.19 39 | 96.95 101 | | | |
|
CDPH-MVS | | | 85.71 53 | 85.46 55 | 86.46 68 | 94.75 36 | 67.19 103 | 93.89 75 | 92.83 110 | 70.90 214 | 83.09 71 | 95.28 48 | 63.62 93 | 97.36 72 | 80.63 102 | 94.18 39 | 94.84 82 |
|
test_prior4 | | | | | | | 67.18 105 | 93.92 73 | | | | | | | | | |
|
v2v482 | | | 77.42 196 | 75.65 202 | 82.73 174 | 80.38 298 | 67.13 106 | 91.85 157 | 90.23 213 | 75.09 113 | 69.37 215 | 83.39 243 | 53.79 201 | 94.44 195 | 71.77 169 | 65.00 274 | 86.63 250 |
|
DP-MVS Recon | | | 82.73 102 | 81.65 109 | 85.98 83 | 97.31 4 | 67.06 107 | 95.15 35 | 91.99 141 | 69.08 240 | 76.50 141 | 93.89 98 | 54.48 193 | 98.20 36 | 70.76 177 | 85.66 134 | 92.69 156 |
|
tpmvs | | | 72.88 251 | 69.76 263 | 82.22 190 | 90.98 131 | 67.05 108 | 78.22 331 | 88.30 277 | 63.10 285 | 64.35 272 | 74.98 325 | 55.09 186 | 94.27 200 | 43.25 324 | 69.57 242 | 85.34 279 |
|
gm-plane-assit | | | | | | 88.42 187 | 67.04 109 | | | 78.62 64 | | 91.83 139 | | 97.37 71 | 76.57 131 | | |
|
ETV-MVS | | | 86.01 49 | 86.11 45 | 85.70 96 | 90.21 148 | 67.02 110 | 93.43 95 | 91.92 144 | 81.21 32 | 84.13 63 | 94.07 95 | 60.93 118 | 95.63 149 | 89.28 27 | 89.81 98 | 94.46 100 |
|
agg_prior1 | | | 87.02 35 | 87.26 32 | 86.28 77 | 94.16 48 | 66.97 111 | 94.08 61 | 93.31 89 | 71.85 187 | 84.49 57 | 95.39 43 | 68.91 36 | 96.75 110 | 88.84 34 | 94.32 38 | 95.13 69 |
|
agg_prior | | | | | | 94.16 48 | 66.97 111 | | 93.31 89 | | 84.49 57 | | | 96.75 110 | | | |
|
ADS-MVSNet | | | 68.54 281 | 64.38 294 | 81.03 225 | 88.06 198 | 66.90 113 | 68.01 349 | 84.02 323 | 57.57 319 | 64.48 268 | 69.87 342 | 38.68 294 | 89.21 309 | 40.87 335 | 67.89 255 | 86.97 241 |
|
RRT_test8_iter05 | | | 80.61 136 | 79.62 139 | 83.60 158 | 91.87 112 | 66.90 113 | 93.42 97 | 93.68 72 | 77.09 88 | 68.83 225 | 85.63 220 | 66.82 55 | 95.42 160 | 76.46 133 | 62.74 291 | 88.48 219 |
|
CANet_DTU | | | 84.09 80 | 83.52 74 | 85.81 89 | 90.30 146 | 66.82 115 | 91.87 155 | 89.01 259 | 85.27 6 | 86.09 41 | 93.74 100 | 47.71 256 | 96.98 98 | 77.90 125 | 89.78 100 | 93.65 130 |
|
v8 | | | 75.35 227 | 73.26 232 | 81.61 207 | 80.67 295 | 66.82 115 | 89.54 234 | 89.27 245 | 71.65 194 | 63.30 280 | 80.30 286 | 54.99 187 | 94.06 209 | 67.33 207 | 62.33 295 | 83.94 290 |
|
3Dnovator+ | | 73.60 7 | 82.10 114 | 80.60 124 | 86.60 61 | 90.89 135 | 66.80 117 | 95.20 33 | 93.44 85 | 74.05 127 | 67.42 244 | 92.49 127 | 49.46 238 | 97.65 59 | 70.80 176 | 91.68 77 | 95.33 55 |
|
PAPM_NR | | | 82.97 99 | 81.84 106 | 86.37 73 | 94.10 50 | 66.76 118 | 87.66 267 | 92.84 109 | 69.96 227 | 74.07 162 | 93.57 103 | 63.10 102 | 97.50 65 | 70.66 179 | 90.58 94 | 94.85 79 |
|
v10 | | | 74.77 234 | 72.54 241 | 81.46 209 | 80.33 301 | 66.71 119 | 89.15 244 | 89.08 256 | 70.94 213 | 63.08 281 | 79.86 291 | 52.52 212 | 94.04 212 | 65.70 225 | 62.17 296 | 83.64 292 |
|
DeepC-MVS | | 77.85 3 | 85.52 54 | 85.24 57 | 86.37 73 | 88.80 179 | 66.64 120 | 92.15 139 | 93.68 72 | 81.07 34 | 76.91 137 | 93.64 101 | 62.59 105 | 98.44 30 | 85.50 61 | 92.84 62 | 94.03 117 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
baseline1 | | | 81.84 118 | 81.03 118 | 84.28 142 | 91.60 117 | 66.62 121 | 91.08 193 | 91.66 157 | 81.87 24 | 74.86 154 | 91.67 144 | 69.98 35 | 94.92 177 | 71.76 170 | 64.75 277 | 91.29 189 |
|
v1144 | | | 76.73 207 | 74.88 207 | 82.27 187 | 80.23 303 | 66.60 122 | 91.68 166 | 90.21 215 | 73.69 138 | 69.06 220 | 81.89 257 | 52.73 211 | 94.40 196 | 69.21 191 | 65.23 271 | 85.80 269 |
|
PVSNet_Blended_VisFu | | | 83.97 82 | 83.50 75 | 85.39 106 | 90.02 150 | 66.59 123 | 93.77 82 | 91.73 152 | 77.43 85 | 77.08 136 | 89.81 172 | 63.77 91 | 96.97 99 | 79.67 107 | 88.21 112 | 92.60 159 |
|
v144192 | | | 76.05 215 | 74.03 223 | 82.12 195 | 79.50 309 | 66.55 124 | 91.39 177 | 89.71 235 | 72.30 170 | 68.17 233 | 81.33 269 | 51.75 218 | 94.03 214 | 67.94 200 | 64.19 281 | 85.77 270 |
|
VPNet | | | 78.82 170 | 77.53 174 | 82.70 175 | 84.52 257 | 66.44 125 | 93.93 72 | 92.23 130 | 80.46 40 | 72.60 175 | 88.38 185 | 49.18 242 | 93.13 234 | 72.47 162 | 63.97 285 | 88.55 218 |
|
SteuartSystems-ACMMP | | | 86.82 40 | 86.90 37 | 86.58 63 | 90.42 143 | 66.38 126 | 96.09 16 | 93.87 62 | 77.73 77 | 84.01 65 | 95.66 38 | 63.39 97 | 97.94 43 | 87.40 47 | 93.55 53 | 95.42 51 |
Skip Steuart: Steuart Systems R&D Blog. |
v1921920 | | | 75.63 225 | 73.49 230 | 82.06 199 | 79.38 310 | 66.35 127 | 91.07 195 | 89.48 238 | 71.98 179 | 67.99 234 | 81.22 272 | 49.16 244 | 93.90 220 | 66.56 213 | 64.56 280 | 85.92 268 |
|
MVP-Stereo | | | 77.12 201 | 76.23 194 | 79.79 249 | 81.72 287 | 66.34 128 | 89.29 239 | 90.88 191 | 70.56 221 | 62.01 289 | 82.88 246 | 49.34 239 | 94.13 204 | 65.55 228 | 93.80 46 | 78.88 341 |
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application. |
GA-MVS | | | 78.33 183 | 76.23 194 | 84.65 129 | 83.65 271 | 66.30 129 | 91.44 172 | 90.14 216 | 76.01 99 | 70.32 204 | 84.02 235 | 42.50 283 | 94.72 182 | 70.98 174 | 77.00 201 | 92.94 152 |
|
APDe-MVS | | | 87.54 24 | 87.84 21 | 86.65 60 | 96.07 25 | 66.30 129 | 94.84 45 | 93.78 64 | 69.35 234 | 88.39 24 | 96.34 25 | 67.74 48 | 97.66 58 | 90.62 20 | 93.44 54 | 96.01 38 |
|
v1192 | | | 75.98 217 | 73.92 225 | 82.15 192 | 79.73 305 | 66.24 131 | 91.22 187 | 89.75 229 | 72.67 158 | 68.49 231 | 81.42 267 | 49.86 235 | 94.27 200 | 67.08 208 | 65.02 273 | 85.95 266 |
|
dp | | | 75.01 232 | 72.09 245 | 83.76 150 | 89.28 167 | 66.22 132 | 79.96 324 | 89.75 229 | 71.16 209 | 67.80 240 | 77.19 311 | 51.81 217 | 92.54 258 | 50.39 294 | 71.44 234 | 92.51 162 |
|
EPNet | | | 87.84 21 | 88.38 16 | 86.23 78 | 93.30 68 | 66.05 133 | 95.26 31 | 94.84 24 | 87.09 3 | 88.06 25 | 94.53 75 | 66.79 56 | 97.34 74 | 83.89 75 | 91.68 77 | 95.29 59 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
ppachtmachnet_test | | | 67.72 287 | 63.70 296 | 79.77 250 | 78.92 317 | 66.04 134 | 88.68 252 | 82.90 333 | 60.11 309 | 55.45 317 | 75.96 321 | 39.19 293 | 90.55 292 | 39.53 339 | 52.55 337 | 82.71 308 |
|
v1240 | | | 75.21 230 | 72.98 234 | 81.88 201 | 79.20 312 | 66.00 135 | 90.75 204 | 89.11 255 | 71.63 198 | 67.41 245 | 81.22 272 | 47.36 258 | 93.87 221 | 65.46 229 | 64.72 278 | 85.77 270 |
|
baseline2 | | | 83.68 90 | 83.42 80 | 84.48 135 | 87.37 213 | 66.00 135 | 90.06 222 | 95.93 7 | 79.71 46 | 69.08 219 | 90.39 162 | 77.92 6 | 96.28 120 | 78.91 115 | 81.38 164 | 91.16 190 |
|
PCF-MVS | | 73.15 9 | 79.29 161 | 77.63 172 | 84.29 141 | 86.06 233 | 65.96 137 | 87.03 273 | 91.10 181 | 69.86 229 | 69.79 214 | 90.64 155 | 57.54 153 | 96.59 113 | 64.37 236 | 82.29 156 | 90.32 198 |
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
MAR-MVS | | | 84.18 78 | 83.43 78 | 86.44 69 | 96.25 23 | 65.93 138 | 94.28 53 | 94.27 53 | 74.41 119 | 79.16 110 | 95.61 40 | 53.99 198 | 98.88 20 | 69.62 186 | 93.26 56 | 94.50 97 |
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
Fast-Effi-MVS+ | | | 81.14 127 | 80.01 132 | 84.51 134 | 90.24 147 | 65.86 139 | 94.12 59 | 89.15 252 | 73.81 135 | 75.37 152 | 88.26 188 | 57.26 154 | 94.53 192 | 66.97 210 | 84.92 138 | 93.15 144 |
|
AdaColmap |  | | 78.94 167 | 77.00 184 | 84.76 123 | 96.34 19 | 65.86 139 | 92.66 124 | 87.97 286 | 62.18 293 | 70.56 199 | 92.37 131 | 43.53 280 | 97.35 73 | 64.50 235 | 82.86 153 | 91.05 192 |
|
Regformer-1 | | | 87.24 29 | 87.60 27 | 86.15 80 | 95.14 31 | 65.83 141 | 93.95 70 | 95.12 15 | 82.11 21 | 84.25 59 | 95.73 36 | 67.88 46 | 98.35 33 | 85.60 60 | 88.64 109 | 94.26 102 |
|
thres200 | | | 79.66 154 | 78.33 158 | 83.66 157 | 92.54 90 | 65.82 142 | 93.06 104 | 96.31 3 | 74.90 116 | 73.30 167 | 88.66 180 | 59.67 132 | 95.61 151 | 47.84 308 | 78.67 183 | 89.56 209 |
|
testtj | | | 86.62 42 | 86.66 40 | 86.50 67 | 96.95 8 | 65.70 143 | 94.41 50 | 93.45 83 | 67.74 249 | 86.19 38 | 96.39 23 | 64.38 82 | 97.91 46 | 87.33 48 | 93.14 58 | 95.90 42 |
|
BH-RMVSNet | | | 79.46 160 | 77.65 171 | 84.89 119 | 91.68 116 | 65.66 144 | 93.55 89 | 88.09 283 | 72.93 153 | 73.37 166 | 91.12 150 | 46.20 268 | 96.12 126 | 56.28 277 | 85.61 135 | 92.91 153 |
|
ZNCC-MVS | | | 85.33 58 | 85.08 59 | 86.06 81 | 93.09 77 | 65.65 145 | 93.89 75 | 93.41 87 | 73.75 136 | 79.94 99 | 94.68 73 | 60.61 121 | 98.03 41 | 82.63 86 | 93.72 49 | 94.52 95 |
|
thisisatest0530 | | | 81.15 126 | 80.07 129 | 84.39 137 | 88.26 193 | 65.63 146 | 91.40 175 | 94.62 36 | 71.27 208 | 70.93 197 | 89.18 176 | 72.47 27 | 96.04 131 | 65.62 226 | 76.89 202 | 91.49 180 |
|
MP-MVS-pluss | | | 85.24 59 | 85.13 58 | 85.56 99 | 91.42 123 | 65.59 147 | 91.54 171 | 92.51 123 | 74.56 118 | 80.62 92 | 95.64 39 | 59.15 139 | 97.00 94 | 86.94 53 | 93.80 46 | 94.07 114 |
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss |
PHI-MVS | | | 86.83 39 | 86.85 39 | 86.78 54 | 93.47 66 | 65.55 148 | 95.39 29 | 95.10 17 | 71.77 191 | 85.69 47 | 96.52 18 | 62.07 109 | 98.77 21 | 86.06 58 | 95.60 12 | 96.03 37 |
|
114514_t | | | 79.17 163 | 77.67 170 | 83.68 155 | 95.32 30 | 65.53 149 | 92.85 115 | 91.60 159 | 63.49 280 | 67.92 236 | 90.63 157 | 46.65 261 | 95.72 147 | 67.01 209 | 83.54 151 | 89.79 204 |
|
ZD-MVS | | | | | | 96.63 11 | 65.50 150 | | 93.50 81 | 70.74 219 | 85.26 52 | 95.19 56 | 64.92 77 | 97.29 77 | 87.51 44 | 93.01 59 | |
|
ab-mvs | | | 80.18 144 | 78.31 159 | 85.80 90 | 88.44 186 | 65.49 151 | 83.00 301 | 92.67 115 | 71.82 189 | 77.36 131 | 85.01 224 | 54.50 190 | 96.59 113 | 76.35 134 | 75.63 208 | 95.32 57 |
|
TSAR-MVS + GP. | | | 87.96 18 | 88.37 17 | 86.70 59 | 93.51 65 | 65.32 152 | 95.15 35 | 93.84 63 | 78.17 69 | 85.93 43 | 94.80 70 | 75.80 13 | 98.21 35 | 89.38 25 | 88.78 106 | 96.59 15 |
|
CS-MVS-test | | | 85.35 57 | 85.55 54 | 84.75 124 | 90.77 139 | 65.29 153 | 95.38 30 | 91.54 160 | 78.03 71 | 83.67 67 | 94.32 87 | 62.47 106 | 95.81 138 | 82.73 83 | 91.00 89 | 93.15 144 |
|
GST-MVS | | | 84.63 69 | 84.29 69 | 85.66 97 | 92.82 83 | 65.27 154 | 93.04 106 | 93.13 99 | 73.20 146 | 78.89 112 | 94.18 92 | 59.41 136 | 97.85 50 | 81.45 95 | 92.48 68 | 93.86 125 |
|
pmmvs4 | | | 73.92 241 | 71.81 248 | 80.25 238 | 79.17 313 | 65.24 155 | 87.43 270 | 87.26 294 | 67.64 253 | 63.46 278 | 83.91 237 | 48.96 246 | 91.53 287 | 62.94 245 | 65.49 267 | 83.96 289 |
|
APD-MVS |  | | 85.93 50 | 85.99 46 | 85.76 92 | 95.98 27 | 65.21 156 | 93.59 88 | 92.58 121 | 66.54 260 | 86.17 39 | 95.88 33 | 63.83 89 | 97.00 94 | 86.39 56 | 92.94 60 | 95.06 72 |
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
miper_enhance_ethall | | | 78.86 169 | 77.97 165 | 81.54 208 | 88.00 201 | 65.17 157 | 91.41 173 | 89.15 252 | 75.19 112 | 68.79 226 | 83.98 236 | 67.17 51 | 92.82 245 | 72.73 158 | 65.30 268 | 86.62 251 |
|
zzz-MVS | | | 84.73 66 | 84.47 65 | 85.50 100 | 91.89 109 | 65.16 158 | 91.55 170 | 92.23 130 | 75.32 109 | 80.53 93 | 95.21 54 | 56.06 175 | 97.16 85 | 84.86 68 | 92.55 66 | 94.18 105 |
|
MTAPA | | | 83.91 84 | 83.38 82 | 85.50 100 | 91.89 109 | 65.16 158 | 81.75 306 | 92.23 130 | 75.32 109 | 80.53 93 | 95.21 54 | 56.06 175 | 97.16 85 | 84.86 68 | 92.55 66 | 94.18 105 |
|
bset_n11_16_dypcd | | | 75.95 219 | 74.16 220 | 81.30 213 | 76.91 334 | 65.14 160 | 88.89 248 | 87.48 290 | 74.30 123 | 69.90 213 | 83.40 242 | 42.16 286 | 92.42 262 | 78.39 120 | 66.03 265 | 86.32 254 |
|
GBi-Net | | | 75.65 223 | 73.83 226 | 81.10 221 | 88.85 176 | 65.11 161 | 90.01 224 | 90.32 205 | 70.84 215 | 67.04 249 | 80.25 287 | 48.03 250 | 91.54 284 | 59.80 265 | 69.34 243 | 86.64 247 |
|
test1 | | | 75.65 223 | 73.83 226 | 81.10 221 | 88.85 176 | 65.11 161 | 90.01 224 | 90.32 205 | 70.84 215 | 67.04 249 | 80.25 287 | 48.03 250 | 91.54 284 | 59.80 265 | 69.34 243 | 86.64 247 |
|
FMVSNet1 | | | 72.71 254 | 69.91 261 | 81.10 221 | 83.60 272 | 65.11 161 | 90.01 224 | 90.32 205 | 63.92 277 | 63.56 277 | 80.25 287 | 36.35 317 | 91.54 284 | 54.46 282 | 66.75 262 | 86.64 247 |
|
Regformer-3 | | | 85.80 52 | 85.92 47 | 85.46 102 | 94.17 46 | 65.09 164 | 92.95 111 | 95.11 16 | 81.13 33 | 81.68 80 | 95.04 58 | 65.82 65 | 98.32 34 | 83.02 80 | 84.36 143 | 92.97 151 |
|
HFP-MVS | | | 84.73 66 | 84.40 68 | 85.72 93 | 93.75 58 | 65.01 165 | 93.50 92 | 93.19 95 | 72.19 174 | 79.22 108 | 94.93 64 | 59.04 140 | 97.67 55 | 81.55 93 | 92.21 69 | 94.49 98 |
|
#test# | | | 84.98 63 | 84.74 64 | 85.72 93 | 93.75 58 | 65.01 165 | 94.09 60 | 93.19 95 | 73.55 142 | 79.22 108 | 94.93 64 | 59.04 140 | 97.67 55 | 82.66 84 | 92.21 69 | 94.49 98 |
|
PVSNet | | 73.49 8 | 80.05 147 | 78.63 155 | 84.31 140 | 90.92 133 | 64.97 167 | 92.47 132 | 91.05 186 | 79.18 53 | 72.43 181 | 90.51 159 | 37.05 314 | 94.06 209 | 68.06 199 | 86.00 132 | 93.90 124 |
|
Anonymous20240529 | | | 76.84 204 | 74.15 221 | 84.88 120 | 91.02 130 | 64.95 168 | 93.84 80 | 91.09 182 | 53.57 334 | 73.00 168 | 87.42 201 | 35.91 318 | 97.32 75 | 69.14 192 | 72.41 227 | 92.36 164 |
|
cl22 | | | 77.94 189 | 76.78 186 | 81.42 210 | 87.57 207 | 64.93 169 | 90.67 205 | 88.86 264 | 72.45 165 | 67.63 242 | 82.68 249 | 64.07 85 | 92.91 243 | 71.79 168 | 65.30 268 | 86.44 252 |
|
our_test_3 | | | 68.29 283 | 64.69 289 | 79.11 264 | 78.92 317 | 64.85 170 | 88.40 258 | 85.06 313 | 60.32 307 | 52.68 326 | 76.12 320 | 40.81 289 | 89.80 306 | 44.25 323 | 55.65 328 | 82.67 311 |
|
Regformer-2 | | | 87.00 36 | 87.43 29 | 85.71 95 | 95.14 31 | 64.73 171 | 93.95 70 | 94.95 22 | 81.69 26 | 84.03 64 | 95.73 36 | 67.35 50 | 98.19 37 | 85.40 62 | 88.64 109 | 94.20 104 |
|
tpm | | | 78.58 178 | 77.03 182 | 83.22 166 | 85.94 237 | 64.56 172 | 83.21 299 | 91.14 180 | 78.31 66 | 73.67 165 | 79.68 293 | 64.01 86 | 92.09 273 | 66.07 221 | 71.26 235 | 93.03 149 |
|
Anonymous202405211 | | | 77.96 188 | 75.33 204 | 85.87 87 | 93.73 60 | 64.52 173 | 94.85 44 | 85.36 311 | 62.52 291 | 76.11 142 | 90.18 166 | 29.43 339 | 97.29 77 | 68.51 197 | 77.24 200 | 95.81 44 |
|
tfpn200view9 | | | 78.79 172 | 77.43 175 | 82.88 171 | 92.21 98 | 64.49 174 | 92.05 146 | 96.28 4 | 73.48 143 | 71.75 190 | 88.26 188 | 60.07 127 | 95.32 164 | 45.16 318 | 77.58 192 | 88.83 212 |
|
thres400 | | | 78.68 175 | 77.43 175 | 82.43 181 | 92.21 98 | 64.49 174 | 92.05 146 | 96.28 4 | 73.48 143 | 71.75 190 | 88.26 188 | 60.07 127 | 95.32 164 | 45.16 318 | 77.58 192 | 87.48 232 |
|
VPA-MVSNet | | | 79.03 164 | 78.00 164 | 82.11 198 | 85.95 235 | 64.48 176 | 93.22 101 | 94.66 34 | 75.05 114 | 74.04 163 | 84.95 226 | 52.17 215 | 93.52 228 | 74.90 145 | 67.04 260 | 88.32 224 |
|
CDS-MVSNet | | | 81.43 122 | 80.74 120 | 83.52 159 | 86.26 230 | 64.45 177 | 92.09 143 | 90.65 197 | 75.83 101 | 73.95 164 | 89.81 172 | 63.97 87 | 92.91 243 | 71.27 173 | 82.82 154 | 93.20 143 |
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
v148 | | | 76.19 210 | 74.47 215 | 81.36 211 | 80.05 304 | 64.44 178 | 91.75 164 | 90.23 213 | 73.68 139 | 67.13 248 | 80.84 277 | 55.92 178 | 93.86 223 | 68.95 194 | 61.73 303 | 85.76 272 |
|
XXY-MVS | | | 77.94 189 | 76.44 191 | 82.43 181 | 82.60 281 | 64.44 178 | 92.01 148 | 91.83 149 | 73.59 141 | 70.00 209 | 85.82 217 | 54.43 194 | 94.76 179 | 69.63 185 | 68.02 254 | 88.10 227 |
|
MIMVSNet | | | 71.64 259 | 68.44 268 | 81.23 215 | 81.97 286 | 64.44 178 | 73.05 339 | 88.80 265 | 69.67 231 | 64.59 266 | 74.79 326 | 32.79 326 | 87.82 320 | 53.99 284 | 76.35 205 | 91.42 182 |
|
miper_ehance_all_eth | | | 77.60 193 | 76.44 191 | 81.09 224 | 85.70 240 | 64.41 181 | 90.65 206 | 88.64 271 | 72.31 169 | 67.37 247 | 82.52 250 | 64.77 78 | 92.64 256 | 70.67 178 | 65.30 268 | 86.24 257 |
|
Patchmtry | | | 67.53 290 | 63.93 295 | 78.34 268 | 82.12 284 | 64.38 182 | 68.72 346 | 84.00 324 | 48.23 349 | 59.24 299 | 72.41 333 | 57.82 150 | 89.27 308 | 46.10 315 | 56.68 327 | 81.36 321 |
|
ACMMPR | | | 84.37 71 | 84.06 70 | 85.28 109 | 93.56 63 | 64.37 183 | 93.50 92 | 93.15 98 | 72.19 174 | 78.85 117 | 94.86 68 | 56.69 167 | 97.45 66 | 81.55 93 | 92.20 71 | 94.02 118 |
|
BH-w/o | | | 80.49 140 | 79.30 148 | 84.05 146 | 90.83 137 | 64.36 184 | 93.60 87 | 89.42 241 | 74.35 121 | 69.09 218 | 90.15 167 | 55.23 183 | 95.61 151 | 64.61 234 | 86.43 131 | 92.17 173 |
|
region2R | | | 84.36 72 | 84.03 71 | 85.36 107 | 93.54 64 | 64.31 185 | 93.43 95 | 92.95 106 | 72.16 177 | 78.86 116 | 94.84 69 | 56.97 162 | 97.53 64 | 81.38 97 | 92.11 73 | 94.24 103 |
|
1121 | | | 81.25 125 | 80.05 130 | 84.87 121 | 92.30 94 | 64.31 185 | 87.91 263 | 91.39 168 | 59.44 313 | 79.94 99 | 92.91 116 | 57.09 156 | 97.01 92 | 66.63 211 | 92.81 63 | 93.29 139 |
|
新几何1 | | | | | 84.73 125 | 92.32 93 | 64.28 187 | | 91.46 166 | 59.56 312 | 79.77 102 | 92.90 117 | 56.95 163 | 96.57 115 | 63.40 241 | 92.91 61 | 93.34 136 |
|
原ACMM1 | | | | | 84.42 136 | 93.21 72 | 64.27 188 | | 93.40 88 | 65.39 268 | 79.51 105 | 92.50 125 | 58.11 148 | 96.69 112 | 65.27 231 | 93.96 42 | 92.32 166 |
|
MP-MVS |  | | 85.02 61 | 84.97 61 | 85.17 113 | 92.60 89 | 64.27 188 | 93.24 99 | 92.27 129 | 73.13 148 | 79.63 104 | 94.43 78 | 61.90 110 | 97.17 84 | 85.00 65 | 92.56 65 | 94.06 115 |
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
c3_l | | | 76.83 205 | 75.47 203 | 80.93 228 | 85.02 250 | 64.18 190 | 90.39 213 | 88.11 282 | 71.66 193 | 66.65 254 | 81.64 262 | 63.58 96 | 92.56 257 | 69.31 190 | 62.86 290 | 86.04 263 |
|
PGM-MVS | | | 83.25 94 | 82.70 96 | 84.92 118 | 92.81 85 | 64.07 191 | 90.44 210 | 92.20 135 | 71.28 207 | 77.23 133 | 94.43 78 | 55.17 185 | 97.31 76 | 79.33 110 | 91.38 83 | 93.37 135 |
|
MSP-MVS | | | 90.38 4 | 91.87 1 | 85.88 86 | 92.83 81 | 64.03 192 | 93.06 104 | 94.33 51 | 82.19 19 | 93.65 3 | 96.15 30 | 85.89 1 | 97.19 83 | 91.02 19 | 97.75 1 | 96.43 26 |
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025 |
CP-MVS | | | 83.71 89 | 83.40 81 | 84.65 129 | 93.14 75 | 63.84 193 | 94.59 47 | 92.28 128 | 71.03 212 | 77.41 130 | 94.92 66 | 55.21 184 | 96.19 123 | 81.32 98 | 90.70 92 | 93.91 122 |
|
OPM-MVS | | | 79.00 165 | 78.09 162 | 81.73 203 | 83.52 273 | 63.83 194 | 91.64 168 | 90.30 209 | 76.36 97 | 71.97 187 | 89.93 171 | 46.30 267 | 95.17 169 | 75.10 139 | 77.70 190 | 86.19 258 |
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS). |
XVS | | | 83.87 85 | 83.47 76 | 85.05 114 | 93.22 70 | 63.78 195 | 92.92 113 | 92.66 116 | 73.99 128 | 78.18 121 | 94.31 88 | 55.25 181 | 97.41 69 | 79.16 111 | 91.58 79 | 93.95 120 |
|
X-MVStestdata | | | 76.86 202 | 74.13 222 | 85.05 114 | 93.22 70 | 63.78 195 | 92.92 113 | 92.66 116 | 73.99 128 | 78.18 121 | 10.19 372 | 55.25 181 | 97.41 69 | 79.16 111 | 91.58 79 | 93.95 120 |
|
TESTMET0.1,1 | | | 82.41 107 | 81.98 105 | 83.72 154 | 88.08 197 | 63.74 197 | 92.70 120 | 93.77 66 | 79.30 50 | 77.61 128 | 87.57 199 | 58.19 147 | 94.08 207 | 73.91 149 | 86.68 128 | 93.33 138 |
|
BH-untuned | | | 78.68 175 | 77.08 181 | 83.48 162 | 89.84 154 | 63.74 197 | 92.70 120 | 88.59 272 | 71.57 200 | 66.83 252 | 88.65 181 | 51.75 218 | 95.39 162 | 59.03 268 | 84.77 140 | 91.32 187 |
|
MSDG | | | 69.54 272 | 65.73 281 | 80.96 226 | 85.11 249 | 63.71 199 | 84.19 288 | 83.28 331 | 56.95 324 | 54.50 319 | 84.03 234 | 31.50 332 | 96.03 132 | 42.87 328 | 69.13 246 | 83.14 303 |
|
thres600view7 | | | 78.00 186 | 76.66 188 | 82.03 200 | 91.93 106 | 63.69 200 | 91.30 184 | 96.33 1 | 72.43 166 | 70.46 201 | 87.89 195 | 60.31 122 | 94.92 177 | 42.64 330 | 76.64 203 | 87.48 232 |
|
PatchT | | | 69.11 275 | 65.37 286 | 80.32 234 | 82.07 285 | 63.68 201 | 67.96 351 | 87.62 289 | 50.86 341 | 69.37 215 | 65.18 349 | 57.09 156 | 88.53 314 | 41.59 333 | 66.60 263 | 88.74 215 |
|
HQP5-MVS | | | | | | | 63.66 202 | | | | | | | | | | |
|
HQP-MVS | | | 81.14 127 | 80.64 123 | 82.64 177 | 87.54 208 | 63.66 202 | 94.06 62 | 91.70 155 | 79.80 43 | 74.18 158 | 90.30 164 | 51.63 220 | 95.61 151 | 77.63 126 | 78.90 180 | 88.63 216 |
|
RRT_MVS | | | 77.38 197 | 76.59 189 | 79.77 250 | 90.91 134 | 63.61 204 | 91.15 191 | 90.91 190 | 72.28 171 | 72.06 186 | 87.28 204 | 43.92 278 | 89.04 310 | 73.32 150 | 67.47 258 | 86.67 246 |
|
EI-MVSNet-Vis-set | | | 83.77 87 | 83.67 73 | 84.06 145 | 92.79 86 | 63.56 205 | 91.76 162 | 94.81 27 | 79.65 47 | 77.87 123 | 94.09 93 | 63.35 98 | 97.90 47 | 79.35 109 | 79.36 176 | 90.74 194 |
|
TAMVS | | | 80.37 141 | 79.45 144 | 83.13 168 | 85.14 247 | 63.37 206 | 91.23 186 | 90.76 193 | 74.81 117 | 72.65 174 | 88.49 182 | 60.63 120 | 92.95 238 | 69.41 188 | 81.95 160 | 93.08 148 |
|
Anonymous20231211 | | | 73.08 246 | 70.39 257 | 81.13 219 | 90.62 140 | 63.33 207 | 91.40 175 | 90.06 221 | 51.84 338 | 64.46 270 | 80.67 280 | 36.49 316 | 94.07 208 | 63.83 239 | 64.17 282 | 85.98 265 |
|
ACMH | | 63.93 17 | 68.62 279 | 64.81 287 | 80.03 242 | 85.22 245 | 63.25 208 | 87.72 266 | 84.66 318 | 60.83 303 | 51.57 331 | 79.43 296 | 27.29 344 | 94.96 174 | 41.76 331 | 64.84 275 | 81.88 318 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
Regformer-4 | | | 85.45 55 | 85.69 52 | 84.73 125 | 94.17 46 | 63.23 209 | 92.95 111 | 94.83 25 | 80.66 38 | 81.29 83 | 95.04 58 | 65.12 72 | 98.08 40 | 82.74 82 | 84.36 143 | 92.88 155 |
|
thres100view900 | | | 78.37 181 | 77.01 183 | 82.46 180 | 91.89 109 | 63.21 210 | 91.19 190 | 96.33 1 | 72.28 171 | 70.45 202 | 87.89 195 | 60.31 122 | 95.32 164 | 45.16 318 | 77.58 192 | 88.83 212 |
|
EI-MVSNet-UG-set | | | 83.14 96 | 82.96 88 | 83.67 156 | 92.28 95 | 63.19 211 | 91.38 179 | 94.68 33 | 79.22 52 | 76.60 139 | 93.75 99 | 62.64 104 | 97.76 53 | 78.07 123 | 78.01 187 | 90.05 202 |
|
test2506 | | | 83.29 93 | 82.92 90 | 84.37 138 | 88.39 189 | 63.18 212 | 92.01 148 | 91.35 170 | 77.66 79 | 78.49 120 | 91.42 145 | 64.58 80 | 95.09 170 | 73.19 151 | 89.23 102 | 94.85 79 |
|
NP-MVS | | | | | | 87.41 211 | 63.04 213 | | | | | 90.30 164 | | | | | |
|
eth_miper_zixun_eth | | | 75.96 218 | 74.40 216 | 80.66 230 | 84.66 254 | 63.02 214 | 89.28 240 | 88.27 279 | 71.88 184 | 65.73 257 | 81.65 261 | 59.45 134 | 92.81 246 | 68.13 198 | 60.53 312 | 86.14 259 |
|
D2MVS | | | 73.80 242 | 72.02 246 | 79.15 263 | 79.15 314 | 62.97 215 | 88.58 254 | 90.07 218 | 72.94 152 | 59.22 300 | 78.30 300 | 42.31 285 | 92.70 252 | 65.59 227 | 72.00 228 | 81.79 319 |
|
IterMVS | | | 72.65 256 | 70.83 254 | 78.09 273 | 82.17 283 | 62.96 216 | 87.64 268 | 86.28 301 | 71.56 201 | 60.44 294 | 78.85 298 | 45.42 272 | 86.66 329 | 63.30 243 | 61.83 300 | 84.65 286 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
EG-PatchMatch MVS | | | 68.55 280 | 65.41 285 | 77.96 274 | 78.69 321 | 62.93 217 | 89.86 229 | 89.17 250 | 60.55 304 | 50.27 336 | 77.73 306 | 22.60 353 | 94.06 209 | 47.18 311 | 72.65 224 | 76.88 348 |
|
DP-MVS | | | 69.90 270 | 66.48 276 | 80.14 239 | 95.36 29 | 62.93 217 | 89.56 232 | 76.11 345 | 50.27 343 | 57.69 312 | 85.23 222 | 39.68 292 | 95.73 143 | 33.35 354 | 71.05 236 | 81.78 320 |
|
mPP-MVS | | | 82.96 100 | 82.44 100 | 84.52 133 | 92.83 81 | 62.92 219 | 92.76 116 | 91.85 148 | 71.52 202 | 75.61 149 | 94.24 90 | 53.48 206 | 96.99 97 | 78.97 114 | 90.73 91 | 93.64 131 |
|
ACMMP |  | | 81.49 121 | 80.67 122 | 83.93 148 | 91.71 115 | 62.90 220 | 92.13 140 | 92.22 134 | 71.79 190 | 71.68 192 | 93.49 105 | 50.32 229 | 96.96 100 | 78.47 119 | 84.22 150 | 91.93 175 |
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
HPM-MVS |  | | 83.25 94 | 82.95 89 | 84.17 143 | 92.25 96 | 62.88 221 | 90.91 196 | 91.86 147 | 70.30 223 | 77.12 134 | 93.96 97 | 56.75 165 | 96.28 120 | 82.04 89 | 91.34 85 | 93.34 136 |
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023 |
MVS_111021_LR | | | 82.02 115 | 81.52 110 | 83.51 160 | 88.42 187 | 62.88 221 | 89.77 230 | 88.93 261 | 76.78 92 | 75.55 150 | 93.10 108 | 50.31 230 | 95.38 163 | 83.82 76 | 87.02 121 | 92.26 172 |
|
IterMVS-LS | | | 76.49 208 | 75.18 206 | 80.43 233 | 84.49 258 | 62.74 223 | 90.64 207 | 88.80 265 | 72.40 167 | 65.16 262 | 81.72 260 | 60.98 117 | 92.27 269 | 67.74 202 | 64.65 279 | 86.29 255 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
EI-MVSNet | | | 78.97 166 | 78.22 161 | 81.25 214 | 85.33 243 | 62.73 224 | 89.53 235 | 93.21 92 | 72.39 168 | 72.14 184 | 90.13 168 | 60.99 116 | 94.72 182 | 67.73 203 | 72.49 225 | 86.29 255 |
|
CHOSEN 280x420 | | | 77.35 198 | 76.95 185 | 78.55 267 | 87.07 218 | 62.68 225 | 69.71 345 | 82.95 332 | 68.80 242 | 71.48 193 | 87.27 205 | 66.03 62 | 84.00 340 | 76.47 132 | 82.81 155 | 88.95 211 |
|
HQP_MVS | | | 80.34 142 | 79.75 137 | 82.12 195 | 86.94 219 | 62.42 226 | 93.13 102 | 91.31 171 | 78.81 61 | 72.53 177 | 89.14 178 | 50.66 227 | 95.55 157 | 76.74 129 | 78.53 185 | 88.39 222 |
|
plane_prior | | | | | | | 62.42 226 | 93.85 77 | | 79.38 49 | | | | | | 78.80 182 | |
|
EIA-MVS | | | 84.84 65 | 84.88 62 | 84.69 128 | 91.30 126 | 62.36 228 | 93.85 77 | 92.04 139 | 79.45 48 | 79.33 107 | 94.28 89 | 62.42 107 | 96.35 119 | 80.05 105 | 91.25 86 | 95.38 53 |
|
plane_prior6 | | | | | | 87.23 214 | 62.32 229 | | | | | | 50.66 227 | | | | |
|
PVSNet_0 | | 68.08 15 | 71.81 258 | 68.32 270 | 82.27 187 | 84.68 253 | 62.31 230 | 88.68 252 | 90.31 208 | 75.84 100 | 57.93 311 | 80.65 281 | 37.85 305 | 94.19 203 | 69.94 183 | 29.05 364 | 90.31 199 |
|
WR-MVS | | | 76.76 206 | 75.74 201 | 79.82 248 | 84.60 255 | 62.27 231 | 92.60 126 | 92.51 123 | 76.06 98 | 67.87 239 | 85.34 221 | 56.76 164 | 90.24 299 | 62.20 251 | 63.69 287 | 86.94 243 |
|
NR-MVSNet | | | 76.05 215 | 74.59 211 | 80.44 232 | 82.96 279 | 62.18 232 | 90.83 201 | 91.73 152 | 77.12 87 | 60.96 292 | 86.35 210 | 59.28 138 | 91.80 278 | 60.74 258 | 61.34 307 | 87.35 236 |
|
GeoE | | | 78.90 168 | 77.43 175 | 83.29 165 | 88.95 175 | 62.02 233 | 92.31 134 | 86.23 303 | 70.24 224 | 71.34 195 | 89.27 175 | 54.43 194 | 94.04 212 | 63.31 242 | 80.81 170 | 93.81 127 |
|
h-mvs33 | | | 83.01 98 | 82.56 98 | 84.35 139 | 89.34 164 | 62.02 233 | 92.72 118 | 93.76 67 | 81.45 27 | 82.73 73 | 92.25 134 | 60.11 125 | 97.13 87 | 87.69 42 | 62.96 288 | 93.91 122 |
|
ECVR-MVS |  | | 81.29 124 | 80.38 128 | 84.01 147 | 88.39 189 | 61.96 235 | 92.56 131 | 86.79 297 | 77.66 79 | 76.63 138 | 91.42 145 | 46.34 265 | 95.24 168 | 74.36 148 | 89.23 102 | 94.85 79 |
|
plane_prior3 | | | | | | | 61.95 236 | | | 79.09 56 | 72.53 177 | | | | | | |
|
Vis-MVSNet |  | | 80.92 133 | 79.98 134 | 83.74 151 | 88.48 184 | 61.80 237 | 93.44 94 | 88.26 281 | 73.96 131 | 77.73 124 | 91.76 141 | 49.94 234 | 94.76 179 | 65.84 223 | 90.37 96 | 94.65 89 |
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
FOURS1 | | | | | | 93.95 51 | 61.77 238 | 93.96 67 | 91.92 144 | 62.14 294 | 86.57 34 | | | | | | |
|
cl____ | | | 76.07 212 | 74.67 208 | 80.28 236 | 85.15 246 | 61.76 239 | 90.12 220 | 88.73 267 | 71.16 209 | 65.43 259 | 81.57 264 | 61.15 114 | 92.95 238 | 66.54 214 | 62.17 296 | 86.13 261 |
|
DIV-MVS_self_test | | | 76.07 212 | 74.67 208 | 80.28 236 | 85.14 247 | 61.75 240 | 90.12 220 | 88.73 267 | 71.16 209 | 65.42 260 | 81.60 263 | 61.15 114 | 92.94 242 | 66.54 214 | 62.16 298 | 86.14 259 |
|
CNLPA | | | 74.31 237 | 72.30 243 | 80.32 234 | 91.49 122 | 61.66 241 | 90.85 200 | 80.72 338 | 56.67 327 | 63.85 275 | 90.64 155 | 46.75 260 | 90.84 291 | 53.79 285 | 75.99 207 | 88.47 221 |
|
test222 | | | | | | 89.77 155 | 61.60 242 | 89.55 233 | 89.42 241 | 56.83 326 | 77.28 132 | 92.43 129 | 52.76 210 | | | 91.14 88 | 93.09 147 |
|
plane_prior7 | | | | | | 86.94 219 | 61.51 243 | | | | | | | | | | |
|
UGNet | | | 79.87 151 | 78.68 154 | 83.45 163 | 89.96 151 | 61.51 243 | 92.13 140 | 90.79 192 | 76.83 91 | 78.85 117 | 86.33 212 | 38.16 300 | 96.17 124 | 67.93 201 | 87.17 120 | 92.67 157 |
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
tttt0517 | | | 79.50 158 | 78.53 157 | 82.41 184 | 87.22 215 | 61.43 245 | 89.75 231 | 94.76 29 | 69.29 235 | 67.91 237 | 88.06 193 | 72.92 24 | 95.63 149 | 62.91 246 | 73.90 216 | 90.16 200 |
|
DROMVSNet | | | 84.53 70 | 85.04 60 | 83.01 169 | 89.34 164 | 61.37 246 | 94.42 49 | 91.09 182 | 77.91 74 | 83.24 69 | 94.20 91 | 58.37 145 | 95.40 161 | 85.35 63 | 91.41 82 | 92.27 171 |
|
test-LLR | | | 80.10 146 | 79.56 141 | 81.72 204 | 86.93 221 | 61.17 247 | 92.70 120 | 91.54 160 | 71.51 203 | 75.62 147 | 86.94 206 | 53.83 199 | 92.38 264 | 72.21 164 | 84.76 141 | 91.60 178 |
|
test-mter | | | 79.96 149 | 79.38 147 | 81.72 204 | 86.93 221 | 61.17 247 | 92.70 120 | 91.54 160 | 73.85 133 | 75.62 147 | 86.94 206 | 49.84 236 | 92.38 264 | 72.21 164 | 84.76 141 | 91.60 178 |
|
SR-MVS | | | 82.81 101 | 82.58 97 | 83.50 161 | 93.35 67 | 61.16 249 | 92.23 138 | 91.28 174 | 64.48 273 | 81.27 84 | 95.28 48 | 53.71 202 | 95.86 137 | 82.87 81 | 88.77 107 | 93.49 134 |
|
KD-MVS_2432*1600 | | | 69.03 276 | 66.37 278 | 77.01 286 | 85.56 241 | 61.06 250 | 81.44 310 | 90.25 211 | 67.27 255 | 58.00 309 | 76.53 316 | 54.49 191 | 87.63 323 | 48.04 305 | 35.77 359 | 82.34 313 |
|
miper_refine_blended | | | 69.03 276 | 66.37 278 | 77.01 286 | 85.56 241 | 61.06 250 | 81.44 310 | 90.25 211 | 67.27 255 | 58.00 309 | 76.53 316 | 54.49 191 | 87.63 323 | 48.04 305 | 35.77 359 | 82.34 313 |
|
tfpnnormal | | | 70.10 267 | 67.36 273 | 78.32 269 | 83.45 274 | 60.97 252 | 88.85 249 | 92.77 111 | 64.85 272 | 60.83 293 | 78.53 299 | 43.52 281 | 93.48 229 | 31.73 360 | 61.70 304 | 80.52 329 |
|
TR-MVS | | | 78.77 173 | 77.37 180 | 82.95 170 | 90.49 141 | 60.88 253 | 93.67 84 | 90.07 218 | 70.08 226 | 74.51 156 | 91.37 148 | 45.69 269 | 95.70 148 | 60.12 263 | 80.32 171 | 92.29 167 |
|
UniMVSNet (Re) | | | 77.58 194 | 76.78 186 | 79.98 243 | 84.11 265 | 60.80 254 | 91.76 162 | 93.17 97 | 76.56 95 | 69.93 212 | 84.78 228 | 63.32 99 | 92.36 266 | 64.89 233 | 62.51 294 | 86.78 245 |
|
1112_ss | | | 80.56 138 | 79.83 136 | 82.77 173 | 88.65 181 | 60.78 255 | 92.29 135 | 88.36 276 | 72.58 160 | 72.46 180 | 94.95 62 | 65.09 73 | 93.42 231 | 66.38 217 | 77.71 189 | 94.10 111 |
|
v7n | | | 71.31 261 | 68.65 266 | 79.28 259 | 76.40 336 | 60.77 256 | 86.71 278 | 89.45 239 | 64.17 276 | 58.77 305 | 78.24 301 | 44.59 276 | 93.54 227 | 57.76 271 | 61.75 302 | 83.52 295 |
|
test1111 | | | 80.84 134 | 80.02 131 | 83.33 164 | 87.87 204 | 60.76 257 | 92.62 125 | 86.86 296 | 77.86 75 | 75.73 145 | 91.39 147 | 46.35 264 | 94.70 185 | 72.79 157 | 88.68 108 | 94.52 95 |
|
test_0402 | | | 64.54 303 | 61.09 309 | 74.92 300 | 84.10 266 | 60.75 258 | 87.95 262 | 79.71 341 | 52.03 337 | 52.41 327 | 77.20 310 | 32.21 330 | 91.64 281 | 23.14 363 | 61.03 308 | 72.36 355 |
|
旧先验1 | | | | | | 91.94 105 | 60.74 259 | | 91.50 164 | | | 94.36 80 | 65.23 71 | | | 91.84 74 | 94.55 91 |
|
ADS-MVSNet2 | | | 66.90 293 | 63.44 298 | 77.26 284 | 88.06 198 | 60.70 260 | 68.01 349 | 75.56 348 | 57.57 319 | 64.48 268 | 69.87 342 | 38.68 294 | 84.10 337 | 40.87 335 | 67.89 255 | 86.97 241 |
|
IterMVS-SCA-FT | | | 71.55 260 | 69.97 259 | 76.32 292 | 81.48 288 | 60.67 261 | 87.64 268 | 85.99 306 | 66.17 263 | 59.50 298 | 78.88 297 | 45.53 270 | 83.65 342 | 62.58 249 | 61.93 299 | 84.63 287 |
|
TranMVSNet+NR-MVSNet | | | 75.86 220 | 74.52 214 | 79.89 246 | 82.44 282 | 60.64 262 | 91.37 180 | 91.37 169 | 76.63 93 | 67.65 241 | 86.21 213 | 52.37 214 | 91.55 283 | 61.84 253 | 60.81 310 | 87.48 232 |
|
pmmvs5 | | | 73.35 245 | 71.52 250 | 78.86 265 | 78.64 322 | 60.61 263 | 91.08 193 | 86.90 295 | 67.69 250 | 63.32 279 | 83.64 238 | 44.33 277 | 90.53 293 | 62.04 252 | 66.02 266 | 85.46 276 |
|
MDA-MVSNet_test_wron | | | 63.78 308 | 60.16 311 | 74.64 301 | 78.15 326 | 60.41 264 | 83.49 293 | 84.03 322 | 56.17 330 | 39.17 359 | 71.59 339 | 37.22 310 | 83.24 347 | 42.87 328 | 48.73 343 | 80.26 332 |
|
Test_1112_low_res | | | 79.56 157 | 78.60 156 | 82.43 181 | 88.24 195 | 60.39 265 | 92.09 143 | 87.99 285 | 72.10 178 | 71.84 188 | 87.42 201 | 64.62 79 | 93.04 235 | 65.80 224 | 77.30 198 | 93.85 126 |
|
UniMVSNet_NR-MVSNet | | | 78.15 185 | 77.55 173 | 79.98 243 | 84.46 259 | 60.26 266 | 92.25 136 | 93.20 94 | 77.50 83 | 68.88 223 | 86.61 208 | 66.10 61 | 92.13 271 | 66.38 217 | 62.55 292 | 87.54 230 |
|
DU-MVS | | | 76.86 202 | 75.84 199 | 79.91 245 | 82.96 279 | 60.26 266 | 91.26 185 | 91.54 160 | 76.46 96 | 68.88 223 | 86.35 210 | 56.16 172 | 92.13 271 | 66.38 217 | 62.55 292 | 87.35 236 |
|
EPP-MVSNet | | | 81.79 119 | 81.52 110 | 82.61 178 | 88.77 180 | 60.21 268 | 93.02 108 | 93.66 74 | 68.52 246 | 72.90 171 | 90.39 162 | 72.19 29 | 94.96 174 | 74.93 143 | 79.29 178 | 92.67 157 |
|
YYNet1 | | | 63.76 309 | 60.14 312 | 74.62 302 | 78.06 327 | 60.19 269 | 83.46 295 | 83.99 326 | 56.18 329 | 39.25 358 | 71.56 340 | 37.18 311 | 83.34 345 | 42.90 327 | 48.70 344 | 80.32 331 |
|
IS-MVSNet | | | 80.14 145 | 79.41 145 | 82.33 185 | 87.91 202 | 60.08 270 | 91.97 152 | 88.27 279 | 72.90 155 | 71.44 194 | 91.73 143 | 61.44 113 | 93.66 226 | 62.47 250 | 86.53 129 | 93.24 141 |
|
HPM-MVS_fast | | | 80.25 143 | 79.55 143 | 82.33 185 | 91.55 120 | 59.95 271 | 91.32 183 | 89.16 251 | 65.23 271 | 74.71 155 | 93.07 112 | 47.81 255 | 95.74 142 | 74.87 146 | 88.23 111 | 91.31 188 |
|
MDTV_nov1_ep13_2view | | | | | | | 59.90 272 | 80.13 321 | | 67.65 252 | 72.79 172 | | 54.33 196 | | 59.83 264 | | 92.58 160 |
|
CPTT-MVS | | | 79.59 156 | 79.16 151 | 80.89 229 | 91.54 121 | 59.80 273 | 92.10 142 | 88.54 274 | 60.42 305 | 72.96 169 | 93.28 107 | 48.27 249 | 92.80 247 | 78.89 116 | 86.50 130 | 90.06 201 |
|
ACMP | | 71.68 10 | 75.58 226 | 74.23 219 | 79.62 254 | 84.97 251 | 59.64 274 | 90.80 202 | 89.07 257 | 70.39 222 | 62.95 282 | 87.30 203 | 38.28 299 | 93.87 221 | 72.89 154 | 71.45 233 | 85.36 278 |
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
pmmvs-eth3d | | | 65.53 300 | 62.32 305 | 75.19 298 | 69.39 355 | 59.59 275 | 82.80 302 | 83.43 328 | 62.52 291 | 51.30 333 | 72.49 331 | 32.86 325 | 87.16 328 | 55.32 280 | 50.73 340 | 78.83 342 |
|
sss | | | 82.71 104 | 82.38 101 | 83.73 153 | 89.25 168 | 59.58 276 | 92.24 137 | 94.89 23 | 77.96 72 | 79.86 101 | 92.38 130 | 56.70 166 | 97.05 89 | 77.26 128 | 80.86 169 | 94.55 91 |
|
Fast-Effi-MVS+-dtu | | | 75.04 231 | 73.37 231 | 80.07 241 | 80.86 292 | 59.52 277 | 91.20 189 | 85.38 310 | 71.90 182 | 65.20 261 | 84.84 227 | 41.46 287 | 92.97 237 | 66.50 216 | 72.96 221 | 87.73 229 |
|
FIs | | | 79.47 159 | 79.41 145 | 79.67 252 | 85.95 235 | 59.40 278 | 91.68 166 | 93.94 61 | 78.06 70 | 68.96 222 | 88.28 186 | 66.61 58 | 91.77 279 | 66.20 220 | 74.99 209 | 87.82 228 |
|
LPG-MVS_test | | | 75.82 221 | 74.58 212 | 79.56 256 | 84.31 262 | 59.37 279 | 90.44 210 | 89.73 232 | 69.49 232 | 64.86 263 | 88.42 183 | 38.65 296 | 94.30 198 | 72.56 160 | 72.76 222 | 85.01 282 |
|
LGP-MVS_train | | | | | 79.56 256 | 84.31 262 | 59.37 279 | | 89.73 232 | 69.49 232 | 64.86 263 | 88.42 183 | 38.65 296 | 94.30 198 | 72.56 160 | 72.76 222 | 85.01 282 |
|
Baseline_NR-MVSNet | | | 73.99 240 | 72.83 235 | 77.48 279 | 80.78 293 | 59.29 281 | 91.79 159 | 84.55 319 | 68.85 241 | 68.99 221 | 80.70 278 | 56.16 172 | 92.04 274 | 62.67 248 | 60.98 309 | 81.11 322 |
|
PS-MVSNAJss | | | 77.26 199 | 76.31 193 | 80.13 240 | 80.64 296 | 59.16 282 | 90.63 209 | 91.06 185 | 72.80 156 | 68.58 230 | 84.57 231 | 53.55 203 | 93.96 217 | 72.97 153 | 71.96 229 | 87.27 239 |
|
TransMVSNet (Re) | | | 70.07 268 | 67.66 272 | 77.31 283 | 80.62 297 | 59.13 283 | 91.78 161 | 84.94 315 | 65.97 264 | 60.08 296 | 80.44 283 | 50.78 226 | 91.87 276 | 48.84 301 | 45.46 348 | 80.94 324 |
|
Patchmatch-test | | | 65.86 298 | 60.94 310 | 80.62 231 | 83.75 269 | 58.83 284 | 58.91 359 | 75.26 350 | 44.50 356 | 50.95 335 | 77.09 312 | 58.81 143 | 87.90 319 | 35.13 350 | 64.03 283 | 95.12 70 |
|
APD-MVS_3200maxsize | | | 81.64 120 | 81.32 112 | 82.59 179 | 92.36 92 | 58.74 285 | 91.39 177 | 91.01 188 | 63.35 281 | 79.72 103 | 94.62 74 | 51.82 216 | 96.14 125 | 79.71 106 | 87.93 115 | 92.89 154 |
|
PLC |  | 68.80 14 | 75.23 229 | 73.68 228 | 79.86 247 | 92.93 79 | 58.68 286 | 90.64 207 | 88.30 277 | 60.90 302 | 64.43 271 | 90.53 158 | 42.38 284 | 94.57 187 | 56.52 275 | 76.54 204 | 86.33 253 |
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
SR-MVS-dyc-post | | | 81.06 130 | 80.70 121 | 82.15 192 | 92.02 101 | 58.56 287 | 90.90 197 | 90.45 199 | 62.76 287 | 78.89 112 | 94.46 76 | 51.26 223 | 95.61 151 | 78.77 117 | 86.77 125 | 92.28 168 |
|
RE-MVS-def | | | | 80.48 126 | | 92.02 101 | 58.56 287 | 90.90 197 | 90.45 199 | 62.76 287 | 78.89 112 | 94.46 76 | 49.30 240 | | 78.77 117 | 86.77 125 | 92.28 168 |
|
abl_6 | | | 79.82 152 | 79.20 150 | 81.70 206 | 89.85 153 | 58.34 289 | 88.47 256 | 90.07 218 | 62.56 290 | 77.71 125 | 93.08 110 | 47.65 257 | 96.78 108 | 77.94 124 | 85.45 136 | 89.99 203 |
|
miper_lstm_enhance | | | 73.05 247 | 71.73 249 | 77.03 285 | 83.80 268 | 58.32 290 | 81.76 305 | 88.88 262 | 69.80 230 | 61.01 291 | 78.23 302 | 57.19 155 | 87.51 325 | 65.34 230 | 59.53 317 | 85.27 281 |
|
DeepPCF-MVS | | 81.17 1 | 89.72 9 | 91.38 3 | 84.72 127 | 93.00 78 | 58.16 291 | 96.72 7 | 94.41 45 | 86.50 5 | 90.25 17 | 97.83 1 | 75.46 14 | 98.67 23 | 92.78 4 | 95.49 13 | 97.32 6 |
|
FMVSNet5 | | | 68.04 285 | 65.66 283 | 75.18 299 | 84.43 260 | 57.89 292 | 83.54 292 | 86.26 302 | 61.83 299 | 53.64 324 | 73.30 330 | 37.15 312 | 85.08 334 | 48.99 300 | 61.77 301 | 82.56 312 |
|
ACMM | | 69.62 13 | 74.34 236 | 72.73 237 | 79.17 261 | 84.25 264 | 57.87 293 | 90.36 214 | 89.93 224 | 63.17 284 | 65.64 258 | 86.04 216 | 37.79 306 | 94.10 205 | 65.89 222 | 71.52 232 | 85.55 275 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
OpenMVS_ROB |  | 61.12 18 | 66.39 295 | 62.92 301 | 76.80 290 | 76.51 335 | 57.77 294 | 89.22 241 | 83.41 329 | 55.48 331 | 53.86 323 | 77.84 305 | 26.28 347 | 93.95 218 | 34.90 351 | 68.76 248 | 78.68 343 |
|
UA-Net | | | 80.02 148 | 79.65 138 | 81.11 220 | 89.33 166 | 57.72 295 | 86.33 280 | 89.00 260 | 77.44 84 | 81.01 88 | 89.15 177 | 59.33 137 | 95.90 136 | 61.01 257 | 84.28 148 | 89.73 206 |
|
testdata | | | | | 81.34 212 | 89.02 173 | 57.72 295 | | 89.84 227 | 58.65 317 | 85.32 51 | 94.09 93 | 57.03 158 | 93.28 232 | 69.34 189 | 90.56 95 | 93.03 149 |
|
pm-mvs1 | | | 72.89 250 | 71.09 253 | 78.26 271 | 79.10 316 | 57.62 297 | 90.80 202 | 89.30 244 | 67.66 251 | 62.91 283 | 81.78 259 | 49.11 245 | 92.95 238 | 60.29 262 | 58.89 320 | 84.22 288 |
|
XVG-OURS | | | 74.25 238 | 72.46 242 | 79.63 253 | 78.45 324 | 57.59 298 | 80.33 317 | 87.39 291 | 63.86 278 | 68.76 227 | 89.62 174 | 40.50 290 | 91.72 280 | 69.00 193 | 74.25 211 | 89.58 207 |
|
test1172 | | | 81.90 117 | 81.83 107 | 82.13 194 | 93.23 69 | 57.52 299 | 91.61 169 | 90.98 189 | 64.32 275 | 80.20 97 | 95.00 60 | 51.26 223 | 95.61 151 | 81.73 92 | 88.13 113 | 93.26 140 |
|
hse-mvs2 | | | 81.12 129 | 81.11 117 | 81.16 217 | 86.52 225 | 57.48 300 | 89.40 238 | 91.16 177 | 81.45 27 | 82.73 73 | 90.49 160 | 60.11 125 | 94.58 186 | 87.69 42 | 60.41 315 | 91.41 183 |
|
AUN-MVS | | | 78.37 181 | 77.43 175 | 81.17 216 | 86.60 224 | 57.45 301 | 89.46 237 | 91.16 177 | 74.11 126 | 74.40 157 | 90.49 160 | 55.52 180 | 94.57 187 | 74.73 147 | 60.43 314 | 91.48 181 |
|
OMC-MVS | | | 78.67 177 | 77.91 168 | 80.95 227 | 85.76 239 | 57.40 302 | 88.49 255 | 88.67 269 | 73.85 133 | 72.43 181 | 92.10 135 | 49.29 241 | 94.55 190 | 72.73 158 | 77.89 188 | 90.91 193 |
|
XVG-OURS-SEG-HR | | | 74.70 235 | 73.08 233 | 79.57 255 | 78.25 325 | 57.33 303 | 80.49 315 | 87.32 292 | 63.22 283 | 68.76 227 | 90.12 170 | 44.89 275 | 91.59 282 | 70.55 180 | 74.09 213 | 89.79 204 |
|
mvs-test1 | | | 78.74 174 | 77.95 166 | 81.14 218 | 83.22 275 | 57.13 304 | 93.96 67 | 87.78 287 | 75.42 105 | 72.68 173 | 90.80 154 | 45.08 273 | 94.54 191 | 75.08 140 | 77.49 195 | 91.74 177 |
|
ACMH+ | | 65.35 16 | 67.65 288 | 64.55 290 | 76.96 288 | 84.59 256 | 57.10 305 | 88.08 260 | 80.79 337 | 58.59 318 | 53.00 325 | 81.09 276 | 26.63 346 | 92.95 238 | 46.51 312 | 61.69 305 | 80.82 325 |
|
MDA-MVSNet-bldmvs | | | 61.54 315 | 57.70 319 | 73.05 313 | 79.53 308 | 57.00 306 | 83.08 300 | 81.23 335 | 57.57 319 | 34.91 361 | 72.45 332 | 32.79 326 | 86.26 332 | 35.81 348 | 41.95 352 | 75.89 350 |
|
UniMVSNet_ETH3D | | | 72.74 253 | 70.53 256 | 79.36 258 | 78.62 323 | 56.64 307 | 85.01 284 | 89.20 248 | 63.77 279 | 64.84 265 | 84.44 232 | 34.05 323 | 91.86 277 | 63.94 238 | 70.89 237 | 89.57 208 |
|
MVS-HIRNet | | | 60.25 318 | 55.55 324 | 74.35 304 | 84.37 261 | 56.57 308 | 71.64 341 | 74.11 351 | 34.44 361 | 45.54 350 | 42.24 363 | 31.11 335 | 89.81 304 | 40.36 338 | 76.10 206 | 76.67 349 |
|
PMMVS | | | 81.98 116 | 82.04 104 | 81.78 202 | 89.76 156 | 56.17 309 | 91.13 192 | 90.69 194 | 77.96 72 | 80.09 98 | 93.57 103 | 46.33 266 | 94.99 173 | 81.41 96 | 87.46 118 | 94.17 107 |
|
LS3D | | | 69.17 274 | 66.40 277 | 77.50 278 | 91.92 107 | 56.12 310 | 85.12 283 | 80.37 339 | 46.96 350 | 56.50 316 | 87.51 200 | 37.25 309 | 93.71 224 | 32.52 359 | 79.40 175 | 82.68 310 |
|
F-COLMAP | | | 70.66 263 | 68.44 268 | 77.32 282 | 86.37 229 | 55.91 311 | 88.00 261 | 86.32 300 | 56.94 325 | 57.28 314 | 88.07 192 | 33.58 324 | 92.49 260 | 51.02 292 | 68.37 251 | 83.55 293 |
|
CL-MVSNet_self_test | | | 69.92 269 | 68.09 271 | 75.41 297 | 73.25 344 | 55.90 312 | 90.05 223 | 89.90 225 | 69.96 227 | 61.96 290 | 76.54 315 | 51.05 225 | 87.64 322 | 49.51 299 | 50.59 341 | 82.70 309 |
|
PatchMatch-RL | | | 72.06 257 | 69.98 258 | 78.28 270 | 89.51 162 | 55.70 313 | 83.49 293 | 83.39 330 | 61.24 301 | 63.72 276 | 82.76 247 | 34.77 321 | 93.03 236 | 53.37 288 | 77.59 191 | 86.12 262 |
|
FC-MVSNet-test | | | 77.99 187 | 78.08 163 | 77.70 275 | 84.89 252 | 55.51 314 | 90.27 216 | 93.75 70 | 76.87 89 | 66.80 253 | 87.59 198 | 65.71 67 | 90.23 300 | 62.89 247 | 73.94 214 | 87.37 235 |
|
USDC | | | 67.43 292 | 64.51 291 | 76.19 293 | 77.94 328 | 55.29 315 | 78.38 329 | 85.00 314 | 73.17 147 | 48.36 342 | 80.37 284 | 21.23 355 | 92.48 261 | 52.15 290 | 64.02 284 | 80.81 326 |
|
Effi-MVS+-dtu | | | 76.14 211 | 75.28 205 | 78.72 266 | 83.22 275 | 55.17 316 | 89.87 228 | 87.78 287 | 75.42 105 | 67.98 235 | 81.43 266 | 45.08 273 | 92.52 259 | 75.08 140 | 71.63 230 | 88.48 219 |
|
jajsoiax | | | 73.05 247 | 71.51 251 | 77.67 276 | 77.46 330 | 54.83 317 | 88.81 250 | 90.04 222 | 69.13 239 | 62.85 284 | 83.51 240 | 31.16 334 | 92.75 249 | 70.83 175 | 69.80 239 | 85.43 277 |
|
anonymousdsp | | | 71.14 262 | 69.37 264 | 76.45 291 | 72.95 345 | 54.71 318 | 84.19 288 | 88.88 262 | 61.92 297 | 62.15 288 | 79.77 292 | 38.14 301 | 91.44 289 | 68.90 195 | 67.45 259 | 83.21 301 |
|
mvs_tets | | | 72.71 254 | 71.11 252 | 77.52 277 | 77.41 331 | 54.52 319 | 88.45 257 | 89.76 228 | 68.76 244 | 62.70 285 | 83.26 244 | 29.49 338 | 92.71 250 | 70.51 181 | 69.62 241 | 85.34 279 |
|
JIA-IIPM | | | 66.06 297 | 62.45 304 | 76.88 289 | 81.42 290 | 54.45 320 | 57.49 360 | 88.67 269 | 49.36 345 | 63.86 274 | 46.86 359 | 56.06 175 | 90.25 296 | 49.53 298 | 68.83 247 | 85.95 266 |
|
Patchmatch-RL test | | | 68.17 284 | 64.49 292 | 79.19 260 | 71.22 349 | 53.93 321 | 70.07 344 | 71.54 357 | 69.22 236 | 56.79 315 | 62.89 352 | 56.58 169 | 88.61 311 | 69.53 187 | 52.61 336 | 95.03 76 |
|
test_djsdf | | | 73.76 244 | 72.56 240 | 77.39 281 | 77.00 333 | 53.93 321 | 89.07 246 | 90.69 194 | 65.80 265 | 63.92 273 | 82.03 256 | 43.14 282 | 92.67 253 | 72.83 155 | 68.53 250 | 85.57 274 |
|
pmmvs6 | | | 67.57 289 | 64.76 288 | 76.00 295 | 72.82 347 | 53.37 323 | 88.71 251 | 86.78 298 | 53.19 335 | 57.58 313 | 78.03 304 | 35.33 320 | 92.41 263 | 55.56 279 | 54.88 332 | 82.21 316 |
|
TinyColmap | | | 60.32 317 | 56.42 323 | 72.00 324 | 78.78 319 | 53.18 324 | 78.36 330 | 75.64 347 | 52.30 336 | 41.59 357 | 75.82 323 | 14.76 363 | 88.35 315 | 35.84 347 | 54.71 333 | 74.46 352 |
|
COLMAP_ROB |  | 57.96 20 | 62.98 311 | 59.65 313 | 72.98 314 | 81.44 289 | 53.00 325 | 83.75 291 | 75.53 349 | 48.34 348 | 48.81 341 | 81.40 268 | 24.14 349 | 90.30 295 | 32.95 356 | 60.52 313 | 75.65 351 |
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
MVS_0304 | | | 68.99 278 | 67.23 275 | 74.28 306 | 80.36 299 | 52.54 326 | 87.01 275 | 86.36 299 | 59.89 311 | 66.22 255 | 73.56 329 | 24.25 348 | 88.03 318 | 57.34 274 | 70.11 238 | 82.27 315 |
|
XVG-ACMP-BASELINE | | | 68.04 285 | 65.53 284 | 75.56 296 | 74.06 343 | 52.37 327 | 78.43 328 | 85.88 307 | 62.03 295 | 58.91 304 | 81.21 274 | 20.38 357 | 91.15 290 | 60.69 259 | 68.18 252 | 83.16 302 |
|
Vis-MVSNet (Re-imp) | | | 79.24 162 | 79.57 140 | 78.24 272 | 88.46 185 | 52.29 328 | 90.41 212 | 89.12 254 | 74.24 124 | 69.13 217 | 91.91 138 | 65.77 66 | 90.09 303 | 59.00 269 | 88.09 114 | 92.33 165 |
|
TAPA-MVS | | 70.22 12 | 74.94 233 | 73.53 229 | 79.17 261 | 90.40 144 | 52.07 329 | 89.19 243 | 89.61 236 | 62.69 289 | 70.07 207 | 92.67 123 | 48.89 247 | 94.32 197 | 38.26 344 | 79.97 172 | 91.12 191 |
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
UnsupCasMVSNet_bld | | | 61.60 314 | 57.71 318 | 73.29 312 | 68.73 356 | 51.64 330 | 78.61 327 | 89.05 258 | 57.20 323 | 46.11 345 | 61.96 353 | 28.70 341 | 88.60 312 | 50.08 296 | 38.90 356 | 79.63 336 |
|
LTVRE_ROB | | 59.60 19 | 66.27 296 | 63.54 297 | 74.45 303 | 84.00 267 | 51.55 331 | 67.08 352 | 83.53 327 | 58.78 316 | 54.94 318 | 80.31 285 | 34.54 322 | 93.23 233 | 40.64 337 | 68.03 253 | 78.58 344 |
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
WR-MVS_H | | | 70.59 264 | 69.94 260 | 72.53 317 | 81.03 291 | 51.43 332 | 87.35 271 | 92.03 140 | 67.38 254 | 60.23 295 | 80.70 278 | 55.84 179 | 83.45 344 | 46.33 314 | 58.58 322 | 82.72 307 |
|
AllTest | | | 61.66 313 | 58.06 317 | 72.46 318 | 79.57 306 | 51.42 333 | 80.17 320 | 68.61 360 | 51.25 339 | 45.88 346 | 81.23 270 | 19.86 358 | 86.58 330 | 38.98 341 | 57.01 325 | 79.39 337 |
|
TestCases | | | | | 72.46 318 | 79.57 306 | 51.42 333 | | 68.61 360 | 51.25 339 | 45.88 346 | 81.23 270 | 19.86 358 | 86.58 330 | 38.98 341 | 57.01 325 | 79.39 337 |
|
CP-MVSNet | | | 70.50 265 | 69.91 261 | 72.26 320 | 80.71 294 | 51.00 335 | 87.23 272 | 90.30 209 | 67.84 248 | 59.64 297 | 82.69 248 | 50.23 232 | 82.30 352 | 51.28 291 | 59.28 318 | 83.46 297 |
|
pmmvs3 | | | 55.51 323 | 51.50 328 | 67.53 335 | 57.90 366 | 50.93 336 | 80.37 316 | 73.66 352 | 40.63 359 | 44.15 354 | 64.75 351 | 16.30 360 | 78.97 358 | 44.77 322 | 40.98 355 | 72.69 353 |
|
PS-CasMVS | | | 69.86 271 | 69.13 265 | 72.07 323 | 80.35 300 | 50.57 337 | 87.02 274 | 89.75 229 | 67.27 255 | 59.19 301 | 82.28 252 | 46.58 262 | 82.24 353 | 50.69 293 | 59.02 319 | 83.39 299 |
|
CMPMVS |  | 48.56 21 | 66.77 294 | 64.41 293 | 73.84 308 | 70.65 352 | 50.31 338 | 77.79 333 | 85.73 309 | 45.54 353 | 44.76 351 | 82.14 255 | 35.40 319 | 90.14 302 | 63.18 244 | 74.54 210 | 81.07 323 |
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
UnsupCasMVSNet_eth | | | 65.79 299 | 63.10 299 | 73.88 307 | 70.71 351 | 50.29 339 | 81.09 312 | 89.88 226 | 72.58 160 | 49.25 340 | 74.77 327 | 32.57 328 | 87.43 326 | 55.96 278 | 41.04 354 | 83.90 291 |
|
SixPastTwentyTwo | | | 64.92 301 | 61.78 308 | 74.34 305 | 78.74 320 | 49.76 340 | 83.42 296 | 79.51 342 | 62.86 286 | 50.27 336 | 77.35 307 | 30.92 336 | 90.49 294 | 45.89 316 | 47.06 346 | 82.78 304 |
|
PEN-MVS | | | 69.46 273 | 68.56 267 | 72.17 322 | 79.27 311 | 49.71 341 | 86.90 276 | 89.24 246 | 67.24 258 | 59.08 302 | 82.51 251 | 47.23 259 | 83.54 343 | 48.42 303 | 57.12 323 | 83.25 300 |
|
EPNet_dtu | | | 78.80 171 | 79.26 149 | 77.43 280 | 88.06 198 | 49.71 341 | 91.96 153 | 91.95 143 | 77.67 78 | 76.56 140 | 91.28 149 | 58.51 144 | 90.20 301 | 56.37 276 | 80.95 168 | 92.39 163 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
K. test v3 | | | 63.09 310 | 59.61 314 | 73.53 310 | 76.26 337 | 49.38 343 | 83.27 297 | 77.15 344 | 64.35 274 | 47.77 344 | 72.32 335 | 28.73 340 | 87.79 321 | 49.93 297 | 36.69 358 | 83.41 298 |
|
DTE-MVSNet | | | 68.46 282 | 67.33 274 | 71.87 325 | 77.94 328 | 49.00 344 | 86.16 281 | 88.58 273 | 66.36 262 | 58.19 306 | 82.21 254 | 46.36 263 | 83.87 341 | 44.97 321 | 55.17 330 | 82.73 306 |
|
Anonymous20240521 | | | 62.09 312 | 59.08 315 | 71.10 326 | 67.19 357 | 48.72 345 | 83.91 290 | 85.23 312 | 50.38 342 | 47.84 343 | 71.22 341 | 20.74 356 | 85.51 333 | 46.47 313 | 58.75 321 | 79.06 340 |
|
LCM-MVSNet-Re | | | 72.93 249 | 71.84 247 | 76.18 294 | 88.49 183 | 48.02 346 | 80.07 322 | 70.17 358 | 73.96 131 | 52.25 328 | 80.09 290 | 49.98 233 | 88.24 316 | 67.35 205 | 84.23 149 | 92.28 168 |
|
test0.0.03 1 | | | 72.76 252 | 72.71 238 | 72.88 315 | 80.25 302 | 47.99 347 | 91.22 187 | 89.45 239 | 71.51 203 | 62.51 287 | 87.66 197 | 53.83 199 | 85.06 335 | 50.16 295 | 67.84 257 | 85.58 273 |
|
lessismore_v0 | | | | | 73.72 309 | 72.93 346 | 47.83 348 | | 61.72 368 | | 45.86 348 | 73.76 328 | 28.63 342 | 89.81 304 | 47.75 310 | 31.37 363 | 83.53 294 |
|
Anonymous20231206 | | | 67.53 290 | 65.78 280 | 72.79 316 | 74.95 340 | 47.59 349 | 88.23 259 | 87.32 292 | 61.75 300 | 58.07 308 | 77.29 309 | 37.79 306 | 87.29 327 | 42.91 326 | 63.71 286 | 83.48 296 |
|
OurMVSNet-221017-0 | | | 64.68 302 | 62.17 306 | 72.21 321 | 76.08 339 | 47.35 350 | 80.67 314 | 81.02 336 | 56.19 328 | 51.60 330 | 79.66 294 | 27.05 345 | 88.56 313 | 53.60 287 | 53.63 335 | 80.71 327 |
|
ITE_SJBPF | | | | | 70.43 328 | 74.44 341 | 47.06 351 | | 77.32 343 | 60.16 308 | 54.04 322 | 83.53 239 | 23.30 352 | 84.01 339 | 43.07 325 | 61.58 306 | 80.21 334 |
|
TDRefinement | | | 55.28 324 | 51.58 327 | 66.39 338 | 59.53 365 | 46.15 352 | 76.23 335 | 72.80 353 | 44.60 355 | 42.49 356 | 76.28 319 | 15.29 361 | 82.39 351 | 33.20 355 | 43.75 350 | 70.62 357 |
|
RPSCF | | | 64.24 305 | 61.98 307 | 71.01 327 | 76.10 338 | 45.00 353 | 75.83 336 | 75.94 346 | 46.94 351 | 58.96 303 | 84.59 230 | 31.40 333 | 82.00 354 | 47.76 309 | 60.33 316 | 86.04 263 |
|
new-patchmatchnet | | | 59.30 321 | 56.48 322 | 67.79 333 | 65.86 359 | 44.19 354 | 82.47 303 | 81.77 334 | 59.94 310 | 43.65 355 | 66.20 348 | 27.67 343 | 81.68 355 | 39.34 340 | 41.40 353 | 77.50 347 |
|
MIMVSNet1 | | | 60.16 319 | 57.33 320 | 68.67 331 | 69.71 354 | 44.13 355 | 78.92 326 | 84.21 320 | 55.05 332 | 44.63 352 | 71.85 337 | 23.91 350 | 81.54 356 | 32.63 358 | 55.03 331 | 80.35 330 |
|
CVMVSNet | | | 74.04 239 | 74.27 218 | 73.33 311 | 85.33 243 | 43.94 356 | 89.53 235 | 88.39 275 | 54.33 333 | 70.37 203 | 90.13 168 | 49.17 243 | 84.05 338 | 61.83 254 | 79.36 176 | 91.99 174 |
|
PM-MVS | | | 59.40 320 | 56.59 321 | 67.84 332 | 63.63 360 | 41.86 357 | 76.76 334 | 63.22 366 | 59.01 315 | 51.07 334 | 72.27 336 | 11.72 365 | 83.25 346 | 61.34 255 | 50.28 342 | 78.39 345 |
|
ambc | | | | | 69.61 329 | 61.38 364 | 41.35 358 | 49.07 363 | 85.86 308 | | 50.18 338 | 66.40 347 | 10.16 366 | 88.14 317 | 45.73 317 | 44.20 349 | 79.32 339 |
|
new_pmnet | | | 49.31 327 | 46.44 330 | 57.93 341 | 62.84 362 | 40.74 359 | 68.47 348 | 62.96 367 | 36.48 360 | 35.09 360 | 57.81 355 | 14.97 362 | 72.18 360 | 32.86 357 | 46.44 347 | 60.88 361 |
|
testgi | | | 64.48 304 | 62.87 302 | 69.31 330 | 71.24 348 | 40.62 360 | 85.49 282 | 79.92 340 | 65.36 269 | 54.18 321 | 83.49 241 | 23.74 351 | 84.55 336 | 41.60 332 | 60.79 311 | 82.77 305 |
|
test20.03 | | | 63.83 307 | 62.65 303 | 67.38 336 | 70.58 353 | 39.94 361 | 86.57 279 | 84.17 321 | 63.29 282 | 51.86 329 | 77.30 308 | 37.09 313 | 82.47 350 | 38.87 343 | 54.13 334 | 79.73 335 |
|
KD-MVS_self_test | | | 60.87 316 | 58.60 316 | 67.68 334 | 66.13 358 | 39.93 362 | 75.63 337 | 84.70 317 | 57.32 322 | 49.57 339 | 68.45 345 | 29.55 337 | 82.87 348 | 48.09 304 | 47.94 345 | 80.25 333 |
|
LF4IMVS | | | 54.01 325 | 52.12 326 | 59.69 340 | 62.41 363 | 39.91 363 | 68.59 347 | 68.28 362 | 42.96 357 | 44.55 353 | 75.18 324 | 14.09 364 | 68.39 362 | 41.36 334 | 51.68 338 | 70.78 356 |
|
Gipuma |  | | 34.91 333 | 31.44 336 | 45.30 348 | 70.99 350 | 39.64 364 | 19.85 368 | 72.56 354 | 20.10 367 | 16.16 369 | 21.47 369 | 5.08 373 | 71.16 361 | 13.07 367 | 43.70 351 | 25.08 366 |
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
EU-MVSNet | | | 64.01 306 | 63.01 300 | 67.02 337 | 74.40 342 | 38.86 365 | 83.27 297 | 86.19 304 | 45.11 354 | 54.27 320 | 81.15 275 | 36.91 315 | 80.01 357 | 48.79 302 | 57.02 324 | 82.19 317 |
|
FPMVS | | | 45.64 328 | 43.10 331 | 53.23 345 | 51.42 369 | 36.46 366 | 64.97 353 | 71.91 355 | 29.13 363 | 27.53 363 | 61.55 354 | 9.83 367 | 65.01 366 | 16.00 366 | 55.58 329 | 58.22 362 |
|
ANet_high | | | 40.27 330 | 35.20 333 | 55.47 342 | 34.74 375 | 34.47 367 | 63.84 355 | 71.56 356 | 48.42 347 | 18.80 367 | 41.08 364 | 9.52 368 | 64.45 367 | 20.18 364 | 8.66 371 | 67.49 359 |
|
LCM-MVSNet | | | 40.54 329 | 35.79 332 | 54.76 344 | 36.92 374 | 30.81 368 | 51.41 361 | 69.02 359 | 22.07 365 | 24.63 364 | 45.37 361 | 4.56 374 | 65.81 364 | 33.67 353 | 34.50 361 | 67.67 358 |
|
DSMNet-mixed | | | 56.78 322 | 54.44 325 | 63.79 339 | 63.21 361 | 29.44 369 | 64.43 354 | 64.10 365 | 42.12 358 | 51.32 332 | 71.60 338 | 31.76 331 | 75.04 359 | 36.23 346 | 65.20 272 | 86.87 244 |
|
PMVS |  | 26.43 22 | 31.84 334 | 28.16 337 | 42.89 349 | 25.87 377 | 27.58 370 | 50.92 362 | 49.78 371 | 21.37 366 | 14.17 370 | 40.81 365 | 2.01 376 | 66.62 363 | 9.61 369 | 38.88 357 | 34.49 365 |
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
MVE |  | 24.84 23 | 24.35 336 | 19.77 342 | 38.09 350 | 34.56 376 | 26.92 371 | 26.57 366 | 38.87 374 | 11.73 370 | 11.37 371 | 27.44 366 | 1.37 377 | 50.42 369 | 11.41 368 | 14.60 367 | 36.93 363 |
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
PMMVS2 | | | 37.93 332 | 33.61 335 | 50.92 346 | 46.31 371 | 24.76 372 | 60.55 358 | 50.05 370 | 28.94 364 | 20.93 365 | 47.59 358 | 4.41 375 | 65.13 365 | 25.14 362 | 18.55 366 | 62.87 360 |
|
DeepMVS_CX |  | | | | 34.71 351 | 51.45 368 | 24.73 373 | | 28.48 377 | 31.46 362 | 17.49 368 | 52.75 356 | 5.80 372 | 42.60 372 | 18.18 365 | 19.42 365 | 36.81 364 |
|
test_method | | | 38.59 331 | 35.16 334 | 48.89 347 | 54.33 367 | 21.35 374 | 45.32 364 | 53.71 369 | 7.41 371 | 28.74 362 | 51.62 357 | 8.70 369 | 52.87 368 | 33.73 352 | 32.89 362 | 72.47 354 |
|
wuyk23d | | | 11.30 340 | 10.95 343 | 12.33 355 | 48.05 370 | 19.89 375 | 25.89 367 | 1.92 379 | 3.58 372 | 3.12 374 | 1.37 373 | 0.64 378 | 15.77 374 | 6.23 372 | 7.77 372 | 1.35 370 |
|
E-PMN | | | 24.61 335 | 24.00 339 | 26.45 352 | 43.74 372 | 18.44 376 | 60.86 356 | 39.66 372 | 15.11 368 | 9.53 372 | 22.10 368 | 6.52 371 | 46.94 370 | 8.31 370 | 10.14 368 | 13.98 368 |
|
EMVS | | | 23.76 337 | 23.20 341 | 25.46 353 | 41.52 373 | 16.90 377 | 60.56 357 | 38.79 375 | 14.62 369 | 8.99 373 | 20.24 371 | 7.35 370 | 45.82 371 | 7.25 371 | 9.46 369 | 13.64 369 |
|
tmp_tt | | | 22.26 338 | 23.75 340 | 17.80 354 | 5.23 378 | 12.06 378 | 35.26 365 | 39.48 373 | 2.82 373 | 18.94 366 | 44.20 362 | 22.23 354 | 24.64 373 | 36.30 345 | 9.31 370 | 16.69 367 |
|
N_pmnet | | | 50.55 326 | 49.11 329 | 54.88 343 | 77.17 332 | 4.02 379 | 84.36 287 | 2.00 378 | 48.59 346 | 45.86 348 | 68.82 344 | 32.22 329 | 82.80 349 | 31.58 361 | 51.38 339 | 77.81 346 |
|
test123 | | | 6.92 343 | 9.21 346 | 0.08 356 | 0.03 380 | 0.05 380 | 81.65 308 | 0.01 381 | 0.02 375 | 0.14 376 | 0.85 375 | 0.03 379 | 0.02 375 | 0.12 374 | 0.00 374 | 0.16 371 |
|
testmvs | | | 7.23 342 | 9.62 345 | 0.06 357 | 0.04 379 | 0.02 381 | 84.98 285 | 0.02 380 | 0.03 374 | 0.18 375 | 1.21 374 | 0.01 380 | 0.02 375 | 0.14 373 | 0.01 373 | 0.13 372 |
|
test_blank | | | 0.00 345 | 0.00 348 | 0.00 358 | 0.00 381 | 0.00 382 | 0.00 369 | 0.00 382 | 0.00 376 | 0.00 377 | 0.00 376 | 0.00 381 | 0.00 377 | 0.00 375 | 0.00 374 | 0.00 373 |
|
uanet_test | | | 0.00 345 | 0.00 348 | 0.00 358 | 0.00 381 | 0.00 382 | 0.00 369 | 0.00 382 | 0.00 376 | 0.00 377 | 0.00 376 | 0.00 381 | 0.00 377 | 0.00 375 | 0.00 374 | 0.00 373 |
|
cdsmvs_eth3d_5k | | | 19.86 339 | 26.47 338 | 0.00 358 | 0.00 381 | 0.00 382 | 0.00 369 | 93.45 83 | 0.00 376 | 0.00 377 | 95.27 50 | 49.56 237 | 0.00 377 | 0.00 375 | 0.00 374 | 0.00 373 |
|
pcd_1.5k_mvsjas | | | 4.46 344 | 5.95 347 | 0.00 358 | 0.00 381 | 0.00 382 | 0.00 369 | 0.00 382 | 0.00 376 | 0.00 377 | 0.00 376 | 53.55 203 | 0.00 377 | 0.00 375 | 0.00 374 | 0.00 373 |
|
sosnet-low-res | | | 0.00 345 | 0.00 348 | 0.00 358 | 0.00 381 | 0.00 382 | 0.00 369 | 0.00 382 | 0.00 376 | 0.00 377 | 0.00 376 | 0.00 381 | 0.00 377 | 0.00 375 | 0.00 374 | 0.00 373 |
|
sosnet | | | 0.00 345 | 0.00 348 | 0.00 358 | 0.00 381 | 0.00 382 | 0.00 369 | 0.00 382 | 0.00 376 | 0.00 377 | 0.00 376 | 0.00 381 | 0.00 377 | 0.00 375 | 0.00 374 | 0.00 373 |
|
uncertanet | | | 0.00 345 | 0.00 348 | 0.00 358 | 0.00 381 | 0.00 382 | 0.00 369 | 0.00 382 | 0.00 376 | 0.00 377 | 0.00 376 | 0.00 381 | 0.00 377 | 0.00 375 | 0.00 374 | 0.00 373 |
|
Regformer | | | 0.00 345 | 0.00 348 | 0.00 358 | 0.00 381 | 0.00 382 | 0.00 369 | 0.00 382 | 0.00 376 | 0.00 377 | 0.00 376 | 0.00 381 | 0.00 377 | 0.00 375 | 0.00 374 | 0.00 373 |
|
ab-mvs-re | | | 7.91 341 | 10.55 344 | 0.00 358 | 0.00 381 | 0.00 382 | 0.00 369 | 0.00 382 | 0.00 376 | 0.00 377 | 94.95 62 | 0.00 381 | 0.00 377 | 0.00 375 | 0.00 374 | 0.00 373 |
|
uanet | | | 0.00 345 | 0.00 348 | 0.00 358 | 0.00 381 | 0.00 382 | 0.00 369 | 0.00 382 | 0.00 376 | 0.00 377 | 0.00 376 | 0.00 381 | 0.00 377 | 0.00 375 | 0.00 374 | 0.00 373 |
|
PC_three_1452 | | | | | | | | | | 80.91 36 | 94.07 2 | 96.83 14 | 83.57 4 | 99.12 5 | 95.70 2 | 97.42 4 | 97.55 4 |
|
eth-test2 | | | | | | 0.00 381 | | | | | | | | | | | |
|
eth-test | | | | | | 0.00 381 | | | | | | | | | | | |
|
test_241102_TWO | | | | | | | | | 94.41 45 | 71.65 194 | 92.07 6 | 97.21 5 | 74.58 16 | 99.11 6 | 92.34 7 | 95.36 14 | 96.59 15 |
|
9.14 | | | | 87.63 25 | | 93.86 53 | | 94.41 50 | 94.18 55 | 72.76 157 | 86.21 37 | 96.51 19 | 66.64 57 | 97.88 49 | 90.08 23 | 94.04 41 | |
|
test_0728_THIRD | | | | | | | | | | 72.48 163 | 90.55 15 | 96.93 10 | 76.24 11 | 99.08 11 | 91.53 15 | 94.99 17 | 96.43 26 |
|
GSMVS | | | | | | | | | | | | | | | | | 94.68 86 |
|
sam_mvs1 | | | | | | | | | | | | | 57.85 149 | | | | 94.68 86 |
|
sam_mvs | | | | | | | | | | | | | 54.91 188 | | | | |
|
MTGPA |  | | | | | | | | 92.23 130 | | | | | | | | |
|
test_post1 | | | | | | | | 78.95 325 | | | | 20.70 370 | 53.05 208 | 91.50 288 | 60.43 260 | | |
|
test_post | | | | | | | | | | | | 23.01 367 | 56.49 170 | 92.67 253 | | | |
|
patchmatchnet-post | | | | | | | | | | | | 67.62 346 | 57.62 152 | 90.25 296 | | | |
|
MTMP | | | | | | | | 93.77 82 | 32.52 376 | | | | | | | | |
|
test9_res | | | | | | | | | | | | | | | 89.41 24 | 94.96 18 | 95.29 59 |
|
agg_prior2 | | | | | | | | | | | | | | | 86.41 55 | 94.75 30 | 95.33 55 |
|
test_prior2 | | | | | | | | 95.10 37 | | 75.40 107 | 85.25 53 | 95.61 40 | 67.94 43 | | 87.47 45 | 94.77 25 | |
|
旧先验2 | | | | | | | | 92.00 151 | | 59.37 314 | 87.54 28 | | | 93.47 230 | 75.39 137 | | |
|
新几何2 | | | | | | | | 91.41 173 | | | | | | | | | |
|
无先验 | | | | | | | | 92.71 119 | 92.61 120 | 62.03 295 | | | | 97.01 92 | 66.63 211 | | 93.97 119 |
|
原ACMM2 | | | | | | | | 92.01 148 | | | | | | | | | |
|
testdata2 | | | | | | | | | | | | | | 96.09 127 | 61.26 256 | | |
|
segment_acmp | | | | | | | | | | | | | 65.94 63 | | | | |
|
testdata1 | | | | | | | | 89.21 242 | | 77.55 82 | | | | | | | |
|
plane_prior5 | | | | | | | | | 91.31 171 | | | | | 95.55 157 | 76.74 129 | 78.53 185 | 88.39 222 |
|
plane_prior4 | | | | | | | | | | | | 89.14 178 | | | | | |
|
plane_prior2 | | | | | | | | 93.13 102 | | 78.81 61 | | | | | | | |
|
plane_prior1 | | | | | | 87.15 216 | | | | | | | | | | | |
|
n2 | | | | | | | | | 0.00 382 | | | | | | | | |
|
nn | | | | | | | | | 0.00 382 | | | | | | | | |
|
door-mid | | | | | | | | | 66.01 364 | | | | | | | | |
|
test11 | | | | | | | | | 93.01 103 | | | | | | | | |
|
door | | | | | | | | | 66.57 363 | | | | | | | | |
|
HQP-NCC | | | | | | 87.54 208 | | 94.06 62 | | 79.80 43 | 74.18 158 | | | | | | |
|
ACMP_Plane | | | | | | 87.54 208 | | 94.06 62 | | 79.80 43 | 74.18 158 | | | | | | |
|
BP-MVS | | | | | | | | | | | | | | | 77.63 126 | | |
|
HQP4-MVS | | | | | | | | | | | 74.18 158 | | | 95.61 151 | | | 88.63 216 |
|
HQP3-MVS | | | | | | | | | 91.70 155 | | | | | | | 78.90 180 | |
|
HQP2-MVS | | | | | | | | | | | | | 51.63 220 | | | | |
|
ACMMP++_ref | | | | | | | | | | | | | | | | 71.63 230 | |
|
ACMMP++ | | | | | | | | | | | | | | | | 69.72 240 | |
|
Test By Simon | | | | | | | | | | | | | 54.21 197 | | | | |
|