This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
LCM-MVSNet99.86 199.86 199.87 199.99 199.77 199.77 199.80 199.97 199.97 199.95 199.74 199.98 199.56 1100.00 199.85 3
LTVRE_ROB96.88 199.18 299.34 298.72 3699.71 796.99 4199.69 299.57 399.02 1599.62 1099.36 1498.53 799.52 16398.58 1299.95 599.66 21
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
UniMVSNet_ETH3D99.12 399.28 398.65 4199.77 396.34 6099.18 599.20 1399.67 299.73 399.65 499.15 399.86 2097.22 4399.92 1299.77 8
pmmvs699.07 499.24 498.56 4799.81 296.38 5898.87 799.30 899.01 1699.63 999.66 399.27 299.68 11097.75 2999.89 2099.62 24
mvs_tets98.90 598.94 698.75 3199.69 896.48 5698.54 1899.22 1096.23 9999.71 499.48 798.77 699.93 298.89 399.95 599.84 5
TDRefinement98.90 598.86 899.02 899.54 1998.06 699.34 499.44 698.85 1999.00 3599.20 2397.42 3199.59 14297.21 4499.76 3799.40 80
UA-Net98.88 798.76 1399.22 299.11 8097.89 1099.47 399.32 799.08 1097.87 13099.67 296.47 8099.92 497.88 2299.98 299.85 3
DTE-MVSNet98.79 898.86 898.59 4599.55 1796.12 6798.48 2299.10 2899.36 499.29 2299.06 3597.27 3799.93 297.71 3199.91 1599.70 18
jajsoiax98.77 998.79 1298.74 3399.66 1096.48 5698.45 2399.12 2595.83 12499.67 699.37 1298.25 1099.92 498.77 599.94 899.82 6
PEN-MVS98.75 1098.85 1098.44 5399.58 1495.67 8298.45 2399.15 2199.33 599.30 2199.00 3697.27 3799.92 497.64 3299.92 1299.75 13
v7n98.73 1198.99 597.95 8999.64 1194.20 14098.67 1199.14 2399.08 1099.42 1599.23 2196.53 7599.91 1299.27 299.93 1099.73 15
PS-CasMVS98.73 1198.85 1098.39 5799.55 1795.47 9298.49 2099.13 2499.22 899.22 2698.96 4097.35 3399.92 497.79 2799.93 1099.79 7
test_djsdf98.73 1198.74 1698.69 3899.63 1296.30 6298.67 1199.02 4996.50 8899.32 2099.44 1097.43 3099.92 498.73 799.95 599.86 2
anonymousdsp98.72 1498.63 1998.99 1199.62 1397.29 3498.65 1499.19 1595.62 13199.35 1999.37 1297.38 3299.90 1398.59 1199.91 1599.77 8
WR-MVS_H98.65 1598.62 2198.75 3199.51 2296.61 5298.55 1799.17 1699.05 1399.17 2898.79 4995.47 11999.89 1697.95 2099.91 1599.75 13
OurMVSNet-221017-098.61 1698.61 2398.63 4399.77 396.35 5999.17 699.05 4098.05 3999.61 1199.52 593.72 16999.88 1898.72 999.88 2199.65 22
Anonymous2023121198.55 1798.76 1397.94 9098.79 10294.37 13298.84 899.15 2199.37 399.67 699.43 1195.61 11499.72 7298.12 1699.86 2399.73 15
nrg03098.54 1898.62 2198.32 6299.22 5695.66 8397.90 5299.08 3498.31 3199.02 3398.74 5397.68 2499.61 14097.77 2899.85 2599.70 18
PS-MVSNAJss98.53 1998.63 1998.21 7299.68 994.82 11598.10 4299.21 1196.91 7699.75 299.45 995.82 10299.92 498.80 499.96 499.89 1
MIMVSNet198.51 2098.45 2698.67 3999.72 696.71 4798.76 998.89 7498.49 2699.38 1799.14 3095.44 12199.84 2596.47 6699.80 3299.47 58
pm-mvs198.47 2198.67 1797.86 9599.52 2194.58 12598.28 2999.00 5797.57 5799.27 2399.22 2298.32 999.50 16897.09 5099.75 4199.50 42
ACMH93.61 998.44 2298.76 1397.51 11899.43 3293.54 16598.23 3299.05 4097.40 6799.37 1899.08 3498.79 599.47 17597.74 3099.71 4999.50 42
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
CP-MVSNet98.42 2398.46 2498.30 6599.46 2895.22 10498.27 3198.84 8799.05 1399.01 3498.65 6195.37 12299.90 1397.57 3399.91 1599.77 8
abl_698.42 2398.19 3299.09 399.16 6798.10 597.73 6399.11 2697.76 4698.62 5098.27 9597.88 1999.80 3795.67 9399.50 10599.38 85
TransMVSNet (Re)98.38 2598.67 1797.51 11899.51 2293.39 16998.20 3798.87 8198.23 3499.48 1299.27 1998.47 899.55 15596.52 6399.53 9399.60 25
TranMVSNet+NR-MVSNet98.33 2698.30 3198.43 5499.07 8495.87 7396.73 11399.05 4098.67 2298.84 3998.45 7497.58 2799.88 1896.45 6799.86 2399.54 35
HPM-MVS_fast98.32 2798.13 3398.88 2299.54 1997.48 2798.35 2699.03 4795.88 11997.88 12798.22 10298.15 1299.74 6396.50 6599.62 6299.42 77
ANet_high98.31 2898.94 696.41 19399.33 4289.64 23297.92 5199.56 499.27 699.66 899.50 697.67 2599.83 2897.55 3499.98 299.77 8
VPA-MVSNet98.27 2998.46 2497.70 10499.06 8593.80 15497.76 5999.00 5798.40 2899.07 3298.98 3896.89 5899.75 5697.19 4799.79 3399.55 34
Vis-MVSNetpermissive98.27 2998.34 2898.07 8099.33 4295.21 10698.04 4599.46 597.32 6997.82 13599.11 3196.75 6699.86 2097.84 2499.36 14799.15 127
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
COLMAP_ROBcopyleft94.48 698.25 3198.11 3498.64 4299.21 6297.35 3297.96 4899.16 1798.34 3098.78 4298.52 6997.32 3499.45 18294.08 17499.67 5699.13 133
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
ACMH+93.58 1098.23 3298.31 2997.98 8899.39 3795.22 10497.55 7299.20 1398.21 3599.25 2498.51 7098.21 1199.40 19994.79 14499.72 4699.32 94
FC-MVSNet-test98.16 3398.37 2797.56 11399.49 2693.10 17698.35 2699.21 1198.43 2798.89 3898.83 4894.30 15499.81 3197.87 2399.91 1599.77 8
MTAPA98.14 3497.84 4799.06 499.44 3097.90 897.25 8598.73 11897.69 5397.90 12497.96 12995.81 10699.82 2996.13 7499.61 6899.45 65
APDe-MVS98.14 3498.03 3998.47 5298.72 10996.04 6998.07 4499.10 2895.96 11398.59 5498.69 5796.94 5499.81 3196.64 5899.58 7599.57 31
APD-MVS_3200maxsize98.13 3697.90 4398.79 2998.79 10297.31 3397.55 7298.92 7197.72 5098.25 8898.13 10897.10 4499.75 5695.44 10899.24 17699.32 94
HPM-MVScopyleft98.11 3797.83 4898.92 2099.42 3497.46 2898.57 1599.05 4095.43 14097.41 15397.50 17597.98 1599.79 3895.58 10299.57 7899.50 42
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
Gipumacopyleft98.07 3898.31 2997.36 13899.76 596.28 6398.51 1999.10 2898.76 2196.79 18599.34 1796.61 7298.82 28696.38 6899.50 10596.98 295
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
ACMMPcopyleft98.05 3997.75 5598.93 1999.23 5397.60 1998.09 4398.96 6795.75 12897.91 12398.06 11996.89 5899.76 5295.32 11599.57 7899.43 76
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
ACMM93.33 1198.05 3997.79 5098.85 2399.15 7097.55 2396.68 11598.83 9595.21 14698.36 7498.13 10898.13 1499.62 13496.04 7999.54 9099.39 83
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
SteuartSystems-ACMMP98.02 4197.76 5498.79 2999.43 3297.21 3897.15 9098.90 7396.58 8698.08 10697.87 14297.02 5299.76 5295.25 11899.59 7399.40 80
Skip Steuart: Steuart Systems R&D Blog.
zzz-MVS98.01 4297.66 6199.06 499.44 3097.90 895.66 16998.73 11897.69 5397.90 12497.96 12995.81 10699.82 2996.13 7499.61 6899.45 65
SR-MVS98.00 4397.66 6199.01 998.77 10597.93 797.38 8198.83 9597.32 6998.06 10897.85 14396.65 6999.77 4895.00 13799.11 19099.32 94
Anonymous2024052997.96 4498.04 3897.71 10298.69 11694.28 13797.86 5498.31 18198.79 2099.23 2598.86 4795.76 10999.61 14095.49 10399.36 14799.23 116
XVS97.96 4497.63 6898.94 1699.15 7097.66 1697.77 5798.83 9597.42 6396.32 20797.64 16496.49 7899.72 7295.66 9599.37 14499.45 65
NR-MVSNet97.96 4497.86 4698.26 6798.73 10795.54 8798.14 4098.73 11897.79 4499.42 1597.83 14594.40 15299.78 4095.91 8899.76 3799.46 60
ACMMPR97.95 4797.62 7098.94 1699.20 6397.56 2297.59 6998.83 9596.05 10697.46 15097.63 16596.77 6599.76 5295.61 9999.46 11899.49 50
FMVSNet197.95 4798.08 3597.56 11399.14 7893.67 15998.23 3298.66 13897.41 6699.00 3599.19 2495.47 11999.73 6895.83 8999.76 3799.30 100
SED-MVS97.94 4997.90 4398.07 8099.22 5695.35 9696.79 10698.83 9596.11 10399.08 3098.24 9797.87 2099.72 7295.44 10899.51 10399.14 130
HFP-MVS97.94 4997.64 6698.83 2499.15 7097.50 2597.59 6998.84 8796.05 10697.49 14497.54 17097.07 4799.70 9695.61 9999.46 11899.30 100
LPG-MVS_test97.94 4997.67 6098.74 3399.15 7097.02 3997.09 9499.02 4995.15 15098.34 7798.23 9997.91 1799.70 9694.41 15999.73 4399.50 42
FIs97.93 5298.07 3697.48 12599.38 3892.95 17998.03 4799.11 2698.04 4098.62 5098.66 5993.75 16899.78 4097.23 4299.84 2699.73 15
ZNCC-MVS97.92 5397.62 7098.83 2499.32 4497.24 3697.45 7698.84 8795.76 12696.93 18097.43 18097.26 3999.79 3896.06 7699.53 9399.45 65
region2R97.92 5397.59 7398.92 2099.22 5697.55 2397.60 6898.84 8796.00 11197.22 15797.62 16696.87 6199.76 5295.48 10499.43 13099.46 60
CP-MVS97.92 5397.56 7698.99 1198.99 9197.82 1297.93 5098.96 6796.11 10396.89 18397.45 17996.85 6299.78 4095.19 12199.63 6199.38 85
mPP-MVS97.91 5697.53 7799.04 699.22 5697.87 1197.74 6198.78 10996.04 10897.10 16597.73 15796.53 7599.78 4095.16 12599.50 10599.46 60
ACMMP_NAP97.89 5797.63 6898.67 3999.35 4196.84 4496.36 12798.79 10595.07 15497.88 12798.35 8097.24 4199.72 7296.05 7899.58 7599.45 65
PGM-MVS97.88 5897.52 7898.96 1499.20 6397.62 1897.09 9499.06 3895.45 13897.55 13997.94 13397.11 4399.78 4094.77 14799.46 11899.48 55
DP-MVS97.87 5997.89 4597.81 9898.62 12394.82 11597.13 9398.79 10598.98 1798.74 4698.49 7195.80 10899.49 16995.04 13499.44 12399.11 141
RPSCF97.87 5997.51 7998.95 1599.15 7098.43 397.56 7199.06 3896.19 10098.48 6298.70 5694.72 13899.24 24094.37 16299.33 16299.17 123
test_040297.84 6197.97 4097.47 12699.19 6594.07 14396.71 11498.73 11898.66 2398.56 5698.41 7696.84 6399.69 10494.82 14299.81 2998.64 206
UniMVSNet_NR-MVSNet97.83 6297.65 6398.37 5898.72 10995.78 7595.66 16999.02 4998.11 3898.31 8397.69 16294.65 14399.85 2297.02 5399.71 4999.48 55
UniMVSNet (Re)97.83 6297.65 6398.35 6198.80 10195.86 7495.92 15799.04 4697.51 6098.22 9197.81 14994.68 14199.78 4097.14 4999.75 4199.41 79
GST-MVS97.82 6497.49 8198.81 2799.23 5397.25 3597.16 8998.79 10595.96 11397.53 14097.40 18296.93 5599.77 4895.04 13499.35 15299.42 77
DeepC-MVS95.41 497.82 6497.70 5798.16 7398.78 10495.72 7796.23 13699.02 4993.92 19598.62 5098.99 3797.69 2399.62 13496.18 7399.87 2299.15 127
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
DU-MVS97.79 6697.60 7298.36 5998.73 10795.78 7595.65 17198.87 8197.57 5798.31 8397.83 14594.69 13999.85 2297.02 5399.71 4999.46 60
MSP-MVS97.78 6797.65 6398.16 7399.24 5195.51 8996.74 10998.23 18795.92 11698.40 6998.28 9197.06 4999.71 8795.48 10499.52 9899.26 112
LS3D97.77 6897.50 8098.57 4696.24 29097.58 2198.45 2398.85 8498.58 2597.51 14297.94 13395.74 11099.63 12695.19 12198.97 20498.51 217
3Dnovator+96.13 397.73 6997.59 7398.15 7698.11 18295.60 8598.04 4598.70 12898.13 3796.93 18098.45 7495.30 12699.62 13495.64 9798.96 20599.24 115
tfpnnormal97.72 7097.97 4096.94 15899.26 4792.23 19097.83 5698.45 15998.25 3399.13 2998.66 5996.65 6999.69 10493.92 18399.62 6298.91 174
Baseline_NR-MVSNet97.72 7097.79 5097.50 12199.56 1593.29 17095.44 17798.86 8398.20 3698.37 7299.24 2094.69 13999.55 15595.98 8599.79 3399.65 22
MP-MVS-pluss97.69 7297.36 8798.70 3799.50 2596.84 4495.38 18498.99 6092.45 23498.11 10098.31 8497.25 4099.77 4896.60 5999.62 6299.48 55
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
EG-PatchMatch MVS97.69 7297.79 5097.40 13599.06 8593.52 16695.96 15398.97 6694.55 17498.82 4098.76 5297.31 3599.29 23297.20 4699.44 12399.38 85
DPE-MVS97.64 7497.35 8898.50 4998.85 9996.18 6495.21 19998.99 6095.84 12398.78 4298.08 11496.84 6399.81 3193.98 18199.57 7899.52 39
MP-MVScopyleft97.64 7497.18 10099.00 1099.32 4497.77 1497.49 7598.73 11896.27 9695.59 23897.75 15496.30 8999.78 4093.70 19099.48 11399.45 65
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
#test#97.62 7697.22 9898.83 2499.15 7097.50 2596.81 10598.84 8794.25 18397.49 14497.54 17097.07 4799.70 9694.37 16299.46 11899.30 100
3Dnovator96.53 297.61 7797.64 6697.50 12197.74 22693.65 16398.49 2098.88 7996.86 7897.11 16498.55 6795.82 10299.73 6895.94 8699.42 13399.13 133
SF-MVS97.60 7897.39 8598.22 7198.93 9495.69 7997.05 9699.10 2895.32 14397.83 13397.88 14096.44 8299.72 7294.59 15499.39 14199.25 113
v897.60 7898.06 3796.23 19998.71 11289.44 23697.43 7998.82 10397.29 7198.74 4699.10 3293.86 16499.68 11098.61 1099.94 899.56 32
XVG-ACMP-BASELINE97.58 8097.28 9398.49 5099.16 6796.90 4396.39 12498.98 6395.05 15598.06 10898.02 12395.86 9899.56 15194.37 16299.64 6099.00 157
v1097.55 8197.97 4096.31 19798.60 12689.64 23297.44 7799.02 4996.60 8498.72 4899.16 2993.48 17399.72 7298.76 699.92 1299.58 27
OPM-MVS97.54 8297.25 9498.41 5599.11 8096.61 5295.24 19798.46 15894.58 17398.10 10398.07 11697.09 4699.39 20495.16 12599.44 12399.21 118
XXY-MVS97.54 8297.70 5797.07 15299.46 2892.21 19197.22 8899.00 5794.93 16198.58 5598.92 4497.31 3599.41 19794.44 15799.43 13099.59 26
Regformer-497.53 8497.47 8397.71 10297.35 25393.91 14895.26 19498.14 20197.97 4198.34 7797.89 13895.49 11799.71 8797.41 3899.42 13399.51 41
casdiffmvs97.50 8597.81 4996.56 18498.51 13691.04 21395.83 16199.09 3397.23 7298.33 8098.30 8897.03 5199.37 21196.58 6199.38 14399.28 107
SixPastTwentyTwo97.49 8697.57 7597.26 14499.56 1592.33 18798.28 2996.97 26498.30 3299.45 1499.35 1688.43 25499.89 1698.01 1999.76 3799.54 35
SMA-MVS97.48 8797.11 10398.60 4498.83 10096.67 4996.74 10998.73 11891.61 24598.48 6298.36 7996.53 7599.68 11095.17 12399.54 9099.45 65
ACMP92.54 1397.47 8897.10 10498.55 4899.04 8896.70 4896.24 13598.89 7493.71 19997.97 11897.75 15497.44 2999.63 12693.22 20099.70 5299.32 94
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
DVP-MVS97.45 8996.92 11699.03 799.26 4797.70 1597.66 6498.89 7495.65 12998.51 5996.46 24692.15 20499.81 3195.14 12898.58 24599.58 27
baseline97.44 9097.78 5396.43 19098.52 13590.75 22196.84 10399.03 4796.51 8797.86 13198.02 12396.67 6899.36 21397.09 5099.47 11599.19 120
testing_297.43 9197.71 5696.60 17898.91 9690.85 21696.01 14998.54 15194.78 16498.78 4298.96 4096.35 8899.54 15797.25 4199.82 2899.40 80
TSAR-MVS + MP.97.42 9297.23 9798.00 8799.38 3895.00 11097.63 6798.20 19193.00 22298.16 9598.06 11995.89 9799.72 7295.67 9399.10 19299.28 107
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
Regformer-297.41 9397.24 9697.93 9197.21 26494.72 11894.85 22098.27 18297.74 4798.11 10097.50 17595.58 11599.69 10496.57 6299.31 16699.37 90
CSCG97.40 9497.30 9097.69 10698.95 9394.83 11497.28 8498.99 6096.35 9598.13 9995.95 27095.99 9599.66 12094.36 16599.73 4398.59 212
XVG-OURS-SEG-HR97.38 9597.07 10798.30 6599.01 9097.41 3194.66 22799.02 4995.20 14798.15 9797.52 17398.83 498.43 31794.87 14096.41 31099.07 148
VDD-MVS97.37 9697.25 9497.74 10198.69 11694.50 12897.04 9795.61 28998.59 2498.51 5998.72 5492.54 19799.58 14496.02 8199.49 10999.12 138
SD-MVS97.37 9697.70 5796.35 19498.14 17795.13 10796.54 11898.92 7195.94 11599.19 2798.08 11497.74 2295.06 34595.24 11999.54 9098.87 183
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
PM-MVS97.36 9897.10 10498.14 7798.91 9696.77 4696.20 13798.63 14493.82 19698.54 5798.33 8293.98 16299.05 26495.99 8499.45 12298.61 211
LCM-MVSNet-Re97.33 9997.33 8997.32 14098.13 18093.79 15596.99 10099.65 296.74 8199.47 1398.93 4396.91 5799.84 2590.11 26199.06 19998.32 232
EI-MVSNet-UG-set97.32 10097.40 8497.09 15197.34 25792.01 19995.33 18897.65 23897.74 4798.30 8598.14 10795.04 13299.69 10497.55 3499.52 9899.58 27
EI-MVSNet-Vis-set97.32 10097.39 8597.11 14997.36 25292.08 19795.34 18797.65 23897.74 4798.29 8698.11 11295.05 13099.68 11097.50 3699.50 10599.56 32
Regformer-197.27 10297.16 10197.61 11197.21 26493.86 15194.85 22098.04 21597.62 5698.03 11297.50 17595.34 12399.63 12696.52 6399.31 16699.35 92
VPNet97.26 10397.49 8196.59 18099.47 2790.58 22396.27 13198.53 15297.77 4598.46 6598.41 7694.59 14599.68 11094.61 15099.29 17099.52 39
Regformer-397.25 10497.29 9197.11 14997.35 25392.32 18895.26 19497.62 24397.67 5598.17 9497.89 13895.05 13099.56 15197.16 4899.42 13399.46 60
xxxxxxxxxxxxxcwj97.24 10597.03 11097.89 9398.48 14194.71 11994.53 23299.07 3795.02 15797.83 13397.88 14096.44 8299.72 7294.59 15499.39 14199.25 113
canonicalmvs97.23 10697.21 9997.30 14197.65 23494.39 13097.84 5599.05 4097.42 6396.68 19193.85 30997.63 2699.33 22196.29 7098.47 24998.18 246
AllTest97.20 10796.92 11698.06 8299.08 8296.16 6597.14 9299.16 1794.35 17997.78 13698.07 11695.84 9999.12 25491.41 22699.42 13398.91 174
XVG-OURS97.12 10896.74 12598.26 6798.99 9197.45 2993.82 26299.05 4095.19 14898.32 8197.70 16095.22 12898.41 31894.27 16798.13 26098.93 169
V4297.04 10997.16 10196.68 17698.59 12891.05 21296.33 12998.36 17394.60 17097.99 11498.30 8893.32 17599.62 13497.40 3999.53 9399.38 85
APD-MVScopyleft97.00 11096.53 13898.41 5598.55 13296.31 6196.32 13098.77 11092.96 22797.44 15297.58 16995.84 9999.74 6391.96 21499.35 15299.19 120
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
HPM-MVS++copyleft96.99 11196.38 14498.81 2798.64 11897.59 2095.97 15298.20 19195.51 13695.06 24796.53 24294.10 15999.70 9694.29 16699.15 18199.13 133
GBi-Net96.99 11196.80 12297.56 11397.96 19393.67 15998.23 3298.66 13895.59 13397.99 11499.19 2489.51 24599.73 6894.60 15199.44 12399.30 100
test196.99 11196.80 12297.56 11397.96 19393.67 15998.23 3298.66 13895.59 13397.99 11499.19 2489.51 24599.73 6894.60 15199.44 12399.30 100
VDDNet96.98 11496.84 11997.41 13499.40 3693.26 17197.94 4995.31 29399.26 798.39 7199.18 2787.85 26399.62 13495.13 13099.09 19399.35 92
PHI-MVS96.96 11596.53 13898.25 6997.48 24396.50 5596.76 10898.85 8493.52 20296.19 21696.85 22195.94 9699.42 18893.79 18799.43 13098.83 186
IS-MVSNet96.93 11696.68 12897.70 10499.25 5094.00 14698.57 1596.74 27298.36 2998.14 9897.98 12888.23 25699.71 8793.10 20399.72 4699.38 85
CNVR-MVS96.92 11796.55 13598.03 8698.00 19195.54 8794.87 21898.17 19794.60 17096.38 20497.05 21095.67 11299.36 21395.12 13199.08 19499.19 120
IterMVS-LS96.92 11797.29 9195.79 21898.51 13688.13 26095.10 20298.66 13896.99 7398.46 6598.68 5892.55 19599.74 6396.91 5699.79 3399.50 42
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
WR-MVS96.90 11996.81 12197.16 14698.56 13192.20 19394.33 23698.12 20497.34 6898.20 9297.33 19392.81 18699.75 5694.79 14499.81 2999.54 35
DeepPCF-MVS94.58 596.90 11996.43 14398.31 6497.48 24397.23 3792.56 29498.60 14692.84 22998.54 5797.40 18296.64 7198.78 29094.40 16199.41 13998.93 169
ETH3D-3000-0.196.89 12196.46 14298.16 7398.62 12395.69 7995.96 15398.98 6393.36 20797.04 17197.31 19594.93 13599.63 12692.60 20799.34 15599.17 123
v114496.84 12297.08 10696.13 20598.42 14689.28 23995.41 18198.67 13694.21 18497.97 11898.31 8493.06 18099.65 12198.06 1899.62 6299.45 65
VNet96.84 12296.83 12096.88 16298.06 18392.02 19896.35 12897.57 24597.70 5297.88 12797.80 15092.40 20199.54 15794.73 14998.96 20599.08 146
EPP-MVSNet96.84 12296.58 13297.65 10899.18 6693.78 15698.68 1096.34 27697.91 4397.30 15598.06 11988.46 25399.85 2293.85 18599.40 14099.32 94
v119296.83 12597.06 10896.15 20498.28 15689.29 23895.36 18598.77 11093.73 19898.11 10098.34 8193.02 18499.67 11598.35 1499.58 7599.50 42
MVS_111021_LR96.82 12696.55 13597.62 11098.27 15895.34 9893.81 26498.33 17894.59 17296.56 19696.63 23796.61 7298.73 29594.80 14399.34 15598.78 192
Effi-MVS+-dtu96.81 12796.09 15698.99 1196.90 27798.69 296.42 12298.09 20695.86 12195.15 24695.54 28194.26 15599.81 3194.06 17598.51 24898.47 219
UGNet96.81 12796.56 13497.58 11296.64 28093.84 15397.75 6097.12 25996.47 9193.62 28698.88 4693.22 17899.53 15995.61 9999.69 5399.36 91
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
v2v48296.78 12997.06 10895.95 21298.57 13088.77 24995.36 18598.26 18495.18 14997.85 13298.23 9992.58 19499.63 12697.80 2699.69 5399.45 65
v124096.74 13097.02 11195.91 21598.18 17088.52 25195.39 18398.88 7993.15 21998.46 6598.40 7892.80 18799.71 8798.45 1399.49 10999.49 50
DeepC-MVS_fast94.34 796.74 13096.51 14097.44 13197.69 22994.15 14196.02 14798.43 16293.17 21897.30 15597.38 18895.48 11899.28 23493.74 18899.34 15598.88 181
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
MVS_111021_HR96.73 13296.54 13797.27 14298.35 15193.66 16293.42 27498.36 17394.74 16596.58 19496.76 23096.54 7498.99 27194.87 14099.27 17399.15 127
v192192096.72 13396.96 11495.99 20898.21 16588.79 24895.42 17998.79 10593.22 21398.19 9398.26 9692.68 19099.70 9698.34 1599.55 8799.49 50
FMVSNet296.72 13396.67 12996.87 16397.96 19391.88 20197.15 9098.06 21395.59 13398.50 6198.62 6289.51 24599.65 12194.99 13899.60 7199.07 148
PMVScopyleft89.60 1796.71 13596.97 11295.95 21299.51 2297.81 1397.42 8097.49 24697.93 4295.95 22498.58 6396.88 6096.91 34089.59 26999.36 14793.12 338
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
testtj96.69 13696.13 15398.36 5998.46 14596.02 7196.44 12198.70 12894.26 18296.79 18597.13 20394.07 16099.75 5690.53 25398.80 22599.31 99
v14419296.69 13696.90 11896.03 20798.25 16188.92 24395.49 17598.77 11093.05 22198.09 10498.29 9092.51 19999.70 9698.11 1799.56 8199.47 58
CPTT-MVS96.69 13696.08 15798.49 5098.89 9896.64 5197.25 8598.77 11092.89 22896.01 22397.13 20392.23 20399.67 11592.24 21299.34 15599.17 123
HQP_MVS96.66 13996.33 14797.68 10798.70 11494.29 13496.50 11998.75 11496.36 9396.16 21796.77 22891.91 21599.46 17892.59 20999.20 17899.28 107
EI-MVSNet96.63 14096.93 11595.74 21997.26 26288.13 26095.29 19297.65 23896.99 7397.94 12198.19 10492.55 19599.58 14496.91 5699.56 8199.50 42
ab-mvs96.59 14196.59 13196.60 17898.64 11892.21 19198.35 2697.67 23494.45 17596.99 17598.79 4994.96 13499.49 16990.39 25899.07 19698.08 249
v14896.58 14296.97 11295.42 23398.63 12287.57 27195.09 20497.90 21995.91 11898.24 9097.96 12993.42 17499.39 20496.04 7999.52 9899.29 106
test20.0396.58 14296.61 13096.48 18898.49 13991.72 20595.68 16897.69 23396.81 7998.27 8797.92 13694.18 15898.71 29790.78 24299.66 5899.00 157
NCCC96.52 14495.99 16198.10 7897.81 20995.68 8195.00 21398.20 19195.39 14195.40 24296.36 25193.81 16699.45 18293.55 19398.42 25099.17 123
pmmvs-eth3d96.49 14596.18 15297.42 13398.25 16194.29 13494.77 22498.07 21289.81 26297.97 11898.33 8293.11 17999.08 26195.46 10799.84 2698.89 178
OMC-MVS96.48 14696.00 16097.91 9298.30 15396.01 7294.86 21998.60 14691.88 24297.18 15997.21 20196.11 9299.04 26590.49 25799.34 15598.69 203
TSAR-MVS + GP.96.47 14796.12 15497.49 12497.74 22695.23 10194.15 24796.90 26693.26 21198.04 11196.70 23394.41 15198.89 28194.77 14799.14 18298.37 225
Fast-Effi-MVS+-dtu96.44 14896.12 15497.39 13697.18 26694.39 13095.46 17698.73 11896.03 11094.72 25394.92 29396.28 9199.69 10493.81 18697.98 26598.09 248
K. test v396.44 14896.28 14896.95 15799.41 3591.53 20797.65 6590.31 33698.89 1898.93 3799.36 1484.57 28399.92 497.81 2599.56 8199.39 83
MSLP-MVS++96.42 15096.71 12695.57 22597.82 20890.56 22595.71 16498.84 8794.72 16696.71 19097.39 18694.91 13698.10 33295.28 11699.02 20198.05 258
Anonymous20240521196.34 15195.98 16297.43 13298.25 16193.85 15296.74 10994.41 30097.72 5098.37 7298.03 12287.15 26799.53 15994.06 17599.07 19698.92 173
MVS_Test96.27 15296.79 12494.73 26096.94 27586.63 28696.18 13898.33 17894.94 15996.07 22098.28 9195.25 12799.26 23797.21 4497.90 26998.30 235
MCST-MVS96.24 15395.80 16897.56 11398.75 10694.13 14294.66 22798.17 19790.17 25996.21 21596.10 26495.14 12999.43 18794.13 17398.85 22199.13 133
ETH3D cwj APD-0.1696.23 15495.61 17598.09 7997.91 19795.65 8494.94 21598.74 11691.31 24996.02 22297.08 20894.05 16199.69 10491.51 22598.94 20998.93 169
mvs-test196.20 15595.50 17998.32 6296.90 27798.16 495.07 20798.09 20695.86 12193.63 28594.32 30594.26 15599.71 8794.06 17597.27 29797.07 292
Effi-MVS+96.19 15696.01 15996.71 17297.43 24992.19 19496.12 14199.10 2895.45 13893.33 29994.71 29697.23 4299.56 15193.21 20197.54 28698.37 225
DELS-MVS96.17 15796.23 14995.99 20897.55 24190.04 22892.38 29998.52 15394.13 18896.55 19897.06 20994.99 13399.58 14495.62 9899.28 17198.37 225
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
MVSFormer96.14 15896.36 14595.49 23097.68 23087.81 26798.67 1199.02 4996.50 8894.48 26296.15 25986.90 26899.92 498.73 799.13 18698.74 197
ETV-MVS96.13 15995.90 16696.82 16697.76 22493.89 14995.40 18298.95 6995.87 12095.58 23991.00 33796.36 8799.72 7293.36 19498.83 22396.85 302
testgi96.07 16096.50 14194.80 25699.26 4787.69 27095.96 15398.58 14995.08 15398.02 11396.25 25597.92 1697.60 33788.68 28398.74 23199.11 141
LF4IMVS96.07 16095.63 17497.36 13898.19 16795.55 8695.44 17798.82 10392.29 23695.70 23696.55 24092.63 19398.69 29991.75 22299.33 16297.85 268
EIA-MVS96.04 16295.77 17096.85 16497.80 21392.98 17896.12 14199.16 1794.65 16893.77 28091.69 33295.68 11199.67 11594.18 17098.85 22197.91 266
diffmvs96.04 16296.23 14995.46 23297.35 25388.03 26293.42 27499.08 3494.09 19096.66 19296.93 21793.85 16599.29 23296.01 8398.67 23699.06 150
alignmvs96.01 16495.52 17897.50 12197.77 22394.71 11996.07 14396.84 26797.48 6196.78 18994.28 30685.50 27699.40 19996.22 7198.73 23498.40 222
TinyColmap96.00 16596.34 14694.96 24897.90 19987.91 26394.13 25098.49 15694.41 17698.16 9597.76 15196.29 9098.68 30290.52 25499.42 13398.30 235
PVSNet_Blended_VisFu95.95 16695.80 16896.42 19199.28 4690.62 22295.31 19099.08 3488.40 27696.97 17898.17 10692.11 20699.78 4093.64 19199.21 17798.86 184
test_prior395.91 16795.39 18097.46 12897.79 21894.26 13893.33 27998.42 16594.21 18494.02 27396.25 25593.64 17099.34 21891.90 21598.96 20598.79 190
UnsupCasMVSNet_eth95.91 16795.73 17196.44 18998.48 14191.52 20895.31 19098.45 15995.76 12697.48 14797.54 17089.53 24498.69 29994.43 15894.61 32699.13 133
QAPM95.88 16995.57 17796.80 16797.90 19991.84 20398.18 3998.73 11888.41 27596.42 20298.13 10894.73 13799.75 5688.72 28198.94 20998.81 188
CS-MVS95.86 17095.59 17696.69 17497.85 20193.14 17496.42 12299.25 994.17 18793.56 29090.76 34096.05 9499.72 7293.28 19798.91 21297.21 289
CANet95.86 17095.65 17396.49 18796.41 28690.82 21894.36 23598.41 16794.94 15992.62 31296.73 23192.68 19099.71 8795.12 13199.60 7198.94 165
IterMVS-SCA-FT95.86 17096.19 15194.85 25397.68 23085.53 29792.42 29797.63 24296.99 7398.36 7498.54 6887.94 25899.75 5697.07 5299.08 19499.27 111
MVP-Stereo95.69 17395.28 18296.92 15998.15 17693.03 17795.64 17398.20 19190.39 25696.63 19397.73 15791.63 21899.10 25991.84 21997.31 29598.63 208
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
MDA-MVSNet-bldmvs95.69 17395.67 17295.74 21998.48 14188.76 25092.84 28697.25 25296.00 11197.59 13897.95 13291.38 22099.46 17893.16 20296.35 31198.99 160
new-patchmatchnet95.67 17596.58 13292.94 30197.48 24380.21 33092.96 28598.19 19694.83 16298.82 4098.79 4993.31 17699.51 16795.83 8999.04 20099.12 138
xiu_mvs_v1_base_debu95.62 17695.96 16394.60 26498.01 18788.42 25293.99 25598.21 18892.98 22395.91 22594.53 29996.39 8499.72 7295.43 11198.19 25795.64 323
xiu_mvs_v1_base95.62 17695.96 16394.60 26498.01 18788.42 25293.99 25598.21 18892.98 22395.91 22594.53 29996.39 8499.72 7295.43 11198.19 25795.64 323
xiu_mvs_v1_base_debi95.62 17695.96 16394.60 26498.01 18788.42 25293.99 25598.21 18892.98 22395.91 22594.53 29996.39 8499.72 7295.43 11198.19 25795.64 323
DP-MVS Recon95.55 17995.13 18696.80 16798.51 13693.99 14794.60 22998.69 13190.20 25895.78 23296.21 25892.73 18998.98 27390.58 25298.86 21997.42 285
MVS_030495.50 18095.05 19196.84 16596.28 28993.12 17597.00 9996.16 27895.03 15689.22 33497.70 16090.16 23799.48 17294.51 15699.34 15597.93 265
Fast-Effi-MVS+95.49 18195.07 18896.75 17097.67 23392.82 18094.22 24398.60 14691.61 24593.42 29792.90 31796.73 6799.70 9692.60 20797.89 27097.74 273
TAMVS95.49 18194.94 19397.16 14698.31 15293.41 16895.07 20796.82 26991.09 25197.51 14297.82 14889.96 23899.42 18888.42 28699.44 12398.64 206
OpenMVScopyleft94.22 895.48 18395.20 18396.32 19697.16 26791.96 20097.74 6198.84 8787.26 28594.36 26498.01 12593.95 16399.67 11590.70 24898.75 23097.35 288
CLD-MVS95.47 18495.07 18896.69 17498.27 15892.53 18491.36 31298.67 13691.22 25095.78 23294.12 30795.65 11398.98 27390.81 24099.72 4698.57 213
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
train_agg95.46 18594.66 20697.88 9497.84 20695.23 10193.62 26898.39 16987.04 28893.78 27895.99 26594.58 14699.52 16391.76 22198.90 21398.89 178
CDPH-MVS95.45 18694.65 20797.84 9798.28 15694.96 11193.73 26698.33 17885.03 31095.44 24096.60 23895.31 12599.44 18590.01 26399.13 18699.11 141
IterMVS95.42 18795.83 16794.20 27797.52 24283.78 31892.41 29897.47 24995.49 13798.06 10898.49 7187.94 25899.58 14496.02 8199.02 20199.23 116
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
agg_prior195.39 18894.60 21297.75 10097.80 21394.96 11193.39 27698.36 17387.20 28693.49 29295.97 26894.65 14399.53 15991.69 22398.86 21998.77 195
mvs_anonymous95.36 18996.07 15893.21 29396.29 28881.56 32594.60 22997.66 23693.30 21096.95 17998.91 4593.03 18399.38 20896.60 5997.30 29698.69 203
MSDG95.33 19095.13 18695.94 21497.40 25191.85 20291.02 32298.37 17295.30 14496.31 20995.99 26594.51 14998.38 32189.59 26997.65 28397.60 280
LFMVS95.32 19194.88 19896.62 17798.03 18491.47 20997.65 6590.72 33399.11 997.89 12698.31 8479.20 30099.48 17293.91 18499.12 18998.93 169
F-COLMAP95.30 19294.38 22298.05 8598.64 11896.04 6995.61 17498.66 13889.00 26993.22 30096.40 25092.90 18599.35 21687.45 30097.53 28798.77 195
Anonymous2023120695.27 19395.06 19095.88 21698.72 10989.37 23795.70 16597.85 22288.00 28196.98 17797.62 16691.95 21199.34 21889.21 27499.53 9398.94 165
FMVSNet395.26 19494.94 19396.22 20196.53 28390.06 22795.99 15097.66 23694.11 18997.99 11497.91 13780.22 29899.63 12694.60 15199.44 12398.96 162
cl_fuxian95.20 19595.32 18194.83 25596.19 29486.43 28991.83 30798.35 17793.47 20497.36 15497.26 19888.69 25199.28 23495.41 11499.36 14798.78 192
D2MVS95.18 19695.17 18595.21 23997.76 22487.76 26994.15 24797.94 21789.77 26396.99 17597.68 16387.45 26599.14 25295.03 13699.81 2998.74 197
N_pmnet95.18 19694.23 22598.06 8297.85 20196.55 5492.49 29591.63 32589.34 26598.09 10497.41 18190.33 23199.06 26391.58 22499.31 16698.56 214
HQP-MVS95.17 19894.58 21496.92 15997.85 20192.47 18594.26 23798.43 16293.18 21592.86 30595.08 28790.33 23199.23 24290.51 25598.74 23199.05 152
Vis-MVSNet (Re-imp)95.11 19994.85 19995.87 21799.12 7989.17 24097.54 7494.92 29596.50 8896.58 19497.27 19783.64 28699.48 17288.42 28699.67 5698.97 161
AdaColmapbinary95.11 19994.62 21196.58 18197.33 25994.45 12994.92 21698.08 20893.15 21993.98 27695.53 28294.34 15399.10 25985.69 31198.61 24296.20 317
API-MVS95.09 20195.01 19295.31 23696.61 28194.02 14596.83 10497.18 25695.60 13295.79 23094.33 30494.54 14898.37 32385.70 31098.52 24693.52 335
CNLPA95.04 20294.47 21896.75 17097.81 20995.25 10094.12 25197.89 22094.41 17694.57 25795.69 27590.30 23498.35 32486.72 30598.76 22996.64 309
Patchmtry95.03 20394.59 21396.33 19594.83 32290.82 21896.38 12697.20 25496.59 8597.49 14498.57 6477.67 30799.38 20892.95 20699.62 6298.80 189
PVSNet_BlendedMVS95.02 20494.93 19595.27 23797.79 21887.40 27594.14 24998.68 13388.94 27094.51 26098.01 12593.04 18199.30 22889.77 26799.49 10999.11 141
TAPA-MVS93.32 1294.93 20594.23 22597.04 15498.18 17094.51 12695.22 19898.73 11881.22 32796.25 21395.95 27093.80 16798.98 27389.89 26598.87 21797.62 278
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
RRT_MVS94.90 20694.07 23197.39 13693.18 33993.21 17395.26 19497.49 24693.94 19498.25 8897.85 14372.96 33299.84 2597.90 2199.78 3699.14 130
eth_miper_zixun_eth94.89 20794.93 19594.75 25995.99 30186.12 29291.35 31398.49 15693.40 20597.12 16397.25 19986.87 27099.35 21695.08 13398.82 22498.78 192
CDS-MVSNet94.88 20894.12 23097.14 14897.64 23593.57 16493.96 25897.06 26190.05 26096.30 21096.55 24086.10 27299.47 17590.10 26299.31 16698.40 222
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
MS-PatchMatch94.83 20994.91 19794.57 26796.81 27987.10 28094.23 24297.34 25188.74 27397.14 16197.11 20691.94 21298.23 32892.99 20497.92 26798.37 225
pmmvs494.82 21094.19 22896.70 17397.42 25092.75 18292.09 30496.76 27086.80 29195.73 23597.22 20089.28 24898.89 28193.28 19799.14 18298.46 221
miper_lstm_enhance94.81 21194.80 20394.85 25396.16 29686.45 28891.14 32098.20 19193.49 20397.03 17297.37 19084.97 28099.26 23795.28 11699.56 8198.83 186
ETH3 D test640094.77 21293.87 23997.47 12698.12 18193.73 15794.56 23198.70 12885.45 30594.70 25595.93 27291.77 21799.63 12686.45 30699.14 18299.05 152
cl-mvsnet_94.73 21394.64 20895.01 24695.85 30487.00 28191.33 31498.08 20893.34 20897.10 16597.33 19384.01 28599.30 22895.14 12899.56 8198.71 202
cl-mvsnet194.73 21394.64 20895.01 24695.86 30387.00 28191.33 31498.08 20893.34 20897.10 16597.34 19284.02 28499.31 22595.15 12799.55 8798.72 200
YYNet194.73 21394.84 20094.41 27297.47 24785.09 30690.29 32895.85 28692.52 23197.53 14097.76 15191.97 21099.18 24693.31 19696.86 30098.95 163
MDA-MVSNet_test_wron94.73 21394.83 20294.42 27197.48 24385.15 30490.28 32995.87 28592.52 23197.48 14797.76 15191.92 21499.17 25093.32 19596.80 30398.94 165
UnsupCasMVSNet_bld94.72 21794.26 22496.08 20698.62 12390.54 22693.38 27798.05 21490.30 25797.02 17396.80 22789.54 24299.16 25188.44 28596.18 31398.56 214
miper_ehance_all_eth94.69 21894.70 20594.64 26195.77 30786.22 29191.32 31698.24 18691.67 24497.05 17096.65 23688.39 25599.22 24494.88 13998.34 25298.49 218
BH-untuned94.69 21894.75 20494.52 26997.95 19687.53 27294.07 25297.01 26293.99 19297.10 16595.65 27792.65 19298.95 27887.60 29696.74 30497.09 291
Patchmatch-RL test94.66 22094.49 21795.19 24098.54 13388.91 24492.57 29398.74 11691.46 24898.32 8197.75 15477.31 31298.81 28896.06 7699.61 6897.85 268
CANet_DTU94.65 22194.21 22795.96 21095.90 30289.68 23193.92 25997.83 22693.19 21490.12 32995.64 27888.52 25299.57 15093.27 19999.47 11598.62 209
pmmvs594.63 22294.34 22395.50 22997.63 23688.34 25594.02 25397.13 25887.15 28795.22 24597.15 20287.50 26499.27 23693.99 18099.26 17498.88 181
PAPM_NR94.61 22394.17 22995.96 21098.36 15091.23 21095.93 15697.95 21692.98 22393.42 29794.43 30390.53 22898.38 32187.60 29696.29 31298.27 238
PatchMatch-RL94.61 22393.81 24097.02 15698.19 16795.72 7793.66 26797.23 25388.17 27994.94 25095.62 27991.43 21998.57 30887.36 30197.68 28096.76 306
BH-RMVSNet94.56 22594.44 22194.91 24997.57 23887.44 27493.78 26596.26 27793.69 20096.41 20396.50 24592.10 20799.00 26985.96 30897.71 27798.31 233
USDC94.56 22594.57 21694.55 26897.78 22286.43 28992.75 28998.65 14385.96 29696.91 18297.93 13590.82 22698.74 29490.71 24799.59 7398.47 219
ppachtmachnet_test94.49 22794.84 20093.46 28796.16 29682.10 32490.59 32597.48 24890.53 25597.01 17497.59 16891.01 22399.36 21393.97 18299.18 18098.94 165
test_yl94.40 22894.00 23595.59 22396.95 27389.52 23494.75 22595.55 29196.18 10196.79 18596.14 26181.09 29399.18 24690.75 24397.77 27198.07 251
DCV-MVSNet94.40 22894.00 23595.59 22396.95 27389.52 23494.75 22595.55 29196.18 10196.79 18596.14 26181.09 29399.18 24690.75 24397.77 27198.07 251
jason94.39 23094.04 23395.41 23598.29 15487.85 26692.74 29196.75 27185.38 30795.29 24396.15 25988.21 25799.65 12194.24 16899.34 15598.74 197
jason: jason.
112194.26 23193.26 24897.27 14298.26 16094.73 11795.86 15897.71 23277.96 33994.53 25996.71 23291.93 21399.40 19987.71 29298.64 24097.69 276
EU-MVSNet94.25 23294.47 21893.60 28498.14 17782.60 32297.24 8792.72 31785.08 30898.48 6298.94 4282.59 28998.76 29397.47 3799.53 9399.44 75
xiu_mvs_v2_base94.22 23394.63 21092.99 29997.32 26084.84 30992.12 30297.84 22491.96 24094.17 26793.43 31096.07 9399.71 8791.27 22997.48 28994.42 332
RPMNet94.22 23394.03 23494.78 25795.44 31488.15 25896.18 13893.73 30397.43 6294.10 26998.49 7179.40 29999.39 20495.69 9295.81 31596.81 304
sss94.22 23393.72 24195.74 21997.71 22889.95 23093.84 26196.98 26388.38 27793.75 28195.74 27487.94 25898.89 28191.02 23498.10 26198.37 225
MVSTER94.21 23693.93 23895.05 24595.83 30586.46 28795.18 20097.65 23892.41 23597.94 12198.00 12772.39 33399.58 14496.36 6999.56 8199.12 138
MAR-MVS94.21 23693.03 25297.76 9996.94 27597.44 3096.97 10197.15 25787.89 28392.00 31792.73 32192.14 20599.12 25483.92 32297.51 28896.73 307
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
our_test_394.20 23894.58 21493.07 29596.16 29681.20 32790.42 32796.84 26790.72 25497.14 16197.13 20390.47 22999.11 25794.04 17998.25 25698.91 174
1112_ss94.12 23993.42 24596.23 19998.59 12890.85 21694.24 24198.85 8485.49 30292.97 30394.94 29186.01 27399.64 12491.78 22097.92 26798.20 244
PS-MVSNAJ94.10 24094.47 21893.00 29897.35 25384.88 30891.86 30697.84 22491.96 24094.17 26792.50 32495.82 10299.71 8791.27 22997.48 28994.40 333
CHOSEN 1792x268894.10 24093.41 24696.18 20399.16 6790.04 22892.15 30198.68 13379.90 33296.22 21497.83 14587.92 26299.42 18889.18 27599.65 5999.08 146
MG-MVS94.08 24294.00 23594.32 27497.09 26985.89 29493.19 28395.96 28392.52 23194.93 25197.51 17489.54 24298.77 29187.52 29997.71 27798.31 233
PLCcopyleft91.02 1694.05 24392.90 25497.51 11898.00 19195.12 10894.25 24098.25 18586.17 29491.48 32095.25 28591.01 22399.19 24585.02 31796.69 30598.22 242
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
114514_t93.96 24493.22 25096.19 20299.06 8590.97 21595.99 15098.94 7073.88 34593.43 29696.93 21792.38 20299.37 21189.09 27699.28 17198.25 240
PVSNet_Blended93.96 24493.65 24294.91 24997.79 21887.40 27591.43 31198.68 13384.50 31594.51 26094.48 30293.04 18199.30 22889.77 26798.61 24298.02 261
lupinMVS93.77 24693.28 24795.24 23897.68 23087.81 26792.12 30296.05 28084.52 31494.48 26295.06 28986.90 26899.63 12693.62 19299.13 18698.27 238
PatchT93.75 24793.57 24394.29 27695.05 32087.32 27796.05 14492.98 31397.54 5994.25 26598.72 5475.79 32099.24 24095.92 8795.81 31596.32 315
EPNet93.72 24892.62 26497.03 15587.61 35292.25 18996.27 13191.28 32796.74 8187.65 34097.39 18685.00 27999.64 12492.14 21399.48 11399.20 119
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
HyFIR lowres test93.72 24892.65 26296.91 16198.93 9491.81 20491.23 31898.52 15382.69 32096.46 20196.52 24480.38 29799.90 1390.36 25998.79 22699.03 154
DPM-MVS93.68 25092.77 26196.42 19197.91 19792.54 18391.17 31997.47 24984.99 31193.08 30294.74 29589.90 23999.00 26987.54 29898.09 26297.72 274
PMMVS293.66 25194.07 23192.45 30797.57 23880.67 32986.46 34196.00 28193.99 19297.10 16597.38 18889.90 23997.82 33488.76 28099.47 11598.86 184
OpenMVS_ROBcopyleft91.80 1493.64 25293.05 25195.42 23397.31 26191.21 21195.08 20696.68 27481.56 32496.88 18496.41 24890.44 23099.25 23985.39 31597.67 28195.80 321
Patchmatch-test93.60 25393.25 24994.63 26296.14 29987.47 27396.04 14594.50 29993.57 20196.47 20096.97 21476.50 31598.61 30590.67 24998.41 25197.81 272
WTY-MVS93.55 25493.00 25395.19 24097.81 20987.86 26493.89 26096.00 28189.02 26894.07 27195.44 28486.27 27199.33 22187.69 29496.82 30198.39 224
Test_1112_low_res93.53 25592.86 25595.54 22898.60 12688.86 24692.75 28998.69 13182.66 32192.65 31096.92 21984.75 28199.56 15190.94 23697.76 27398.19 245
MIMVSNet93.42 25692.86 25595.10 24398.17 17288.19 25798.13 4193.69 30492.07 23795.04 24898.21 10380.95 29599.03 26881.42 33098.06 26398.07 251
FMVSNet593.39 25792.35 26796.50 18695.83 30590.81 22097.31 8298.27 18292.74 23096.27 21198.28 9162.23 34899.67 11590.86 23899.36 14799.03 154
SCA93.38 25893.52 24492.96 30096.24 29081.40 32693.24 28194.00 30291.58 24794.57 25796.97 21487.94 25899.42 18889.47 27197.66 28298.06 255
tttt051793.31 25992.56 26595.57 22598.71 11287.86 26497.44 7787.17 34495.79 12597.47 14996.84 22264.12 34699.81 3196.20 7299.32 16499.02 156
CR-MVSNet93.29 26092.79 25894.78 25795.44 31488.15 25896.18 13897.20 25484.94 31294.10 26998.57 6477.67 30799.39 20495.17 12395.81 31596.81 304
cl-mvsnet293.25 26192.84 25794.46 27094.30 32886.00 29391.09 32196.64 27590.74 25395.79 23096.31 25378.24 30498.77 29194.15 17298.34 25298.62 209
wuyk23d93.25 26195.20 18387.40 33196.07 30095.38 9497.04 9794.97 29495.33 14299.70 598.11 11298.14 1391.94 34777.76 33999.68 5574.89 346
miper_enhance_ethall93.14 26392.78 26094.20 27793.65 33685.29 30189.97 33197.85 22285.05 30996.15 21994.56 29885.74 27499.14 25293.74 18898.34 25298.17 247
baseline193.14 26392.64 26394.62 26397.34 25787.20 27996.67 11693.02 31294.71 16796.51 19995.83 27381.64 29098.60 30790.00 26488.06 34198.07 251
X-MVStestdata92.86 26590.83 28998.94 1699.15 7097.66 1697.77 5798.83 9597.42 6396.32 20736.50 34896.49 7899.72 7295.66 9599.37 14499.45 65
GA-MVS92.83 26692.15 27094.87 25296.97 27287.27 27890.03 33096.12 27991.83 24394.05 27294.57 29776.01 31998.97 27792.46 21197.34 29498.36 230
CMPMVSbinary73.10 2392.74 26791.39 27896.77 16993.57 33894.67 12394.21 24497.67 23480.36 33193.61 28796.60 23882.85 28897.35 33884.86 31898.78 22798.29 237
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
thisisatest053092.71 26891.76 27595.56 22798.42 14688.23 25696.03 14687.35 34394.04 19196.56 19695.47 28364.03 34799.77 4894.78 14699.11 19098.68 205
HY-MVS91.43 1592.58 26991.81 27494.90 25196.49 28488.87 24597.31 8294.62 29785.92 29790.50 32696.84 22285.05 27899.40 19983.77 32595.78 31896.43 314
TR-MVS92.54 27092.20 26993.57 28596.49 28486.66 28593.51 27294.73 29689.96 26194.95 24993.87 30890.24 23698.61 30581.18 33194.88 32395.45 327
RRT_test8_iter0592.46 27192.52 26692.29 31095.33 31777.43 33895.73 16398.55 15094.41 17697.46 15097.72 15957.44 35199.74 6396.92 5599.14 18299.69 20
PMMVS92.39 27291.08 28396.30 19893.12 34292.81 18190.58 32695.96 28379.17 33591.85 31992.27 32590.29 23598.66 30489.85 26696.68 30697.43 284
131492.38 27392.30 26892.64 30595.42 31685.15 30495.86 15896.97 26485.40 30690.62 32393.06 31591.12 22297.80 33586.74 30495.49 32294.97 330
new_pmnet92.34 27491.69 27694.32 27496.23 29289.16 24192.27 30092.88 31484.39 31795.29 24396.35 25285.66 27596.74 34384.53 32097.56 28597.05 293
CVMVSNet92.33 27592.79 25890.95 31797.26 26275.84 34395.29 19292.33 32081.86 32296.27 21198.19 10481.44 29198.46 31694.23 16998.29 25598.55 216
PAPR92.22 27691.27 28195.07 24495.73 30988.81 24791.97 30597.87 22185.80 29990.91 32292.73 32191.16 22198.33 32579.48 33395.76 31998.08 249
DSMNet-mixed92.19 27791.83 27393.25 29196.18 29583.68 31996.27 13193.68 30676.97 34292.54 31399.18 2789.20 25098.55 31183.88 32398.60 24497.51 282
BH-w/o92.14 27891.94 27192.73 30497.13 26885.30 30092.46 29695.64 28889.33 26694.21 26692.74 32089.60 24198.24 32781.68 32994.66 32594.66 331
PCF-MVS89.43 1892.12 27990.64 29296.57 18397.80 21393.48 16789.88 33598.45 15974.46 34496.04 22195.68 27690.71 22799.31 22573.73 34199.01 20396.91 299
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
thres600view792.03 28091.43 27793.82 28098.19 16784.61 31196.27 13190.39 33496.81 7996.37 20593.11 31273.44 33099.49 16980.32 33297.95 26697.36 286
PatchmatchNetpermissive91.98 28191.87 27292.30 30994.60 32579.71 33195.12 20193.59 30889.52 26493.61 28797.02 21277.94 30599.18 24690.84 23994.57 32898.01 262
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
cascas91.89 28291.35 27993.51 28694.27 32985.60 29688.86 33898.61 14579.32 33492.16 31691.44 33389.22 24998.12 33190.80 24197.47 29196.82 303
JIA-IIPM91.79 28390.69 29195.11 24293.80 33590.98 21494.16 24691.78 32496.38 9290.30 32899.30 1872.02 33498.90 27988.28 28890.17 33895.45 327
thres100view90091.76 28491.26 28293.26 29098.21 16584.50 31296.39 12490.39 33496.87 7796.33 20693.08 31473.44 33099.42 18878.85 33697.74 27495.85 319
thres40091.68 28591.00 28493.71 28298.02 18584.35 31495.70 16590.79 33196.26 9795.90 22892.13 32773.62 32899.42 18878.85 33697.74 27497.36 286
tfpn200view991.55 28691.00 28493.21 29398.02 18584.35 31495.70 16590.79 33196.26 9795.90 22892.13 32773.62 32899.42 18878.85 33697.74 27495.85 319
ADS-MVSNet291.47 28790.51 29494.36 27395.51 31285.63 29595.05 21095.70 28783.46 31892.69 30896.84 22279.15 30199.41 19785.66 31290.52 33698.04 259
EPNet_dtu91.39 28890.75 29093.31 28990.48 35182.61 32194.80 22292.88 31493.39 20681.74 34894.90 29481.36 29299.11 25788.28 28898.87 21798.21 243
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
ET-MVSNet_ETH3D91.12 28989.67 30095.47 23196.41 28689.15 24291.54 31090.23 33789.07 26786.78 34492.84 31869.39 34199.44 18594.16 17196.61 30797.82 270
PVSNet86.72 1991.10 29090.97 28691.49 31397.56 24078.04 33587.17 34094.60 29884.65 31392.34 31492.20 32687.37 26698.47 31585.17 31697.69 27997.96 263
tpm91.08 29190.85 28891.75 31295.33 31778.09 33495.03 21291.27 32888.75 27293.53 29197.40 18271.24 33599.30 22891.25 23193.87 32997.87 267
thres20091.00 29290.42 29592.77 30397.47 24783.98 31794.01 25491.18 32995.12 15295.44 24091.21 33573.93 32499.31 22577.76 33997.63 28495.01 329
ADS-MVSNet90.95 29390.26 29693.04 29695.51 31282.37 32395.05 21093.41 30983.46 31892.69 30896.84 22279.15 30198.70 29885.66 31290.52 33698.04 259
tpmvs90.79 29490.87 28790.57 32092.75 34676.30 34195.79 16293.64 30791.04 25291.91 31896.26 25477.19 31398.86 28589.38 27389.85 33996.56 312
thisisatest051590.43 29589.18 30694.17 27997.07 27085.44 29889.75 33687.58 34288.28 27893.69 28491.72 33165.27 34599.58 14490.59 25198.67 23697.50 283
tpmrst90.31 29690.61 29389.41 32494.06 33372.37 34995.06 20993.69 30488.01 28092.32 31596.86 22077.45 30998.82 28691.04 23387.01 34397.04 294
test0.0.03 190.11 29789.21 30392.83 30293.89 33486.87 28491.74 30888.74 34192.02 23894.71 25491.14 33673.92 32594.48 34683.75 32692.94 33197.16 290
MVS90.02 29889.20 30492.47 30694.71 32386.90 28395.86 15896.74 27264.72 34790.62 32392.77 31992.54 19798.39 32079.30 33495.56 32192.12 339
pmmvs390.00 29988.90 30793.32 28894.20 33285.34 29991.25 31792.56 31978.59 33693.82 27795.17 28667.36 34498.69 29989.08 27798.03 26495.92 318
CHOSEN 280x42089.98 30089.19 30592.37 30895.60 31181.13 32886.22 34297.09 26081.44 32687.44 34193.15 31173.99 32399.47 17588.69 28299.07 19696.52 313
test-LLR89.97 30189.90 29890.16 32194.24 33074.98 34489.89 33289.06 33992.02 23889.97 33090.77 33873.92 32598.57 30891.88 21797.36 29296.92 297
FPMVS89.92 30288.63 30893.82 28098.37 14996.94 4291.58 30993.34 31088.00 28190.32 32797.10 20770.87 33891.13 34871.91 34496.16 31493.39 337
CostFormer89.75 30389.25 30191.26 31694.69 32478.00 33695.32 18991.98 32281.50 32590.55 32596.96 21671.06 33798.89 28188.59 28492.63 33396.87 300
baseline289.65 30488.44 31093.25 29195.62 31082.71 32093.82 26285.94 34688.89 27187.35 34292.54 32371.23 33699.33 22186.01 30794.60 32797.72 274
E-PMN89.52 30589.78 29988.73 32693.14 34177.61 33783.26 34592.02 32194.82 16393.71 28293.11 31275.31 32196.81 34185.81 30996.81 30291.77 341
EPMVS89.26 30688.55 30991.39 31492.36 34779.11 33295.65 17179.86 34988.60 27493.12 30196.53 24270.73 33998.10 33290.75 24389.32 34096.98 295
EMVS89.06 30789.22 30288.61 32793.00 34377.34 33982.91 34690.92 33094.64 16992.63 31191.81 33076.30 31797.02 33983.83 32496.90 29991.48 342
IB-MVS85.98 2088.63 30886.95 31693.68 28395.12 31984.82 31090.85 32390.17 33887.55 28488.48 33791.34 33458.01 35099.59 14287.24 30293.80 33096.63 311
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
tpm288.47 30987.69 31290.79 31894.98 32177.34 33995.09 20491.83 32377.51 34189.40 33296.41 24867.83 34398.73 29583.58 32792.60 33496.29 316
MVS-HIRNet88.40 31090.20 29782.99 33297.01 27160.04 35293.11 28485.61 34784.45 31688.72 33699.09 3384.72 28298.23 32882.52 32896.59 30890.69 344
gg-mvs-nofinetune88.28 31186.96 31592.23 31192.84 34584.44 31398.19 3874.60 35199.08 1087.01 34399.47 856.93 35298.23 32878.91 33595.61 32094.01 334
dp88.08 31288.05 31188.16 33092.85 34468.81 35194.17 24592.88 31485.47 30391.38 32196.14 26168.87 34298.81 28886.88 30383.80 34696.87 300
tpm cat188.01 31387.33 31390.05 32394.48 32676.28 34294.47 23494.35 30173.84 34689.26 33395.61 28073.64 32798.30 32684.13 32186.20 34495.57 326
test-mter87.92 31487.17 31490.16 32194.24 33074.98 34489.89 33289.06 33986.44 29389.97 33090.77 33854.96 35598.57 30891.88 21797.36 29296.92 297
DWT-MVSNet_test87.92 31486.77 31791.39 31493.18 33978.62 33395.10 20291.42 32685.58 30188.00 33888.73 34360.60 34998.90 27990.60 25087.70 34296.65 308
PAPM87.64 31685.84 32093.04 29696.54 28284.99 30788.42 33995.57 29079.52 33383.82 34593.05 31680.57 29698.41 31862.29 34792.79 33295.71 322
TESTMET0.1,187.20 31786.57 31889.07 32593.62 33772.84 34889.89 33287.01 34585.46 30489.12 33590.20 34156.00 35497.72 33690.91 23796.92 29896.64 309
MVEpermissive73.61 2286.48 31885.92 31988.18 32996.23 29285.28 30281.78 34775.79 35086.01 29582.53 34791.88 32992.74 18887.47 34971.42 34594.86 32491.78 340
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
PVSNet_081.89 2184.49 31983.21 32188.34 32895.76 30874.97 34683.49 34492.70 31878.47 33787.94 33986.90 34583.38 28796.63 34473.44 34266.86 34893.40 336
tmp_tt57.23 32062.50 32241.44 33434.77 35349.21 35483.93 34360.22 35515.31 34971.11 35079.37 34770.09 34044.86 35164.76 34682.93 34730.25 347
cdsmvs_eth3d_5k24.22 32132.30 3230.00 3370.00 3560.00 3570.00 34898.10 2050.00 3520.00 35395.06 28997.54 280.00 3540.00 3510.00 3510.00 350
test12312.59 32215.49 3243.87 3356.07 3542.55 35590.75 3242.59 3572.52 3505.20 35213.02 3504.96 3561.85 3535.20 3499.09 3497.23 348
testmvs12.33 32315.23 3253.64 3365.77 3552.23 35688.99 3373.62 3562.30 3515.29 35113.09 3494.52 3571.95 3525.16 3508.32 3506.75 349
pcd_1.5k_mvsjas7.98 32410.65 3260.00 3370.00 3560.00 3570.00 3480.00 3580.00 3520.00 3530.00 35395.82 1020.00 3540.00 3510.00 3510.00 350
ab-mvs-re7.91 32510.55 3270.00 3370.00 3560.00 3570.00 3480.00 3580.00 3520.00 35394.94 2910.00 3580.00 3540.00 3510.00 3510.00 350
uanet_test0.00 3260.00 3280.00 3370.00 3560.00 3570.00 3480.00 3580.00 3520.00 3530.00 3530.00 3580.00 3540.00 3510.00 3510.00 350
sosnet-low-res0.00 3260.00 3280.00 3370.00 3560.00 3570.00 3480.00 3580.00 3520.00 3530.00 3530.00 3580.00 3540.00 3510.00 3510.00 350
sosnet0.00 3260.00 3280.00 3370.00 3560.00 3570.00 3480.00 3580.00 3520.00 3530.00 3530.00 3580.00 3540.00 3510.00 3510.00 350
uncertanet0.00 3260.00 3280.00 3370.00 3560.00 3570.00 3480.00 3580.00 3520.00 3530.00 3530.00 3580.00 3540.00 3510.00 3510.00 350
Regformer0.00 3260.00 3280.00 3370.00 3560.00 3570.00 3480.00 3580.00 3520.00 3530.00 3530.00 3580.00 3540.00 3510.00 3510.00 350
uanet0.00 3260.00 3280.00 3370.00 3560.00 3570.00 3480.00 3580.00 3520.00 3530.00 3530.00 3580.00 3540.00 3510.00 3510.00 350
IU-MVS99.22 5695.40 9398.14 20185.77 30098.36 7495.23 12099.51 10399.49 50
OPU-MVS97.64 10998.01 18795.27 9996.79 10697.35 19196.97 5398.51 31491.21 23299.25 17599.14 130
test_241102_TWO98.83 9596.11 10398.62 5098.24 9796.92 5699.72 7295.44 10899.49 10999.49 50
test_241102_ONE99.22 5695.35 9698.83 9596.04 10899.08 3098.13 10897.87 2099.33 221
9.1496.69 12798.53 13496.02 14798.98 6393.23 21297.18 15997.46 17896.47 8099.62 13492.99 20499.32 164
save fliter98.48 14194.71 11994.53 23298.41 16795.02 157
test_0728_THIRD96.62 8398.40 6998.28 9197.10 4499.71 8795.70 9199.62 6299.58 27
test_0728_SECOND98.25 6999.23 5395.49 9196.74 10998.89 7499.75 5695.48 10499.52 9899.53 38
test072699.24 5195.51 8996.89 10298.89 7495.92 11698.64 4998.31 8497.06 49
GSMVS98.06 255
test_part299.03 8996.07 6898.08 106
test_part10.00 3370.00 3570.00 34898.84 870.00 3580.00 3540.00 3510.00 3510.00 350
sam_mvs177.80 30698.06 255
sam_mvs77.38 310
ambc96.56 18498.23 16491.68 20697.88 5398.13 20398.42 6898.56 6694.22 15799.04 26594.05 17899.35 15298.95 163
MTGPAbinary98.73 118
test_post194.98 21410.37 35276.21 31899.04 26589.47 271
test_post10.87 35176.83 31499.07 262
patchmatchnet-post96.84 22277.36 31199.42 188
GG-mvs-BLEND90.60 31991.00 34984.21 31698.23 3272.63 35482.76 34684.11 34656.14 35396.79 34272.20 34392.09 33590.78 343
MTMP96.55 11774.60 351
gm-plane-assit91.79 34871.40 35081.67 32390.11 34298.99 27184.86 318
test9_res91.29 22898.89 21699.00 157
TEST997.84 20695.23 10193.62 26898.39 16986.81 29093.78 27895.99 26594.68 14199.52 163
test_897.81 20995.07 10993.54 27198.38 17187.04 28893.71 28295.96 26994.58 14699.52 163
agg_prior290.34 26098.90 21399.10 145
agg_prior97.80 21394.96 11198.36 17393.49 29299.53 159
TestCases98.06 8299.08 8296.16 6599.16 1794.35 17997.78 13698.07 11695.84 9999.12 25491.41 22699.42 13398.91 174
test_prior495.38 9493.61 270
test_prior293.33 27994.21 18494.02 27396.25 25593.64 17091.90 21598.96 205
test_prior97.46 12897.79 21894.26 13898.42 16599.34 21898.79 190
旧先验293.35 27877.95 34095.77 23498.67 30390.74 246
新几何293.43 273
新几何197.25 14598.29 15494.70 12297.73 23077.98 33894.83 25296.67 23592.08 20899.45 18288.17 29098.65 23997.61 279
旧先验197.80 21393.87 15097.75 22997.04 21193.57 17298.68 23598.72 200
无先验93.20 28297.91 21880.78 32899.40 19987.71 29297.94 264
原ACMM292.82 287
原ACMM196.58 18198.16 17492.12 19598.15 20085.90 29893.49 29296.43 24792.47 20099.38 20887.66 29598.62 24198.23 241
test22298.17 17293.24 17292.74 29197.61 24475.17 34394.65 25696.69 23490.96 22598.66 23897.66 277
testdata299.46 17887.84 291
segment_acmp95.34 123
testdata95.70 22298.16 17490.58 22397.72 23180.38 33095.62 23797.02 21292.06 20998.98 27389.06 27898.52 24697.54 281
testdata192.77 28893.78 197
test1297.46 12897.61 23794.07 14397.78 22893.57 28993.31 17699.42 18898.78 22798.89 178
plane_prior798.70 11494.67 123
plane_prior698.38 14894.37 13291.91 215
plane_prior598.75 11499.46 17892.59 20999.20 17899.28 107
plane_prior496.77 228
plane_prior394.51 12695.29 14596.16 217
plane_prior296.50 11996.36 93
plane_prior198.49 139
plane_prior94.29 13495.42 17994.31 18198.93 211
n20.00 358
nn0.00 358
door-mid98.17 197
lessismore_v097.05 15399.36 4092.12 19584.07 34898.77 4598.98 3885.36 27799.74 6397.34 4099.37 14499.30 100
LGP-MVS_train98.74 3399.15 7097.02 3999.02 4995.15 15098.34 7798.23 9997.91 1799.70 9694.41 15999.73 4399.50 42
test1198.08 208
door97.81 227
HQP5-MVS92.47 185
HQP-NCC97.85 20194.26 23793.18 21592.86 305
ACMP_Plane97.85 20194.26 23793.18 21592.86 305
BP-MVS90.51 255
HQP4-MVS92.87 30499.23 24299.06 150
HQP3-MVS98.43 16298.74 231
HQP2-MVS90.33 231
NP-MVS98.14 17793.72 15895.08 287
MDTV_nov1_ep13_2view57.28 35394.89 21780.59 32994.02 27378.66 30385.50 31497.82 270
MDTV_nov1_ep1391.28 28094.31 32773.51 34794.80 22293.16 31186.75 29293.45 29597.40 18276.37 31698.55 31188.85 27996.43 309
ACMMP++_ref99.52 98
ACMMP++99.55 87
Test By Simon94.51 149
ITE_SJBPF97.85 9698.64 11896.66 5098.51 15595.63 13097.22 15797.30 19695.52 11698.55 31190.97 23598.90 21398.34 231
DeepMVS_CXcopyleft77.17 33390.94 35085.28 30274.08 35352.51 34880.87 34988.03 34475.25 32270.63 35059.23 34884.94 34575.62 345