This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
MG-MVS87.11 3586.27 4589.62 897.79 176.27 494.96 4394.49 4378.74 8783.87 7592.94 11964.34 8896.94 10475.19 15594.09 3995.66 52
MCST-MVS91.08 191.46 389.94 497.66 273.37 1297.13 295.58 1089.33 185.77 5496.26 3072.84 2699.38 192.64 2095.93 997.08 11
OPU-MVS89.97 397.52 373.15 1696.89 697.00 983.82 299.15 295.72 597.63 397.62 2
DVP-MVS++90.53 491.09 588.87 1797.31 469.91 4493.96 6994.37 5172.48 18392.07 996.85 1683.82 299.15 291.53 3097.42 497.55 4
MSC_two_6792asdad89.60 997.31 473.22 1495.05 2599.07 1392.01 2594.77 2696.51 24
No_MVS89.60 997.31 473.22 1495.05 2599.07 1392.01 2594.77 2696.51 24
DP-MVS Recon82.73 11581.65 12285.98 8697.31 467.06 11495.15 3691.99 14169.08 25976.50 15493.89 10154.48 20998.20 3570.76 19485.66 13892.69 167
CNVR-MVS90.32 690.89 888.61 2396.76 870.65 3296.47 1494.83 2984.83 1189.07 3196.80 1970.86 3899.06 1592.64 2095.71 1196.12 41
ZD-MVS96.63 965.50 15593.50 8270.74 23885.26 6295.19 6264.92 8197.29 7687.51 5893.01 58
NCCC89.07 1689.46 1587.91 2996.60 1069.05 6396.38 1594.64 3884.42 1286.74 4596.20 3166.56 6498.76 2489.03 4894.56 3595.92 47
IU-MVS96.46 1169.91 4495.18 1980.75 4895.28 192.34 2295.36 1496.47 28
SED-MVS89.94 990.36 1088.70 1996.45 1269.38 5596.89 694.44 4571.65 21392.11 797.21 476.79 999.11 692.34 2295.36 1497.62 2
test_241102_ONE96.45 1269.38 5594.44 4571.65 21392.11 797.05 776.79 999.11 6
test_0728_SECOND88.70 1996.45 1270.43 3596.64 1094.37 5199.15 291.91 2894.90 2296.51 24
DVP-MVScopyleft89.41 1389.73 1488.45 2696.40 1569.99 4096.64 1094.52 4171.92 19990.55 2096.93 1173.77 2199.08 1191.91 2894.90 2296.29 36
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test072696.40 1569.99 4096.76 894.33 5371.92 19991.89 1197.11 673.77 21
AdaColmapbinary78.94 18177.00 19784.76 13196.34 1765.86 14592.66 12987.97 30562.18 31470.56 21892.37 13443.53 30097.35 7264.50 25682.86 15991.05 208
test_one_060196.32 1869.74 5094.18 5671.42 22490.67 1996.85 1674.45 18
test_part296.29 1968.16 8790.78 17
DPE-MVScopyleft88.77 1789.21 1687.45 4596.26 2067.56 10194.17 5794.15 5868.77 26290.74 1897.27 276.09 1298.49 2990.58 3894.91 2196.30 35
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
MAR-MVS84.18 8983.43 9186.44 7596.25 2165.93 14494.28 5594.27 5574.41 14179.16 12395.61 4553.99 21498.88 2269.62 20393.26 5694.50 111
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
API-MVS82.28 12280.53 14187.54 4396.13 2270.59 3393.63 9091.04 19265.72 28675.45 16492.83 12456.11 19098.89 2164.10 25889.75 10193.15 154
APDe-MVScopyleft87.54 2787.84 2686.65 6696.07 2366.30 13594.84 4593.78 6569.35 25388.39 3396.34 2867.74 5597.66 5490.62 3793.44 5396.01 45
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
patch_mono-289.71 1190.99 685.85 9296.04 2463.70 20295.04 4095.19 1886.74 791.53 1595.15 6373.86 2097.58 5993.38 1492.00 7196.28 38
PAPR85.15 7084.47 7587.18 5096.02 2568.29 8091.85 16693.00 10476.59 11879.03 12495.00 6561.59 12697.61 5878.16 13989.00 10595.63 53
APD-MVScopyleft85.93 5585.99 5385.76 9695.98 2665.21 16093.59 9292.58 12266.54 27986.17 5095.88 3963.83 9497.00 9486.39 7292.94 5995.06 81
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
DeepC-MVS_fast79.48 287.95 2288.00 2587.79 3295.86 2768.32 7995.74 2194.11 5983.82 1683.49 7696.19 3264.53 8798.44 3183.42 9994.88 2596.61 18
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
DP-MVS69.90 29166.48 29980.14 25395.36 2862.93 22489.56 24376.11 36550.27 37057.69 33685.23 24739.68 31395.73 15433.35 38071.05 25881.78 341
114514_t79.17 17677.67 18283.68 16895.32 2965.53 15492.85 11991.60 16463.49 30067.92 25490.63 16646.65 28095.72 15867.01 23183.54 15489.79 223
HPM-MVS++copyleft89.37 1489.95 1387.64 3595.10 3068.23 8595.24 3394.49 4382.43 2588.90 3296.35 2771.89 3498.63 2688.76 4996.40 696.06 42
CSCG86.87 3786.26 4688.72 1895.05 3170.79 3193.83 8195.33 1568.48 26677.63 14094.35 8873.04 2498.45 3084.92 8593.71 4896.92 14
dcpmvs_287.37 3187.55 3086.85 5895.04 3268.20 8690.36 22490.66 20079.37 7281.20 9493.67 10574.73 1596.55 12190.88 3592.00 7195.82 49
LFMVS84.34 8382.73 10789.18 1394.76 3373.25 1394.99 4291.89 14771.90 20182.16 8693.49 11047.98 27197.05 8982.55 10484.82 14297.25 8
CDPH-MVS85.71 6085.46 6286.46 7494.75 3467.19 11093.89 7492.83 10970.90 23383.09 7995.28 5463.62 9997.36 7180.63 11894.18 3894.84 91
test_prior86.42 7694.71 3567.35 10793.10 10096.84 11095.05 82
test1287.09 5394.60 3668.86 6792.91 10682.67 8465.44 7497.55 6293.69 4994.84 91
test_yl84.28 8483.16 9887.64 3594.52 3769.24 5995.78 1895.09 2269.19 25681.09 9692.88 12257.00 17597.44 6681.11 11681.76 17396.23 39
DCV-MVSNet84.28 8483.16 9887.64 3594.52 3769.24 5995.78 1895.09 2269.19 25681.09 9692.88 12257.00 17597.44 6681.11 11681.76 17396.23 39
CANet89.61 1289.99 1288.46 2594.39 3969.71 5196.53 1393.78 6586.89 689.68 2895.78 4065.94 6999.10 992.99 1793.91 4396.58 21
test_894.19 4067.19 11094.15 6093.42 8771.87 20485.38 6095.35 5068.19 5096.95 103
TEST994.18 4167.28 10894.16 5893.51 8071.75 21085.52 5795.33 5168.01 5297.27 80
train_agg87.21 3387.42 3286.60 6894.18 4167.28 10894.16 5893.51 8071.87 20485.52 5795.33 5168.19 5097.27 8089.09 4694.90 2295.25 75
agg_prior94.16 4366.97 11893.31 9084.49 6896.75 113
PAPM_NR82.97 11281.84 11986.37 7894.10 4466.76 12487.66 28092.84 10869.96 24674.07 17893.57 10863.10 11197.50 6470.66 19690.58 9294.85 88
MVS_030490.32 690.90 788.55 2494.05 4570.23 3897.00 593.73 7287.30 492.15 696.15 3466.38 6598.94 1796.71 294.67 3496.47 28
FOURS193.95 4661.77 24993.96 6991.92 14462.14 31786.57 46
VNet86.20 4985.65 6087.84 3193.92 4769.99 4095.73 2395.94 778.43 9086.00 5293.07 11658.22 16297.00 9485.22 7984.33 14896.52 23
9.1487.63 2893.86 4894.41 5294.18 5672.76 17886.21 4896.51 2466.64 6297.88 4490.08 3994.04 40
save fliter93.84 4967.89 9395.05 3992.66 11778.19 92
PVSNet_BlendedMVS83.38 10483.43 9183.22 18093.76 5067.53 10394.06 6293.61 7679.13 7881.00 9985.14 24863.19 10897.29 7687.08 6673.91 23784.83 304
PVSNet_Blended86.73 4286.86 4086.31 8193.76 5067.53 10396.33 1693.61 7682.34 2781.00 9993.08 11563.19 10897.29 7687.08 6691.38 8294.13 122
HFP-MVS84.73 7784.40 7785.72 9893.75 5265.01 16693.50 9793.19 9572.19 19379.22 12294.93 6859.04 15497.67 5181.55 10992.21 6694.49 112
Anonymous20240521177.96 20175.33 21985.87 9093.73 5364.52 17294.85 4485.36 33062.52 31276.11 15590.18 17629.43 36597.29 7668.51 21677.24 21695.81 50
balanced_conf0389.08 1588.84 1789.81 693.66 5475.15 590.61 21993.43 8684.06 1486.20 4990.17 17772.42 2996.98 9893.09 1695.92 1097.29 7
testing9986.01 5385.47 6187.63 3993.62 5571.25 2593.47 10095.23 1780.42 5380.60 10491.95 14371.73 3596.50 12480.02 12382.22 16795.13 78
SD-MVS87.49 2887.49 3187.50 4493.60 5668.82 6993.90 7392.63 12076.86 11287.90 3595.76 4166.17 6697.63 5689.06 4791.48 8096.05 43
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
testing9185.93 5585.31 6487.78 3393.59 5771.47 2193.50 9795.08 2480.26 5580.53 10591.93 14470.43 4096.51 12380.32 12182.13 16995.37 62
ACMMPR84.37 8184.06 7985.28 11293.56 5864.37 18293.50 9793.15 9772.19 19378.85 13094.86 7156.69 18297.45 6581.55 10992.20 6794.02 129
testing1186.71 4386.44 4487.55 4293.54 5971.35 2393.65 8895.58 1081.36 4180.69 10292.21 13972.30 3096.46 12685.18 8183.43 15594.82 94
region2R84.36 8284.03 8085.36 10993.54 5964.31 18593.43 10292.95 10572.16 19678.86 12994.84 7256.97 17797.53 6381.38 11392.11 6994.24 116
TSAR-MVS + GP.87.96 2188.37 2186.70 6593.51 6165.32 15795.15 3693.84 6478.17 9385.93 5394.80 7375.80 1398.21 3489.38 4288.78 10696.59 19
PHI-MVS86.83 4086.85 4186.78 6393.47 6265.55 15395.39 3095.10 2171.77 20985.69 5696.52 2362.07 12198.77 2386.06 7595.60 1296.03 44
SR-MVS82.81 11482.58 10983.50 17493.35 6361.16 26192.23 14591.28 17864.48 29381.27 9395.28 5453.71 21895.86 14882.87 10188.77 10793.49 145
EPNet87.84 2488.38 2086.23 8293.30 6466.05 13995.26 3294.84 2887.09 588.06 3494.53 7966.79 6197.34 7383.89 9691.68 7695.29 69
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
XVS83.87 9583.47 8985.05 11993.22 6563.78 19692.92 11692.66 11773.99 14978.18 13494.31 9155.25 19797.41 6879.16 12991.58 7893.95 131
X-MVStestdata76.86 21774.13 23685.05 11993.22 6563.78 19692.92 11692.66 11773.99 14978.18 13410.19 41055.25 19797.41 6879.16 12991.58 7893.95 131
SMA-MVScopyleft88.14 1888.29 2287.67 3493.21 6768.72 7193.85 7694.03 6174.18 14691.74 1296.67 2165.61 7398.42 3389.24 4596.08 795.88 48
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
原ACMM184.42 14693.21 6764.27 18793.40 8965.39 28779.51 11792.50 12858.11 16496.69 11465.27 25293.96 4192.32 179
MVS_111021_HR86.19 5085.80 5787.37 4693.17 6969.79 4893.99 6893.76 6879.08 8078.88 12893.99 9962.25 12098.15 3685.93 7691.15 8694.15 121
CP-MVS83.71 10083.40 9484.65 13793.14 7063.84 19494.59 4992.28 12871.03 23177.41 14394.92 6955.21 20096.19 13381.32 11490.70 9093.91 133
DELS-MVS90.05 890.09 1189.94 493.14 7073.88 1197.01 494.40 4988.32 385.71 5594.91 7074.11 1998.91 1887.26 6395.94 897.03 12
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
ZNCC-MVS85.33 6785.08 6886.06 8493.09 7265.65 14993.89 7493.41 8873.75 15779.94 11294.68 7660.61 13698.03 3882.63 10393.72 4794.52 109
bld_raw_conf0387.15 3486.52 4389.06 1493.04 7374.04 887.84 27692.69 11480.90 4781.47 9189.48 18769.08 4696.67 11689.42 4094.74 3196.47 28
DeepPCF-MVS81.17 189.72 1091.38 484.72 13393.00 7458.16 30596.72 994.41 4786.50 890.25 2297.83 175.46 1498.67 2592.78 1995.49 1397.32 6
PLCcopyleft68.80 1475.23 24473.68 24379.86 26492.93 7558.68 30190.64 21688.30 29460.90 32664.43 29190.53 16742.38 30594.57 20056.52 29876.54 22086.33 273
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
testing22285.18 6984.69 7486.63 6792.91 7669.91 4492.61 13195.80 980.31 5480.38 10792.27 13668.73 4795.19 17975.94 15083.27 15794.81 95
MSP-MVS90.38 591.87 185.88 8992.83 7764.03 19293.06 11094.33 5382.19 2893.65 396.15 3485.89 197.19 8291.02 3497.75 196.43 32
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
mPP-MVS82.96 11382.44 11284.52 14392.83 7762.92 22692.76 12191.85 15171.52 22175.61 16294.24 9353.48 22296.99 9778.97 13290.73 8993.64 142
GST-MVS84.63 7984.29 7885.66 10092.82 7965.27 15893.04 11293.13 9873.20 16678.89 12594.18 9559.41 15097.85 4581.45 11192.48 6593.86 136
WTY-MVS86.32 4785.81 5687.85 3092.82 7969.37 5795.20 3495.25 1682.71 2281.91 8794.73 7467.93 5497.63 5679.55 12682.25 16696.54 22
PGM-MVS83.25 10682.70 10884.92 12292.81 8164.07 19190.44 22092.20 13471.28 22577.23 14694.43 8255.17 20197.31 7579.33 12891.38 8293.37 147
EI-MVSNet-Vis-set83.77 9883.67 8384.06 15792.79 8263.56 20891.76 17194.81 3079.65 6677.87 13794.09 9663.35 10697.90 4279.35 12779.36 19390.74 210
SF-MVS87.03 3687.09 3586.84 5992.70 8367.45 10693.64 8993.76 6870.78 23786.25 4796.44 2666.98 5997.79 4788.68 5094.56 3595.28 71
MVSTER82.47 11982.05 11583.74 16492.68 8469.01 6491.90 16393.21 9279.83 6172.14 20285.71 24474.72 1694.72 19375.72 15172.49 24787.50 251
CS-MVS-test86.14 5187.01 3683.52 17192.63 8559.36 29495.49 2791.92 14480.09 5985.46 5995.53 4761.82 12595.77 15286.77 7093.37 5495.41 59
MP-MVScopyleft85.02 7184.97 7085.17 11792.60 8664.27 18793.24 10592.27 12973.13 16879.63 11694.43 8261.90 12297.17 8385.00 8392.56 6394.06 127
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
ETVMVS84.22 8883.71 8285.76 9692.58 8768.25 8492.45 13995.53 1379.54 6879.46 11891.64 15170.29 4194.18 21769.16 20982.76 16394.84 91
thres20079.66 16878.33 17283.66 17092.54 8865.82 14793.06 11096.31 374.90 13873.30 18588.66 19559.67 14695.61 16247.84 33378.67 20089.56 228
APD-MVS_3200maxsize81.64 13381.32 12582.59 19392.36 8958.74 30091.39 18491.01 19363.35 30279.72 11594.62 7851.82 23396.14 13579.71 12487.93 11492.89 165
新几何184.73 13292.32 9064.28 18691.46 17059.56 33679.77 11492.90 12056.95 17896.57 11963.40 26292.91 6093.34 148
EI-MVSNet-UG-set83.14 10982.96 10183.67 16992.28 9163.19 21891.38 18694.68 3679.22 7576.60 15293.75 10262.64 11597.76 4878.07 14078.01 20490.05 219
HPM-MVScopyleft83.25 10682.95 10284.17 15592.25 9262.88 22890.91 20491.86 14970.30 24277.12 14793.96 10056.75 18096.28 12982.04 10691.34 8493.34 148
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
HY-MVS76.49 584.28 8483.36 9687.02 5692.22 9367.74 9684.65 30194.50 4279.15 7782.23 8587.93 21166.88 6096.94 10480.53 11982.20 16896.39 34
tfpn200view978.79 18677.43 18782.88 18592.21 9464.49 17392.05 15496.28 473.48 16371.75 20788.26 20360.07 14295.32 17445.16 34477.58 20988.83 233
thres40078.68 18877.43 18782.43 19592.21 9464.49 17392.05 15496.28 473.48 16371.75 20788.26 20360.07 14295.32 17445.16 34477.58 20987.48 252
MM90.87 291.52 288.92 1692.12 9671.10 2997.02 396.04 688.70 291.57 1496.19 3270.12 4298.91 1896.83 195.06 1796.76 15
PS-MVSNAJ88.14 1887.61 2989.71 792.06 9776.72 195.75 2093.26 9183.86 1589.55 2996.06 3653.55 21997.89 4391.10 3293.31 5594.54 107
SR-MVS-dyc-post81.06 14380.70 13682.15 20792.02 9858.56 30290.90 20590.45 20462.76 30978.89 12594.46 8051.26 24295.61 16278.77 13586.77 12892.28 181
RE-MVS-def80.48 14292.02 9858.56 30290.90 20590.45 20462.76 30978.89 12594.46 8049.30 25878.77 13586.77 12892.28 181
MSLP-MVS++86.27 4885.91 5587.35 4792.01 10068.97 6695.04 4092.70 11279.04 8281.50 9096.50 2558.98 15696.78 11283.49 9893.93 4296.29 36
CS-MVS85.80 5886.65 4283.27 17992.00 10158.92 29895.31 3191.86 14979.97 6084.82 6595.40 4962.26 11995.51 17086.11 7492.08 7095.37 62
旧先验191.94 10260.74 27191.50 16894.36 8465.23 7691.84 7394.55 105
thres600view778.00 19976.66 20182.03 21491.93 10363.69 20391.30 19296.33 172.43 18670.46 22087.89 21260.31 13794.92 18842.64 35676.64 21987.48 252
LS3D69.17 29666.40 30177.50 29491.92 10456.12 32585.12 29880.37 35946.96 37856.50 34087.51 22037.25 33293.71 23832.52 38679.40 19282.68 332
GG-mvs-BLEND86.53 7391.91 10569.67 5375.02 36794.75 3278.67 13290.85 16377.91 794.56 20272.25 18093.74 4695.36 64
thres100view90078.37 19477.01 19682.46 19491.89 10663.21 21791.19 19996.33 172.28 19170.45 22187.89 21260.31 13795.32 17445.16 34477.58 20988.83 233
MTAPA83.91 9483.38 9585.50 10391.89 10665.16 16281.75 32692.23 13075.32 13280.53 10595.21 6156.06 19197.16 8584.86 8692.55 6494.18 118
sasdasda86.85 3886.25 4788.66 2191.80 10871.92 1893.54 9491.71 15780.26 5587.55 3795.25 5863.59 10196.93 10688.18 5184.34 14697.11 9
canonicalmvs86.85 3886.25 4788.66 2191.80 10871.92 1893.54 9491.71 15780.26 5587.55 3795.25 5863.59 10196.93 10688.18 5184.34 14697.11 9
TSAR-MVS + MP.88.11 2088.64 1886.54 7291.73 11068.04 8990.36 22493.55 7982.89 2091.29 1692.89 12172.27 3196.03 14487.99 5394.77 2695.54 57
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
ACMMPcopyleft81.49 13580.67 13783.93 16191.71 11162.90 22792.13 14892.22 13371.79 20871.68 20993.49 11050.32 24796.96 10278.47 13784.22 15291.93 191
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
BH-RMVSNet79.46 17377.65 18384.89 12391.68 11265.66 14893.55 9388.09 30172.93 17373.37 18491.12 16046.20 28796.12 13656.28 30085.61 13992.91 163
baseline181.84 13081.03 13184.28 15391.60 11366.62 12791.08 20191.66 16281.87 3174.86 16991.67 15069.98 4394.92 18871.76 18664.75 30191.29 204
ACMMP_NAP86.05 5285.80 5786.80 6291.58 11467.53 10391.79 16893.49 8374.93 13784.61 6695.30 5359.42 14997.92 4186.13 7394.92 2094.94 87
MVS_Test84.16 9083.20 9787.05 5591.56 11569.82 4789.99 23892.05 13877.77 9982.84 8086.57 23363.93 9396.09 13874.91 16089.18 10495.25 75
HPM-MVS_fast80.25 15879.55 15782.33 19991.55 11659.95 28491.32 19189.16 25965.23 29074.71 17193.07 11647.81 27495.74 15374.87 16288.23 11091.31 203
CPTT-MVS79.59 16979.16 16480.89 24191.54 11759.80 28692.10 15088.54 28960.42 32972.96 18793.28 11248.27 26792.80 26278.89 13486.50 13390.06 218
CNLPA74.31 25272.30 26080.32 24791.49 11861.66 25390.85 20880.72 35856.67 35163.85 29590.64 16446.75 27990.84 30753.79 30975.99 22488.47 242
MP-MVS-pluss85.24 6885.13 6785.56 10291.42 11965.59 15191.54 17892.51 12474.56 14080.62 10395.64 4459.15 15397.00 9486.94 6893.80 4494.07 126
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
gg-mvs-nofinetune77.18 21274.31 23285.80 9491.42 11968.36 7871.78 37094.72 3349.61 37177.12 14745.92 39577.41 893.98 23067.62 22493.16 5795.05 82
mvsmamba81.55 13480.72 13584.03 15991.42 11966.93 11983.08 31789.13 26278.55 8967.50 26287.02 22851.79 23590.07 32087.48 5990.49 9495.10 80
MGCFI-Net85.59 6485.73 5985.17 11791.41 12262.44 23492.87 11891.31 17479.65 6686.99 4495.14 6462.90 11496.12 13687.13 6584.13 15396.96 13
xiu_mvs_v2_base87.92 2387.38 3389.55 1291.41 12276.43 395.74 2193.12 9983.53 1889.55 2995.95 3853.45 22397.68 5091.07 3392.62 6294.54 107
EIA-MVS84.84 7584.88 7184.69 13591.30 12462.36 23793.85 7692.04 13979.45 6979.33 12194.28 9262.42 11796.35 12780.05 12291.25 8595.38 61
alignmvs87.28 3286.97 3788.24 2891.30 12471.14 2895.61 2593.56 7879.30 7387.07 4295.25 5868.43 4896.93 10687.87 5484.33 14896.65 17
EPMVS78.49 19375.98 21086.02 8591.21 12669.68 5280.23 34191.20 17975.25 13372.48 19778.11 32954.65 20593.69 23957.66 29683.04 15894.69 97
FMVSNet377.73 20576.04 20982.80 18691.20 12768.99 6591.87 16491.99 14173.35 16567.04 26983.19 26956.62 18392.14 28459.80 28769.34 26487.28 258
Anonymous2024052976.84 21974.15 23584.88 12491.02 12864.95 16893.84 7991.09 18653.57 35973.00 18687.42 22135.91 34197.32 7469.14 21072.41 24992.36 177
tpmvs72.88 26869.76 28482.22 20490.98 12967.05 11578.22 35488.30 29463.10 30764.35 29274.98 35155.09 20294.27 21343.25 35069.57 26385.34 299
MVS84.66 7882.86 10590.06 290.93 13074.56 787.91 27495.54 1268.55 26472.35 20194.71 7559.78 14598.90 2081.29 11594.69 3396.74 16
PVSNet73.49 880.05 16278.63 16984.31 15190.92 13164.97 16792.47 13891.05 19179.18 7672.43 19990.51 16837.05 33794.06 22368.06 21886.00 13593.90 135
3Dnovator+73.60 782.10 12780.60 14086.60 6890.89 13266.80 12395.20 3493.44 8574.05 14867.42 26492.49 13049.46 25697.65 5570.80 19391.68 7695.33 65
VDD-MVS83.06 11081.81 12086.81 6190.86 13367.70 9795.40 2991.50 16875.46 12981.78 8892.34 13540.09 31297.13 8786.85 6982.04 17095.60 54
BH-w/o80.49 15379.30 16284.05 15890.83 13464.36 18493.60 9189.42 24874.35 14369.09 23690.15 17955.23 19995.61 16264.61 25586.43 13492.17 187
ET-MVSNet_ETH3D84.01 9283.15 10086.58 7090.78 13570.89 3094.74 4794.62 3981.44 3858.19 32993.64 10673.64 2392.35 28182.66 10278.66 20196.50 27
Anonymous2023121173.08 26270.39 27881.13 23190.62 13663.33 21491.40 18290.06 22551.84 36464.46 29080.67 30536.49 33994.07 22263.83 26064.17 30785.98 284
FA-MVS(test-final)79.12 17777.23 19384.81 12990.54 13763.98 19381.35 33291.71 15771.09 23074.85 17082.94 27052.85 22697.05 8967.97 21981.73 17593.41 146
TR-MVS78.77 18777.37 19282.95 18490.49 13860.88 26593.67 8790.07 22370.08 24574.51 17291.37 15745.69 28995.70 15960.12 28580.32 18592.29 180
SteuartSystems-ACMMP86.82 4186.90 3986.58 7090.42 13966.38 13296.09 1793.87 6377.73 10084.01 7495.66 4363.39 10497.94 4087.40 6193.55 5195.42 58
Skip Steuart: Steuart Systems R&D Blog.
TAPA-MVS70.22 1274.94 24873.53 24479.17 27790.40 14052.07 34489.19 25489.61 24262.69 31170.07 22692.67 12648.89 26594.32 20938.26 37079.97 18791.12 207
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
mvs_anonymous81.36 13779.99 14885.46 10490.39 14168.40 7786.88 29190.61 20274.41 14170.31 22484.67 25363.79 9592.32 28273.13 16985.70 13795.67 51
CANet_DTU84.09 9183.52 8585.81 9390.30 14266.82 12191.87 16489.01 26985.27 986.09 5193.74 10347.71 27596.98 9877.90 14189.78 10093.65 141
Fast-Effi-MVS+81.14 14080.01 14784.51 14490.24 14365.86 14594.12 6189.15 26073.81 15675.37 16588.26 20357.26 17094.53 20466.97 23284.92 14193.15 154
ETV-MVS86.01 5386.11 5085.70 9990.21 14467.02 11793.43 10291.92 14481.21 4384.13 7394.07 9860.93 13395.63 16089.28 4489.81 9894.46 113
MVSMamba_PlusPlus84.97 7483.65 8488.93 1590.17 14574.04 887.84 27692.69 11462.18 31481.47 9187.64 21671.47 3696.28 12984.69 8794.74 3196.47 28
iter_conf0583.18 10881.72 12187.58 4190.17 14573.92 1083.37 31288.63 28662.18 31473.79 18187.64 21671.47 3696.28 12984.69 8793.54 5292.54 172
tpmrst80.57 15079.14 16584.84 12590.10 14768.28 8181.70 32789.72 24077.63 10475.96 15679.54 32164.94 8092.71 26575.43 15377.28 21593.55 143
PVSNet_Blended_VisFu83.97 9383.50 8785.39 10790.02 14866.59 12993.77 8391.73 15577.43 10877.08 14989.81 18463.77 9696.97 10179.67 12588.21 11192.60 170
UGNet79.87 16678.68 16883.45 17689.96 14961.51 25592.13 14890.79 19576.83 11378.85 13086.33 23738.16 32396.17 13467.93 22187.17 12292.67 168
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
CHOSEN 1792x268884.98 7383.45 9089.57 1189.94 15075.14 692.07 15392.32 12781.87 3175.68 15988.27 20260.18 13998.60 2780.46 12090.27 9694.96 85
BH-untuned78.68 18877.08 19483.48 17589.84 15163.74 19892.70 12588.59 28771.57 21966.83 27388.65 19651.75 23695.39 17259.03 29084.77 14391.32 202
FE-MVS75.97 23373.02 24984.82 12689.78 15265.56 15277.44 35791.07 18964.55 29272.66 19179.85 31746.05 28896.69 11454.97 30480.82 18292.21 186
test22289.77 15361.60 25489.55 24489.42 24856.83 35077.28 14592.43 13252.76 22791.14 8793.09 156
PMMVS81.98 12982.04 11681.78 21689.76 15456.17 32491.13 20090.69 19777.96 9580.09 11193.57 10846.33 28594.99 18481.41 11287.46 11994.17 119
DPM-MVS90.70 390.52 991.24 189.68 15576.68 297.29 195.35 1482.87 2191.58 1397.22 379.93 599.10 983.12 10097.64 297.94 1
QAPM79.95 16577.39 19187.64 3589.63 15671.41 2293.30 10493.70 7365.34 28967.39 26691.75 14847.83 27398.96 1657.71 29589.81 9892.54 172
3Dnovator73.91 682.69 11880.82 13388.31 2789.57 15771.26 2492.60 13294.39 5078.84 8467.89 25792.48 13148.42 26698.52 2868.80 21494.40 3795.15 77
Effi-MVS+83.82 9682.76 10686.99 5789.56 15869.40 5491.35 18986.12 32372.59 18083.22 7892.81 12559.60 14796.01 14681.76 10887.80 11595.56 56
PatchmatchNetpermissive77.46 20874.63 22585.96 8789.55 15970.35 3679.97 34689.55 24372.23 19270.94 21476.91 34057.03 17392.79 26354.27 30781.17 17894.74 96
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
PatchMatch-RL72.06 27669.98 27978.28 28689.51 16055.70 32883.49 30883.39 35061.24 32463.72 29682.76 27234.77 34593.03 25053.37 31277.59 20886.12 281
thisisatest051583.41 10382.49 11186.16 8389.46 16168.26 8293.54 9494.70 3574.31 14475.75 15790.92 16172.62 2796.52 12269.64 20181.50 17693.71 139
h-mvs3383.01 11182.56 11084.35 15089.34 16262.02 24492.72 12393.76 6881.45 3682.73 8292.25 13860.11 14097.13 8787.69 5662.96 31493.91 133
EC-MVSNet84.53 8085.04 6983.01 18389.34 16261.37 25894.42 5191.09 18677.91 9783.24 7794.20 9458.37 16095.40 17185.35 7891.41 8192.27 184
UWE-MVS80.81 14881.01 13280.20 25289.33 16457.05 31891.91 16294.71 3475.67 12675.01 16889.37 18963.13 11091.44 30467.19 22982.80 16292.12 189
UA-Net80.02 16379.65 15381.11 23289.33 16457.72 30986.33 29489.00 27277.44 10781.01 9889.15 19259.33 15195.90 14761.01 27984.28 15089.73 225
dp75.01 24772.09 26283.76 16389.28 16666.22 13879.96 34789.75 23571.16 22767.80 25977.19 33751.81 23492.54 27350.39 31871.44 25692.51 175
SDMVSNet80.26 15778.88 16784.40 14789.25 16767.63 10085.35 29793.02 10176.77 11570.84 21687.12 22647.95 27296.09 13885.04 8274.55 22889.48 229
sd_testset77.08 21575.37 21782.20 20589.25 16762.11 24382.06 32489.09 26576.77 11570.84 21687.12 22641.43 30895.01 18367.23 22874.55 22889.48 229
sss82.71 11782.38 11383.73 16689.25 16759.58 28992.24 14494.89 2777.96 9579.86 11392.38 13356.70 18197.05 8977.26 14480.86 18194.55 105
MVSFormer83.75 9982.88 10486.37 7889.24 17071.18 2689.07 25690.69 19765.80 28487.13 4094.34 8964.99 7892.67 26872.83 17291.80 7495.27 72
lupinMVS87.74 2587.77 2787.63 3989.24 17071.18 2696.57 1292.90 10782.70 2387.13 4095.27 5664.99 7895.80 14989.34 4391.80 7495.93 46
IB-MVS77.80 482.18 12380.46 14387.35 4789.14 17270.28 3795.59 2695.17 2078.85 8370.19 22585.82 24270.66 3997.67 5172.19 18366.52 28794.09 124
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
MDTV_nov1_ep1372.61 25689.06 17368.48 7580.33 33990.11 22271.84 20671.81 20675.92 34853.01 22593.92 23348.04 33073.38 239
testdata81.34 22689.02 17457.72 30989.84 23258.65 34085.32 6194.09 9657.03 17393.28 24669.34 20690.56 9393.03 159
CostFormer82.33 12181.15 12685.86 9189.01 17568.46 7682.39 32393.01 10275.59 12780.25 10981.57 28972.03 3394.96 18579.06 13177.48 21294.16 120
GeoE78.90 18277.43 18783.29 17888.95 17662.02 24492.31 14186.23 32170.24 24371.34 21389.27 19054.43 21094.04 22663.31 26480.81 18393.81 138
GBi-Net75.65 23873.83 24081.10 23388.85 17765.11 16390.01 23590.32 21070.84 23467.04 26980.25 31248.03 26891.54 29959.80 28769.34 26486.64 267
test175.65 23873.83 24081.10 23388.85 17765.11 16390.01 23590.32 21070.84 23467.04 26980.25 31248.03 26891.54 29959.80 28769.34 26486.64 267
FMVSNet276.07 22774.01 23882.26 20388.85 17767.66 9891.33 19091.61 16370.84 23465.98 27682.25 27848.03 26892.00 28958.46 29268.73 27287.10 261
DeepC-MVS77.85 385.52 6585.24 6586.37 7888.80 18066.64 12692.15 14793.68 7481.07 4476.91 15093.64 10662.59 11698.44 3185.50 7792.84 6194.03 128
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
EPP-MVSNet81.79 13181.52 12382.61 19288.77 18160.21 28193.02 11493.66 7568.52 26572.90 18990.39 17172.19 3294.96 18574.93 15979.29 19592.67 168
1112_ss80.56 15179.83 15182.77 18788.65 18260.78 26792.29 14288.36 29272.58 18172.46 19894.95 6665.09 7793.42 24566.38 23877.71 20694.10 123
tpm cat175.30 24372.21 26184.58 14188.52 18367.77 9578.16 35588.02 30261.88 32168.45 25076.37 34460.65 13494.03 22853.77 31074.11 23491.93 191
LCM-MVSNet-Re72.93 26671.84 26576.18 31088.49 18448.02 36480.07 34470.17 38373.96 15252.25 35480.09 31549.98 25188.24 33267.35 22584.23 15192.28 181
Vis-MVSNetpermissive80.92 14679.98 14983.74 16488.48 18561.80 24893.44 10188.26 29873.96 15277.73 13891.76 14749.94 25294.76 19065.84 24490.37 9594.65 101
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
Vis-MVSNet (Re-imp)79.24 17579.57 15478.24 28888.46 18652.29 34390.41 22289.12 26374.24 14569.13 23591.91 14565.77 7190.09 31959.00 29188.09 11292.33 178
ab-mvs80.18 15978.31 17385.80 9488.44 18765.49 15683.00 32092.67 11671.82 20777.36 14485.01 24954.50 20696.59 11776.35 14975.63 22595.32 67
gm-plane-assit88.42 18867.04 11678.62 8891.83 14697.37 7076.57 147
MVS_111021_LR82.02 12881.52 12383.51 17388.42 18862.88 22889.77 24188.93 27376.78 11475.55 16393.10 11350.31 24895.38 17383.82 9787.02 12392.26 185
test250683.29 10582.92 10384.37 14988.39 19063.18 21992.01 15691.35 17377.66 10278.49 13391.42 15464.58 8695.09 18173.19 16889.23 10294.85 88
ECVR-MVScopyleft81.29 13880.38 14484.01 16088.39 19061.96 24692.56 13786.79 31677.66 10276.63 15191.42 15446.34 28495.24 17874.36 16489.23 10294.85 88
baseline85.01 7284.44 7686.71 6488.33 19268.73 7090.24 22991.82 15381.05 4581.18 9592.50 12863.69 9796.08 14184.45 9186.71 13095.32 67
tpm279.80 16777.95 18085.34 11088.28 19368.26 8281.56 32991.42 17170.11 24477.59 14280.50 30767.40 5794.26 21567.34 22677.35 21393.51 144
thisisatest053081.15 13980.07 14584.39 14888.26 19465.63 15091.40 18294.62 3971.27 22670.93 21589.18 19172.47 2896.04 14365.62 24776.89 21891.49 195
casdiffmvspermissive85.37 6684.87 7286.84 5988.25 19569.07 6293.04 11291.76 15481.27 4280.84 10192.07 14164.23 8996.06 14284.98 8487.43 12095.39 60
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
Test_1112_low_res79.56 17078.60 17082.43 19588.24 19660.39 27892.09 15187.99 30372.10 19771.84 20587.42 22164.62 8593.04 24965.80 24577.30 21493.85 137
casdiffmvs_mvgpermissive85.66 6285.18 6687.09 5388.22 19769.35 5893.74 8591.89 14781.47 3580.10 11091.45 15364.80 8396.35 12787.23 6487.69 11695.58 55
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
PAPM85.89 5785.46 6287.18 5088.20 19872.42 1792.41 14092.77 11082.11 2980.34 10893.07 11668.27 4995.02 18278.39 13893.59 5094.09 124
TESTMET0.1,182.41 12081.98 11883.72 16788.08 19963.74 19892.70 12593.77 6779.30 7377.61 14187.57 21958.19 16394.08 22173.91 16686.68 13193.33 150
ADS-MVSNet266.90 31563.44 32377.26 30088.06 20060.70 27368.01 38175.56 36957.57 34364.48 28869.87 36838.68 31584.10 35840.87 36167.89 27886.97 262
ADS-MVSNet68.54 30364.38 31981.03 23788.06 20066.90 12068.01 38184.02 34257.57 34364.48 28869.87 36838.68 31589.21 32640.87 36167.89 27886.97 262
EPNet_dtu78.80 18579.26 16377.43 29688.06 20049.71 35691.96 16191.95 14377.67 10176.56 15391.28 15858.51 15890.20 31756.37 29980.95 18092.39 176
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
miper_enhance_ethall78.86 18377.97 17981.54 22288.00 20365.17 16191.41 18089.15 26075.19 13468.79 24483.98 26167.17 5892.82 26072.73 17565.30 29286.62 271
IS-MVSNet80.14 16079.41 15982.33 19987.91 20460.08 28391.97 16088.27 29672.90 17671.44 21291.73 14961.44 12793.66 24062.47 27286.53 13293.24 151
CLD-MVS82.73 11582.35 11483.86 16287.90 20567.65 9995.45 2892.18 13685.06 1072.58 19492.27 13652.46 23095.78 15084.18 9279.06 19688.16 246
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
Syy-MVS69.65 29369.52 28570.03 34887.87 20643.21 38388.07 27089.01 26972.91 17463.11 30188.10 20745.28 29385.54 35122.07 39669.23 26781.32 343
myMVS_eth3d72.58 27572.74 25372.10 34187.87 20649.45 35888.07 27089.01 26972.91 17463.11 30188.10 20763.63 9885.54 35132.73 38469.23 26781.32 343
test111180.84 14780.02 14683.33 17787.87 20660.76 26992.62 13086.86 31577.86 9875.73 15891.39 15646.35 28394.70 19672.79 17488.68 10894.52 109
HyFIR lowres test81.03 14479.56 15585.43 10587.81 20968.11 8890.18 23090.01 22870.65 23972.95 18886.06 24063.61 10094.50 20675.01 15879.75 19093.67 140
dmvs_re76.93 21675.36 21881.61 22087.78 21060.71 27280.00 34587.99 30379.42 7069.02 23989.47 18846.77 27894.32 20963.38 26374.45 23189.81 222
131480.70 14978.95 16685.94 8887.77 21167.56 10187.91 27492.55 12372.17 19567.44 26393.09 11450.27 24997.04 9271.68 18887.64 11793.23 152
cl2277.94 20276.78 19981.42 22487.57 21264.93 16990.67 21488.86 27672.45 18567.63 26182.68 27464.07 9092.91 25871.79 18465.30 29286.44 272
HQP-NCC87.54 21394.06 6279.80 6274.18 174
ACMP_Plane87.54 21394.06 6279.80 6274.18 174
HQP-MVS81.14 14080.64 13882.64 19187.54 21363.66 20594.06 6291.70 16079.80 6274.18 17490.30 17351.63 23895.61 16277.63 14278.90 19788.63 237
NP-MVS87.41 21663.04 22090.30 173
diffmvspermissive84.28 8483.83 8185.61 10187.40 21768.02 9090.88 20789.24 25480.54 4981.64 8992.52 12759.83 14494.52 20587.32 6285.11 14094.29 114
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
baseline283.68 10283.42 9384.48 14587.37 21866.00 14190.06 23395.93 879.71 6569.08 23790.39 17177.92 696.28 12978.91 13381.38 17791.16 206
fmvsm_s_conf0.5_n86.39 4686.91 3884.82 12687.36 21963.54 21094.74 4790.02 22782.52 2490.14 2596.92 1362.93 11397.84 4695.28 882.26 16593.07 158
plane_prior687.23 22062.32 23950.66 245
tttt051779.50 17178.53 17182.41 19887.22 22161.43 25789.75 24294.76 3169.29 25467.91 25588.06 21072.92 2595.63 16062.91 26873.90 23890.16 217
plane_prior187.15 222
cascas78.18 19775.77 21385.41 10687.14 22369.11 6192.96 11591.15 18366.71 27870.47 21986.07 23937.49 33196.48 12570.15 19979.80 18990.65 211
fmvsm_l_conf0.5_n_a87.44 3088.15 2485.30 11187.10 22464.19 18994.41 5288.14 29980.24 5892.54 596.97 1069.52 4597.17 8395.89 388.51 10994.56 104
CHOSEN 280x42077.35 21076.95 19878.55 28387.07 22562.68 23269.71 37682.95 35268.80 26171.48 21187.27 22566.03 6884.00 36176.47 14882.81 16188.95 232
test_fmvsm_n_192087.69 2688.50 1985.27 11387.05 22663.55 20993.69 8691.08 18884.18 1390.17 2497.04 867.58 5697.99 3995.72 590.03 9794.26 115
fmvsm_l_conf0.5_n87.49 2888.19 2385.39 10786.95 22764.37 18294.30 5488.45 29080.51 5092.70 496.86 1569.98 4397.15 8695.83 488.08 11394.65 101
HQP_MVS80.34 15679.75 15282.12 20986.94 22862.42 23593.13 10891.31 17478.81 8572.53 19589.14 19350.66 24595.55 16776.74 14578.53 20288.39 243
plane_prior786.94 22861.51 255
test-LLR80.10 16179.56 15581.72 21886.93 23061.17 25992.70 12591.54 16571.51 22275.62 16086.94 22953.83 21592.38 27872.21 18184.76 14491.60 193
test-mter79.96 16479.38 16181.72 21886.93 23061.17 25992.70 12591.54 16573.85 15475.62 16086.94 22949.84 25492.38 27872.21 18184.76 14491.60 193
SCA75.82 23672.76 25285.01 12186.63 23270.08 3981.06 33489.19 25771.60 21870.01 22777.09 33845.53 29090.25 31260.43 28273.27 24094.68 98
AUN-MVS78.37 19477.43 18781.17 22986.60 23357.45 31489.46 24891.16 18174.11 14774.40 17390.49 16955.52 19694.57 20074.73 16360.43 34091.48 196
hse-mvs281.12 14281.11 13081.16 23086.52 23457.48 31389.40 24991.16 18181.45 3682.73 8290.49 16960.11 14094.58 19887.69 5660.41 34191.41 198
xiu_mvs_v1_base_debu82.16 12481.12 12785.26 11486.42 23568.72 7192.59 13490.44 20773.12 16984.20 7094.36 8438.04 32595.73 15484.12 9386.81 12591.33 199
xiu_mvs_v1_base82.16 12481.12 12785.26 11486.42 23568.72 7192.59 13490.44 20773.12 16984.20 7094.36 8438.04 32595.73 15484.12 9386.81 12591.33 199
xiu_mvs_v1_base_debi82.16 12481.12 12785.26 11486.42 23568.72 7192.59 13490.44 20773.12 16984.20 7094.36 8438.04 32595.73 15484.12 9386.81 12591.33 199
F-COLMAP70.66 28368.44 29177.32 29886.37 23855.91 32688.00 27286.32 31856.94 34957.28 33888.07 20933.58 34992.49 27551.02 31668.37 27483.55 314
CDS-MVSNet81.43 13680.74 13483.52 17186.26 23964.45 17692.09 15190.65 20175.83 12573.95 18089.81 18463.97 9292.91 25871.27 18982.82 16093.20 153
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
VDDNet80.50 15278.26 17487.21 4986.19 24069.79 4894.48 5091.31 17460.42 32979.34 12090.91 16238.48 32096.56 12082.16 10581.05 17995.27 72
WB-MVSnew77.14 21376.18 20880.01 25886.18 24163.24 21691.26 19394.11 5971.72 21173.52 18387.29 22445.14 29493.00 25156.98 29779.42 19183.80 312
jason86.40 4586.17 4987.11 5286.16 24270.54 3495.71 2492.19 13582.00 3084.58 6794.34 8961.86 12395.53 16987.76 5590.89 8895.27 72
jason: jason.
PCF-MVS73.15 979.29 17477.63 18484.29 15286.06 24365.96 14387.03 28791.10 18569.86 24869.79 23290.64 16457.54 16996.59 11764.37 25782.29 16490.32 215
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
MS-PatchMatch77.90 20476.50 20282.12 20985.99 24469.95 4391.75 17392.70 11273.97 15162.58 30884.44 25741.11 30995.78 15063.76 26192.17 6880.62 351
FIs79.47 17279.41 15979.67 26885.95 24559.40 29191.68 17593.94 6278.06 9468.96 24188.28 20166.61 6391.77 29366.20 24174.99 22787.82 248
VPA-MVSNet79.03 17878.00 17882.11 21285.95 24564.48 17593.22 10794.66 3775.05 13674.04 17984.95 25052.17 23293.52 24274.90 16167.04 28388.32 245
tpm78.58 19177.03 19583.22 18085.94 24764.56 17183.21 31691.14 18478.31 9173.67 18279.68 31964.01 9192.09 28766.07 24271.26 25793.03 159
OpenMVScopyleft70.45 1178.54 19275.92 21186.41 7785.93 24871.68 2092.74 12292.51 12466.49 28064.56 28791.96 14243.88 29998.10 3754.61 30590.65 9189.44 231
testing370.38 28770.83 27269.03 35285.82 24943.93 38290.72 21390.56 20368.06 26760.24 31786.82 23164.83 8284.12 35726.33 39264.10 30879.04 364
OMC-MVS78.67 19077.91 18180.95 23985.76 25057.40 31588.49 26588.67 28373.85 15472.43 19992.10 14049.29 25994.55 20372.73 17577.89 20590.91 209
fmvsm_s_conf0.5_n_a85.75 5986.09 5184.72 13385.73 25163.58 20793.79 8289.32 25181.42 3990.21 2396.91 1462.41 11897.67 5194.48 1080.56 18492.90 164
miper_ehance_all_eth77.60 20676.44 20381.09 23685.70 25264.41 18090.65 21588.64 28572.31 18967.37 26782.52 27564.77 8492.64 27170.67 19565.30 29286.24 276
KD-MVS_2432*160069.03 29866.37 30277.01 30285.56 25361.06 26281.44 33090.25 21667.27 27458.00 33276.53 34254.49 20787.63 34048.04 33035.77 39182.34 335
miper_refine_blended69.03 29866.37 30277.01 30285.56 25361.06 26281.44 33090.25 21667.27 27458.00 33276.53 34254.49 20787.63 34048.04 33035.77 39182.34 335
EI-MVSNet78.97 18078.22 17581.25 22785.33 25562.73 23189.53 24693.21 9272.39 18872.14 20290.13 18060.99 13094.72 19367.73 22372.49 24786.29 274
CVMVSNet74.04 25574.27 23373.33 32985.33 25543.94 38189.53 24688.39 29154.33 35870.37 22290.13 18049.17 26184.05 35961.83 27679.36 19391.99 190
test_fmvsmconf_n86.58 4487.17 3484.82 12685.28 25762.55 23394.26 5689.78 23383.81 1787.78 3696.33 2965.33 7596.98 9894.40 1187.55 11894.95 86
ACMH63.93 1768.62 30164.81 31280.03 25785.22 25863.25 21587.72 27984.66 33660.83 32751.57 35779.43 32227.29 37094.96 18541.76 35764.84 29981.88 339
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
cl____76.07 22774.67 22380.28 24985.15 25961.76 25090.12 23188.73 28071.16 22765.43 27981.57 28961.15 12892.95 25366.54 23562.17 32286.13 280
DIV-MVS_self_test76.07 22774.67 22380.28 24985.14 26061.75 25190.12 23188.73 28071.16 22765.42 28081.60 28861.15 12892.94 25766.54 23562.16 32486.14 278
TAMVS80.37 15579.45 15883.13 18285.14 26063.37 21391.23 19590.76 19674.81 13972.65 19288.49 19760.63 13592.95 25369.41 20581.95 17293.08 157
MSDG69.54 29465.73 30580.96 23885.11 26263.71 20184.19 30383.28 35156.95 34854.50 34584.03 25931.50 35796.03 14442.87 35469.13 26983.14 324
c3_l76.83 22075.47 21680.93 24085.02 26364.18 19090.39 22388.11 30071.66 21266.65 27581.64 28763.58 10392.56 27269.31 20762.86 31586.04 282
ACMP71.68 1075.58 24174.23 23479.62 27084.97 26459.64 28790.80 21089.07 26770.39 24162.95 30487.30 22338.28 32193.87 23572.89 17171.45 25585.36 298
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
FC-MVSNet-test77.99 20078.08 17777.70 29184.89 26555.51 32990.27 22793.75 7176.87 11166.80 27487.59 21865.71 7290.23 31662.89 26973.94 23687.37 255
PVSNet_068.08 1571.81 27768.32 29382.27 20184.68 26662.31 24088.68 26290.31 21375.84 12457.93 33480.65 30637.85 32894.19 21669.94 20029.05 39990.31 216
eth_miper_zixun_eth75.96 23474.40 23180.66 24284.66 26763.02 22189.28 25188.27 29671.88 20365.73 27781.65 28659.45 14892.81 26168.13 21760.53 33886.14 278
WR-MVS76.76 22175.74 21479.82 26584.60 26862.27 24192.60 13292.51 12476.06 12267.87 25885.34 24656.76 17990.24 31562.20 27363.69 31386.94 264
ACMH+65.35 1667.65 31064.55 31576.96 30484.59 26957.10 31788.08 26980.79 35758.59 34153.00 35181.09 30126.63 37292.95 25346.51 33861.69 33180.82 348
VPNet78.82 18477.53 18682.70 18984.52 27066.44 13193.93 7192.23 13080.46 5172.60 19388.38 20049.18 26093.13 24872.47 17963.97 31188.55 240
IterMVS-LS76.49 22375.18 22180.43 24684.49 27162.74 23090.64 21688.80 27872.40 18765.16 28281.72 28560.98 13192.27 28367.74 22264.65 30386.29 274
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
UniMVSNet_NR-MVSNet78.15 19877.55 18579.98 25984.46 27260.26 27992.25 14393.20 9477.50 10668.88 24286.61 23266.10 6792.13 28566.38 23862.55 31887.54 250
FMVSNet568.04 30765.66 30775.18 31684.43 27357.89 30683.54 30786.26 32061.83 32253.64 35073.30 35537.15 33585.08 35448.99 32561.77 32782.56 334
MVS-HIRNet60.25 34455.55 35174.35 32284.37 27456.57 32371.64 37174.11 37334.44 39345.54 37842.24 40031.11 36189.81 32140.36 36476.10 22376.67 374
LPG-MVS_test75.82 23674.58 22779.56 27284.31 27559.37 29290.44 22089.73 23869.49 25164.86 28388.42 19838.65 31794.30 21172.56 17772.76 24485.01 302
LGP-MVS_train79.56 27284.31 27559.37 29289.73 23869.49 25164.86 28388.42 19838.65 31794.30 21172.56 17772.76 24485.01 302
ACMM69.62 1374.34 25172.73 25479.17 27784.25 27757.87 30790.36 22489.93 22963.17 30665.64 27886.04 24137.79 32994.10 21965.89 24371.52 25485.55 294
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
UniMVSNet (Re)77.58 20776.78 19979.98 25984.11 27860.80 26691.76 17193.17 9676.56 11969.93 23184.78 25263.32 10792.36 28064.89 25462.51 32086.78 266
test_040264.54 32861.09 33474.92 31884.10 27960.75 27087.95 27379.71 36152.03 36252.41 35377.20 33632.21 35591.64 29523.14 39461.03 33472.36 382
LTVRE_ROB59.60 1966.27 31863.54 32274.45 32184.00 28051.55 34667.08 38483.53 34758.78 33954.94 34480.31 31034.54 34693.23 24740.64 36368.03 27678.58 368
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
miper_lstm_enhance73.05 26471.73 26777.03 30183.80 28158.32 30481.76 32588.88 27469.80 24961.01 31378.23 32857.19 17187.51 34265.34 25159.53 34385.27 301
Patchmatch-test65.86 32060.94 33580.62 24483.75 28258.83 29958.91 39575.26 37144.50 38550.95 36177.09 33858.81 15787.90 33435.13 37664.03 30995.12 79
nrg03080.93 14579.86 15084.13 15683.69 28368.83 6893.23 10691.20 17975.55 12875.06 16788.22 20663.04 11294.74 19281.88 10766.88 28488.82 235
GA-MVS78.33 19676.23 20684.65 13783.65 28466.30 13591.44 17990.14 22176.01 12370.32 22384.02 26042.50 30494.72 19370.98 19177.00 21792.94 162
FMVSNet172.71 27169.91 28281.10 23383.60 28565.11 16390.01 23590.32 21063.92 29663.56 29780.25 31236.35 34091.54 29954.46 30666.75 28586.64 267
OPM-MVS79.00 17978.09 17681.73 21783.52 28663.83 19591.64 17790.30 21476.36 12171.97 20489.93 18346.30 28695.17 18075.10 15677.70 20786.19 277
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
tfpnnormal70.10 28867.36 29778.32 28583.45 28760.97 26488.85 25992.77 11064.85 29160.83 31578.53 32543.52 30193.48 24331.73 38761.70 33080.52 352
Effi-MVS+-dtu76.14 22675.28 22078.72 28283.22 28855.17 33189.87 23987.78 30675.42 13067.98 25381.43 29145.08 29592.52 27475.08 15771.63 25288.48 241
CR-MVSNet73.79 25970.82 27482.70 18983.15 28967.96 9170.25 37384.00 34373.67 16169.97 22972.41 35857.82 16689.48 32452.99 31373.13 24190.64 212
RPMNet70.42 28665.68 30684.63 13983.15 28967.96 9170.25 37390.45 20446.83 38069.97 22965.10 37856.48 18795.30 17735.79 37573.13 24190.64 212
DU-MVS76.86 21775.84 21279.91 26282.96 29160.26 27991.26 19391.54 16576.46 12068.88 24286.35 23556.16 18892.13 28566.38 23862.55 31887.35 256
NR-MVSNet76.05 23074.59 22680.44 24582.96 29162.18 24290.83 20991.73 15577.12 11060.96 31486.35 23559.28 15291.80 29260.74 28061.34 33387.35 256
fmvsm_s_conf0.1_n85.61 6385.93 5484.68 13682.95 29363.48 21294.03 6789.46 24581.69 3389.86 2696.74 2061.85 12497.75 4994.74 982.01 17192.81 166
XXY-MVS77.94 20276.44 20382.43 19582.60 29464.44 17792.01 15691.83 15273.59 16270.00 22885.82 24254.43 21094.76 19069.63 20268.02 27788.10 247
test_fmvsmvis_n_192083.80 9783.48 8884.77 13082.51 29563.72 20091.37 18783.99 34581.42 3977.68 13995.74 4258.37 16097.58 5993.38 1486.87 12493.00 161
TranMVSNet+NR-MVSNet75.86 23574.52 22979.89 26382.44 29660.64 27591.37 18791.37 17276.63 11767.65 26086.21 23852.37 23191.55 29861.84 27560.81 33687.48 252
test_vis1_n_192081.66 13282.01 11780.64 24382.24 29755.09 33294.76 4686.87 31481.67 3484.40 6994.63 7738.17 32294.67 19791.98 2783.34 15692.16 188
IterMVS72.65 27470.83 27278.09 28982.17 29862.96 22387.64 28186.28 31971.56 22060.44 31678.85 32445.42 29286.66 34663.30 26561.83 32684.65 306
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
Patchmtry67.53 31263.93 32078.34 28482.12 29964.38 18168.72 37884.00 34348.23 37759.24 32272.41 35857.82 16689.27 32546.10 34156.68 35381.36 342
PatchT69.11 29765.37 31080.32 24782.07 30063.68 20467.96 38387.62 30750.86 36869.37 23365.18 37757.09 17288.53 33041.59 35966.60 28688.74 236
MIMVSNet71.64 27868.44 29181.23 22881.97 30164.44 17773.05 36988.80 27869.67 25064.59 28674.79 35232.79 35187.82 33653.99 30876.35 22191.42 197
MVP-Stereo77.12 21476.23 20679.79 26681.72 30266.34 13489.29 25090.88 19470.56 24062.01 31182.88 27149.34 25794.13 21865.55 24993.80 4478.88 365
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
kuosan60.86 34260.24 33662.71 36581.57 30346.43 37475.70 36585.88 32557.98 34248.95 36869.53 37058.42 15976.53 38328.25 39135.87 39065.15 389
IterMVS-SCA-FT71.55 28069.97 28076.32 30881.48 30460.67 27487.64 28185.99 32466.17 28259.50 32178.88 32345.53 29083.65 36362.58 27161.93 32584.63 307
COLMAP_ROBcopyleft57.96 2062.98 33659.65 33972.98 33281.44 30553.00 34183.75 30675.53 37048.34 37548.81 36981.40 29324.14 37590.30 31132.95 38260.52 33975.65 376
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
JIA-IIPM66.06 31962.45 32976.88 30581.42 30654.45 33657.49 39688.67 28349.36 37263.86 29446.86 39456.06 19190.25 31249.53 32368.83 27085.95 285
WR-MVS_H70.59 28469.94 28172.53 33581.03 30751.43 34787.35 28492.03 14067.38 27360.23 31880.70 30355.84 19483.45 36546.33 34058.58 34882.72 329
Fast-Effi-MVS+-dtu75.04 24673.37 24680.07 25580.86 30859.52 29091.20 19885.38 32971.90 20165.20 28184.84 25141.46 30792.97 25266.50 23772.96 24387.73 249
test_fmvsmconf0.1_n85.71 6086.08 5284.62 14080.83 30962.33 23893.84 7988.81 27783.50 1987.00 4396.01 3763.36 10596.93 10694.04 1287.29 12194.61 103
Baseline_NR-MVSNet73.99 25672.83 25177.48 29580.78 31059.29 29591.79 16884.55 33868.85 26068.99 24080.70 30356.16 18892.04 28862.67 27060.98 33581.11 345
CP-MVSNet70.50 28569.91 28272.26 33880.71 31151.00 35087.23 28690.30 21467.84 26859.64 32082.69 27350.23 25082.30 37351.28 31559.28 34483.46 318
v875.35 24273.26 24781.61 22080.67 31266.82 12189.54 24589.27 25371.65 21363.30 30080.30 31154.99 20394.06 22367.33 22762.33 32183.94 310
PS-MVSNAJss77.26 21176.31 20580.13 25480.64 31359.16 29690.63 21891.06 19072.80 17768.58 24884.57 25553.55 21993.96 23172.97 17071.96 25187.27 259
TransMVSNet (Re)70.07 28967.66 29577.31 29980.62 31459.13 29791.78 17084.94 33465.97 28360.08 31980.44 30850.78 24491.87 29048.84 32645.46 37680.94 347
v2v48277.42 20975.65 21582.73 18880.38 31567.13 11391.85 16690.23 21875.09 13569.37 23383.39 26753.79 21794.44 20771.77 18565.00 29886.63 270
PS-CasMVS69.86 29269.13 28772.07 34280.35 31650.57 35287.02 28889.75 23567.27 27459.19 32482.28 27746.58 28182.24 37450.69 31759.02 34583.39 320
v1074.77 24972.54 25881.46 22380.33 31766.71 12589.15 25589.08 26670.94 23263.08 30379.86 31652.52 22994.04 22665.70 24662.17 32283.64 313
test0.0.03 172.76 26972.71 25572.88 33380.25 31847.99 36591.22 19689.45 24671.51 22262.51 30987.66 21553.83 21585.06 35550.16 32067.84 28085.58 292
fmvsm_s_conf0.1_n_a84.76 7684.84 7384.53 14280.23 31963.50 21192.79 12088.73 28080.46 5189.84 2796.65 2260.96 13297.57 6193.80 1380.14 18692.53 174
v114476.73 22274.88 22282.27 20180.23 31966.60 12891.68 17590.21 22073.69 15969.06 23881.89 28252.73 22894.40 20869.21 20865.23 29585.80 288
v14876.19 22574.47 23081.36 22580.05 32164.44 17791.75 17390.23 21873.68 16067.13 26880.84 30255.92 19393.86 23768.95 21261.73 32985.76 291
dmvs_testset65.55 32366.45 30062.86 36479.87 32222.35 41076.55 35971.74 37977.42 10955.85 34187.77 21451.39 24080.69 37931.51 39065.92 29085.55 294
v119275.98 23273.92 23982.15 20779.73 32366.24 13791.22 19689.75 23572.67 17968.49 24981.42 29249.86 25394.27 21367.08 23065.02 29785.95 285
AllTest61.66 33858.06 34372.46 33679.57 32451.42 34880.17 34268.61 38651.25 36645.88 37481.23 29519.86 38686.58 34738.98 36757.01 35179.39 360
TestCases72.46 33679.57 32451.42 34868.61 38651.25 36645.88 37481.23 29519.86 38686.58 34738.98 36757.01 35179.39 360
MDA-MVSNet-bldmvs61.54 34057.70 34573.05 33179.53 32657.00 32183.08 31781.23 35557.57 34334.91 39372.45 35732.79 35186.26 34935.81 37441.95 38175.89 375
v14419276.05 23074.03 23782.12 20979.50 32766.55 13091.39 18489.71 24172.30 19068.17 25181.33 29451.75 23694.03 22867.94 22064.19 30685.77 289
v192192075.63 24073.49 24582.06 21379.38 32866.35 13391.07 20389.48 24471.98 19867.99 25281.22 29749.16 26293.90 23466.56 23464.56 30485.92 287
PEN-MVS69.46 29568.56 28972.17 34079.27 32949.71 35686.90 29089.24 25467.24 27759.08 32582.51 27647.23 27783.54 36448.42 32857.12 34983.25 321
v124075.21 24572.98 25081.88 21579.20 33066.00 14190.75 21289.11 26471.63 21767.41 26581.22 29747.36 27693.87 23565.46 25064.72 30285.77 289
pmmvs473.92 25771.81 26680.25 25179.17 33165.24 15987.43 28387.26 31167.64 27263.46 29883.91 26248.96 26491.53 30262.94 26765.49 29183.96 309
D2MVS73.80 25872.02 26379.15 27979.15 33262.97 22288.58 26490.07 22372.94 17259.22 32378.30 32642.31 30692.70 26765.59 24872.00 25081.79 340
V4276.46 22474.55 22882.19 20679.14 33367.82 9490.26 22889.42 24873.75 15768.63 24781.89 28251.31 24194.09 22071.69 18764.84 29984.66 305
pm-mvs172.89 26771.09 27178.26 28779.10 33457.62 31190.80 21089.30 25267.66 27062.91 30581.78 28449.11 26392.95 25360.29 28458.89 34684.22 308
our_test_368.29 30564.69 31479.11 28078.92 33564.85 17088.40 26785.06 33260.32 33152.68 35276.12 34640.81 31089.80 32344.25 34955.65 35482.67 333
ppachtmachnet_test67.72 30963.70 32179.77 26778.92 33566.04 14088.68 26282.90 35360.11 33355.45 34275.96 34739.19 31490.55 30839.53 36552.55 36482.71 330
test_fmvs174.07 25473.69 24275.22 31478.91 33747.34 36989.06 25874.69 37263.68 29979.41 11991.59 15224.36 37487.77 33885.22 7976.26 22290.55 214
TinyColmap60.32 34356.42 35072.00 34378.78 33853.18 34078.36 35375.64 36852.30 36141.59 38875.82 34914.76 39388.35 33135.84 37354.71 35974.46 377
SixPastTwentyTwo64.92 32661.78 33374.34 32378.74 33949.76 35583.42 31179.51 36262.86 30850.27 36277.35 33330.92 36290.49 31045.89 34247.06 37382.78 326
EG-PatchMatch MVS68.55 30265.41 30977.96 29078.69 34062.93 22489.86 24089.17 25860.55 32850.27 36277.73 33222.60 37994.06 22347.18 33672.65 24676.88 373
pmmvs573.35 26171.52 26878.86 28178.64 34160.61 27691.08 20186.90 31367.69 26963.32 29983.64 26344.33 29890.53 30962.04 27466.02 28985.46 296
UniMVSNet_ETH3D72.74 27070.53 27779.36 27478.62 34256.64 32285.01 29989.20 25663.77 29864.84 28584.44 25734.05 34891.86 29163.94 25970.89 25989.57 227
XVG-OURS74.25 25372.46 25979.63 26978.45 34357.59 31280.33 33987.39 30863.86 29768.76 24589.62 18640.50 31191.72 29469.00 21174.25 23389.58 226
tt080573.07 26370.73 27580.07 25578.37 34457.05 31887.78 27892.18 13661.23 32567.04 26986.49 23431.35 35994.58 19865.06 25367.12 28288.57 239
test_cas_vis1_n_192080.45 15480.61 13979.97 26178.25 34557.01 32094.04 6688.33 29379.06 8182.81 8193.70 10438.65 31791.63 29690.82 3679.81 18891.27 205
XVG-OURS-SEG-HR74.70 25073.08 24879.57 27178.25 34557.33 31680.49 33787.32 30963.22 30468.76 24590.12 18244.89 29691.59 29770.55 19774.09 23589.79 223
MDA-MVSNet_test_wron63.78 33360.16 33774.64 31978.15 34760.41 27783.49 30884.03 34156.17 35439.17 39071.59 36437.22 33383.24 36842.87 35448.73 37080.26 355
YYNet163.76 33460.14 33874.62 32078.06 34860.19 28283.46 31083.99 34556.18 35339.25 38971.56 36537.18 33483.34 36642.90 35348.70 37180.32 354
DTE-MVSNet68.46 30467.33 29871.87 34477.94 34949.00 36286.16 29588.58 28866.36 28158.19 32982.21 27946.36 28283.87 36244.97 34755.17 35682.73 328
USDC67.43 31464.51 31676.19 30977.94 34955.29 33078.38 35285.00 33373.17 16748.36 37080.37 30921.23 38192.48 27652.15 31464.02 31080.81 349
mamv465.18 32567.43 29658.44 36877.88 35149.36 36169.40 37770.99 38248.31 37657.78 33585.53 24559.01 15551.88 40673.67 16764.32 30574.07 378
jajsoiax73.05 26471.51 26977.67 29277.46 35254.83 33388.81 26090.04 22669.13 25862.85 30683.51 26531.16 36092.75 26470.83 19269.80 26085.43 297
mvs_tets72.71 27171.11 27077.52 29377.41 35354.52 33588.45 26689.76 23468.76 26362.70 30783.26 26829.49 36492.71 26570.51 19869.62 26285.34 299
N_pmnet50.55 35549.11 35854.88 37477.17 3544.02 41884.36 3022.00 41648.59 37345.86 37668.82 37132.22 35482.80 37031.58 38851.38 36677.81 371
test_djsdf73.76 26072.56 25777.39 29777.00 35553.93 33789.07 25690.69 19765.80 28463.92 29382.03 28143.14 30392.67 26872.83 17268.53 27385.57 293
OpenMVS_ROBcopyleft61.12 1866.39 31762.92 32676.80 30676.51 35657.77 30889.22 25283.41 34955.48 35553.86 34977.84 33126.28 37393.95 23234.90 37768.76 27178.68 367
v7n71.31 28168.65 28879.28 27576.40 35760.77 26886.71 29289.45 24664.17 29558.77 32878.24 32744.59 29793.54 24157.76 29461.75 32883.52 316
K. test v363.09 33559.61 34073.53 32876.26 35849.38 36083.27 31377.15 36464.35 29447.77 37272.32 36028.73 36687.79 33749.93 32236.69 38983.41 319
RPSCF64.24 33061.98 33271.01 34676.10 35945.00 37875.83 36475.94 36646.94 37958.96 32684.59 25431.40 35882.00 37547.76 33460.33 34286.04 282
OurMVSNet-221017-064.68 32762.17 33172.21 33976.08 36047.35 36880.67 33681.02 35656.19 35251.60 35679.66 32027.05 37188.56 32953.60 31153.63 36180.71 350
dongtai55.18 35355.46 35254.34 37676.03 36136.88 39476.07 36284.61 33751.28 36543.41 38564.61 38056.56 18567.81 39418.09 39928.50 40058.32 392
test_fmvsmconf0.01_n83.70 10183.52 8584.25 15475.26 36261.72 25292.17 14687.24 31282.36 2684.91 6495.41 4855.60 19596.83 11192.85 1885.87 13694.21 117
Anonymous2023120667.53 31265.78 30472.79 33474.95 36347.59 36788.23 26887.32 30961.75 32358.07 33177.29 33537.79 32987.29 34442.91 35263.71 31283.48 317
EGC-MVSNET42.35 36238.09 36555.11 37374.57 36446.62 37371.63 37255.77 3970.04 4110.24 41262.70 38314.24 39474.91 38617.59 40046.06 37543.80 397
ITE_SJBPF70.43 34774.44 36547.06 37277.32 36360.16 33254.04 34883.53 26423.30 37884.01 36043.07 35161.58 33280.21 357
EU-MVSNet64.01 33163.01 32567.02 36074.40 36638.86 39383.27 31386.19 32245.11 38354.27 34681.15 30036.91 33880.01 38148.79 32757.02 35082.19 338
XVG-ACMP-BASELINE68.04 30765.53 30875.56 31274.06 36752.37 34278.43 35185.88 32562.03 31858.91 32781.21 29920.38 38491.15 30660.69 28168.18 27583.16 323
mvsany_test168.77 30068.56 28969.39 35073.57 36845.88 37780.93 33560.88 39659.65 33571.56 21090.26 17543.22 30275.05 38474.26 16562.70 31787.25 260
CL-MVSNet_self_test69.92 29068.09 29475.41 31373.25 36955.90 32790.05 23489.90 23069.96 24661.96 31276.54 34151.05 24387.64 33949.51 32450.59 36882.70 331
anonymousdsp71.14 28269.37 28676.45 30772.95 37054.71 33484.19 30388.88 27461.92 32062.15 31079.77 31838.14 32491.44 30468.90 21367.45 28183.21 322
lessismore_v073.72 32772.93 37147.83 36661.72 39545.86 37673.76 35428.63 36889.81 32147.75 33531.37 39683.53 315
pmmvs667.57 31164.76 31376.00 31172.82 37253.37 33988.71 26186.78 31753.19 36057.58 33778.03 33035.33 34492.41 27755.56 30254.88 35882.21 337
testgi64.48 32962.87 32769.31 35171.24 37340.62 38885.49 29679.92 36065.36 28854.18 34783.49 26623.74 37784.55 35641.60 35860.79 33782.77 327
Patchmatch-RL test68.17 30664.49 31779.19 27671.22 37453.93 33770.07 37571.54 38169.22 25556.79 33962.89 38256.58 18488.61 32769.53 20452.61 36395.03 84
test_fmvs1_n72.69 27371.92 26474.99 31771.15 37547.08 37187.34 28575.67 36763.48 30178.08 13691.17 15920.16 38587.87 33584.65 8975.57 22690.01 220
Gipumacopyleft34.91 36931.44 37245.30 38470.99 37639.64 39219.85 40672.56 37620.10 40216.16 40621.47 4075.08 40771.16 39013.07 40443.70 37925.08 404
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
UnsupCasMVSNet_eth65.79 32163.10 32473.88 32570.71 37750.29 35481.09 33389.88 23172.58 18149.25 36774.77 35332.57 35387.43 34355.96 30141.04 38383.90 311
CMPMVSbinary48.56 2166.77 31664.41 31873.84 32670.65 37850.31 35377.79 35685.73 32845.54 38244.76 38082.14 28035.40 34390.14 31863.18 26674.54 23081.07 346
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
test20.0363.83 33262.65 32867.38 35970.58 37939.94 38986.57 29384.17 34063.29 30351.86 35577.30 33437.09 33682.47 37138.87 36954.13 36079.73 358
MIMVSNet160.16 34557.33 34668.67 35369.71 38044.13 38078.92 34984.21 33955.05 35644.63 38171.85 36223.91 37681.54 37732.63 38555.03 35780.35 353
test_vis1_n71.63 27970.73 27574.31 32469.63 38147.29 37086.91 28972.11 37763.21 30575.18 16690.17 17720.40 38385.76 35084.59 9074.42 23289.87 221
pmmvs-eth3d65.53 32462.32 33075.19 31569.39 38259.59 28882.80 32183.43 34862.52 31251.30 35972.49 35632.86 35087.16 34555.32 30350.73 36778.83 366
UnsupCasMVSNet_bld61.60 33957.71 34473.29 33068.73 38351.64 34578.61 35089.05 26857.20 34746.11 37361.96 38528.70 36788.60 32850.08 32138.90 38779.63 359
test_vis1_rt59.09 34857.31 34764.43 36268.44 38446.02 37683.05 31948.63 40551.96 36349.57 36563.86 38116.30 38880.20 38071.21 19062.79 31667.07 388
Anonymous2024052162.09 33759.08 34171.10 34567.19 38548.72 36383.91 30585.23 33150.38 36947.84 37171.22 36720.74 38285.51 35346.47 33958.75 34779.06 363
test_fmvs265.78 32264.84 31168.60 35466.54 38641.71 38583.27 31369.81 38454.38 35767.91 25584.54 25615.35 39081.22 37875.65 15266.16 28882.88 325
KD-MVS_self_test60.87 34158.60 34267.68 35766.13 38739.93 39075.63 36684.70 33557.32 34649.57 36568.45 37229.55 36382.87 36948.09 32947.94 37280.25 356
new-patchmatchnet59.30 34756.48 34967.79 35665.86 38844.19 37982.47 32281.77 35459.94 33443.65 38466.20 37627.67 36981.68 37639.34 36641.40 38277.50 372
PM-MVS59.40 34656.59 34867.84 35563.63 38941.86 38476.76 35863.22 39359.01 33851.07 36072.27 36111.72 39683.25 36761.34 27750.28 36978.39 369
DSMNet-mixed56.78 35054.44 35463.79 36363.21 39029.44 40564.43 38764.10 39242.12 39051.32 35871.60 36331.76 35675.04 38536.23 37265.20 29686.87 265
new_pmnet49.31 35646.44 35957.93 36962.84 39140.74 38768.47 38062.96 39436.48 39235.09 39257.81 38914.97 39272.18 38932.86 38346.44 37460.88 391
LF4IMVS54.01 35452.12 35559.69 36762.41 39239.91 39168.59 37968.28 38842.96 38944.55 38275.18 35014.09 39568.39 39341.36 36051.68 36570.78 383
WB-MVS46.23 35944.94 36150.11 37962.13 39321.23 41276.48 36055.49 39845.89 38135.78 39161.44 38735.54 34272.83 3889.96 40621.75 40156.27 394
ambc69.61 34961.38 39441.35 38649.07 40185.86 32750.18 36466.40 37510.16 39888.14 33345.73 34344.20 37779.32 362
SSC-MVS44.51 36143.35 36347.99 38361.01 39518.90 41474.12 36854.36 39943.42 38834.10 39460.02 38834.42 34770.39 3919.14 40819.57 40254.68 395
TDRefinement55.28 35251.58 35666.39 36159.53 39646.15 37576.23 36172.80 37544.60 38442.49 38676.28 34515.29 39182.39 37233.20 38143.75 37870.62 384
pmmvs355.51 35151.50 35767.53 35857.90 39750.93 35180.37 33873.66 37440.63 39144.15 38364.75 37916.30 38878.97 38244.77 34840.98 38572.69 380
test_method38.59 36735.16 37048.89 38154.33 39821.35 41145.32 40253.71 4007.41 40828.74 39651.62 3928.70 40152.87 40533.73 37832.89 39572.47 381
test_fmvs356.82 34954.86 35362.69 36653.59 39935.47 39675.87 36365.64 39143.91 38655.10 34371.43 3666.91 40474.40 38768.64 21552.63 36278.20 370
APD_test140.50 36437.31 36750.09 38051.88 40035.27 39759.45 39452.59 40121.64 40026.12 39857.80 3904.56 40866.56 39622.64 39539.09 38648.43 396
DeepMVS_CXcopyleft34.71 38951.45 40124.73 40928.48 41531.46 39617.49 40552.75 3915.80 40642.60 41018.18 39819.42 40336.81 402
FPMVS45.64 36043.10 36453.23 37751.42 40236.46 39564.97 38671.91 37829.13 39727.53 39761.55 3869.83 39965.01 40016.00 40355.58 35558.22 393
wuyk23d11.30 37810.95 38112.33 39348.05 40319.89 41325.89 4051.92 4173.58 4093.12 4111.37 4110.64 41615.77 4126.23 4117.77 4101.35 408
PMMVS237.93 36833.61 37150.92 37846.31 40424.76 40860.55 39350.05 40228.94 39820.93 40047.59 3934.41 41065.13 39925.14 39318.55 40462.87 390
mvsany_test348.86 35746.35 36056.41 37046.00 40531.67 40162.26 38947.25 40643.71 38745.54 37868.15 37310.84 39764.44 40257.95 29335.44 39373.13 379
test_f46.58 35843.45 36255.96 37145.18 40632.05 40061.18 39049.49 40433.39 39442.05 38762.48 3847.00 40365.56 39847.08 33743.21 38070.27 385
test_vis3_rt40.46 36537.79 36648.47 38244.49 40733.35 39966.56 38532.84 41332.39 39529.65 39539.13 4033.91 41168.65 39250.17 31940.99 38443.40 398
E-PMN24.61 37324.00 37726.45 39043.74 40818.44 41560.86 39139.66 40915.11 4059.53 40922.10 4066.52 40546.94 4088.31 40910.14 40613.98 406
testf132.77 37029.47 37342.67 38641.89 40930.81 40252.07 39743.45 40715.45 40318.52 40344.82 3972.12 41258.38 40316.05 40130.87 39738.83 399
APD_test232.77 37029.47 37342.67 38641.89 40930.81 40252.07 39743.45 40715.45 40318.52 40344.82 3972.12 41258.38 40316.05 40130.87 39738.83 399
EMVS23.76 37523.20 37925.46 39141.52 41116.90 41660.56 39238.79 41214.62 4068.99 41020.24 4097.35 40245.82 4097.25 4109.46 40713.64 407
LCM-MVSNet40.54 36335.79 36854.76 37536.92 41230.81 40251.41 39969.02 38522.07 39924.63 39945.37 3964.56 40865.81 39733.67 37934.50 39467.67 386
ANet_high40.27 36635.20 36955.47 37234.74 41334.47 39863.84 38871.56 38048.42 37418.80 40241.08 4019.52 40064.45 40120.18 3978.66 40967.49 387
MVEpermissive24.84 2324.35 37419.77 38038.09 38834.56 41426.92 40726.57 40438.87 41111.73 40711.37 40827.44 4041.37 41550.42 40711.41 40514.60 40536.93 401
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
PMVScopyleft26.43 2231.84 37228.16 37542.89 38525.87 41527.58 40650.92 40049.78 40321.37 40114.17 40740.81 4022.01 41466.62 3959.61 40738.88 38834.49 403
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
tmp_tt22.26 37623.75 37817.80 3925.23 41612.06 41735.26 40339.48 4102.82 41018.94 40144.20 39922.23 38024.64 41136.30 3719.31 40816.69 405
testmvs7.23 3809.62 3830.06 3950.04 4170.02 42084.98 3000.02 4180.03 4120.18 4131.21 4120.01 4180.02 4130.14 4120.01 4110.13 410
test1236.92 3819.21 3840.08 3940.03 4180.05 41981.65 3280.01 4190.02 4130.14 4140.85 4130.03 4170.02 4130.12 4130.00 4120.16 409
test_blank0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4120.00 411
eth-test20.00 419
eth-test0.00 419
uanet_test0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4120.00 411
DCPMVS0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4120.00 411
cdsmvs_eth3d_5k19.86 37726.47 3760.00 3960.00 4190.00 4210.00 40793.45 840.00 4140.00 41595.27 5649.56 2550.00 4150.00 4140.00 4120.00 411
pcd_1.5k_mvsjas4.46 3825.95 3850.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 41453.55 2190.00 4150.00 4140.00 4120.00 411
sosnet-low-res0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4120.00 411
sosnet0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4120.00 411
uncertanet0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4120.00 411
Regformer0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4120.00 411
ab-mvs-re7.91 37910.55 3820.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 41594.95 660.00 4190.00 4150.00 4140.00 4120.00 411
uanet0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4120.00 411
WAC-MVS49.45 35831.56 389
PC_three_145280.91 4694.07 296.83 1883.57 499.12 595.70 797.42 497.55 4
test_241102_TWO94.41 4771.65 21392.07 997.21 474.58 1799.11 692.34 2295.36 1496.59 19
test_0728_THIRD72.48 18390.55 2096.93 1176.24 1199.08 1191.53 3094.99 1896.43 32
GSMVS94.68 98
sam_mvs157.85 16594.68 98
sam_mvs54.91 204
MTGPAbinary92.23 130
test_post178.95 34820.70 40853.05 22491.50 30360.43 282
test_post23.01 40556.49 18692.67 268
patchmatchnet-post67.62 37457.62 16890.25 312
MTMP93.77 8332.52 414
test9_res89.41 4194.96 1995.29 69
agg_prior286.41 7194.75 3095.33 65
test_prior467.18 11293.92 72
test_prior295.10 3875.40 13185.25 6395.61 4567.94 5387.47 6094.77 26
旧先验292.00 15959.37 33787.54 3993.47 24475.39 154
新几何291.41 180
无先验92.71 12492.61 12162.03 31897.01 9366.63 23393.97 130
原ACMM292.01 156
testdata296.09 13861.26 278
segment_acmp65.94 69
testdata189.21 25377.55 105
plane_prior591.31 17495.55 16776.74 14578.53 20288.39 243
plane_prior489.14 193
plane_prior361.95 24779.09 7972.53 195
plane_prior293.13 10878.81 85
plane_prior62.42 23593.85 7679.38 7178.80 199
n20.00 420
nn0.00 420
door-mid66.01 390
test1193.01 102
door66.57 389
HQP5-MVS63.66 205
BP-MVS77.63 142
HQP4-MVS74.18 17495.61 16288.63 237
HQP3-MVS91.70 16078.90 197
HQP2-MVS51.63 238
MDTV_nov1_ep13_2view59.90 28580.13 34367.65 27172.79 19054.33 21259.83 28692.58 171
ACMMP++_ref71.63 252
ACMMP++69.72 261
Test By Simon54.21 213