This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort by
MCST-MVS91.08 191.46 389.94 497.66 273.37 1097.13 395.58 1189.33 185.77 5696.26 3172.84 2699.38 192.64 1995.93 997.08 11
MM90.87 291.52 288.92 1592.12 9771.10 2797.02 496.04 688.70 291.57 1396.19 3470.12 3998.91 1796.83 195.06 1696.76 16
DELS-MVS90.05 790.09 1189.94 493.14 7173.88 997.01 594.40 5088.32 385.71 5794.91 7174.11 1998.91 1787.26 6395.94 897.03 12
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
MVS_030490.01 890.50 988.53 2390.14 14570.94 2896.47 1495.72 1087.33 489.60 3196.26 3168.44 4698.74 2495.82 494.72 3195.90 47
EPNet87.84 2688.38 2286.23 8193.30 6566.05 13995.26 3394.84 2987.09 588.06 3794.53 8066.79 6397.34 7583.89 9591.68 7695.29 69
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
CANet89.61 1289.99 1288.46 2494.39 3969.71 5096.53 1393.78 6686.89 689.68 3095.78 4165.94 7099.10 992.99 1693.91 4396.58 22
patch_mono-289.71 1190.99 685.85 9296.04 2463.70 20295.04 4295.19 1986.74 791.53 1495.15 6473.86 2097.58 5993.38 1492.00 7196.28 37
DeepPCF-MVS81.17 189.72 1091.38 484.72 13393.00 7558.16 30696.72 994.41 4886.50 890.25 2497.83 175.46 1498.67 2592.78 1895.49 1297.32 6
CANet_DTU84.09 9183.52 8585.81 9390.30 14266.82 12091.87 16889.01 27085.27 986.09 5393.74 10447.71 27496.98 10177.90 14089.78 9993.65 141
MVSMamba_pp88.94 1788.82 1889.29 1394.04 4574.01 894.81 4992.74 11285.13 1090.37 2290.13 18268.40 4897.38 7089.42 4194.34 3696.47 29
CLD-MVS82.73 11682.35 11683.86 16287.90 20467.65 9995.45 2992.18 13685.06 1172.58 19592.27 13752.46 23095.78 15084.18 9179.06 19588.16 246
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
CNVR-MVS90.32 690.89 788.61 2296.76 870.65 3196.47 1494.83 3084.83 1289.07 3496.80 1970.86 3599.06 1592.64 1995.71 1096.12 40
NCCC89.07 1689.46 1687.91 2996.60 1069.05 6296.38 1694.64 3984.42 1386.74 4896.20 3366.56 6698.76 2389.03 4994.56 3395.92 46
test_fmvsm_n_192087.69 2888.50 2085.27 11387.05 22563.55 20993.69 9091.08 18884.18 1490.17 2697.04 867.58 5897.99 3995.72 590.03 9694.26 115
PS-MVSNAJ88.14 2087.61 3189.71 692.06 9876.72 195.75 2193.26 9083.86 1589.55 3296.06 3753.55 21997.89 4391.10 3193.31 5494.54 107
DeepC-MVS_fast79.48 287.95 2488.00 2787.79 3295.86 2768.32 7995.74 2294.11 6083.82 1683.49 7896.19 3464.53 8898.44 3183.42 9894.88 2496.61 19
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
test_fmvsmconf_n86.58 4587.17 3684.82 12685.28 25762.55 23394.26 6089.78 23583.81 1787.78 3996.33 2965.33 7696.98 10194.40 1187.55 11794.95 85
xiu_mvs_v2_base87.92 2587.38 3589.55 1191.41 12276.43 395.74 2293.12 9983.53 1889.55 3295.95 3953.45 22397.68 5091.07 3292.62 6194.54 107
test_fmvsmconf0.1_n85.71 6186.08 5384.62 14080.83 31062.33 23893.84 8388.81 27883.50 1987.00 4696.01 3863.36 10696.93 10994.04 1287.29 12094.61 103
TSAR-MVS + MP.88.11 2288.64 1986.54 7191.73 11168.04 8990.36 22893.55 7982.89 2091.29 1592.89 12272.27 3096.03 14487.99 5494.77 2595.54 57
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
DPM-MVS90.70 390.52 891.24 189.68 15476.68 297.29 195.35 1582.87 2191.58 1297.22 379.93 599.10 983.12 9997.64 297.94 1
WTY-MVS86.32 4885.81 5787.85 3092.82 8069.37 5695.20 3595.25 1782.71 2281.91 8994.73 7567.93 5697.63 5679.55 12582.25 16596.54 23
lupinMVS87.74 2787.77 2987.63 3989.24 16971.18 2496.57 1292.90 10782.70 2387.13 4395.27 5764.99 7995.80 14989.34 4491.80 7495.93 45
bld_raw_dy_0_6489.23 1589.56 1588.21 2893.91 4970.09 3797.16 293.13 9782.64 2490.75 1796.28 3068.30 5097.37 7189.84 3994.07 3997.17 8
fmvsm_s_conf0.5_n86.39 4786.91 4084.82 12687.36 21863.54 21094.74 5190.02 22882.52 2590.14 2796.92 1362.93 11497.84 4695.28 882.26 16493.07 158
HPM-MVS++copyleft89.37 1489.95 1387.64 3595.10 3068.23 8595.24 3494.49 4482.43 2688.90 3596.35 2771.89 3398.63 2688.76 5096.40 696.06 41
test_fmvsmconf0.01_n83.70 10283.52 8584.25 15575.26 36261.72 25292.17 15087.24 31282.36 2784.91 6695.41 4955.60 19596.83 11492.85 1785.87 13594.21 117
PVSNet_Blended86.73 4386.86 4286.31 8093.76 5267.53 10396.33 1793.61 7682.34 2881.00 10093.08 11663.19 10997.29 7887.08 6691.38 8294.13 122
MSP-MVS90.38 591.87 185.88 8992.83 7864.03 19293.06 11494.33 5482.19 2993.65 396.15 3685.89 197.19 8591.02 3397.75 196.43 31
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
PAPM85.89 5885.46 6387.18 4988.20 19772.42 1592.41 14492.77 11082.11 3080.34 10993.07 11768.27 5195.02 18378.39 13793.59 5094.09 124
jason86.40 4686.17 5087.11 5186.16 24270.54 3395.71 2592.19 13582.00 3184.58 6994.34 9061.86 12495.53 16987.76 5690.89 8895.27 72
jason: jason.
baseline181.84 13181.03 13284.28 15391.60 11466.62 12791.08 20691.66 16281.87 3274.86 17191.67 15169.98 4094.92 18971.76 18664.75 30291.29 203
CHOSEN 1792x268884.98 7483.45 9089.57 1089.94 14975.14 592.07 15792.32 12781.87 3275.68 16188.27 20560.18 14098.60 2780.46 11990.27 9594.96 84
fmvsm_s_conf0.1_n85.61 6485.93 5584.68 13682.95 29463.48 21294.03 7189.46 24781.69 3489.86 2896.74 2061.85 12597.75 4994.74 982.01 17092.81 166
test_vis1_n_192081.66 13382.01 11980.64 24382.24 29855.09 33394.76 5086.87 31481.67 3584.40 7194.63 7838.17 32294.67 19891.98 2683.34 15592.16 187
casdiffmvs_mvgpermissive85.66 6385.18 6787.09 5288.22 19669.35 5793.74 8991.89 14781.47 3680.10 11191.45 15464.80 8496.35 12987.23 6487.69 11595.58 55
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
h-mvs3383.01 11282.56 11284.35 15089.34 16162.02 24492.72 12793.76 6981.45 3782.73 8492.25 13960.11 14197.13 9087.69 5762.96 31493.91 133
hse-mvs281.12 14281.11 13181.16 23086.52 23357.48 31489.40 25391.16 18181.45 3782.73 8490.49 17060.11 14194.58 19987.69 5760.41 34191.41 197
ET-MVSNet_ETH3D84.01 9383.15 10286.58 6990.78 13570.89 2994.74 5194.62 4081.44 3958.19 33093.64 10773.64 2392.35 28382.66 10178.66 20096.50 28
fmvsm_s_conf0.5_n_a85.75 6086.09 5284.72 13385.73 25163.58 20793.79 8689.32 25381.42 4090.21 2596.91 1462.41 11997.67 5194.48 1080.56 18392.90 164
test_fmvsmvis_n_192083.80 9883.48 8884.77 13082.51 29663.72 20091.37 19283.99 34581.42 4077.68 14195.74 4358.37 16097.58 5993.38 1486.87 12393.00 161
testing1186.71 4486.44 4587.55 4193.54 6071.35 2193.65 9295.58 1181.36 4280.69 10392.21 14072.30 2996.46 12885.18 8183.43 15494.82 94
casdiffmvspermissive85.37 6784.87 7386.84 5888.25 19469.07 6193.04 11691.76 15481.27 4380.84 10292.07 14264.23 9096.06 14284.98 8487.43 11995.39 60
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
ETV-MVS86.01 5486.11 5185.70 9990.21 14467.02 11793.43 10691.92 14481.21 4484.13 7594.07 9960.93 13495.63 16089.28 4589.81 9794.46 113
DeepC-MVS77.85 385.52 6685.24 6686.37 7788.80 17966.64 12592.15 15193.68 7481.07 4576.91 15293.64 10762.59 11798.44 3185.50 7792.84 6094.03 128
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
baseline85.01 7384.44 7786.71 6388.33 19168.73 6990.24 23391.82 15381.05 4681.18 9692.50 12963.69 9896.08 14184.45 8986.71 12995.32 67
PC_three_145280.91 4794.07 296.83 1883.57 499.12 595.70 797.42 497.55 4
iter_conf0583.65 10483.44 9184.28 15386.17 24168.61 7495.08 4089.82 23480.90 4878.08 13790.49 17069.08 4395.22 17984.29 9077.07 21689.02 231
mamv488.66 1988.41 2189.39 1294.02 4674.04 794.94 4692.69 11580.90 4890.32 2390.30 17568.33 4997.28 8289.47 4094.74 3096.84 15
IU-MVS96.46 1169.91 4395.18 2080.75 5095.28 192.34 2195.36 1396.47 29
diffmvspermissive84.28 8483.83 8285.61 10187.40 21668.02 9090.88 21289.24 25680.54 5181.64 9192.52 12859.83 14594.52 20687.32 6285.11 13994.29 114
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
fmvsm_l_conf0.5_n87.49 3088.19 2585.39 10786.95 22664.37 18294.30 5888.45 29080.51 5292.70 496.86 1569.98 4097.15 8995.83 388.08 11294.65 101
fmvsm_s_conf0.1_n_a84.76 7684.84 7484.53 14280.23 32063.50 21192.79 12488.73 28180.46 5389.84 2996.65 2260.96 13397.57 6193.80 1380.14 18592.53 173
VPNet78.82 18477.53 18682.70 18984.52 27066.44 13193.93 7592.23 13080.46 5372.60 19488.38 20349.18 25993.13 25072.47 17963.97 31188.55 240
testing9986.01 5485.47 6287.63 3993.62 5671.25 2393.47 10495.23 1880.42 5580.60 10591.95 14471.73 3496.50 12680.02 12282.22 16695.13 78
testing22285.18 7084.69 7586.63 6692.91 7769.91 4392.61 13595.80 980.31 5680.38 10892.27 13768.73 4595.19 18075.94 15183.27 15694.81 95
testing9185.93 5685.31 6587.78 3393.59 5871.47 1993.50 10195.08 2580.26 5780.53 10691.93 14570.43 3796.51 12580.32 12082.13 16895.37 62
sasdasda86.85 3986.25 4888.66 2091.80 10971.92 1693.54 9891.71 15780.26 5787.55 4095.25 5963.59 10296.93 10988.18 5284.34 14597.11 9
canonicalmvs86.85 3986.25 4888.66 2091.80 10971.92 1693.54 9891.71 15780.26 5787.55 4095.25 5963.59 10296.93 10988.18 5284.34 14597.11 9
fmvsm_l_conf0.5_n_a87.44 3288.15 2685.30 11187.10 22364.19 18994.41 5688.14 29980.24 6092.54 596.97 1069.52 4297.17 8695.89 288.51 10894.56 104
CS-MVS-test86.14 5287.01 3883.52 17192.63 8659.36 29495.49 2891.92 14480.09 6185.46 6195.53 4861.82 12695.77 15286.77 7093.37 5395.41 59
CS-MVS85.80 5986.65 4483.27 17992.00 10258.92 29995.31 3291.86 14979.97 6284.82 6795.40 5062.26 12095.51 17086.11 7492.08 7095.37 62
MVSTER82.47 12082.05 11783.74 16492.68 8569.01 6391.90 16793.21 9179.83 6372.14 20385.71 24574.72 1694.72 19475.72 15272.49 24887.50 251
HQP-NCC87.54 21294.06 6679.80 6474.18 176
ACMP_Plane87.54 21294.06 6679.80 6474.18 176
HQP-MVS81.14 14080.64 13882.64 19187.54 21263.66 20594.06 6691.70 16079.80 6474.18 17690.30 17551.63 23795.61 16277.63 14178.90 19688.63 237
baseline283.68 10383.42 9484.48 14587.37 21766.00 14190.06 23795.93 879.71 6769.08 23890.39 17377.92 696.28 13178.91 13281.38 17691.16 205
MGCFI-Net85.59 6585.73 6085.17 11791.41 12262.44 23492.87 12291.31 17479.65 6886.99 4795.14 6562.90 11596.12 13687.13 6584.13 15296.96 13
EI-MVSNet-Vis-set83.77 9983.67 8484.06 15892.79 8363.56 20891.76 17594.81 3179.65 6877.87 13994.09 9763.35 10797.90 4279.35 12679.36 19290.74 209
ETVMVS84.22 8883.71 8385.76 9692.58 8868.25 8492.45 14395.53 1479.54 7079.46 11991.64 15270.29 3894.18 21969.16 20982.76 16294.84 91
EIA-MVS84.84 7584.88 7284.69 13591.30 12462.36 23793.85 8092.04 13979.45 7179.33 12294.28 9362.42 11896.35 12980.05 12191.25 8595.38 61
dmvs_re76.93 21675.36 21981.61 22087.78 20960.71 27280.00 34687.99 30379.42 7269.02 24089.47 19146.77 27794.32 21063.38 26374.45 23189.81 221
plane_prior62.42 23593.85 8079.38 7378.80 198
dcpmvs_287.37 3387.55 3286.85 5795.04 3268.20 8690.36 22890.66 20079.37 7481.20 9593.67 10674.73 1596.55 12390.88 3492.00 7195.82 49
alignmvs87.28 3486.97 3988.24 2791.30 12471.14 2695.61 2693.56 7879.30 7587.07 4595.25 5968.43 4796.93 10987.87 5584.33 14796.65 18
TESTMET0.1,182.41 12181.98 12083.72 16788.08 19863.74 19892.70 12993.77 6879.30 7577.61 14387.57 22058.19 16394.08 22373.91 16786.68 13093.33 150
EI-MVSNet-UG-set83.14 11082.96 10383.67 16992.28 9263.19 21891.38 19194.68 3779.22 7776.60 15493.75 10362.64 11697.76 4878.07 13978.01 20390.05 218
PVSNet73.49 880.05 16278.63 16984.31 15190.92 13164.97 16792.47 14291.05 19179.18 7872.43 20090.51 16937.05 33794.06 22568.06 21886.00 13493.90 135
HY-MVS76.49 584.28 8483.36 9887.02 5592.22 9467.74 9684.65 30494.50 4379.15 7982.23 8787.93 21466.88 6296.94 10780.53 11882.20 16796.39 33
PVSNet_BlendedMVS83.38 10683.43 9283.22 18093.76 5267.53 10394.06 6693.61 7679.13 8081.00 10085.14 24863.19 10997.29 7887.08 6673.91 23784.83 305
plane_prior361.95 24779.09 8172.53 196
MVS_111021_HR86.19 5185.80 5887.37 4593.17 7069.79 4793.99 7293.76 6979.08 8278.88 12993.99 10062.25 12198.15 3685.93 7691.15 8694.15 121
test_cas_vis1_n_192080.45 15480.61 13979.97 26278.25 34657.01 32194.04 7088.33 29379.06 8382.81 8393.70 10538.65 31791.63 29890.82 3579.81 18791.27 204
MSLP-MVS++86.27 4985.91 5687.35 4692.01 10168.97 6595.04 4292.70 11379.04 8481.50 9296.50 2558.98 15696.78 11583.49 9793.93 4296.29 35
IB-MVS77.80 482.18 12480.46 14387.35 4689.14 17170.28 3695.59 2795.17 2178.85 8570.19 22685.82 24370.66 3697.67 5172.19 18366.52 28894.09 124
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
3Dnovator73.91 682.69 11980.82 13488.31 2689.57 15671.26 2292.60 13694.39 5178.84 8667.89 25992.48 13248.42 26598.52 2868.80 21494.40 3595.15 77
HQP_MVS80.34 15679.75 15282.12 20986.94 22762.42 23593.13 11291.31 17478.81 8772.53 19689.14 19650.66 24495.55 16776.74 14478.53 20188.39 243
plane_prior293.13 11278.81 87
MG-MVS87.11 3686.27 4689.62 797.79 176.27 494.96 4594.49 4478.74 8983.87 7792.94 12064.34 8996.94 10775.19 15694.09 3895.66 52
gm-plane-assit88.42 18767.04 11678.62 9091.83 14797.37 7176.57 146
VNet86.20 5085.65 6187.84 3193.92 4869.99 3995.73 2495.94 778.43 9186.00 5493.07 11758.22 16297.00 9785.22 7984.33 14796.52 24
tpm78.58 19177.03 19583.22 18085.94 24764.56 17183.21 31891.14 18478.31 9273.67 18379.68 31964.01 9292.09 28966.07 24271.26 25893.03 159
save fliter93.84 5167.89 9395.05 4192.66 11778.19 93
TSAR-MVS + GP.87.96 2388.37 2386.70 6493.51 6265.32 15795.15 3793.84 6578.17 9485.93 5594.80 7475.80 1398.21 3489.38 4388.78 10596.59 20
FIs79.47 17279.41 15979.67 26985.95 24559.40 29191.68 17993.94 6378.06 9568.96 24288.28 20466.61 6591.77 29566.20 24174.99 22787.82 248
sss82.71 11882.38 11583.73 16689.25 16659.58 28992.24 14894.89 2877.96 9679.86 11492.38 13456.70 18197.05 9277.26 14380.86 18094.55 105
PMMVS81.98 13082.04 11881.78 21689.76 15356.17 32591.13 20590.69 19777.96 9680.09 11293.57 10946.33 28494.99 18581.41 11187.46 11894.17 119
EC-MVSNet84.53 8085.04 7083.01 18389.34 16161.37 25894.42 5591.09 18677.91 9883.24 7994.20 9558.37 16095.40 17185.35 7891.41 8192.27 183
test111180.84 14780.02 14683.33 17787.87 20560.76 26992.62 13486.86 31577.86 9975.73 16091.39 15746.35 28294.70 19772.79 17488.68 10794.52 109
MVS_Test84.16 9083.20 9987.05 5491.56 11669.82 4689.99 24292.05 13877.77 10082.84 8286.57 23363.93 9496.09 13874.91 16189.18 10395.25 75
SteuartSystems-ACMMP86.82 4286.90 4186.58 6990.42 13966.38 13296.09 1893.87 6477.73 10184.01 7695.66 4463.39 10597.94 4087.40 6193.55 5195.42 58
Skip Steuart: Steuart Systems R&D Blog.
EPNet_dtu78.80 18579.26 16377.43 29788.06 19949.71 35791.96 16591.95 14377.67 10276.56 15591.28 15958.51 15890.20 31956.37 29980.95 17992.39 175
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
test250683.29 10782.92 10584.37 14988.39 18963.18 21992.01 16091.35 17377.66 10378.49 13491.42 15564.58 8795.09 18273.19 16889.23 10194.85 88
ECVR-MVScopyleft81.29 13880.38 14484.01 16088.39 18961.96 24692.56 14186.79 31677.66 10376.63 15391.42 15546.34 28395.24 17874.36 16589.23 10194.85 88
tpmrst80.57 15079.14 16584.84 12590.10 14668.28 8181.70 32889.72 24277.63 10575.96 15879.54 32164.94 8192.71 26775.43 15477.28 21493.55 143
testdata189.21 25777.55 106
UniMVSNet_NR-MVSNet78.15 19877.55 18579.98 26084.46 27260.26 27992.25 14793.20 9377.50 10768.88 24386.61 23266.10 6892.13 28766.38 23862.55 31887.54 250
UA-Net80.02 16379.65 15381.11 23289.33 16357.72 31086.33 29789.00 27377.44 10881.01 9989.15 19559.33 15295.90 14761.01 27984.28 14989.73 224
PVSNet_Blended_VisFu83.97 9483.50 8785.39 10790.02 14766.59 12993.77 8791.73 15577.43 10977.08 15189.81 18763.77 9796.97 10379.67 12488.21 11092.60 170
dmvs_testset65.55 32466.45 30062.86 36579.87 32322.35 41076.55 36071.74 38077.42 11055.85 34187.77 21751.39 23980.69 38031.51 39065.92 29185.55 295
NR-MVSNet76.05 23174.59 22780.44 24582.96 29262.18 24290.83 21491.73 15577.12 11160.96 31586.35 23559.28 15391.80 29460.74 28061.34 33387.35 257
FC-MVSNet-test77.99 20078.08 17777.70 29284.89 26555.51 33090.27 23193.75 7276.87 11266.80 27587.59 21965.71 7390.23 31862.89 26973.94 23687.37 255
SD-MVS87.49 3087.49 3387.50 4393.60 5768.82 6893.90 7792.63 12076.86 11387.90 3895.76 4266.17 6797.63 5689.06 4891.48 8096.05 42
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
mvsmamba76.85 21975.71 21580.25 25183.07 29159.16 29691.44 18380.64 35976.84 11467.95 25586.33 23746.17 28794.24 21776.06 14972.92 24487.36 256
UGNet79.87 16678.68 16883.45 17689.96 14861.51 25592.13 15290.79 19576.83 11578.85 13186.33 23738.16 32396.17 13467.93 22187.17 12192.67 168
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
MVS_111021_LR82.02 12981.52 12483.51 17388.42 18762.88 22889.77 24588.93 27476.78 11675.55 16593.10 11450.31 24795.38 17383.82 9687.02 12292.26 184
SDMVSNet80.26 15778.88 16784.40 14789.25 16667.63 10085.35 30093.02 10176.77 11770.84 21787.12 22747.95 27196.09 13885.04 8274.55 22889.48 228
sd_testset77.08 21575.37 21882.20 20589.25 16662.11 24382.06 32589.09 26676.77 11770.84 21787.12 22741.43 30895.01 18467.23 22874.55 22889.48 228
TranMVSNet+NR-MVSNet75.86 23674.52 23079.89 26482.44 29760.64 27591.37 19291.37 17276.63 11967.65 26286.21 23952.37 23191.55 30061.84 27560.81 33687.48 252
PAPR85.15 7184.47 7687.18 4996.02 2568.29 8091.85 17093.00 10476.59 12079.03 12595.00 6661.59 12797.61 5878.16 13889.00 10495.63 53
UniMVSNet (Re)77.58 20776.78 19979.98 26084.11 27860.80 26691.76 17593.17 9576.56 12169.93 23284.78 25263.32 10892.36 28264.89 25462.51 32086.78 267
DU-MVS76.86 21775.84 21279.91 26382.96 29260.26 27991.26 19891.54 16576.46 12268.88 24386.35 23556.16 18892.13 28766.38 23862.55 31887.35 257
OPM-MVS79.00 17978.09 17681.73 21783.52 28663.83 19591.64 18190.30 21476.36 12371.97 20589.93 18646.30 28595.17 18175.10 15777.70 20686.19 278
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
WR-MVS76.76 22275.74 21479.82 26684.60 26862.27 24192.60 13692.51 12476.06 12467.87 26085.34 24656.76 17990.24 31762.20 27363.69 31386.94 265
GA-MVS78.33 19676.23 20684.65 13783.65 28466.30 13591.44 18390.14 22276.01 12570.32 22484.02 26042.50 30494.72 19470.98 19177.00 21792.94 162
PVSNet_068.08 1571.81 27868.32 29482.27 20184.68 26662.31 24088.68 26690.31 21375.84 12657.93 33580.65 30637.85 32894.19 21869.94 20029.05 39990.31 215
CDS-MVSNet81.43 13680.74 13583.52 17186.26 23864.45 17692.09 15590.65 20175.83 12773.95 18289.81 18763.97 9392.91 26071.27 18982.82 15993.20 153
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
UWE-MVS80.81 14881.01 13380.20 25389.33 16357.05 31991.91 16694.71 3575.67 12875.01 17089.37 19263.13 11191.44 30667.19 22982.80 16192.12 188
CostFormer82.33 12281.15 12785.86 9189.01 17468.46 7682.39 32493.01 10275.59 12980.25 11081.57 28972.03 3294.96 18679.06 13077.48 21194.16 120
nrg03080.93 14579.86 15084.13 15783.69 28368.83 6793.23 11091.20 17975.55 13075.06 16988.22 20963.04 11394.74 19381.88 10666.88 28588.82 235
VDD-MVS83.06 11181.81 12286.81 6090.86 13367.70 9795.40 3091.50 16875.46 13181.78 9092.34 13640.09 31297.13 9086.85 6982.04 16995.60 54
Effi-MVS+-dtu76.14 22775.28 22178.72 28383.22 28855.17 33289.87 24387.78 30675.42 13267.98 25481.43 29145.08 29592.52 27675.08 15871.63 25388.48 241
test_prior295.10 3975.40 13385.25 6595.61 4667.94 5587.47 6094.77 25
MTAPA83.91 9583.38 9685.50 10391.89 10765.16 16281.75 32792.23 13075.32 13480.53 10695.21 6256.06 19197.16 8884.86 8692.55 6394.18 118
EPMVS78.49 19375.98 21086.02 8591.21 12669.68 5180.23 34291.20 17975.25 13572.48 19878.11 32954.65 20593.69 24157.66 29683.04 15794.69 97
miper_enhance_ethall78.86 18377.97 17981.54 22288.00 20265.17 16191.41 18589.15 26275.19 13668.79 24583.98 26167.17 6092.82 26272.73 17565.30 29386.62 272
v2v48277.42 20975.65 21682.73 18880.38 31667.13 11391.85 17090.23 21875.09 13769.37 23483.39 26753.79 21794.44 20871.77 18565.00 29986.63 271
VPA-MVSNet79.03 17878.00 17882.11 21285.95 24564.48 17593.22 11194.66 3875.05 13874.04 18184.95 25052.17 23293.52 24474.90 16267.04 28488.32 245
ACMMP_NAP86.05 5385.80 5886.80 6191.58 11567.53 10391.79 17293.49 8374.93 13984.61 6895.30 5459.42 15097.92 4186.13 7394.92 1994.94 86
thres20079.66 16878.33 17283.66 17092.54 8965.82 14793.06 11496.31 374.90 14073.30 18688.66 19859.67 14795.61 16247.84 33378.67 19989.56 227
TAMVS80.37 15579.45 15883.13 18285.14 26063.37 21391.23 20090.76 19674.81 14172.65 19388.49 20060.63 13692.95 25569.41 20581.95 17193.08 157
MP-MVS-pluss85.24 6985.13 6885.56 10291.42 12065.59 15191.54 18292.51 12474.56 14280.62 10495.64 4559.15 15497.00 9786.94 6893.80 4494.07 126
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
mvs_anonymous81.36 13779.99 14885.46 10490.39 14168.40 7786.88 29490.61 20274.41 14370.31 22584.67 25363.79 9692.32 28473.13 16985.70 13695.67 51
MAR-MVS84.18 8983.43 9286.44 7496.25 2165.93 14494.28 5994.27 5674.41 14379.16 12495.61 4653.99 21498.88 2169.62 20393.26 5594.50 111
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
BH-w/o80.49 15379.30 16284.05 15990.83 13464.36 18493.60 9589.42 25074.35 14569.09 23790.15 18155.23 19995.61 16264.61 25586.43 13392.17 186
thisisatest051583.41 10582.49 11386.16 8289.46 16068.26 8293.54 9894.70 3674.31 14675.75 15990.92 16272.62 2796.52 12469.64 20181.50 17593.71 139
Vis-MVSNet (Re-imp)79.24 17579.57 15478.24 28988.46 18552.29 34490.41 22689.12 26474.24 14769.13 23691.91 14665.77 7290.09 32159.00 29188.09 11192.33 177
SMA-MVScopyleft88.14 2088.29 2487.67 3493.21 6868.72 7093.85 8094.03 6274.18 14891.74 1196.67 2165.61 7498.42 3389.24 4696.08 795.88 48
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
AUN-MVS78.37 19477.43 18781.17 22986.60 23257.45 31589.46 25291.16 18174.11 14974.40 17590.49 17055.52 19694.57 20174.73 16460.43 34091.48 195
3Dnovator+73.60 782.10 12880.60 14086.60 6790.89 13266.80 12295.20 3593.44 8574.05 15067.42 26592.49 13149.46 25597.65 5570.80 19391.68 7695.33 65
XVS83.87 9683.47 8985.05 11993.22 6663.78 19692.92 12092.66 11773.99 15178.18 13594.31 9255.25 19797.41 6879.16 12891.58 7893.95 131
X-MVStestdata76.86 21774.13 23785.05 11993.22 6663.78 19692.92 12092.66 11773.99 15178.18 13510.19 41055.25 19797.41 6879.16 12891.58 7893.95 131
MS-PatchMatch77.90 20476.50 20282.12 20985.99 24469.95 4291.75 17792.70 11373.97 15362.58 30984.44 25741.11 30995.78 15063.76 26192.17 6880.62 352
LCM-MVSNet-Re72.93 26771.84 26676.18 31188.49 18348.02 36480.07 34570.17 38373.96 15452.25 35480.09 31549.98 25088.24 33367.35 22584.23 15092.28 180
Vis-MVSNetpermissive80.92 14679.98 14983.74 16488.48 18461.80 24893.44 10588.26 29873.96 15477.73 14091.76 14849.94 25194.76 19165.84 24490.37 9494.65 101
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
test-mter79.96 16479.38 16181.72 21886.93 22961.17 25992.70 12991.54 16573.85 15675.62 16286.94 22949.84 25392.38 28072.21 18184.76 14391.60 192
OMC-MVS78.67 19077.91 18180.95 23985.76 25057.40 31688.49 26988.67 28473.85 15672.43 20092.10 14149.29 25894.55 20472.73 17577.89 20490.91 208
Fast-Effi-MVS+81.14 14080.01 14784.51 14490.24 14365.86 14594.12 6589.15 26273.81 15875.37 16788.26 20657.26 17094.53 20566.97 23284.92 14093.15 154
ZNCC-MVS85.33 6885.08 6986.06 8493.09 7365.65 14993.89 7893.41 8773.75 15979.94 11394.68 7760.61 13798.03 3882.63 10293.72 4794.52 109
V4276.46 22574.55 22982.19 20679.14 33467.82 9490.26 23289.42 25073.75 15968.63 24881.89 28251.31 24094.09 22271.69 18764.84 30084.66 306
v114476.73 22374.88 22382.27 20180.23 32066.60 12891.68 17990.21 22073.69 16169.06 23981.89 28252.73 22894.40 20969.21 20865.23 29685.80 289
v14876.19 22674.47 23181.36 22580.05 32264.44 17791.75 17790.23 21873.68 16267.13 26980.84 30255.92 19393.86 23968.95 21261.73 32985.76 292
CR-MVSNet73.79 26070.82 27582.70 18983.15 28967.96 9170.25 37484.00 34373.67 16369.97 23072.41 35857.82 16689.48 32552.99 31373.13 24190.64 211
XXY-MVS77.94 20276.44 20382.43 19582.60 29564.44 17792.01 16091.83 15273.59 16470.00 22985.82 24354.43 21094.76 19169.63 20268.02 27888.10 247
tfpn200view978.79 18677.43 18782.88 18592.21 9564.49 17392.05 15896.28 473.48 16571.75 20888.26 20660.07 14395.32 17445.16 34477.58 20888.83 233
thres40078.68 18877.43 18782.43 19592.21 9564.49 17392.05 15896.28 473.48 16571.75 20888.26 20660.07 14395.32 17445.16 34477.58 20887.48 252
FMVSNet377.73 20576.04 20982.80 18691.20 12768.99 6491.87 16891.99 14173.35 16767.04 27083.19 26956.62 18392.14 28659.80 28769.34 26587.28 259
GST-MVS84.63 7984.29 7985.66 10092.82 8065.27 15893.04 11693.13 9773.20 16878.89 12694.18 9659.41 15197.85 4581.45 11092.48 6493.86 136
USDC67.43 31564.51 31676.19 31077.94 35055.29 33178.38 35385.00 33373.17 16948.36 37080.37 30921.23 38192.48 27852.15 31464.02 31080.81 350
MP-MVScopyleft85.02 7284.97 7185.17 11792.60 8764.27 18793.24 10992.27 12973.13 17079.63 11794.43 8361.90 12397.17 8685.00 8392.56 6294.06 127
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
xiu_mvs_v1_base_debu82.16 12581.12 12885.26 11486.42 23468.72 7092.59 13890.44 20773.12 17184.20 7294.36 8538.04 32595.73 15484.12 9286.81 12491.33 198
xiu_mvs_v1_base82.16 12581.12 12885.26 11486.42 23468.72 7092.59 13890.44 20773.12 17184.20 7294.36 8538.04 32595.73 15484.12 9286.81 12491.33 198
xiu_mvs_v1_base_debi82.16 12581.12 12885.26 11486.42 23468.72 7092.59 13890.44 20773.12 17184.20 7294.36 8538.04 32595.73 15484.12 9286.81 12491.33 198
D2MVS73.80 25972.02 26479.15 28079.15 33362.97 22288.58 26890.07 22472.94 17459.22 32478.30 32642.31 30692.70 26965.59 24872.00 25181.79 341
BH-RMVSNet79.46 17377.65 18384.89 12391.68 11365.66 14893.55 9788.09 30172.93 17573.37 18591.12 16146.20 28696.12 13656.28 30085.61 13892.91 163
Syy-MVS69.65 29469.52 28670.03 34987.87 20543.21 38388.07 27489.01 27072.91 17663.11 30288.10 21045.28 29385.54 35222.07 39669.23 26881.32 344
myMVS_eth3d72.58 27672.74 25472.10 34287.87 20549.45 35988.07 27489.01 27072.91 17663.11 30288.10 21063.63 9985.54 35232.73 38469.23 26881.32 344
IS-MVSNet80.14 16079.41 15982.33 19987.91 20360.08 28391.97 16488.27 29672.90 17871.44 21391.73 15061.44 12893.66 24262.47 27286.53 13193.24 151
PS-MVSNAJss77.26 21176.31 20580.13 25580.64 31459.16 29690.63 22391.06 19072.80 17968.58 24984.57 25553.55 21993.96 23372.97 17071.96 25287.27 260
9.1487.63 3093.86 5094.41 5694.18 5772.76 18086.21 5196.51 2466.64 6497.88 4490.08 3894.04 40
v119275.98 23373.92 24082.15 20779.73 32466.24 13791.22 20189.75 23772.67 18168.49 25081.42 29249.86 25294.27 21467.08 23065.02 29885.95 286
Effi-MVS+83.82 9782.76 10886.99 5689.56 15769.40 5391.35 19486.12 32372.59 18283.22 8092.81 12659.60 14896.01 14681.76 10787.80 11495.56 56
UnsupCasMVSNet_eth65.79 32263.10 32473.88 32670.71 37750.29 35581.09 33489.88 23272.58 18349.25 36774.77 35332.57 35387.43 34455.96 30141.04 38383.90 312
1112_ss80.56 15179.83 15182.77 18788.65 18160.78 26792.29 14688.36 29272.58 18372.46 19994.95 6765.09 7893.42 24766.38 23877.71 20594.10 123
DVP-MVS++90.53 491.09 588.87 1697.31 469.91 4393.96 7394.37 5272.48 18592.07 896.85 1683.82 299.15 291.53 2997.42 497.55 4
test_0728_THIRD72.48 18590.55 2096.93 1176.24 1199.08 1191.53 2994.99 1796.43 31
cl2277.94 20276.78 19981.42 22487.57 21164.93 16990.67 21988.86 27772.45 18767.63 26382.68 27464.07 9192.91 26071.79 18465.30 29386.44 273
thres600view778.00 19976.66 20182.03 21491.93 10463.69 20391.30 19796.33 172.43 18870.46 22187.89 21560.31 13894.92 18942.64 35676.64 21987.48 252
IterMVS-LS76.49 22475.18 22280.43 24684.49 27162.74 23090.64 22188.80 27972.40 18965.16 28381.72 28560.98 13292.27 28567.74 22264.65 30486.29 275
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
EI-MVSNet78.97 18078.22 17581.25 22785.33 25562.73 23189.53 25093.21 9172.39 19072.14 20390.13 18260.99 13194.72 19467.73 22372.49 24886.29 275
miper_ehance_all_eth77.60 20676.44 20381.09 23685.70 25264.41 18090.65 22088.64 28672.31 19167.37 26882.52 27564.77 8592.64 27370.67 19565.30 29386.24 277
v14419276.05 23174.03 23882.12 20979.50 32866.55 13091.39 18989.71 24372.30 19268.17 25281.33 29451.75 23594.03 23067.94 22064.19 30685.77 290
thres100view90078.37 19477.01 19682.46 19491.89 10763.21 21791.19 20496.33 172.28 19370.45 22287.89 21560.31 13895.32 17445.16 34477.58 20888.83 233
PatchmatchNetpermissive77.46 20874.63 22685.96 8789.55 15870.35 3579.97 34789.55 24572.23 19470.94 21576.91 34057.03 17392.79 26554.27 30781.17 17794.74 96
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
HFP-MVS84.73 7784.40 7885.72 9893.75 5465.01 16693.50 10193.19 9472.19 19579.22 12394.93 6959.04 15597.67 5181.55 10892.21 6694.49 112
ACMMPR84.37 8184.06 8085.28 11293.56 5964.37 18293.50 10193.15 9672.19 19578.85 13194.86 7256.69 18297.45 6581.55 10892.20 6794.02 129
131480.70 14978.95 16685.94 8887.77 21067.56 10187.91 27892.55 12372.17 19767.44 26493.09 11550.27 24897.04 9571.68 18887.64 11693.23 152
region2R84.36 8284.03 8185.36 10993.54 6064.31 18593.43 10692.95 10572.16 19878.86 13094.84 7356.97 17797.53 6381.38 11292.11 6994.24 116
Test_1112_low_res79.56 17078.60 17082.43 19588.24 19560.39 27892.09 15587.99 30372.10 19971.84 20687.42 22264.62 8693.04 25165.80 24577.30 21393.85 137
v192192075.63 24173.49 24682.06 21379.38 32966.35 13391.07 20889.48 24671.98 20067.99 25381.22 29749.16 26193.90 23666.56 23464.56 30585.92 288
DVP-MVScopyleft89.41 1389.73 1488.45 2596.40 1569.99 3996.64 1094.52 4271.92 20190.55 2096.93 1173.77 2199.08 1191.91 2794.90 2196.29 35
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test072696.40 1569.99 3996.76 894.33 5471.92 20191.89 1097.11 673.77 21
Fast-Effi-MVS+-dtu75.04 24773.37 24780.07 25680.86 30959.52 29091.20 20385.38 32971.90 20365.20 28284.84 25141.46 30792.97 25466.50 23772.96 24387.73 249
LFMVS84.34 8382.73 10989.18 1494.76 3373.25 1194.99 4491.89 14771.90 20382.16 8893.49 11147.98 27097.05 9282.55 10384.82 14197.25 7
eth_miper_zixun_eth75.96 23574.40 23280.66 24284.66 26763.02 22189.28 25588.27 29671.88 20565.73 27881.65 28659.45 14992.81 26368.13 21760.53 33886.14 279
train_agg87.21 3587.42 3486.60 6794.18 4167.28 10894.16 6293.51 8071.87 20685.52 5995.33 5268.19 5297.27 8389.09 4794.90 2195.25 75
test_894.19 4067.19 11094.15 6493.42 8671.87 20685.38 6295.35 5168.19 5296.95 106
MDTV_nov1_ep1372.61 25789.06 17268.48 7580.33 34090.11 22371.84 20871.81 20775.92 34853.01 22593.92 23548.04 33073.38 239
ab-mvs80.18 15978.31 17385.80 9488.44 18665.49 15683.00 32192.67 11671.82 20977.36 14685.01 24954.50 20696.59 11976.35 14875.63 22595.32 67
ACMMPcopyleft81.49 13580.67 13783.93 16191.71 11262.90 22792.13 15292.22 13371.79 21071.68 21093.49 11150.32 24696.96 10478.47 13684.22 15191.93 190
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
PHI-MVS86.83 4186.85 4386.78 6293.47 6365.55 15395.39 3195.10 2271.77 21185.69 5896.52 2362.07 12298.77 2286.06 7595.60 1196.03 43
TEST994.18 4167.28 10894.16 6293.51 8071.75 21285.52 5995.33 5268.01 5497.27 83
WB-MVSnew77.14 21376.18 20880.01 25986.18 24063.24 21691.26 19894.11 6071.72 21373.52 18487.29 22545.14 29493.00 25356.98 29779.42 19083.80 313
c3_l76.83 22175.47 21780.93 24085.02 26364.18 19090.39 22788.11 30071.66 21466.65 27681.64 28763.58 10492.56 27469.31 20762.86 31586.04 283
SED-MVS89.94 990.36 1088.70 1896.45 1269.38 5496.89 694.44 4671.65 21592.11 697.21 476.79 999.11 692.34 2195.36 1397.62 2
test_241102_TWO94.41 4871.65 21592.07 897.21 474.58 1799.11 692.34 2195.36 1396.59 20
test_241102_ONE96.45 1269.38 5494.44 4671.65 21592.11 697.05 776.79 999.11 6
v875.35 24373.26 24881.61 22080.67 31366.82 12089.54 24989.27 25571.65 21563.30 30180.30 31154.99 20394.06 22567.33 22762.33 32183.94 311
v124075.21 24672.98 25181.88 21579.20 33166.00 14190.75 21789.11 26571.63 21967.41 26681.22 29747.36 27593.87 23765.46 25064.72 30385.77 290
SCA75.82 23772.76 25385.01 12186.63 23170.08 3881.06 33589.19 25971.60 22070.01 22877.09 33845.53 29090.25 31460.43 28273.27 24094.68 98
BH-untuned78.68 18877.08 19483.48 17589.84 15063.74 19892.70 12988.59 28771.57 22166.83 27488.65 19951.75 23595.39 17259.03 29084.77 14291.32 201
IterMVS72.65 27570.83 27378.09 29082.17 29962.96 22387.64 28486.28 31971.56 22260.44 31778.85 32445.42 29286.66 34763.30 26561.83 32684.65 307
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
mPP-MVS82.96 11482.44 11484.52 14392.83 7862.92 22692.76 12591.85 15171.52 22375.61 16494.24 9453.48 22296.99 10078.97 13190.73 8993.64 142
test-LLR80.10 16179.56 15581.72 21886.93 22961.17 25992.70 12991.54 16571.51 22475.62 16286.94 22953.83 21592.38 28072.21 18184.76 14391.60 192
test0.0.03 172.76 27072.71 25672.88 33480.25 31947.99 36591.22 20189.45 24871.51 22462.51 31087.66 21853.83 21585.06 35650.16 32067.84 28185.58 293
test_one_060196.32 1869.74 4994.18 5771.42 22690.67 1996.85 1674.45 18
PGM-MVS83.25 10882.70 11084.92 12292.81 8264.07 19190.44 22492.20 13471.28 22777.23 14894.43 8355.17 20197.31 7779.33 12791.38 8293.37 147
thisisatest053081.15 13980.07 14584.39 14888.26 19365.63 15091.40 18794.62 4071.27 22870.93 21689.18 19472.47 2896.04 14365.62 24776.89 21891.49 194
cl____76.07 22874.67 22480.28 24985.15 25961.76 25090.12 23588.73 28171.16 22965.43 28081.57 28961.15 12992.95 25566.54 23562.17 32286.13 281
DIV-MVS_self_test76.07 22874.67 22480.28 24985.14 26061.75 25190.12 23588.73 28171.16 22965.42 28181.60 28861.15 12992.94 25966.54 23562.16 32486.14 279
dp75.01 24872.09 26383.76 16389.28 16566.22 13879.96 34889.75 23771.16 22967.80 26177.19 33751.81 23492.54 27550.39 31871.44 25792.51 174
iter_conf05_1184.06 9283.37 9786.15 8393.04 7466.63 12687.84 28090.21 22071.10 23281.47 9389.48 19068.80 4496.96 10475.97 15092.39 6594.87 87
FA-MVS(test-final)79.12 17777.23 19384.81 12990.54 13763.98 19381.35 33391.71 15771.09 23374.85 17282.94 27052.85 22697.05 9267.97 21981.73 17493.41 146
CP-MVS83.71 10183.40 9584.65 13793.14 7163.84 19494.59 5392.28 12871.03 23477.41 14594.92 7055.21 20096.19 13381.32 11390.70 9093.91 133
v1074.77 25072.54 25981.46 22380.33 31866.71 12489.15 25989.08 26770.94 23563.08 30479.86 31652.52 22994.04 22865.70 24662.17 32283.64 314
CDPH-MVS85.71 6185.46 6386.46 7394.75 3467.19 11093.89 7892.83 10970.90 23683.09 8195.28 5563.62 10097.36 7380.63 11794.18 3794.84 91
GBi-Net75.65 23973.83 24181.10 23388.85 17665.11 16390.01 23990.32 21070.84 23767.04 27080.25 31248.03 26791.54 30159.80 28769.34 26586.64 268
test175.65 23973.83 24181.10 23388.85 17665.11 16390.01 23990.32 21070.84 23767.04 27080.25 31248.03 26791.54 30159.80 28769.34 26586.64 268
FMVSNet276.07 22874.01 23982.26 20388.85 17667.66 9891.33 19591.61 16370.84 23765.98 27782.25 27848.03 26792.00 29158.46 29268.73 27387.10 262
SF-MVS87.03 3787.09 3786.84 5892.70 8467.45 10693.64 9393.76 6970.78 24086.25 5096.44 2666.98 6197.79 4788.68 5194.56 3395.28 71
ZD-MVS96.63 965.50 15593.50 8270.74 24185.26 6495.19 6364.92 8297.29 7887.51 5993.01 57
HyFIR lowres test81.03 14479.56 15585.43 10587.81 20868.11 8890.18 23490.01 22970.65 24272.95 18986.06 24163.61 10194.50 20775.01 15979.75 18993.67 140
MVP-Stereo77.12 21476.23 20679.79 26781.72 30366.34 13489.29 25490.88 19470.56 24362.01 31282.88 27149.34 25694.13 22065.55 24993.80 4478.88 366
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
ACMP71.68 1075.58 24274.23 23579.62 27184.97 26459.64 28790.80 21589.07 26870.39 24462.95 30587.30 22438.28 32193.87 23772.89 17171.45 25685.36 299
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
HPM-MVScopyleft83.25 10882.95 10484.17 15692.25 9362.88 22890.91 20991.86 14970.30 24577.12 14993.96 10156.75 18096.28 13182.04 10591.34 8493.34 148
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
GeoE78.90 18277.43 18783.29 17888.95 17562.02 24492.31 14586.23 32170.24 24671.34 21489.27 19354.43 21094.04 22863.31 26480.81 18293.81 138
tpm279.80 16777.95 18085.34 11088.28 19268.26 8281.56 33091.42 17170.11 24777.59 14480.50 30767.40 5994.26 21667.34 22677.35 21293.51 144
TR-MVS78.77 18777.37 19282.95 18490.49 13860.88 26593.67 9190.07 22470.08 24874.51 17491.37 15845.69 28995.70 15960.12 28580.32 18492.29 179
CL-MVSNet_self_test69.92 29168.09 29575.41 31473.25 36955.90 32890.05 23889.90 23169.96 24961.96 31376.54 34151.05 24287.64 34049.51 32450.59 36882.70 332
PAPM_NR82.97 11381.84 12186.37 7794.10 4466.76 12387.66 28392.84 10869.96 24974.07 18093.57 10963.10 11297.50 6470.66 19690.58 9294.85 88
PCF-MVS73.15 979.29 17477.63 18484.29 15286.06 24365.96 14387.03 29091.10 18569.86 25169.79 23390.64 16557.54 16996.59 11964.37 25782.29 16390.32 214
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
miper_lstm_enhance73.05 26571.73 26877.03 30283.80 28158.32 30581.76 32688.88 27569.80 25261.01 31478.23 32857.19 17187.51 34365.34 25159.53 34385.27 302
MIMVSNet71.64 27968.44 29281.23 22881.97 30264.44 17773.05 37088.80 27969.67 25364.59 28774.79 35232.79 35187.82 33753.99 30876.35 22191.42 196
LPG-MVS_test75.82 23774.58 22879.56 27384.31 27559.37 29290.44 22489.73 24069.49 25464.86 28488.42 20138.65 31794.30 21272.56 17772.76 24585.01 303
LGP-MVS_train79.56 27384.31 27559.37 29289.73 24069.49 25464.86 28488.42 20138.65 31794.30 21272.56 17772.76 24585.01 303
APDe-MVScopyleft87.54 2987.84 2886.65 6596.07 2366.30 13594.84 4893.78 6669.35 25688.39 3696.34 2867.74 5797.66 5490.62 3693.44 5296.01 44
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
tttt051779.50 17178.53 17182.41 19887.22 22061.43 25789.75 24694.76 3269.29 25767.91 25788.06 21372.92 2595.63 16062.91 26873.90 23890.16 216
Patchmatch-RL test68.17 30764.49 31779.19 27771.22 37453.93 33870.07 37671.54 38269.22 25856.79 33962.89 38256.58 18488.61 32869.53 20452.61 36395.03 83
test_yl84.28 8483.16 10087.64 3594.52 3769.24 5895.78 1995.09 2369.19 25981.09 9792.88 12357.00 17597.44 6681.11 11581.76 17296.23 38
DCV-MVSNet84.28 8483.16 10087.64 3594.52 3769.24 5895.78 1995.09 2369.19 25981.09 9792.88 12357.00 17597.44 6681.11 11581.76 17296.23 38
jajsoiax73.05 26571.51 27077.67 29377.46 35254.83 33488.81 26490.04 22769.13 26162.85 30783.51 26531.16 36092.75 26670.83 19269.80 26185.43 298
DP-MVS Recon82.73 11681.65 12385.98 8697.31 467.06 11495.15 3791.99 14169.08 26276.50 15693.89 10254.48 20998.20 3570.76 19485.66 13792.69 167
Baseline_NR-MVSNet73.99 25772.83 25277.48 29680.78 31159.29 29591.79 17284.55 33868.85 26368.99 24180.70 30356.16 18892.04 29062.67 27060.98 33581.11 346
CHOSEN 280x42077.35 21076.95 19878.55 28487.07 22462.68 23269.71 37782.95 35268.80 26471.48 21287.27 22666.03 6984.00 36276.47 14782.81 16088.95 232
DPE-MVScopyleft88.77 1889.21 1787.45 4496.26 2067.56 10194.17 6194.15 5968.77 26590.74 1897.27 276.09 1298.49 2990.58 3794.91 2096.30 34
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
mvs_tets72.71 27271.11 27177.52 29477.41 35354.52 33688.45 27089.76 23668.76 26662.70 30883.26 26829.49 36492.71 26770.51 19869.62 26385.34 300
MVS84.66 7882.86 10790.06 290.93 13074.56 687.91 27895.54 1368.55 26772.35 20294.71 7659.78 14698.90 1981.29 11494.69 3296.74 17
EPP-MVSNet81.79 13281.52 12482.61 19288.77 18060.21 28193.02 11893.66 7568.52 26872.90 19090.39 17372.19 3194.96 18674.93 16079.29 19492.67 168
CSCG86.87 3886.26 4788.72 1795.05 3170.79 3093.83 8595.33 1668.48 26977.63 14294.35 8973.04 2498.45 3084.92 8593.71 4896.92 14
testing370.38 28870.83 27369.03 35385.82 24943.93 38290.72 21890.56 20368.06 27060.24 31886.82 23164.83 8384.12 35826.33 39264.10 30879.04 365
CP-MVSNet70.50 28669.91 28372.26 33980.71 31251.00 35187.23 28990.30 21467.84 27159.64 32182.69 27350.23 24982.30 37451.28 31559.28 34483.46 319
pmmvs573.35 26271.52 26978.86 28278.64 34260.61 27691.08 20686.90 31367.69 27263.32 30083.64 26344.33 29890.53 31162.04 27466.02 29085.46 297
pm-mvs172.89 26871.09 27278.26 28879.10 33557.62 31290.80 21589.30 25467.66 27362.91 30681.78 28449.11 26292.95 25560.29 28458.89 34684.22 309
MDTV_nov1_ep13_2view59.90 28580.13 34467.65 27472.79 19154.33 21259.83 28692.58 171
pmmvs473.92 25871.81 26780.25 25179.17 33265.24 15987.43 28687.26 31167.64 27563.46 29983.91 26248.96 26391.53 30462.94 26765.49 29283.96 310
WR-MVS_H70.59 28569.94 28272.53 33681.03 30851.43 34887.35 28792.03 14067.38 27660.23 31980.70 30355.84 19483.45 36646.33 34058.58 34882.72 330
KD-MVS_2432*160069.03 29966.37 30277.01 30385.56 25361.06 26281.44 33190.25 21667.27 27758.00 33376.53 34254.49 20787.63 34148.04 33035.77 39182.34 336
miper_refine_blended69.03 29966.37 30277.01 30385.56 25361.06 26281.44 33190.25 21667.27 27758.00 33376.53 34254.49 20787.63 34148.04 33035.77 39182.34 336
PS-CasMVS69.86 29369.13 28872.07 34380.35 31750.57 35387.02 29189.75 23767.27 27759.19 32582.28 27746.58 28082.24 37550.69 31759.02 34583.39 321
PEN-MVS69.46 29668.56 29072.17 34179.27 33049.71 35786.90 29389.24 25667.24 28059.08 32682.51 27647.23 27683.54 36548.42 32857.12 34983.25 322
cascas78.18 19775.77 21385.41 10687.14 22269.11 6092.96 11991.15 18366.71 28170.47 22086.07 24037.49 33196.48 12770.15 19979.80 18890.65 210
APD-MVScopyleft85.93 5685.99 5485.76 9695.98 2665.21 16093.59 9692.58 12266.54 28286.17 5295.88 4063.83 9597.00 9786.39 7292.94 5895.06 80
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
OpenMVScopyleft70.45 1178.54 19275.92 21186.41 7685.93 24871.68 1892.74 12692.51 12466.49 28364.56 28891.96 14343.88 29998.10 3754.61 30590.65 9189.44 230
DTE-MVSNet68.46 30567.33 29871.87 34577.94 35049.00 36286.16 29888.58 28866.36 28458.19 33082.21 27946.36 28183.87 36344.97 34755.17 35682.73 329
IterMVS-SCA-FT71.55 28169.97 28176.32 30981.48 30560.67 27487.64 28485.99 32466.17 28559.50 32278.88 32345.53 29083.65 36462.58 27161.93 32584.63 308
TransMVSNet (Re)70.07 29067.66 29677.31 30080.62 31559.13 29891.78 17484.94 33465.97 28660.08 32080.44 30850.78 24391.87 29248.84 32645.46 37680.94 348
MVSFormer83.75 10082.88 10686.37 7789.24 16971.18 2489.07 26090.69 19765.80 28787.13 4394.34 9064.99 7992.67 27072.83 17291.80 7495.27 72
test_djsdf73.76 26172.56 25877.39 29877.00 35553.93 33889.07 26090.69 19765.80 28763.92 29482.03 28143.14 30392.67 27072.83 17268.53 27485.57 294
API-MVS82.28 12380.53 14187.54 4296.13 2270.59 3293.63 9491.04 19265.72 28975.45 16692.83 12556.11 19098.89 2064.10 25889.75 10093.15 154
原ACMM184.42 14693.21 6864.27 18793.40 8865.39 29079.51 11892.50 12958.11 16496.69 11765.27 25293.96 4192.32 178
testgi64.48 32962.87 32769.31 35271.24 37340.62 38885.49 29979.92 36165.36 29154.18 34783.49 26623.74 37784.55 35741.60 35860.79 33782.77 328
QAPM79.95 16577.39 19187.64 3589.63 15571.41 2093.30 10893.70 7365.34 29267.39 26791.75 14947.83 27298.96 1657.71 29589.81 9792.54 172
HPM-MVS_fast80.25 15879.55 15782.33 19991.55 11759.95 28491.32 19689.16 26165.23 29374.71 17393.07 11747.81 27395.74 15374.87 16388.23 10991.31 202
tfpnnormal70.10 28967.36 29778.32 28683.45 28760.97 26488.85 26392.77 11064.85 29460.83 31678.53 32543.52 30193.48 24531.73 38761.70 33080.52 353
FE-MVS75.97 23473.02 25084.82 12689.78 15165.56 15277.44 35891.07 18964.55 29572.66 19279.85 31746.05 28896.69 11754.97 30480.82 18192.21 185
SR-MVS82.81 11582.58 11183.50 17493.35 6461.16 26192.23 14991.28 17864.48 29681.27 9495.28 5553.71 21895.86 14882.87 10088.77 10693.49 145
K. test v363.09 33559.61 34073.53 32976.26 35849.38 36183.27 31577.15 36564.35 29747.77 37272.32 36028.73 36687.79 33849.93 32236.69 38983.41 320
v7n71.31 28268.65 28979.28 27676.40 35760.77 26886.71 29589.45 24864.17 29858.77 32978.24 32744.59 29793.54 24357.76 29461.75 32883.52 317
FMVSNet172.71 27269.91 28381.10 23383.60 28565.11 16390.01 23990.32 21063.92 29963.56 29880.25 31236.35 34091.54 30154.46 30666.75 28686.64 268
XVG-OURS74.25 25472.46 26079.63 27078.45 34457.59 31380.33 34087.39 30863.86 30068.76 24689.62 18940.50 31191.72 29669.00 21174.25 23389.58 225
UniMVSNet_ETH3D72.74 27170.53 27879.36 27578.62 34356.64 32385.01 30289.20 25863.77 30164.84 28684.44 25734.05 34891.86 29363.94 25970.89 26089.57 226
test_fmvs174.07 25573.69 24375.22 31578.91 33847.34 36989.06 26274.69 37363.68 30279.41 12091.59 15324.36 37487.77 33985.22 7976.26 22290.55 213
114514_t79.17 17677.67 18283.68 16895.32 2965.53 15492.85 12391.60 16463.49 30367.92 25690.63 16746.65 27995.72 15867.01 23183.54 15389.79 222
test_fmvs1_n72.69 27471.92 26574.99 31871.15 37547.08 37187.34 28875.67 36863.48 30478.08 13791.17 16020.16 38587.87 33684.65 8775.57 22690.01 219
APD-MVS_3200maxsize81.64 13481.32 12682.59 19392.36 9058.74 30191.39 18991.01 19363.35 30579.72 11694.62 7951.82 23396.14 13579.71 12387.93 11392.89 165
test20.0363.83 33262.65 32867.38 36070.58 37939.94 38986.57 29684.17 34063.29 30651.86 35577.30 33437.09 33682.47 37238.87 36954.13 36079.73 359
XVG-OURS-SEG-HR74.70 25173.08 24979.57 27278.25 34657.33 31780.49 33887.32 30963.22 30768.76 24690.12 18544.89 29691.59 29970.55 19774.09 23589.79 222
test_vis1_n71.63 28070.73 27674.31 32569.63 38147.29 37086.91 29272.11 37863.21 30875.18 16890.17 18020.40 38385.76 35184.59 8874.42 23289.87 220
ACMM69.62 1374.34 25272.73 25579.17 27884.25 27757.87 30890.36 22889.93 23063.17 30965.64 27986.04 24237.79 32994.10 22165.89 24371.52 25585.55 295
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
tpmvs72.88 26969.76 28582.22 20490.98 12967.05 11578.22 35588.30 29463.10 31064.35 29374.98 35155.09 20294.27 21443.25 35069.57 26485.34 300
SixPastTwentyTwo64.92 32661.78 33374.34 32478.74 34049.76 35683.42 31479.51 36362.86 31150.27 36277.35 33330.92 36290.49 31245.89 34247.06 37382.78 327
SR-MVS-dyc-post81.06 14380.70 13682.15 20792.02 9958.56 30390.90 21090.45 20462.76 31278.89 12694.46 8151.26 24195.61 16278.77 13486.77 12792.28 180
RE-MVS-def80.48 14292.02 9958.56 30390.90 21090.45 20462.76 31278.89 12694.46 8149.30 25778.77 13486.77 12792.28 180
TAPA-MVS70.22 1274.94 24973.53 24579.17 27890.40 14052.07 34589.19 25889.61 24462.69 31470.07 22792.67 12748.89 26494.32 21038.26 37079.97 18691.12 206
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
Anonymous20240521177.96 20175.33 22085.87 9093.73 5564.52 17294.85 4785.36 33062.52 31576.11 15790.18 17929.43 36597.29 7868.51 21677.24 21595.81 50
pmmvs-eth3d65.53 32562.32 33075.19 31669.39 38259.59 28882.80 32283.43 34862.52 31551.30 35972.49 35632.86 35087.16 34655.32 30350.73 36778.83 367
AdaColmapbinary78.94 18177.00 19784.76 13196.34 1765.86 14592.66 13387.97 30562.18 31770.56 21992.37 13543.53 30097.35 7464.50 25682.86 15891.05 207
FOURS193.95 4761.77 24993.96 7391.92 14462.14 31886.57 49
无先验92.71 12892.61 12162.03 31997.01 9666.63 23393.97 130
XVG-ACMP-BASELINE68.04 30865.53 30875.56 31374.06 36752.37 34378.43 35285.88 32562.03 31958.91 32881.21 29920.38 38491.15 30860.69 28168.18 27683.16 324
anonymousdsp71.14 28369.37 28776.45 30872.95 37054.71 33584.19 30688.88 27561.92 32162.15 31179.77 31838.14 32491.44 30668.90 21367.45 28283.21 323
tpm cat175.30 24472.21 26284.58 14188.52 18267.77 9578.16 35688.02 30261.88 32268.45 25176.37 34460.65 13594.03 23053.77 31074.11 23491.93 190
FMVSNet568.04 30865.66 30775.18 31784.43 27357.89 30783.54 31086.26 32061.83 32353.64 35073.30 35537.15 33585.08 35548.99 32561.77 32782.56 335
Anonymous2023120667.53 31365.78 30472.79 33574.95 36347.59 36788.23 27287.32 30961.75 32458.07 33277.29 33537.79 32987.29 34542.91 35263.71 31283.48 318
PatchMatch-RL72.06 27769.98 28078.28 28789.51 15955.70 32983.49 31183.39 35061.24 32563.72 29782.76 27234.77 34593.03 25253.37 31277.59 20786.12 282
tt080573.07 26470.73 27680.07 25678.37 34557.05 31987.78 28192.18 13661.23 32667.04 27086.49 23431.35 35994.58 19965.06 25367.12 28388.57 239
PLCcopyleft68.80 1475.23 24573.68 24479.86 26592.93 7658.68 30290.64 22188.30 29460.90 32764.43 29290.53 16842.38 30594.57 20156.52 29876.54 22086.33 274
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
ACMH63.93 1768.62 30264.81 31280.03 25885.22 25863.25 21587.72 28284.66 33660.83 32851.57 35779.43 32227.29 37094.96 18641.76 35764.84 30081.88 340
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
EG-PatchMatch MVS68.55 30365.41 30977.96 29178.69 34162.93 22489.86 24489.17 26060.55 32950.27 36277.73 33222.60 37994.06 22547.18 33672.65 24776.88 374
VDDNet80.50 15278.26 17487.21 4886.19 23969.79 4794.48 5491.31 17460.42 33079.34 12190.91 16338.48 32096.56 12282.16 10481.05 17895.27 72
CPTT-MVS79.59 16979.16 16480.89 24191.54 11859.80 28692.10 15488.54 28960.42 33072.96 18893.28 11348.27 26692.80 26478.89 13386.50 13290.06 217
our_test_368.29 30664.69 31479.11 28178.92 33664.85 17088.40 27185.06 33260.32 33252.68 35276.12 34640.81 31089.80 32444.25 34955.65 35482.67 334
ITE_SJBPF70.43 34874.44 36547.06 37277.32 36460.16 33354.04 34883.53 26423.30 37884.01 36143.07 35161.58 33280.21 358
ppachtmachnet_test67.72 31063.70 32179.77 26878.92 33666.04 14088.68 26682.90 35360.11 33455.45 34275.96 34739.19 31490.55 31039.53 36552.55 36482.71 331
new-patchmatchnet59.30 34756.48 34967.79 35765.86 38844.19 37982.47 32381.77 35459.94 33543.65 38466.20 37627.67 36981.68 37739.34 36641.40 38277.50 373
mvsany_test168.77 30168.56 29069.39 35173.57 36845.88 37780.93 33660.88 39659.65 33671.56 21190.26 17843.22 30275.05 38574.26 16662.70 31787.25 261
新几何184.73 13292.32 9164.28 18691.46 17059.56 33779.77 11592.90 12156.95 17896.57 12163.40 26292.91 5993.34 148
旧先验292.00 16359.37 33887.54 4293.47 24675.39 155
PM-MVS59.40 34656.59 34867.84 35663.63 38941.86 38476.76 35963.22 39359.01 33951.07 36072.27 36111.72 39683.25 36861.34 27750.28 36978.39 370
LTVRE_ROB59.60 1966.27 31963.54 32274.45 32284.00 28051.55 34767.08 38483.53 34758.78 34054.94 34480.31 31034.54 34693.23 24940.64 36368.03 27778.58 369
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
testdata81.34 22689.02 17357.72 31089.84 23358.65 34185.32 6394.09 9757.03 17393.28 24869.34 20690.56 9393.03 159
ACMH+65.35 1667.65 31164.55 31576.96 30584.59 26957.10 31888.08 27380.79 35758.59 34253.00 35181.09 30126.63 37292.95 25546.51 33861.69 33180.82 349
kuosan60.86 34260.24 33662.71 36681.57 30446.43 37475.70 36685.88 32557.98 34348.95 36869.53 37058.42 15976.53 38428.25 39135.87 39065.15 389
ADS-MVSNet266.90 31663.44 32377.26 30188.06 19960.70 27368.01 38175.56 37057.57 34464.48 28969.87 36838.68 31584.10 35940.87 36167.89 27986.97 263
ADS-MVSNet68.54 30464.38 31981.03 23788.06 19966.90 11968.01 38184.02 34257.57 34464.48 28969.87 36838.68 31589.21 32740.87 36167.89 27986.97 263
MDA-MVSNet-bldmvs61.54 34057.70 34573.05 33279.53 32757.00 32283.08 31981.23 35557.57 34434.91 39372.45 35732.79 35186.26 35035.81 37441.95 38175.89 376
KD-MVS_self_test60.87 34158.60 34267.68 35866.13 38739.93 39075.63 36784.70 33557.32 34749.57 36568.45 37229.55 36382.87 37048.09 32947.94 37280.25 357
UnsupCasMVSNet_bld61.60 33957.71 34473.29 33168.73 38351.64 34678.61 35189.05 26957.20 34846.11 37361.96 38528.70 36788.60 32950.08 32138.90 38779.63 360
MSDG69.54 29565.73 30580.96 23885.11 26263.71 20184.19 30683.28 35156.95 34954.50 34584.03 25931.50 35796.03 14442.87 35469.13 27083.14 325
F-COLMAP70.66 28468.44 29277.32 29986.37 23755.91 32788.00 27686.32 31856.94 35057.28 33888.07 21233.58 34992.49 27751.02 31668.37 27583.55 315
test22289.77 15261.60 25489.55 24889.42 25056.83 35177.28 14792.43 13352.76 22791.14 8793.09 156
CNLPA74.31 25372.30 26180.32 24791.49 11961.66 25390.85 21380.72 35856.67 35263.85 29690.64 16546.75 27890.84 30953.79 30975.99 22488.47 242
OurMVSNet-221017-064.68 32762.17 33172.21 34076.08 36047.35 36880.67 33781.02 35656.19 35351.60 35679.66 32027.05 37188.56 33053.60 31153.63 36180.71 351
YYNet163.76 33460.14 33874.62 32178.06 34960.19 28283.46 31383.99 34556.18 35439.25 38971.56 36537.18 33483.34 36742.90 35348.70 37180.32 355
MDA-MVSNet_test_wron63.78 33360.16 33774.64 32078.15 34860.41 27783.49 31184.03 34156.17 35539.17 39071.59 36437.22 33383.24 36942.87 35448.73 37080.26 356
OpenMVS_ROBcopyleft61.12 1866.39 31862.92 32676.80 30776.51 35657.77 30989.22 25683.41 34955.48 35653.86 34977.84 33126.28 37393.95 23434.90 37768.76 27278.68 368
MIMVSNet160.16 34557.33 34668.67 35469.71 38044.13 38078.92 35084.21 33955.05 35744.63 38171.85 36223.91 37681.54 37832.63 38555.03 35780.35 354
test_fmvs265.78 32364.84 31168.60 35566.54 38641.71 38583.27 31569.81 38454.38 35867.91 25784.54 25615.35 39081.22 37975.65 15366.16 28982.88 326
CVMVSNet74.04 25674.27 23473.33 33085.33 25543.94 38189.53 25088.39 29154.33 35970.37 22390.13 18249.17 26084.05 36061.83 27679.36 19291.99 189
Anonymous2024052976.84 22074.15 23684.88 12491.02 12864.95 16893.84 8391.09 18653.57 36073.00 18787.42 22235.91 34197.32 7669.14 21072.41 25092.36 176
pmmvs667.57 31264.76 31376.00 31272.82 37253.37 34088.71 26586.78 31753.19 36157.58 33778.03 33035.33 34492.41 27955.56 30254.88 35882.21 338
TinyColmap60.32 34356.42 35072.00 34478.78 33953.18 34178.36 35475.64 36952.30 36241.59 38875.82 34914.76 39388.35 33235.84 37354.71 35974.46 378
test_040264.54 32861.09 33474.92 31984.10 27960.75 27087.95 27779.71 36252.03 36352.41 35377.20 33632.21 35591.64 29723.14 39461.03 33472.36 382
test_vis1_rt59.09 34857.31 34764.43 36368.44 38446.02 37683.05 32048.63 40551.96 36449.57 36563.86 38116.30 38880.20 38171.21 19062.79 31667.07 388
Anonymous2023121173.08 26370.39 27981.13 23190.62 13663.33 21491.40 18790.06 22651.84 36564.46 29180.67 30536.49 33994.07 22463.83 26064.17 30785.98 285
dongtai55.18 35355.46 35254.34 37676.03 36136.88 39476.07 36384.61 33751.28 36643.41 38564.61 38056.56 18567.81 39518.09 39928.50 40058.32 392
AllTest61.66 33858.06 34372.46 33779.57 32551.42 34980.17 34368.61 38651.25 36745.88 37481.23 29519.86 38686.58 34838.98 36757.01 35179.39 361
TestCases72.46 33779.57 32551.42 34968.61 38651.25 36745.88 37481.23 29519.86 38686.58 34838.98 36757.01 35179.39 361
PatchT69.11 29865.37 31080.32 24782.07 30163.68 20467.96 38387.62 30750.86 36969.37 23465.18 37757.09 17288.53 33141.59 35966.60 28788.74 236
Anonymous2024052162.09 33759.08 34171.10 34667.19 38548.72 36383.91 30885.23 33150.38 37047.84 37171.22 36720.74 38285.51 35446.47 33958.75 34779.06 364
DP-MVS69.90 29266.48 29980.14 25495.36 2862.93 22489.56 24776.11 36650.27 37157.69 33685.23 24739.68 31395.73 15433.35 38071.05 25981.78 342
gg-mvs-nofinetune77.18 21274.31 23385.80 9491.42 12068.36 7871.78 37194.72 3449.61 37277.12 14945.92 39577.41 893.98 23267.62 22493.16 5695.05 81
JIA-IIPM66.06 32062.45 32976.88 30681.42 30754.45 33757.49 39688.67 28449.36 37363.86 29546.86 39456.06 19190.25 31449.53 32368.83 27185.95 286
N_pmnet50.55 35549.11 35854.88 37477.17 3544.02 41884.36 3052.00 41648.59 37445.86 37668.82 37132.22 35482.80 37131.58 38851.38 36677.81 372
ANet_high40.27 36635.20 36955.47 37234.74 41334.47 39863.84 38871.56 38148.42 37518.80 40241.08 4019.52 40064.45 40220.18 3978.66 40967.49 387
COLMAP_ROBcopyleft57.96 2062.98 33659.65 33972.98 33381.44 30653.00 34283.75 30975.53 37148.34 37648.81 36981.40 29324.14 37590.30 31332.95 38260.52 33975.65 377
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
Patchmtry67.53 31363.93 32078.34 28582.12 30064.38 18168.72 37884.00 34348.23 37759.24 32372.41 35857.82 16689.27 32646.10 34156.68 35381.36 343
LS3D69.17 29766.40 30177.50 29591.92 10556.12 32685.12 30180.37 36046.96 37856.50 34087.51 22137.25 33293.71 24032.52 38679.40 19182.68 333
RPSCF64.24 33061.98 33271.01 34776.10 35945.00 37875.83 36575.94 36746.94 37958.96 32784.59 25431.40 35882.00 37647.76 33460.33 34286.04 283
RPMNet70.42 28765.68 30684.63 13983.15 28967.96 9170.25 37490.45 20446.83 38069.97 23065.10 37856.48 18795.30 17735.79 37573.13 24190.64 211
WB-MVS46.23 35944.94 36150.11 37962.13 39321.23 41276.48 36155.49 39845.89 38135.78 39161.44 38735.54 34272.83 3899.96 40621.75 40156.27 394
CMPMVSbinary48.56 2166.77 31764.41 31873.84 32770.65 37850.31 35477.79 35785.73 32845.54 38244.76 38082.14 28035.40 34390.14 32063.18 26674.54 23081.07 347
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
EU-MVSNet64.01 33163.01 32567.02 36174.40 36638.86 39383.27 31586.19 32245.11 38354.27 34681.15 30036.91 33880.01 38248.79 32757.02 35082.19 339
TDRefinement55.28 35251.58 35666.39 36259.53 39646.15 37576.23 36272.80 37644.60 38442.49 38676.28 34515.29 39182.39 37333.20 38143.75 37870.62 384
Patchmatch-test65.86 32160.94 33580.62 24483.75 28258.83 30058.91 39575.26 37244.50 38550.95 36177.09 33858.81 15787.90 33535.13 37664.03 30995.12 79
test_fmvs356.82 34954.86 35362.69 36753.59 39935.47 39675.87 36465.64 39143.91 38655.10 34371.43 3666.91 40474.40 38868.64 21552.63 36278.20 371
mvsany_test348.86 35746.35 36056.41 37046.00 40531.67 40162.26 38947.25 40643.71 38745.54 37868.15 37310.84 39764.44 40357.95 29335.44 39373.13 379
SSC-MVS44.51 36143.35 36347.99 38361.01 39518.90 41474.12 36954.36 39943.42 38834.10 39460.02 38834.42 34770.39 3929.14 40819.57 40254.68 395
LF4IMVS54.01 35452.12 35559.69 36862.41 39239.91 39168.59 37968.28 38842.96 38944.55 38275.18 35014.09 39568.39 39441.36 36051.68 36570.78 383
DSMNet-mixed56.78 35054.44 35463.79 36463.21 39029.44 40564.43 38764.10 39242.12 39051.32 35871.60 36331.76 35675.04 38636.23 37265.20 29786.87 266
pmmvs355.51 35151.50 35767.53 35957.90 39750.93 35280.37 33973.66 37540.63 39144.15 38364.75 37916.30 38878.97 38344.77 34840.98 38572.69 380
new_pmnet49.31 35646.44 35957.93 36962.84 39140.74 38768.47 38062.96 39436.48 39235.09 39257.81 38914.97 39272.18 39032.86 38346.44 37460.88 391
MVS-HIRNet60.25 34455.55 35174.35 32384.37 27456.57 32471.64 37274.11 37434.44 39345.54 37842.24 40031.11 36189.81 32240.36 36476.10 22376.67 375
test_f46.58 35843.45 36255.96 37145.18 40632.05 40061.18 39049.49 40433.39 39442.05 38762.48 3847.00 40365.56 39947.08 33743.21 38070.27 385
test_vis3_rt40.46 36537.79 36648.47 38244.49 40733.35 39966.56 38532.84 41332.39 39529.65 39539.13 4033.91 41168.65 39350.17 31940.99 38443.40 398
DeepMVS_CXcopyleft34.71 38951.45 40124.73 40928.48 41531.46 39617.49 40552.75 3915.80 40642.60 41018.18 39819.42 40336.81 402
FPMVS45.64 36043.10 36453.23 37751.42 40236.46 39564.97 38671.91 37929.13 39727.53 39761.55 3869.83 39965.01 40116.00 40355.58 35558.22 393
PMMVS237.93 36833.61 37150.92 37846.31 40424.76 40860.55 39350.05 40228.94 39820.93 40047.59 3934.41 41065.13 40025.14 39318.55 40462.87 390
LCM-MVSNet40.54 36335.79 36854.76 37536.92 41230.81 40251.41 39969.02 38522.07 39924.63 39945.37 3964.56 40865.81 39833.67 37934.50 39467.67 386
APD_test140.50 36437.31 36750.09 38051.88 40035.27 39759.45 39452.59 40121.64 40026.12 39857.80 3904.56 40866.56 39722.64 39539.09 38648.43 396
PMVScopyleft26.43 2231.84 37228.16 37542.89 38525.87 41527.58 40650.92 40049.78 40321.37 40114.17 40740.81 4022.01 41466.62 3969.61 40738.88 38834.49 403
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
Gipumacopyleft34.91 36931.44 37245.30 38470.99 37639.64 39219.85 40672.56 37720.10 40216.16 40621.47 4075.08 40771.16 39113.07 40443.70 37925.08 404
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
testf132.77 37029.47 37342.67 38641.89 40930.81 40252.07 39743.45 40715.45 40318.52 40344.82 3972.12 41258.38 40416.05 40130.87 39738.83 399
APD_test232.77 37029.47 37342.67 38641.89 40930.81 40252.07 39743.45 40715.45 40318.52 40344.82 3972.12 41258.38 40416.05 40130.87 39738.83 399
E-PMN24.61 37324.00 37726.45 39043.74 40818.44 41560.86 39139.66 40915.11 4059.53 40922.10 4066.52 40546.94 4088.31 40910.14 40613.98 406
EMVS23.76 37523.20 37925.46 39141.52 41116.90 41660.56 39238.79 41214.62 4068.99 41020.24 4097.35 40245.82 4097.25 4109.46 40713.64 407
MVEpermissive24.84 2324.35 37419.77 38038.09 38834.56 41426.92 40726.57 40438.87 41111.73 40711.37 40827.44 4041.37 41550.42 40711.41 40514.60 40536.93 401
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
test_method38.59 36735.16 37048.89 38154.33 39821.35 41145.32 40253.71 4007.41 40828.74 39651.62 3928.70 40152.87 40633.73 37832.89 39572.47 381
wuyk23d11.30 37810.95 38112.33 39348.05 40319.89 41325.89 4051.92 4173.58 4093.12 4111.37 4110.64 41615.77 4126.23 4117.77 4101.35 408
tmp_tt22.26 37623.75 37817.80 3925.23 41612.06 41735.26 40339.48 4102.82 41018.94 40144.20 39922.23 38024.64 41136.30 3719.31 40816.69 405
EGC-MVSNET42.35 36238.09 36555.11 37374.57 36446.62 37371.63 37355.77 3970.04 4110.24 41262.70 38314.24 39474.91 38717.59 40046.06 37543.80 397
testmvs7.23 3809.62 3830.06 3950.04 4170.02 42084.98 3030.02 4180.03 4120.18 4131.21 4120.01 4180.02 4130.14 4120.01 4110.13 410
test1236.92 3819.21 3840.08 3940.03 4180.05 41981.65 3290.01 4190.02 4130.14 4140.85 4130.03 4170.02 4130.12 4130.00 4120.16 409
test_blank0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4120.00 411
uanet_test0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4120.00 411
DCPMVS0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4120.00 411
cdsmvs_eth3d_5k19.86 37726.47 3760.00 3960.00 4190.00 4210.00 40793.45 840.00 4140.00 41595.27 5749.56 2540.00 4150.00 4140.00 4120.00 411
pcd_1.5k_mvsjas4.46 3825.95 3850.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 41453.55 2190.00 4150.00 4140.00 4120.00 411
sosnet-low-res0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4120.00 411
sosnet0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4120.00 411
uncertanet0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4120.00 411
Regformer0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4120.00 411
ab-mvs-re7.91 37910.55 3820.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 41594.95 670.00 4190.00 4150.00 4140.00 4120.00 411
uanet0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4120.00 411
WAC-MVS49.45 35931.56 389
MSC_two_6792asdad89.60 897.31 473.22 1295.05 2699.07 1392.01 2494.77 2596.51 25
No_MVS89.60 897.31 473.22 1295.05 2699.07 1392.01 2494.77 2596.51 25
eth-test20.00 419
eth-test0.00 419
OPU-MVS89.97 397.52 373.15 1496.89 697.00 983.82 299.15 295.72 597.63 397.62 2
test_0728_SECOND88.70 1896.45 1270.43 3496.64 1094.37 5299.15 291.91 2794.90 2196.51 25
GSMVS94.68 98
test_part296.29 1968.16 8790.78 16
sam_mvs157.85 16594.68 98
sam_mvs54.91 204
ambc69.61 35061.38 39441.35 38649.07 40185.86 32750.18 36466.40 37510.16 39888.14 33445.73 34344.20 37779.32 363
MTGPAbinary92.23 130
test_post178.95 34920.70 40853.05 22491.50 30560.43 282
test_post23.01 40556.49 18692.67 270
patchmatchnet-post67.62 37457.62 16890.25 314
GG-mvs-BLEND86.53 7291.91 10669.67 5275.02 36894.75 3378.67 13390.85 16477.91 794.56 20372.25 18093.74 4695.36 64
MTMP93.77 8732.52 414
test9_res89.41 4294.96 1895.29 69
agg_prior286.41 7194.75 2995.33 65
agg_prior94.16 4366.97 11893.31 8984.49 7096.75 116
test_prior467.18 11293.92 76
test_prior86.42 7594.71 3567.35 10793.10 10096.84 11395.05 81
新几何291.41 185
旧先验191.94 10360.74 27191.50 16894.36 8565.23 7791.84 7394.55 105
原ACMM292.01 160
testdata296.09 13861.26 278
segment_acmp65.94 70
test1287.09 5294.60 3668.86 6692.91 10682.67 8665.44 7597.55 6293.69 4994.84 91
plane_prior786.94 22761.51 255
plane_prior687.23 21962.32 23950.66 244
plane_prior591.31 17495.55 16776.74 14478.53 20188.39 243
plane_prior489.14 196
plane_prior187.15 221
n20.00 420
nn0.00 420
door-mid66.01 390
lessismore_v073.72 32872.93 37147.83 36661.72 39545.86 37673.76 35428.63 36889.81 32247.75 33531.37 39683.53 316
test1193.01 102
door66.57 389
HQP5-MVS63.66 205
BP-MVS77.63 141
HQP4-MVS74.18 17695.61 16288.63 237
HQP3-MVS91.70 16078.90 196
HQP2-MVS51.63 237
NP-MVS87.41 21563.04 22090.30 175
ACMMP++_ref71.63 253
ACMMP++69.72 262
Test By Simon54.21 213