This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
LCM-MVSNet99.95 199.95 199.95 199.99 199.99 199.95 299.97 299.99 1100.00 199.98 899.78 6100.00 199.92 1100.00 199.87 9
mvs_tets99.90 299.90 299.90 499.96 499.79 3499.72 1999.88 1599.92 699.98 399.93 1399.94 199.98 699.77 12100.00 199.92 3
jajsoiax99.89 399.89 399.89 799.96 499.78 3799.70 2299.86 1999.89 1199.98 399.90 2199.94 199.98 699.75 13100.00 199.90 4
ANet_high99.88 499.87 499.91 299.99 199.91 299.65 43100.00 199.90 7100.00 199.97 999.61 1699.97 1699.75 13100.00 199.84 14
LTVRE_ROB99.19 199.88 499.87 499.88 1199.91 1599.90 499.96 199.92 599.90 799.97 699.87 3099.81 599.95 4299.54 2499.99 1299.80 23
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
pmmvs699.86 699.86 699.83 2199.94 1099.90 499.83 699.91 899.85 1999.94 1199.95 1199.73 899.90 11999.65 1699.97 2999.69 50
UniMVSNet_ETH3D99.85 799.83 799.90 499.89 2199.91 299.89 499.71 9099.93 499.95 1099.89 2599.71 999.96 3399.51 2899.97 2999.84 14
PS-MVSNAJss99.84 899.82 899.89 799.96 499.77 3999.68 3199.85 2399.95 399.98 399.92 1699.28 4099.98 699.75 13100.00 199.94 2
test_djsdf99.84 899.81 999.91 299.94 1099.84 1699.77 1199.80 4699.73 3699.97 699.92 1699.77 799.98 699.43 35100.00 199.90 4
v7n99.82 1099.80 1099.88 1199.96 499.84 1699.82 899.82 3699.84 2199.94 1199.91 1999.13 5799.96 3399.83 999.99 1299.83 18
anonymousdsp99.80 1199.77 1299.90 499.96 499.88 699.73 1699.85 2399.70 4399.92 1899.93 1399.45 2199.97 1699.36 44100.00 199.85 13
pm-mvs199.79 1299.79 1199.78 3799.91 1599.83 2099.76 1399.87 1799.73 3699.89 2699.87 3099.63 1499.87 16099.54 2499.92 7299.63 92
UA-Net99.78 1399.76 1499.86 1699.72 10699.71 5999.91 399.95 499.96 299.71 9699.91 1999.15 5299.97 1699.50 30100.00 199.90 4
TransMVSNet (Re)99.78 1399.77 1299.81 2699.91 1599.85 1199.75 1499.86 1999.70 4399.91 2099.89 2599.60 1899.87 16099.59 1999.74 18099.71 44
OurMVSNet-221017-099.75 1599.71 1699.84 1999.96 499.83 2099.83 699.85 2399.80 2999.93 1499.93 1398.54 13299.93 6699.59 1999.98 2199.76 35
Vis-MVSNetpermissive99.75 1599.74 1599.79 3499.88 2399.66 7799.69 2899.92 599.67 5099.77 7199.75 7899.61 1699.98 699.35 4599.98 2199.72 41
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
TDRefinement99.72 1799.70 1799.77 3999.90 1999.85 1199.86 599.92 599.69 4699.78 6699.92 1699.37 2999.88 14798.93 10499.95 4799.60 115
XXY-MVS99.71 1899.67 2099.81 2699.89 2199.72 5799.59 5599.82 3699.39 10299.82 4899.84 3999.38 2799.91 10099.38 4199.93 6899.80 23
nrg03099.70 1999.66 2199.82 2399.76 8399.84 1699.61 5099.70 9499.93 499.78 6699.68 12299.10 5899.78 26299.45 3399.96 4099.83 18
FC-MVSNet-test99.70 1999.65 2299.86 1699.88 2399.86 1099.72 1999.78 5699.90 799.82 4899.83 4098.45 14799.87 16099.51 2899.97 2999.86 11
v1099.69 2199.69 1899.66 9099.81 4999.39 14399.66 3899.75 7099.60 7299.92 1899.87 3098.75 10799.86 18099.90 299.99 1299.73 40
v899.68 2299.69 1899.65 9599.80 5599.40 14199.66 3899.76 6499.64 5899.93 1499.85 3598.66 11899.84 21399.88 699.99 1299.71 44
DTE-MVSNet99.68 2299.61 2999.88 1199.80 5599.87 799.67 3599.71 9099.72 3999.84 4199.78 6498.67 11699.97 1699.30 5499.95 4799.80 23
VPA-MVSNet99.66 2499.62 2599.79 3499.68 12799.75 4799.62 4699.69 10099.85 1999.80 5899.81 4998.81 9299.91 10099.47 3299.88 9899.70 47
PS-CasMVS99.66 2499.58 3499.89 799.80 5599.85 1199.66 3899.73 7899.62 6299.84 4199.71 9898.62 12299.96 3399.30 5499.96 4099.86 11
PEN-MVS99.66 2499.59 3299.89 799.83 3699.87 799.66 3899.73 7899.70 4399.84 4199.73 8598.56 12999.96 3399.29 5799.94 6099.83 18
FMVSNet199.66 2499.63 2499.73 6699.78 7199.77 3999.68 3199.70 9499.67 5099.82 4899.83 4098.98 7399.90 11999.24 6199.97 2999.53 150
MIMVSNet199.66 2499.62 2599.80 2999.94 1099.87 799.69 2899.77 5999.78 3299.93 1499.89 2597.94 19199.92 8499.65 1699.98 2199.62 104
FIs99.65 2999.58 3499.84 1999.84 3399.85 1199.66 3899.75 7099.86 1699.74 8699.79 5798.27 16499.85 19899.37 4399.93 6899.83 18
casdiffmvs99.63 3099.61 2999.67 8399.79 6599.59 10099.13 15899.85 2399.79 3199.76 7399.72 9199.33 3499.82 23499.21 6299.94 6099.59 124
baseline99.63 3099.62 2599.66 9099.80 5599.62 9099.44 7499.80 4699.71 4099.72 9199.69 11199.15 5299.83 22499.32 5099.94 6099.53 150
Anonymous2023121199.62 3299.57 3799.76 4599.61 14399.60 9799.81 999.73 7899.82 2599.90 2299.90 2197.97 19099.86 18099.42 3999.96 4099.80 23
DeepC-MVS98.90 499.62 3299.61 2999.67 8399.72 10699.44 12899.24 12199.71 9099.27 11799.93 1499.90 2199.70 1199.93 6698.99 9299.99 1299.64 87
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
WR-MVS_H99.61 3499.53 4799.87 1499.80 5599.83 2099.67 3599.75 7099.58 7599.85 3899.69 11198.18 17599.94 5399.28 5999.95 4799.83 18
ACMH98.42 699.59 3599.54 4399.72 7199.86 2999.62 9099.56 6099.79 5298.77 18599.80 5899.85 3599.64 1399.85 19898.70 12199.89 9099.70 47
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
testing_299.58 3699.56 4199.62 11599.81 4999.44 12899.14 15199.43 22799.69 4699.82 4899.79 5799.14 5499.79 25899.31 5399.95 4799.63 92
v119299.57 3799.57 3799.57 13299.77 7999.22 18499.04 17799.60 14799.18 13199.87 3699.72 9199.08 6399.85 19899.89 599.98 2199.66 73
EG-PatchMatch MVS99.57 3799.56 4199.62 11599.77 7999.33 15999.26 11599.76 6499.32 11199.80 5899.78 6499.29 3899.87 16099.15 7699.91 8199.66 73
Gipumacopyleft99.57 3799.59 3299.49 15599.98 399.71 5999.72 1999.84 2999.81 2699.94 1199.78 6498.91 8299.71 28698.41 13499.95 4799.05 280
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
v192192099.56 4099.57 3799.55 13999.75 9399.11 19899.05 17599.61 13799.15 13899.88 3299.71 9899.08 6399.87 16099.90 299.97 2999.66 73
v124099.56 4099.58 3499.51 14999.80 5599.00 20999.00 18499.65 12299.15 13899.90 2299.75 7899.09 6099.88 14799.90 299.96 4099.67 63
V4299.56 4099.54 4399.63 10699.79 6599.46 12199.39 8199.59 15499.24 12399.86 3799.70 10598.55 13099.82 23499.79 1199.95 4799.60 115
v14419299.55 4399.54 4399.58 12799.78 7199.20 19099.11 16499.62 13399.18 13199.89 2699.72 9198.66 11899.87 16099.88 699.97 2999.66 73
test20.0399.55 4399.54 4399.58 12799.79 6599.37 14999.02 18099.89 1299.60 7299.82 4899.62 15698.81 9299.89 13299.43 3599.86 11399.47 182
v114499.54 4599.53 4799.59 12399.79 6599.28 16799.10 16599.61 13799.20 12999.84 4199.73 8598.67 11699.84 21399.86 899.98 2199.64 87
CP-MVSNet99.54 4599.43 6099.87 1499.76 8399.82 2499.57 5899.61 13799.54 7699.80 5899.64 13997.79 20399.95 4299.21 6299.94 6099.84 14
TranMVSNet+NR-MVSNet99.54 4599.47 5199.76 4599.58 15099.64 8499.30 10399.63 13099.61 6699.71 9699.56 19098.76 10599.96 3399.14 8299.92 7299.68 56
v2v48299.50 4899.47 5199.58 12799.78 7199.25 17599.14 15199.58 16399.25 12199.81 5599.62 15698.24 16699.84 21399.83 999.97 2999.64 87
ACMH+98.40 899.50 4899.43 6099.71 7599.86 2999.76 4599.32 9699.77 5999.53 7899.77 7199.76 7499.26 4499.78 26297.77 19099.88 9899.60 115
Baseline_NR-MVSNet99.49 5099.37 6999.82 2399.91 1599.84 1698.83 21199.86 1999.68 4899.65 11599.88 2897.67 21199.87 16099.03 8999.86 11399.76 35
TAMVS99.49 5099.45 5599.63 10699.48 20199.42 13699.45 7199.57 16599.66 5499.78 6699.83 4097.85 19999.86 18099.44 3499.96 4099.61 111
pmmvs-eth3d99.48 5299.47 5199.51 14999.77 7999.41 14098.81 21699.66 11199.42 10199.75 7899.66 13299.20 4799.76 27298.98 9499.99 1299.36 216
EI-MVSNet-UG-set99.48 5299.50 4999.42 17499.57 16098.65 23999.24 12199.46 21999.68 4899.80 5899.66 13298.99 7299.89 13299.19 6799.90 8299.72 41
APDe-MVS99.48 5299.36 7299.85 1899.55 17199.81 2799.50 6499.69 10098.99 15599.75 7899.71 9898.79 9999.93 6698.46 13399.85 11699.80 23
PMMVS299.48 5299.45 5599.57 13299.76 8398.99 21098.09 28399.90 1198.95 16099.78 6699.58 18099.57 1999.93 6699.48 3199.95 4799.79 29
DSMNet-mixed99.48 5299.65 2298.95 24899.71 10997.27 29699.50 6499.82 3699.59 7499.41 19099.85 3599.62 15100.00 199.53 2699.89 9099.59 124
DP-MVS99.48 5299.39 6499.74 5999.57 16099.62 9099.29 11099.61 13799.87 1499.74 8699.76 7498.69 11299.87 16098.20 15399.80 15299.75 38
EI-MVSNet-Vis-set99.47 5899.49 5099.42 17499.57 16098.66 23799.24 12199.46 21999.67 5099.79 6399.65 13798.97 7599.89 13299.15 7699.89 9099.71 44
VPNet99.46 5999.37 6999.71 7599.82 4299.59 10099.48 6899.70 9499.81 2699.69 10199.58 18097.66 21599.86 18099.17 7299.44 25999.67 63
ACMM98.09 1199.46 5999.38 6699.72 7199.80 5599.69 7099.13 15899.65 12298.99 15599.64 11799.72 9199.39 2399.86 18098.23 15099.81 14799.60 115
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
Regformer-499.45 6199.44 5799.50 15299.52 18098.94 21699.17 14199.53 18999.64 5899.76 7399.60 17298.96 7899.90 11998.91 10599.84 12099.67 63
COLMAP_ROBcopyleft98.06 1299.45 6199.37 6999.70 7999.83 3699.70 6699.38 8399.78 5699.53 7899.67 10799.78 6499.19 4899.86 18097.32 22399.87 10699.55 140
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
tfpnnormal99.43 6399.38 6699.60 12199.87 2799.75 4799.59 5599.78 5699.71 4099.90 2299.69 11198.85 9099.90 11997.25 23199.78 16399.15 257
HPM-MVS_fast99.43 6399.30 8599.80 2999.83 3699.81 2799.52 6299.70 9498.35 22999.51 16799.50 20899.31 3599.88 14798.18 15799.84 12099.69 50
3Dnovator99.15 299.43 6399.36 7299.65 9599.39 22899.42 13699.70 2299.56 17099.23 12599.35 20199.80 5199.17 5099.95 4298.21 15299.84 12099.59 124
Anonymous2024052999.42 6699.34 7499.65 9599.53 17599.60 9799.63 4599.39 24099.47 8899.76 7399.78 6498.13 17799.86 18098.70 12199.68 20499.49 173
SixPastTwentyTwo99.42 6699.30 8599.76 4599.92 1499.67 7599.70 2299.14 28799.65 5699.89 2699.90 2196.20 26399.94 5399.42 3999.92 7299.67 63
GBi-Net99.42 6699.31 8099.73 6699.49 19599.77 3999.68 3199.70 9499.44 9499.62 12899.83 4097.21 23499.90 11998.96 9899.90 8299.53 150
test199.42 6699.31 8099.73 6699.49 19599.77 3999.68 3199.70 9499.44 9499.62 12899.83 4097.21 23499.90 11998.96 9899.90 8299.53 150
Regformer-399.41 7099.41 6299.40 18399.52 18098.70 23499.17 14199.44 22499.62 6299.75 7899.60 17298.90 8599.85 19898.89 10699.84 12099.65 81
MVSFormer99.41 7099.44 5799.31 20799.57 16098.40 25099.77 1199.80 4699.73 3699.63 12199.30 25798.02 18599.98 699.43 3599.69 20199.55 140
IterMVS-LS99.41 7099.47 5199.25 21999.81 4998.09 26998.85 20899.76 6499.62 6299.83 4699.64 13998.54 13299.97 1699.15 7699.99 1299.68 56
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
SED-MVS99.40 7399.28 9299.77 3999.69 11999.82 2499.20 13199.54 18099.13 14099.82 4899.63 14798.91 8299.92 8497.85 18599.70 19899.58 129
v14899.40 7399.41 6299.39 18699.76 8398.94 21699.09 16999.59 15499.17 13499.81 5599.61 16598.41 15099.69 29499.32 5099.94 6099.53 150
NR-MVSNet99.40 7399.31 8099.68 8199.43 21999.55 10999.73 1699.50 20499.46 9299.88 3299.36 24397.54 21999.87 16098.97 9699.87 10699.63 92
PVSNet_Blended_VisFu99.40 7399.38 6699.44 16999.90 1998.66 23798.94 19999.91 897.97 25399.79 6399.73 8599.05 6899.97 1699.15 7699.99 1299.68 56
EU-MVSNet99.39 7799.62 2598.72 27599.88 2396.44 31299.56 6099.85 2399.90 799.90 2299.85 3598.09 17999.83 22499.58 2199.95 4799.90 4
CHOSEN 1792x268899.39 7799.30 8599.65 9599.88 2399.25 17598.78 22399.88 1598.66 19399.96 899.79 5797.45 22299.93 6699.34 4699.99 1299.78 30
EI-MVSNet99.38 7999.44 5799.21 22599.58 15098.09 26999.26 11599.46 21999.62 6299.75 7899.67 12898.54 13299.85 19899.15 7699.92 7299.68 56
UGNet99.38 7999.34 7499.49 15598.90 30898.90 22499.70 2299.35 25199.86 1698.57 29299.81 4998.50 14299.93 6699.38 4199.98 2199.66 73
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
UniMVSNet_NR-MVSNet99.37 8199.25 9999.72 7199.47 20699.56 10698.97 19599.61 13799.43 9999.67 10799.28 26297.85 19999.95 4299.17 7299.81 14799.65 81
UniMVSNet (Re)99.37 8199.26 9799.68 8199.51 18499.58 10398.98 19399.60 14799.43 9999.70 9899.36 24397.70 20699.88 14799.20 6599.87 10699.59 124
CSCG99.37 8199.29 9099.60 12199.71 10999.46 12199.43 7699.85 2398.79 18299.41 19099.60 17298.92 8099.92 8498.02 16799.92 7299.43 199
PM-MVS99.36 8499.29 9099.58 12799.83 3699.66 7798.95 19799.86 1998.85 17499.81 5599.73 8598.40 15299.92 8498.36 13799.83 13099.17 253
abl_699.36 8499.23 10299.75 5499.71 10999.74 5299.33 9399.76 6499.07 14899.65 11599.63 14799.09 6099.92 8497.13 23899.76 16999.58 129
new-patchmatchnet99.35 8699.57 3798.71 27799.82 4296.62 31098.55 24299.75 7099.50 8199.88 3299.87 3099.31 3599.88 14799.43 35100.00 199.62 104
Anonymous2023120699.35 8699.31 8099.47 16099.74 9999.06 20899.28 11199.74 7599.23 12599.72 9199.53 20097.63 21799.88 14799.11 8499.84 12099.48 177
MTAPA99.35 8699.20 10499.80 2999.81 4999.81 2799.33 9399.53 18999.27 11799.42 18299.63 14798.21 17099.95 4297.83 18899.79 15799.65 81
FMVSNet299.35 8699.28 9299.55 13999.49 19599.35 15699.45 7199.57 16599.44 9499.70 9899.74 8197.21 23499.87 16099.03 8999.94 6099.44 193
3Dnovator+98.92 399.35 8699.24 10099.67 8399.35 23899.47 11799.62 4699.50 20499.44 9499.12 24299.78 6498.77 10499.94 5397.87 18299.72 19299.62 104
TSAR-MVS + MP.99.34 9199.24 10099.63 10699.82 4299.37 14999.26 11599.35 25198.77 18599.57 14499.70 10599.27 4399.88 14797.71 19599.75 17299.65 81
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
Regformer-299.34 9199.27 9599.53 14599.41 22499.10 20298.99 18999.53 18999.47 8899.66 11199.52 20298.80 9699.89 13298.31 14399.74 18099.60 115
diffmvs99.34 9199.32 7999.39 18699.67 13298.77 23198.57 24099.81 4599.61 6699.48 17099.41 23098.47 14399.86 18098.97 9699.90 8299.53 150
DELS-MVS99.34 9199.30 8599.48 15899.51 18499.36 15298.12 27999.53 18999.36 10699.41 19099.61 16599.22 4699.87 16099.21 6299.68 20499.20 247
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
DU-MVS99.33 9599.21 10399.71 7599.43 21999.56 10698.83 21199.53 18999.38 10399.67 10799.36 24397.67 21199.95 4299.17 7299.81 14799.63 92
ab-mvs99.33 9599.28 9299.47 16099.57 16099.39 14399.78 1099.43 22798.87 17299.57 14499.82 4698.06 18299.87 16098.69 12399.73 18799.15 257
MSP-MVS99.32 9799.17 10799.77 3999.69 11999.80 3299.14 15199.31 26099.16 13699.62 12899.61 16598.35 15699.91 10097.88 17999.72 19299.61 111
Regformer-199.32 9799.27 9599.47 16099.41 22498.95 21598.99 18999.48 21199.48 8399.66 11199.52 20298.78 10199.87 16098.36 13799.74 18099.60 115
APD-MVS_3200maxsize99.31 9999.16 10899.74 5999.53 17599.75 4799.27 11499.61 13799.19 13099.57 14499.64 13998.76 10599.90 11997.29 22599.62 22399.56 137
zzz-MVS99.30 10099.14 11299.80 2999.81 4999.81 2798.73 22899.53 18999.27 11799.42 18299.63 14798.21 17099.95 4297.83 18899.79 15799.65 81
SteuartSystems-ACMMP99.30 10099.14 11299.76 4599.87 2799.66 7799.18 13699.60 14798.55 20499.57 14499.67 12899.03 7099.94 5397.01 24299.80 15299.69 50
Skip Steuart: Steuart Systems R&D Blog.
testgi99.29 10299.26 9799.37 19399.75 9398.81 22898.84 20999.89 1298.38 22299.75 7899.04 29799.36 3299.86 18099.08 8699.25 28799.45 188
ACMMP_NAP99.28 10399.11 12199.79 3499.75 9399.81 2798.95 19799.53 18998.27 23899.53 16299.73 8598.75 10799.87 16097.70 19799.83 13099.68 56
LCM-MVSNet-Re99.28 10399.15 11199.67 8399.33 25399.76 4599.34 9199.97 298.93 16499.91 2099.79 5798.68 11399.93 6696.80 25599.56 23699.30 228
mvs_anonymous99.28 10399.39 6498.94 24999.19 27797.81 28199.02 18099.55 17599.78 3299.85 3899.80 5198.24 16699.86 18099.57 2299.50 25299.15 257
MVS_Test99.28 10399.31 8099.19 22899.35 23898.79 23099.36 8999.49 20999.17 13499.21 22899.67 12898.78 10199.66 31499.09 8599.66 21599.10 267
XVS99.27 10799.11 12199.75 5499.71 10999.71 5999.37 8799.61 13799.29 11398.76 27899.47 22098.47 14399.88 14797.62 20599.73 18799.67 63
OPM-MVS99.26 10899.13 11599.63 10699.70 11699.61 9698.58 23699.48 21198.50 21099.52 16499.63 14799.14 5499.76 27297.89 17899.77 16799.51 162
HFP-MVS99.25 10999.08 13199.76 4599.73 10299.70 6699.31 10099.59 15498.36 22499.36 19999.37 23898.80 9699.91 10097.43 21899.75 17299.68 56
HPM-MVScopyleft99.25 10999.07 13599.78 3799.81 4999.75 4799.61 5099.67 10797.72 26799.35 20199.25 26899.23 4599.92 8497.21 23499.82 13999.67 63
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
ACMMPcopyleft99.25 10999.08 13199.74 5999.79 6599.68 7399.50 6499.65 12298.07 24799.52 16499.69 11198.57 12899.92 8497.18 23699.79 15799.63 92
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
LS3D99.24 11299.11 12199.61 11998.38 33799.79 3499.57 5899.68 10399.61 6699.15 23799.71 9898.70 11199.91 10097.54 21199.68 20499.13 264
xiu_mvs_v1_base_debu99.23 11399.34 7498.91 25599.59 14798.23 25898.47 25199.66 11199.61 6699.68 10398.94 31099.39 2399.97 1699.18 6999.55 24098.51 313
xiu_mvs_v1_base99.23 11399.34 7498.91 25599.59 14798.23 25898.47 25199.66 11199.61 6699.68 10398.94 31099.39 2399.97 1699.18 6999.55 24098.51 313
xiu_mvs_v1_base_debi99.23 11399.34 7498.91 25599.59 14798.23 25898.47 25199.66 11199.61 6699.68 10398.94 31099.39 2399.97 1699.18 6999.55 24098.51 313
region2R99.23 11399.05 14199.77 3999.76 8399.70 6699.31 10099.59 15498.41 21899.32 20899.36 24398.73 11099.93 6697.29 22599.74 18099.67 63
ACMMPR99.23 11399.06 13799.76 4599.74 9999.69 7099.31 10099.59 15498.36 22499.35 20199.38 23798.61 12499.93 6697.43 21899.75 17299.67 63
XVG-ACMP-BASELINE99.23 11399.10 12899.63 10699.82 4299.58 10398.83 21199.72 8798.36 22499.60 13699.71 9898.92 8099.91 10097.08 24099.84 12099.40 205
CP-MVS99.23 11399.05 14199.75 5499.66 13399.66 7799.38 8399.62 13398.38 22299.06 24999.27 26498.79 9999.94 5397.51 21499.82 13999.66 73
DeepC-MVS_fast98.47 599.23 11399.12 11899.56 13699.28 26399.22 18498.99 18999.40 23799.08 14699.58 14199.64 13998.90 8599.83 22497.44 21799.75 17299.63 92
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
ZNCC-MVS99.22 12199.04 14699.77 3999.76 8399.73 5399.28 11199.56 17098.19 24399.14 23999.29 26098.84 9199.92 8497.53 21399.80 15299.64 87
D2MVS99.22 12199.19 10599.29 21099.69 11998.74 23298.81 21699.41 23098.55 20499.68 10399.69 11198.13 17799.87 16098.82 11199.98 2199.24 237
LPG-MVS_test99.22 12199.05 14199.74 5999.82 4299.63 8899.16 14799.73 7897.56 27399.64 11799.69 11199.37 2999.89 13296.66 26399.87 10699.69 50
CDS-MVSNet99.22 12199.13 11599.50 15299.35 23899.11 19898.96 19699.54 18099.46 9299.61 13499.70 10596.31 26099.83 22499.34 4699.88 9899.55 140
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
test_040299.22 12199.14 11299.45 16799.79 6599.43 13399.28 11199.68 10399.54 7699.40 19599.56 19099.07 6599.82 23496.01 28899.96 4099.11 265
AllTest99.21 12699.07 13599.63 10699.78 7199.64 8499.12 16299.83 3198.63 19699.63 12199.72 9198.68 11399.75 27696.38 27799.83 13099.51 162
XVG-OURS99.21 12699.06 13799.65 9599.82 4299.62 9097.87 30799.74 7598.36 22499.66 11199.68 12299.71 999.90 11996.84 25399.88 9899.43 199
Fast-Effi-MVS+-dtu99.20 12899.12 11899.43 17299.25 26799.69 7099.05 17599.82 3699.50 8198.97 25399.05 29498.98 7399.98 698.20 15399.24 28998.62 305
VDD-MVS99.20 12899.11 12199.44 16999.43 21998.98 21199.50 6498.32 32299.80 2999.56 15199.69 11196.99 24499.85 19898.99 9299.73 18799.50 168
PGM-MVS99.20 12899.01 15399.77 3999.75 9399.71 5999.16 14799.72 8797.99 25199.42 18299.60 17298.81 9299.93 6696.91 24799.74 18099.66 73
SR-MVS99.19 13199.00 15699.74 5999.51 18499.72 5799.18 13699.60 14798.85 17499.47 17199.58 18098.38 15399.92 8496.92 24699.54 24599.57 135
SMA-MVS99.19 13199.00 15699.73 6699.46 21199.73 5399.13 15899.52 19897.40 28399.57 14499.64 13998.93 7999.83 22497.61 20799.79 15799.63 92
pmmvs599.19 13199.11 12199.42 17499.76 8398.88 22598.55 24299.73 7898.82 17899.72 9199.62 15696.56 25099.82 23499.32 5099.95 4799.56 137
mPP-MVS99.19 13199.00 15699.76 4599.76 8399.68 7399.38 8399.54 18098.34 23399.01 25199.50 20898.53 13699.93 6697.18 23699.78 16399.66 73
ETV-MVS99.18 13599.18 10699.16 23199.34 24899.28 16799.12 16299.79 5299.48 8398.93 25798.55 33099.40 2299.93 6698.51 13199.52 24998.28 322
VNet99.18 13599.06 13799.56 13699.24 26999.36 15299.33 9399.31 26099.67 5099.47 17199.57 18796.48 25399.84 21399.15 7699.30 28199.47 182
RPSCF99.18 13599.02 15099.64 10299.83 3699.85 1199.44 7499.82 3698.33 23499.50 16899.78 6497.90 19499.65 32196.78 25699.83 13099.44 193
DeepPCF-MVS98.42 699.18 13599.02 15099.67 8399.22 27199.75 4797.25 33499.47 21598.72 19099.66 11199.70 10599.29 3899.63 32498.07 16699.81 14799.62 104
EPP-MVSNet99.17 13999.00 15699.66 9099.80 5599.43 13399.70 2299.24 27799.48 8399.56 15199.77 7194.89 27699.93 6698.72 12099.89 9099.63 92
GST-MVS99.16 14098.96 16799.75 5499.73 10299.73 5399.20 13199.55 17598.22 24099.32 20899.35 24898.65 12099.91 10096.86 25099.74 18099.62 104
MVP-Stereo99.16 14099.08 13199.43 17299.48 20199.07 20699.08 17299.55 17598.63 19699.31 21099.68 12298.19 17399.78 26298.18 15799.58 23499.45 188
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
XVG-OURS-SEG-HR99.16 14098.99 16199.66 9099.84 3399.64 8498.25 26999.73 7898.39 22199.63 12199.43 22899.70 1199.90 11997.34 22298.64 31899.44 193
jason99.16 14099.11 12199.32 20499.75 9398.44 24798.26 26899.39 24098.70 19199.74 8699.30 25798.54 13299.97 1698.48 13299.82 13999.55 140
jason: jason.
DPE-MVS99.14 14498.92 17499.82 2399.57 16099.77 3998.74 22699.60 14798.55 20499.76 7399.69 11198.23 16999.92 8496.39 27699.75 17299.76 35
MP-MVS-pluss99.14 14498.92 17499.80 2999.83 3699.83 2098.61 23299.63 13096.84 30299.44 17699.58 18098.81 9299.91 10097.70 19799.82 13999.67 63
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
pmmvs499.13 14699.06 13799.36 19699.57 16099.10 20298.01 29199.25 27498.78 18499.58 14199.44 22798.24 16699.76 27298.74 11899.93 6899.22 242
MVS_111021_LR99.13 14699.03 14899.42 17499.58 15099.32 16197.91 30699.73 7898.68 19299.31 21099.48 21599.09 6099.66 31497.70 19799.77 16799.29 231
EIA-MVS99.12 14899.01 15399.45 16799.36 23699.62 9099.34 9199.79 5298.41 21898.84 26898.89 31598.75 10799.84 21398.15 16199.51 25098.89 292
#test#99.12 14898.90 17899.76 4599.73 10299.70 6699.10 16599.59 15497.60 27299.36 19999.37 23898.80 9699.91 10096.84 25399.75 17299.68 56
TSAR-MVS + GP.99.12 14899.04 14699.38 19099.34 24899.16 19398.15 27599.29 26598.18 24499.63 12199.62 15699.18 4999.68 30598.20 15399.74 18099.30 228
MVS_111021_HR99.12 14899.02 15099.40 18399.50 19099.11 19897.92 30499.71 9098.76 18899.08 24599.47 22099.17 5099.54 33497.85 18599.76 16999.54 147
xxxxxxxxxxxxxcwj99.11 15298.96 16799.54 14399.53 17599.25 17598.29 26599.76 6499.07 14899.42 18299.61 16598.86 8899.87 16096.45 27499.68 20499.49 173
CANet99.11 15299.05 14199.28 21298.83 31798.56 24198.71 23099.41 23099.25 12199.23 22299.22 27597.66 21599.94 5399.19 6799.97 2999.33 222
WR-MVS99.11 15298.93 17099.66 9099.30 25999.42 13698.42 25799.37 24799.04 15399.57 14499.20 27996.89 24699.86 18098.66 12599.87 10699.70 47
PHI-MVS99.11 15298.95 16999.59 12399.13 28599.59 10099.17 14199.65 12297.88 25999.25 21899.46 22398.97 7599.80 25597.26 22899.82 13999.37 213
SF-MVS99.10 15698.93 17099.62 11599.58 15099.51 11299.13 15899.65 12297.97 25399.42 18299.61 16598.86 8899.87 16096.45 27499.68 20499.49 173
CS-MVS99.09 15799.03 14899.25 21999.45 21499.49 11499.41 7799.82 3699.10 14598.03 31998.48 33499.30 3799.89 13298.30 14499.41 26598.35 319
MSDG99.08 15898.98 16499.37 19399.60 14599.13 19697.54 32099.74 7598.84 17799.53 16299.55 19699.10 5899.79 25897.07 24199.86 11399.18 251
Effi-MVS+-dtu99.07 15998.92 17499.52 14698.89 31199.78 3799.15 14999.66 11199.34 10798.92 26099.24 27397.69 20899.98 698.11 16399.28 28398.81 299
Effi-MVS+99.06 16098.97 16599.34 19899.31 25598.98 21198.31 26499.91 898.81 17998.79 27498.94 31099.14 5499.84 21398.79 11398.74 31499.20 247
MP-MVScopyleft99.06 16098.83 18799.76 4599.76 8399.71 5999.32 9699.50 20498.35 22998.97 25399.48 21598.37 15499.92 8495.95 29499.75 17299.63 92
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
MDA-MVSNet-bldmvs99.06 16099.05 14199.07 24099.80 5597.83 28098.89 20199.72 8799.29 11399.63 12199.70 10596.47 25499.89 13298.17 15999.82 13999.50 168
MSLP-MVS++99.05 16399.09 12998.91 25599.21 27298.36 25498.82 21599.47 21598.85 17498.90 26399.56 19098.78 10199.09 34598.57 12899.68 20499.26 234
1112_ss99.05 16398.84 18599.67 8399.66 13399.29 16598.52 24799.82 3697.65 27099.43 18099.16 28296.42 25699.91 10099.07 8799.84 12099.80 23
ACMP97.51 1499.05 16398.84 18599.67 8399.78 7199.55 10998.88 20299.66 11197.11 29699.47 17199.60 17299.07 6599.89 13296.18 28399.85 11699.58 129
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
DVP-MVS99.04 16698.79 19299.81 2699.78 7199.73 5399.35 9099.57 16598.54 20799.54 15898.99 30096.81 24799.93 6696.97 24499.53 24799.77 31
PVSNet_BlendedMVS99.03 16799.01 15399.09 23699.54 17297.99 27398.58 23699.82 3697.62 27199.34 20499.71 9898.52 13999.77 27097.98 17299.97 2999.52 160
IS-MVSNet99.03 16798.85 18399.55 13999.80 5599.25 17599.73 1699.15 28699.37 10499.61 13499.71 9894.73 27999.81 25097.70 19799.88 9899.58 129
xiu_mvs_v2_base99.02 16999.11 12198.77 27299.37 23498.09 26998.13 27899.51 20199.47 8899.42 18298.54 33199.38 2799.97 1698.83 10999.33 27898.24 324
Fast-Effi-MVS+99.02 16998.87 18199.46 16399.38 23199.50 11399.04 17799.79 5297.17 29298.62 28798.74 32399.34 3399.95 4298.32 14299.41 26598.92 290
canonicalmvs99.02 16999.00 15699.09 23699.10 29398.70 23499.61 5099.66 11199.63 6198.64 28697.65 34599.04 6999.54 33498.79 11398.92 30399.04 281
MCST-MVS99.02 16998.81 18999.65 9599.58 15099.49 11498.58 23699.07 29098.40 22099.04 25099.25 26898.51 14199.80 25597.31 22499.51 25099.65 81
SD-MVS99.01 17399.30 8598.15 29799.50 19099.40 14198.94 19999.61 13799.22 12899.75 7899.82 4699.54 2095.51 35197.48 21599.87 10699.54 147
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
LF4IMVS99.01 17398.92 17499.27 21499.71 10999.28 16798.59 23599.77 5998.32 23599.39 19699.41 23098.62 12299.84 21396.62 26699.84 12098.69 303
IterMVS-SCA-FT99.00 17599.16 10898.51 28299.75 9395.90 32098.07 28699.84 2999.84 2199.89 2699.73 8596.01 26799.99 499.33 48100.00 199.63 92
MS-PatchMatch99.00 17598.97 16599.09 23699.11 29298.19 26198.76 22599.33 25498.49 21299.44 17699.58 18098.21 17099.69 29498.20 15399.62 22399.39 208
PS-MVSNAJ99.00 17599.08 13198.76 27399.37 23498.10 26898.00 29399.51 20199.47 8899.41 19098.50 33399.28 4099.97 1698.83 10999.34 27698.20 328
CNVR-MVS98.99 17898.80 19199.56 13699.25 26799.43 13398.54 24599.27 26998.58 20198.80 27399.43 22898.53 13699.70 28897.22 23399.59 23399.54 147
VDDNet98.97 17998.82 18899.42 17499.71 10998.81 22899.62 4698.68 30699.81 2699.38 19799.80 5194.25 28399.85 19898.79 11399.32 27999.59 124
IterMVS98.97 17999.16 10898.42 28699.74 9995.64 32398.06 28899.83 3199.83 2499.85 3899.74 8196.10 26699.99 499.27 60100.00 199.63 92
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
TinyColmap98.97 17998.93 17099.07 24099.46 21198.19 26197.75 31199.75 7098.79 18299.54 15899.70 10598.97 7599.62 32596.63 26599.83 13099.41 203
HPM-MVS++copyleft98.96 18298.70 19999.74 5999.52 18099.71 5998.86 20699.19 28298.47 21498.59 29099.06 29398.08 18199.91 10096.94 24599.60 23199.60 115
lupinMVS98.96 18298.87 18199.24 22299.57 16098.40 25098.12 27999.18 28398.28 23799.63 12199.13 28498.02 18599.97 1698.22 15199.69 20199.35 219
USDC98.96 18298.93 17099.05 24299.54 17297.99 27397.07 33799.80 4698.21 24199.75 7899.77 7198.43 14899.64 32397.90 17799.88 9899.51 162
YYNet198.95 18598.99 16198.84 26599.64 13797.14 30098.22 27199.32 25698.92 16699.59 13999.66 13297.40 22499.83 22498.27 14799.90 8299.55 140
MDA-MVSNet_test_wron98.95 18598.99 16198.85 26399.64 13797.16 29998.23 27099.33 25498.93 16499.56 15199.66 13297.39 22699.83 22498.29 14599.88 9899.55 140
Test_1112_low_res98.95 18598.73 19499.63 10699.68 12799.15 19598.09 28399.80 4697.14 29499.46 17499.40 23296.11 26599.89 13299.01 9199.84 12099.84 14
CANet_DTU98.91 18898.85 18399.09 23698.79 32398.13 26498.18 27299.31 26099.48 8398.86 26699.51 20596.56 25099.95 4299.05 8899.95 4799.19 249
HyFIR lowres test98.91 18898.64 20299.73 6699.85 3299.47 11798.07 28699.83 3198.64 19599.89 2699.60 17292.57 297100.00 199.33 4899.97 2999.72 41
HQP_MVS98.90 19098.68 20199.55 13999.58 15099.24 18098.80 21999.54 18098.94 16199.14 23999.25 26897.24 23299.82 23495.84 29799.78 16399.60 115
sss98.90 19098.77 19399.27 21499.48 20198.44 24798.72 22999.32 25697.94 25799.37 19899.35 24896.31 26099.91 10098.85 10899.63 22299.47 182
OMC-MVS98.90 19098.72 19599.44 16999.39 22899.42 13698.58 23699.64 12897.31 28899.44 17699.62 15698.59 12699.69 29496.17 28499.79 15799.22 242
ppachtmachnet_test98.89 19399.12 11898.20 29699.66 13395.24 32797.63 31699.68 10399.08 14699.78 6699.62 15698.65 12099.88 14798.02 16799.96 4099.48 177
MVS_030498.88 19498.71 19699.39 18698.85 31598.91 22399.45 7199.30 26398.56 20297.26 33799.68 12296.18 26499.96 3399.17 7299.94 6099.29 231
new_pmnet98.88 19498.89 17998.84 26599.70 11697.62 28798.15 27599.50 20497.98 25299.62 12899.54 19898.15 17699.94 5397.55 21099.84 12098.95 287
K. test v398.87 19698.60 20599.69 8099.93 1399.46 12199.74 1594.97 34599.78 3299.88 3299.88 2893.66 28999.97 1699.61 1899.95 4799.64 87
APD-MVScopyleft98.87 19698.59 20799.71 7599.50 19099.62 9099.01 18299.57 16596.80 30499.54 15899.63 14798.29 16299.91 10095.24 31199.71 19699.61 111
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
our_test_398.85 19899.09 12998.13 29899.66 13394.90 33097.72 31299.58 16399.07 14899.64 11799.62 15698.19 17399.93 6698.41 13499.95 4799.55 140
mvs-test198.83 19998.70 19999.22 22498.89 31199.65 8298.88 20299.66 11199.34 10798.29 30398.94 31097.69 20899.96 3398.11 16398.54 32298.04 332
UnsupCasMVSNet_eth98.83 19998.57 21199.59 12399.68 12799.45 12698.99 18999.67 10799.48 8399.55 15699.36 24394.92 27599.86 18098.95 10296.57 34299.45 188
NCCC98.82 20198.57 21199.58 12799.21 27299.31 16298.61 23299.25 27498.65 19498.43 30099.26 26697.86 19899.81 25096.55 26799.27 28699.61 111
PMVScopyleft92.94 2198.82 20198.81 18998.85 26399.84 3397.99 27399.20 13199.47 21599.71 4099.42 18299.82 4698.09 17999.47 33993.88 32999.85 11699.07 278
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
FMVSNet398.80 20398.63 20499.32 20499.13 28598.72 23399.10 16599.48 21199.23 12599.62 12899.64 13992.57 29799.86 18098.96 9899.90 8299.39 208
Patchmtry98.78 20498.54 21499.49 15598.89 31199.19 19199.32 9699.67 10799.65 5699.72 9199.79 5791.87 30499.95 4298.00 17199.97 2999.33 222
ETH3D-3000-0.198.77 20598.50 21799.59 12399.47 20699.53 11198.77 22499.60 14797.33 28799.23 22299.50 20897.91 19399.83 22495.02 31599.67 21199.41 203
Vis-MVSNet (Re-imp)98.77 20598.58 21099.34 19899.78 7198.88 22599.61 5099.56 17099.11 14499.24 22199.56 19093.00 29599.78 26297.43 21899.89 9099.35 219
CLD-MVS98.76 20798.57 21199.33 20099.57 16098.97 21397.53 32299.55 17596.41 30899.27 21699.13 28499.07 6599.78 26296.73 25999.89 9099.23 240
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
Anonymous20240521198.75 20898.46 21999.63 10699.34 24899.66 7799.47 7097.65 33199.28 11699.56 15199.50 20893.15 29299.84 21398.62 12699.58 23499.40 205
RRT_MVS98.75 20898.54 21499.41 18198.14 34698.61 24098.98 19399.66 11199.31 11299.84 4199.75 7891.98 30199.98 699.20 6599.95 4799.62 104
CPTT-MVS98.74 21098.44 22199.64 10299.61 14399.38 14699.18 13699.55 17596.49 30799.27 21699.37 23897.11 24099.92 8495.74 30199.67 21199.62 104
F-COLMAP98.74 21098.45 22099.62 11599.57 16099.47 11798.84 20999.65 12296.31 31098.93 25799.19 28197.68 21099.87 16096.52 26999.37 27399.53 150
N_pmnet98.73 21298.53 21699.35 19799.72 10698.67 23698.34 26094.65 34698.35 22999.79 6399.68 12298.03 18399.93 6698.28 14699.92 7299.44 193
cl_fuxian98.72 21398.71 19698.72 27599.12 28797.22 29897.68 31599.56 17098.90 16899.54 15899.48 21596.37 25999.73 28097.88 17999.88 9899.21 244
PVSNet_Blended98.70 21498.59 20799.02 24499.54 17297.99 27397.58 31999.82 3695.70 31999.34 20498.98 30398.52 13999.77 27097.98 17299.83 13099.30 228
eth_miper_zixun_eth98.68 21598.71 19698.60 27999.10 29396.84 30797.52 32499.54 18098.94 16199.58 14199.48 21596.25 26299.76 27298.01 17099.93 6899.21 244
PatchMatch-RL98.68 21598.47 21899.30 20999.44 21799.28 16798.14 27799.54 18097.12 29599.11 24399.25 26897.80 20299.70 28896.51 27099.30 28198.93 289
miper_lstm_enhance98.65 21798.60 20598.82 27099.20 27597.33 29597.78 31099.66 11199.01 15499.59 13999.50 20894.62 28099.85 19898.12 16299.90 8299.26 234
test_prior398.62 21898.34 23399.46 16399.35 23899.22 18497.95 30099.39 24097.87 26098.05 31699.05 29497.90 19499.69 29495.99 29099.49 25499.48 177
CVMVSNet98.61 21998.88 18097.80 30699.58 15093.60 33599.26 11599.64 12899.66 5499.72 9199.67 12893.26 29199.93 6699.30 5499.81 14799.87 9
Patchmatch-RL test98.60 22098.36 23099.33 20099.77 7999.07 20698.27 26799.87 1798.91 16799.74 8699.72 9190.57 32199.79 25898.55 12999.85 11699.11 265
AdaColmapbinary98.60 22098.35 23299.38 19099.12 28799.22 18498.67 23199.42 22997.84 26498.81 27199.27 26497.32 23099.81 25095.14 31299.53 24799.10 267
miper_ehance_all_eth98.59 22298.59 20798.59 28098.98 30497.07 30197.49 32599.52 19898.50 21099.52 16499.37 23896.41 25899.71 28697.86 18399.62 22399.00 285
WTY-MVS98.59 22298.37 22999.26 21699.43 21998.40 25098.74 22699.13 28998.10 24699.21 22899.24 27394.82 27799.90 11997.86 18398.77 31099.49 173
CNLPA98.57 22498.34 23399.28 21299.18 27999.10 20298.34 26099.41 23098.48 21398.52 29598.98 30397.05 24299.78 26295.59 30399.50 25298.96 286
testtj98.56 22598.17 24799.72 7199.45 21499.60 9798.88 20299.50 20496.88 29999.18 23499.48 21597.08 24199.92 8493.69 33099.38 26999.63 92
112198.56 22598.24 23899.52 14699.49 19599.24 18099.30 10399.22 27995.77 31798.52 29599.29 26097.39 22699.85 19895.79 29999.34 27699.46 186
CDPH-MVS98.56 22598.20 24299.61 11999.50 19099.46 12198.32 26399.41 23095.22 32499.21 22899.10 29198.34 15899.82 23495.09 31499.66 21599.56 137
UnsupCasMVSNet_bld98.55 22898.27 23799.40 18399.56 17099.37 14997.97 29999.68 10397.49 27999.08 24599.35 24895.41 27499.82 23497.70 19798.19 33099.01 284
cl-mvsnet_98.54 22998.41 22598.92 25399.03 30197.80 28297.46 32699.59 15498.90 16899.60 13699.46 22393.85 28699.78 26297.97 17499.89 9099.17 253
cl-mvsnet198.54 22998.42 22498.92 25399.03 30197.80 28297.46 32699.59 15498.90 16899.60 13699.46 22393.87 28599.78 26297.97 17499.89 9099.18 251
RPMNet98.53 23198.44 22198.83 26799.05 29898.12 26599.30 10398.78 30299.86 1699.16 23599.74 8192.53 29999.91 10098.75 11798.77 31098.44 316
MG-MVS98.52 23298.39 22798.94 24999.15 28297.39 29498.18 27299.21 28198.89 17199.23 22299.63 14797.37 22899.74 27894.22 32499.61 23099.69 50
ETH3D cwj APD-0.1698.50 23398.16 24899.51 14999.04 30099.39 14398.47 25199.47 21596.70 30698.78 27699.33 25297.62 21899.86 18094.69 32099.38 26999.28 233
DP-MVS Recon98.50 23398.23 23999.31 20799.49 19599.46 12198.56 24199.63 13094.86 33098.85 26799.37 23897.81 20199.59 33196.08 28599.44 25998.88 293
CMPMVSbinary77.52 2398.50 23398.19 24599.41 18198.33 33999.56 10699.01 18299.59 15495.44 32199.57 14499.80 5195.64 27199.46 34196.47 27399.92 7299.21 244
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
114514_t98.49 23698.11 25099.64 10299.73 10299.58 10399.24 12199.76 6489.94 34399.42 18299.56 19097.76 20599.86 18097.74 19399.82 13999.47 182
PMMVS98.49 23698.29 23699.11 23498.96 30598.42 24997.54 32099.32 25697.53 27698.47 29998.15 34097.88 19799.82 23497.46 21699.24 28999.09 270
MVSTER98.47 23898.22 24099.24 22299.06 29798.35 25599.08 17299.46 21999.27 11799.75 7899.66 13288.61 33099.85 19899.14 8299.92 7299.52 160
LFMVS98.46 23998.19 24599.26 21699.24 26998.52 24399.62 4696.94 33899.87 1499.31 21099.58 18091.04 31299.81 25098.68 12499.42 26499.45 188
PatchT98.45 24098.32 23598.83 26798.94 30698.29 25699.24 12198.82 30099.84 2199.08 24599.76 7491.37 30799.94 5398.82 11199.00 30098.26 323
MIMVSNet98.43 24198.20 24299.11 23499.53 17598.38 25399.58 5798.61 31098.96 15999.33 20699.76 7490.92 31499.81 25097.38 22199.76 16999.15 257
PVSNet97.47 1598.42 24298.44 22198.35 28999.46 21196.26 31496.70 34299.34 25397.68 26999.00 25299.13 28497.40 22499.72 28297.59 20999.68 20499.08 273
CHOSEN 280x42098.41 24398.41 22598.40 28799.34 24895.89 32196.94 33999.44 22498.80 18199.25 21899.52 20293.51 29099.98 698.94 10399.98 2199.32 225
BH-RMVSNet98.41 24398.14 24999.21 22599.21 27298.47 24498.60 23498.26 32398.35 22998.93 25799.31 25597.20 23799.66 31494.32 32299.10 29499.51 162
QAPM98.40 24597.99 25599.65 9599.39 22899.47 11799.67 3599.52 19891.70 34098.78 27699.80 5198.55 13099.95 4294.71 31999.75 17299.53 150
API-MVS98.38 24698.39 22798.35 28998.83 31799.26 17199.14 15199.18 28398.59 20098.66 28598.78 32198.61 12499.57 33394.14 32599.56 23696.21 344
HQP-MVS98.36 24798.02 25499.39 18699.31 25598.94 21697.98 29699.37 24797.45 28098.15 31098.83 31896.67 24899.70 28894.73 31799.67 21199.53 150
PAPM_NR98.36 24798.04 25399.33 20099.48 20198.93 22098.79 22299.28 26897.54 27598.56 29398.57 32897.12 23999.69 29494.09 32698.90 30599.38 210
PLCcopyleft97.35 1698.36 24797.99 25599.48 15899.32 25499.24 18098.50 24999.51 20195.19 32698.58 29198.96 30896.95 24599.83 22495.63 30299.25 28799.37 213
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
train_agg98.35 25097.95 25999.57 13299.35 23899.35 15698.11 28199.41 23094.90 32897.92 32298.99 30098.02 18599.85 19895.38 30999.44 25999.50 168
CR-MVSNet98.35 25098.20 24298.83 26799.05 29898.12 26599.30 10399.67 10797.39 28499.16 23599.79 5791.87 30499.91 10098.78 11698.77 31098.44 316
agg_prior198.33 25297.92 26599.57 13299.35 23899.36 15297.99 29599.39 24094.85 33197.76 33198.98 30398.03 18399.85 19895.49 30599.44 25999.51 162
DPM-MVS98.28 25397.94 26399.32 20499.36 23699.11 19897.31 33298.78 30296.88 29998.84 26899.11 29097.77 20499.61 32994.03 32799.36 27499.23 240
alignmvs98.28 25397.96 25899.25 21999.12 28798.93 22099.03 17998.42 31899.64 5898.72 28197.85 34390.86 31799.62 32598.88 10799.13 29299.19 249
test_yl98.25 25597.95 25999.13 23299.17 28098.47 24499.00 18498.67 30898.97 15799.22 22699.02 29891.31 30899.69 29497.26 22898.93 30199.24 237
DCV-MVSNet98.25 25597.95 25999.13 23299.17 28098.47 24499.00 18498.67 30898.97 15799.22 22699.02 29891.31 30899.69 29497.26 22898.93 30199.24 237
MAR-MVS98.24 25797.92 26599.19 22898.78 32599.65 8299.17 14199.14 28795.36 32298.04 31898.81 32097.47 22199.72 28295.47 30799.06 29598.21 326
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
OpenMVScopyleft98.12 1098.23 25897.89 26999.26 21699.19 27799.26 17199.65 4399.69 10091.33 34198.14 31499.77 7198.28 16399.96 3395.41 30899.55 24098.58 309
BH-untuned98.22 25998.09 25198.58 28199.38 23197.24 29798.55 24298.98 29597.81 26599.20 23398.76 32297.01 24399.65 32194.83 31698.33 32698.86 295
HY-MVS98.23 998.21 26097.95 25998.99 24599.03 30198.24 25799.61 5098.72 30596.81 30398.73 28099.51 20594.06 28499.86 18096.91 24798.20 32898.86 295
EPNet98.13 26197.77 27399.18 23094.57 35297.99 27399.24 12197.96 32699.74 3597.29 33699.62 15693.13 29399.97 1698.59 12799.83 13099.58 129
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
SCA98.11 26298.36 23097.36 31799.20 27592.99 33898.17 27498.49 31698.24 23999.10 24499.57 18796.01 26799.94 5396.86 25099.62 22399.14 261
Patchmatch-test98.10 26397.98 25798.48 28499.27 26596.48 31199.40 7999.07 29098.81 17999.23 22299.57 18790.11 32599.87 16096.69 26099.64 22099.09 270
pmmvs398.08 26497.80 27098.91 25599.41 22497.69 28697.87 30799.66 11195.87 31599.50 16899.51 20590.35 32399.97 1698.55 12999.47 25699.08 273
JIA-IIPM98.06 26597.92 26598.50 28398.59 33297.02 30298.80 21998.51 31499.88 1397.89 32499.87 3091.89 30399.90 11998.16 16097.68 33898.59 307
miper_enhance_ethall98.03 26697.94 26398.32 29198.27 34096.43 31396.95 33899.41 23096.37 30999.43 18098.96 30894.74 27899.69 29497.71 19599.62 22398.83 298
TAPA-MVS97.92 1398.03 26697.55 27999.46 16399.47 20699.44 12898.50 24999.62 13386.79 34499.07 24899.26 26698.26 16599.62 32597.28 22799.73 18799.31 227
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
131498.00 26897.90 26898.27 29598.90 30897.45 29299.30 10399.06 29294.98 32797.21 33899.12 28898.43 14899.67 31095.58 30498.56 32197.71 336
GA-MVS97.99 26997.68 27698.93 25299.52 18098.04 27297.19 33699.05 29398.32 23598.81 27198.97 30689.89 32899.41 34298.33 14199.05 29699.34 221
MVS-HIRNet97.86 27098.22 24096.76 32399.28 26391.53 34798.38 25992.60 35199.13 14099.31 21099.96 1097.18 23899.68 30598.34 14099.83 13099.07 278
FMVSNet597.80 27197.25 28499.42 17498.83 31798.97 21399.38 8399.80 4698.87 17299.25 21899.69 11180.60 35199.91 10098.96 9899.90 8299.38 210
ADS-MVSNet297.78 27297.66 27898.12 29999.14 28395.36 32599.22 12898.75 30496.97 29798.25 30699.64 13990.90 31599.94 5396.51 27099.56 23699.08 273
ETH3 D test640097.76 27397.19 28799.50 15299.38 23199.26 17198.34 26099.49 20992.99 33798.54 29499.20 27995.92 26999.82 23491.14 33799.66 21599.40 205
baseline197.73 27497.33 28198.96 24799.30 25997.73 28499.40 7998.42 31899.33 11099.46 17499.21 27791.18 31099.82 23498.35 13991.26 34799.32 225
tpmrst97.73 27498.07 25296.73 32598.71 32992.00 34299.10 16598.86 29798.52 20898.92 26099.54 19891.90 30299.82 23498.02 16799.03 29898.37 318
ADS-MVSNet97.72 27697.67 27797.86 30499.14 28394.65 33199.22 12898.86 29796.97 29798.25 30699.64 13990.90 31599.84 21396.51 27099.56 23699.08 273
PatchmatchNetpermissive97.65 27797.80 27097.18 32098.82 32092.49 34099.17 14198.39 32098.12 24598.79 27499.58 18090.71 31999.89 13297.23 23299.41 26599.16 255
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
tttt051797.62 27897.20 28698.90 26199.76 8397.40 29399.48 6894.36 34799.06 15299.70 9899.49 21384.55 34599.94 5398.73 11999.65 21899.36 216
EPNet_dtu97.62 27897.79 27297.11 32296.67 35192.31 34198.51 24898.04 32499.24 12395.77 34599.47 22093.78 28899.66 31498.98 9499.62 22399.37 213
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
wuyk23d97.58 28099.13 11592.93 33499.69 11999.49 11499.52 6299.77 5997.97 25399.96 899.79 5799.84 399.94 5395.85 29699.82 13979.36 347
cl-mvsnet297.56 28197.28 28298.40 28798.37 33896.75 30897.24 33599.37 24797.31 28899.41 19099.22 27587.30 33299.37 34397.70 19799.62 22399.08 273
PAPR97.56 28197.07 28999.04 24398.80 32298.11 26797.63 31699.25 27494.56 33498.02 32098.25 33997.43 22399.68 30590.90 33898.74 31499.33 222
thisisatest053097.45 28396.95 29398.94 24999.68 12797.73 28499.09 16994.19 34998.61 19999.56 15199.30 25784.30 34699.93 6698.27 14799.54 24599.16 255
TR-MVS97.44 28497.15 28898.32 29198.53 33497.46 29198.47 25197.91 32896.85 30198.21 30998.51 33296.42 25699.51 33792.16 33397.29 34097.98 333
tpmvs97.39 28597.69 27596.52 32898.41 33691.76 34499.30 10398.94 29697.74 26697.85 32799.55 19692.40 30099.73 28096.25 28298.73 31698.06 331
test0.0.03 197.37 28696.91 29698.74 27497.72 34797.57 28897.60 31897.36 33798.00 24999.21 22898.02 34190.04 32699.79 25898.37 13695.89 34598.86 295
OpenMVS_ROBcopyleft97.31 1797.36 28796.84 29798.89 26299.29 26199.45 12698.87 20599.48 21186.54 34699.44 17699.74 8197.34 22999.86 18091.61 33499.28 28397.37 340
RRT_test8_iter0597.35 28897.25 28497.63 31198.81 32193.13 33799.26 11599.89 1299.51 8099.83 4699.68 12279.03 35499.88 14799.53 2699.72 19299.89 8
BH-w/o97.20 28997.01 29197.76 30799.08 29695.69 32298.03 29098.52 31395.76 31897.96 32198.02 34195.62 27299.47 33992.82 33297.25 34198.12 330
test-LLR97.15 29096.95 29397.74 30998.18 34395.02 32897.38 32896.10 33998.00 24997.81 32898.58 32690.04 32699.91 10097.69 20398.78 30898.31 320
tpm97.15 29096.95 29397.75 30898.91 30794.24 33399.32 9697.96 32697.71 26898.29 30399.32 25386.72 34099.92 8498.10 16596.24 34499.09 270
E-PMN97.14 29297.43 28096.27 33098.79 32391.62 34695.54 34699.01 29499.44 9498.88 26499.12 28892.78 29699.68 30594.30 32399.03 29897.50 337
cascas96.99 29396.82 29897.48 31397.57 35095.64 32396.43 34499.56 17091.75 33997.13 33997.61 34695.58 27398.63 34896.68 26199.11 29398.18 329
thisisatest051596.98 29496.42 30098.66 27899.42 22397.47 29097.27 33394.30 34897.24 29099.15 23798.86 31785.01 34399.87 16097.10 23999.39 26898.63 304
EMVS96.96 29597.28 28295.99 33398.76 32791.03 34995.26 34798.61 31099.34 10798.92 26098.88 31693.79 28799.66 31492.87 33199.05 29697.30 341
dp96.86 29697.07 28996.24 33198.68 33190.30 35399.19 13598.38 32197.35 28698.23 30899.59 17887.23 33399.82 23496.27 28198.73 31698.59 307
baseline296.83 29796.28 30298.46 28599.09 29596.91 30598.83 21193.87 35097.23 29196.23 34498.36 33688.12 33199.90 11996.68 26198.14 33298.57 310
ET-MVSNet_ETH3D96.78 29896.07 30698.91 25599.26 26697.92 27997.70 31496.05 34297.96 25692.37 34998.43 33587.06 33499.90 11998.27 14797.56 33998.91 291
tpm cat196.78 29896.98 29296.16 33298.85 31590.59 35299.08 17299.32 25692.37 33897.73 33399.46 22391.15 31199.69 29496.07 28698.80 30798.21 326
PCF-MVS96.03 1896.73 30095.86 31099.33 20099.44 21799.16 19396.87 34099.44 22486.58 34598.95 25599.40 23294.38 28299.88 14787.93 34299.80 15298.95 287
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
CostFormer96.71 30196.79 29996.46 32998.90 30890.71 35199.41 7798.68 30694.69 33398.14 31499.34 25186.32 34299.80 25597.60 20898.07 33498.88 293
MVEpermissive92.54 2296.66 30296.11 30598.31 29399.68 12797.55 28997.94 30295.60 34499.37 10490.68 35098.70 32496.56 25098.61 34986.94 34799.55 24098.77 301
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
thres600view796.60 30396.16 30497.93 30299.63 13996.09 31899.18 13697.57 33298.77 18598.72 28197.32 34987.04 33599.72 28288.57 34098.62 31997.98 333
EPMVS96.53 30496.32 30197.17 32198.18 34392.97 33999.39 8189.95 35398.21 24198.61 28899.59 17886.69 34199.72 28296.99 24399.23 29198.81 299
thres40096.40 30595.89 30897.92 30399.58 15096.11 31699.00 18497.54 33598.43 21598.52 29596.98 35286.85 33799.67 31087.62 34398.51 32397.98 333
thres100view90096.39 30696.03 30797.47 31499.63 13995.93 31999.18 13697.57 33298.75 18998.70 28397.31 35087.04 33599.67 31087.62 34398.51 32396.81 342
tpm296.35 30796.22 30396.73 32598.88 31491.75 34599.21 13098.51 31493.27 33697.89 32499.21 27784.83 34499.70 28896.04 28798.18 33198.75 302
FPMVS96.32 30895.50 31598.79 27199.60 14598.17 26398.46 25698.80 30197.16 29396.28 34199.63 14782.19 34799.09 34588.45 34198.89 30699.10 267
tfpn200view996.30 30995.89 30897.53 31299.58 15096.11 31699.00 18497.54 33598.43 21598.52 29596.98 35286.85 33799.67 31087.62 34398.51 32396.81 342
TESTMET0.1,196.24 31095.84 31197.41 31698.24 34193.84 33497.38 32895.84 34398.43 21597.81 32898.56 32979.77 35299.89 13297.77 19098.77 31098.52 312
test-mter96.23 31195.73 31397.74 30998.18 34395.02 32897.38 32896.10 33997.90 25897.81 32898.58 32679.12 35399.91 10097.69 20398.78 30898.31 320
X-MVStestdata96.09 31294.87 31999.75 5499.71 10999.71 5999.37 8799.61 13799.29 11398.76 27861.30 35598.47 14399.88 14797.62 20599.73 18799.67 63
thres20096.09 31295.68 31497.33 31999.48 20196.22 31598.53 24697.57 33298.06 24898.37 30296.73 35486.84 33999.61 32986.99 34698.57 32096.16 345
DWT-MVSNet_test96.03 31495.80 31296.71 32798.50 33591.93 34399.25 12097.87 32995.99 31496.81 34097.61 34681.02 34999.66 31497.20 23597.98 33598.54 311
gg-mvs-nofinetune95.87 31595.17 31897.97 30198.19 34296.95 30399.69 2889.23 35499.89 1196.24 34399.94 1281.19 34899.51 33793.99 32898.20 32897.44 338
PVSNet_095.53 1995.85 31695.31 31797.47 31498.78 32593.48 33695.72 34599.40 23796.18 31297.37 33497.73 34495.73 27099.58 33295.49 30581.40 34899.36 216
tmp_tt95.75 31795.42 31696.76 32389.90 35394.42 33298.86 20697.87 32978.01 34799.30 21499.69 11197.70 20695.89 35099.29 5798.14 33299.95 1
MVS95.72 31894.63 32198.99 24598.56 33397.98 27899.30 10398.86 29772.71 34997.30 33599.08 29298.34 15899.74 27889.21 33998.33 32699.26 234
PAPM95.61 31994.71 32098.31 29399.12 28796.63 30996.66 34398.46 31790.77 34296.25 34298.68 32593.01 29499.69 29481.60 34897.86 33798.62 305
IB-MVS95.41 2095.30 32094.46 32297.84 30598.76 32795.33 32697.33 33196.07 34196.02 31395.37 34797.41 34876.17 35599.96 3397.54 21195.44 34698.22 325
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
test12329.31 32133.05 32518.08 33525.93 35512.24 35597.53 32210.93 35711.78 35024.21 35150.08 35921.04 3568.60 35223.51 34932.43 35033.39 348
testmvs28.94 32233.33 32315.79 33626.03 3549.81 35696.77 34115.67 35611.55 35123.87 35250.74 35819.03 3578.53 35323.21 35033.07 34929.03 349
cdsmvs_eth3d_5k24.88 32333.17 3240.00 3370.00 3560.00 3570.00 34899.62 1330.00 3520.00 35399.13 28499.82 40.00 3540.00 3510.00 3510.00 350
pcd_1.5k_mvsjas16.61 32422.14 3260.00 3370.00 3560.00 3570.00 3480.00 3580.00 3520.00 353100.00 199.28 400.00 3540.00 3510.00 3510.00 350
uanet_test8.33 32511.11 3270.00 3370.00 3560.00 3570.00 3480.00 3580.00 3520.00 353100.00 10.00 3580.00 3540.00 3510.00 3510.00 350
sosnet-low-res8.33 32511.11 3270.00 3370.00 3560.00 3570.00 3480.00 3580.00 3520.00 353100.00 10.00 3580.00 3540.00 3510.00 3510.00 350
sosnet8.33 32511.11 3270.00 3370.00 3560.00 3570.00 3480.00 3580.00 3520.00 353100.00 10.00 3580.00 3540.00 3510.00 3510.00 350
uncertanet8.33 32511.11 3270.00 3370.00 3560.00 3570.00 3480.00 3580.00 3520.00 353100.00 10.00 3580.00 3540.00 3510.00 3510.00 350
Regformer8.33 32511.11 3270.00 3370.00 3560.00 3570.00 3480.00 3580.00 3520.00 353100.00 10.00 3580.00 3540.00 3510.00 3510.00 350
uanet8.33 32511.11 3270.00 3370.00 3560.00 3570.00 3480.00 3580.00 3520.00 353100.00 10.00 3580.00 3540.00 3510.00 3510.00 350
ab-mvs-re8.26 33111.02 3330.00 3370.00 3560.00 3570.00 3480.00 3580.00 3520.00 35399.16 2820.00 3580.00 3540.00 3510.00 3510.00 350
IU-MVS99.69 11999.77 3999.22 27997.50 27899.69 10197.75 19299.70 19899.77 31
OPU-MVS99.29 21099.12 28799.44 12899.20 13199.40 23299.00 7198.84 34796.54 26899.60 23199.58 129
test_241102_TWO99.54 18099.13 14099.76 7399.63 14798.32 16199.92 8497.85 18599.69 20199.75 38
test_241102_ONE99.69 11999.82 2499.54 18099.12 14399.82 4899.49 21398.91 8299.52 336
9.1498.64 20299.45 21498.81 21699.60 14797.52 27799.28 21599.56 19098.53 13699.83 22495.36 31099.64 220
save fliter99.53 17599.25 17598.29 26599.38 24699.07 148
test_0728_THIRD99.18 13199.62 12899.61 16598.58 12799.91 10097.72 19499.80 15299.77 31
test_0728_SECOND99.83 2199.70 11699.79 3499.14 15199.61 13799.92 8497.88 17999.72 19299.77 31
test072699.69 11999.80 3299.24 12199.57 16599.16 13699.73 9099.65 13798.35 156
GSMVS99.14 261
test_part299.62 14299.67 7599.55 156
test_part10.00 3370.00 3570.00 34899.53 1890.00 3580.00 3540.00 3510.00 3510.00 350
sam_mvs190.81 31899.14 261
sam_mvs90.52 322
ambc99.20 22799.35 23898.53 24299.17 14199.46 21999.67 10799.80 5198.46 14699.70 28897.92 17699.70 19899.38 210
MTGPAbinary99.53 189
test_post199.14 15151.63 35789.54 32999.82 23496.86 250
test_post52.41 35690.25 32499.86 180
patchmatchnet-post99.62 15690.58 32099.94 53
GG-mvs-BLEND97.36 31797.59 34896.87 30699.70 2288.49 35594.64 34897.26 35180.66 35099.12 34491.50 33596.50 34396.08 346
MTMP99.09 16998.59 312
gm-plane-assit97.59 34889.02 35493.47 33598.30 33799.84 21396.38 277
test9_res95.10 31399.44 25999.50 168
TEST999.35 23899.35 15698.11 28199.41 23094.83 33297.92 32298.99 30098.02 18599.85 198
test_899.34 24899.31 16298.08 28599.40 23794.90 32897.87 32698.97 30698.02 18599.84 213
agg_prior294.58 32199.46 25899.50 168
agg_prior99.35 23899.36 15299.39 24097.76 33199.85 198
TestCases99.63 10699.78 7199.64 8499.83 3198.63 19699.63 12199.72 9198.68 11399.75 27696.38 27799.83 13099.51 162
test_prior499.19 19198.00 293
test_prior297.95 30097.87 26098.05 31699.05 29497.90 19495.99 29099.49 254
test_prior99.46 16399.35 23899.22 18499.39 24099.69 29499.48 177
旧先验297.94 30295.33 32398.94 25699.88 14796.75 257
新几何298.04 289
新几何199.52 14699.50 19099.22 18499.26 27195.66 32098.60 28999.28 26297.67 21199.89 13295.95 29499.32 27999.45 188
旧先验199.49 19599.29 16599.26 27199.39 23697.67 21199.36 27499.46 186
无先验98.01 29199.23 27895.83 31699.85 19895.79 29999.44 193
原ACMM297.92 304
原ACMM199.37 19399.47 20698.87 22799.27 26996.74 30598.26 30599.32 25397.93 19299.82 23495.96 29399.38 26999.43 199
test22299.51 18499.08 20597.83 30999.29 26595.21 32598.68 28499.31 25597.28 23199.38 26999.43 199
testdata299.89 13295.99 290
segment_acmp98.37 154
testdata99.42 17499.51 18498.93 22099.30 26396.20 31198.87 26599.40 23298.33 16099.89 13296.29 28099.28 28399.44 193
testdata197.72 31297.86 263
test1299.54 14399.29 26199.33 15999.16 28598.43 30097.54 21999.82 23499.47 25699.48 177
plane_prior799.58 15099.38 146
plane_prior699.47 20699.26 17197.24 232
plane_prior599.54 18099.82 23495.84 29799.78 16399.60 115
plane_prior499.25 268
plane_prior399.31 16298.36 22499.14 239
plane_prior298.80 21998.94 161
plane_prior199.51 184
plane_prior99.24 18098.42 25797.87 26099.71 196
n20.00 358
nn0.00 358
door-mid99.83 31
lessismore_v099.64 10299.86 2999.38 14690.66 35299.89 2699.83 4094.56 28199.97 1699.56 2399.92 7299.57 135
LGP-MVS_train99.74 5999.82 4299.63 8899.73 7897.56 27399.64 11799.69 11199.37 2999.89 13296.66 26399.87 10699.69 50
test1199.29 265
door99.77 59
HQP5-MVS98.94 216
HQP-NCC99.31 25597.98 29697.45 28098.15 310
ACMP_Plane99.31 25597.98 29697.45 28098.15 310
BP-MVS94.73 317
HQP4-MVS98.15 31099.70 28899.53 150
HQP3-MVS99.37 24799.67 211
HQP2-MVS96.67 248
NP-MVS99.40 22799.13 19698.83 318
MDTV_nov1_ep13_2view91.44 34899.14 15197.37 28599.21 22891.78 30696.75 25799.03 282
MDTV_nov1_ep1397.73 27498.70 33090.83 35099.15 14998.02 32598.51 20998.82 27099.61 16590.98 31399.66 31496.89 24998.92 303
ACMMP++_ref99.94 60
ACMMP++99.79 157
Test By Simon98.41 150
ITE_SJBPF99.38 19099.63 13999.44 12899.73 7898.56 20299.33 20699.53 20098.88 8799.68 30596.01 28899.65 21899.02 283
DeepMVS_CXcopyleft97.98 30099.69 11996.95 30399.26 27175.51 34895.74 34698.28 33896.47 25499.62 32591.23 33697.89 33697.38 339