This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
LCM-MVSNet99.93 199.92 199.94 199.99 199.97 199.90 199.89 299.98 199.99 199.96 199.77 1100.00 199.81 1100.00 199.85 7
UniMVSNet_ETH3D99.69 299.69 499.69 399.84 1499.34 1599.69 499.58 3099.90 299.86 799.78 599.58 399.95 1799.00 3699.95 1699.78 14
pmmvs699.67 399.70 399.60 1399.90 499.27 2199.53 799.76 1099.64 1299.84 899.83 299.50 599.87 9199.36 1499.92 3799.64 43
LTVRE_ROB98.40 199.67 399.71 299.56 2499.85 1399.11 6199.90 199.78 899.63 1499.78 1099.67 1699.48 699.81 17099.30 1799.97 1199.77 16
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
mvs_tets99.63 599.67 599.49 4999.88 798.61 9499.34 1699.71 1399.27 4799.90 499.74 899.68 299.97 499.55 899.99 599.88 3
jajsoiax99.58 699.61 799.48 5199.87 1098.61 9499.28 3199.66 2199.09 7099.89 699.68 1499.53 499.97 499.50 1099.99 599.87 4
ANet_high99.57 799.67 599.28 8399.89 698.09 13599.14 4799.93 199.82 399.93 299.81 399.17 1299.94 2599.31 16100.00 199.82 9
v7n99.53 899.57 899.41 6199.88 798.54 10299.45 999.61 2699.66 1199.68 1999.66 1798.44 4199.95 1799.73 299.96 1499.75 23
test_djsdf99.52 999.51 999.53 3699.86 1198.74 8399.39 1399.56 4499.11 6099.70 1599.73 1099.00 1599.97 499.26 1899.98 999.89 2
anonymousdsp99.51 1099.47 1299.62 699.88 799.08 6599.34 1699.69 1698.93 8799.65 2399.72 1198.93 1999.95 1799.11 27100.00 199.82 9
UA-Net99.47 1199.40 1499.70 299.49 8799.29 1899.80 399.72 1299.82 399.04 11799.81 398.05 7099.96 1098.85 4499.99 599.86 6
PS-MVSNAJss99.46 1299.49 1099.35 7099.90 498.15 13199.20 3999.65 2299.48 2599.92 399.71 1298.07 6799.96 1099.53 9100.00 199.93 1
pm-mvs199.44 1399.48 1199.33 7699.80 1798.63 9199.29 2799.63 2399.30 4599.65 2399.60 2599.16 1499.82 15699.07 2999.83 6999.56 76
TransMVSNet (Re)99.44 1399.47 1299.36 6599.80 1798.58 9799.27 3399.57 3799.39 3499.75 1299.62 2199.17 1299.83 14699.06 3099.62 16299.66 38
DTE-MVSNet99.43 1599.35 1799.66 499.71 3299.30 1799.31 2299.51 6099.64 1299.56 2999.46 4698.23 5399.97 498.78 4899.93 2899.72 26
TDRefinement99.42 1699.38 1599.55 2699.76 2399.33 1699.68 599.71 1399.38 3599.53 3499.61 2398.64 3099.80 17998.24 8099.84 6399.52 100
PEN-MVS99.41 1799.34 1999.62 699.73 2599.14 5399.29 2799.54 5299.62 1799.56 2999.42 5298.16 6399.96 1098.78 4899.93 2899.77 16
nrg03099.40 1899.35 1799.54 2999.58 5399.13 5798.98 6499.48 7299.68 999.46 4499.26 7498.62 3199.73 23299.17 2699.92 3799.76 20
PS-CasMVS99.40 1899.33 2099.62 699.71 3299.10 6299.29 2799.53 5699.53 2399.46 4499.41 5598.23 5399.95 1798.89 4299.95 1699.81 11
MIMVSNet199.38 2099.32 2199.55 2699.86 1199.19 3799.41 1299.59 2899.59 2099.71 1499.57 2897.12 14199.90 5399.21 2399.87 5799.54 88
OurMVSNet-221017-099.37 2199.31 2299.53 3699.91 398.98 6799.63 699.58 3099.44 3099.78 1099.76 696.39 18499.92 3999.44 1399.92 3799.68 34
Vis-MVSNetpermissive99.34 2299.36 1699.27 8699.73 2598.26 11999.17 4499.78 899.11 6099.27 7799.48 4498.82 2199.95 1798.94 3899.93 2899.59 60
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
WR-MVS_H99.33 2399.22 2799.65 599.71 3299.24 2499.32 1899.55 4899.46 2899.50 4099.34 6497.30 12999.93 3098.90 4099.93 2899.77 16
VPA-MVSNet99.30 2499.30 2399.28 8399.49 8798.36 11599.00 6199.45 8399.63 1499.52 3699.44 5198.25 5199.88 7499.09 2899.84 6399.62 48
Anonymous2023121199.27 2599.27 2499.26 8999.29 13098.18 12899.49 899.51 6099.70 899.80 999.68 1496.84 15799.83 14699.21 2399.91 4399.77 16
FC-MVSNet-test99.27 2599.25 2599.34 7399.77 2098.37 11299.30 2699.57 3799.61 1999.40 5499.50 3997.12 14199.85 11399.02 3599.94 2499.80 12
KD-MVS_self_test99.25 2799.18 2899.44 5799.63 5099.06 6698.69 8299.54 5299.31 4399.62 2899.53 3697.36 12799.86 9899.24 2299.71 12699.39 159
ACMH96.65 799.25 2799.24 2699.26 8999.72 3198.38 11199.07 5499.55 4898.30 11999.65 2399.45 5099.22 999.76 21798.44 7099.77 9799.64 43
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
CP-MVSNet99.21 2999.09 3699.56 2499.65 4598.96 7199.13 4899.34 12399.42 3299.33 6699.26 7497.01 14999.94 2598.74 5399.93 2899.79 13
TranMVSNet+NR-MVSNet99.17 3099.07 3899.46 5699.37 11898.87 7498.39 11499.42 9599.42 3299.36 6199.06 10798.38 4499.95 1798.34 7699.90 4999.57 71
FMVSNet199.17 3099.17 2999.17 10199.55 6898.24 12199.20 3999.44 8699.21 4999.43 4999.55 3297.82 8799.86 9898.42 7299.89 5399.41 150
FIs99.14 3299.09 3699.29 8199.70 3898.28 11899.13 4899.52 5999.48 2599.24 8699.41 5596.79 16399.82 15698.69 5799.88 5499.76 20
XXY-MVS99.14 3299.15 3299.10 11399.76 2397.74 17898.85 7399.62 2498.48 11199.37 5999.49 4298.75 2499.86 9898.20 8399.80 8499.71 27
CS-MVS99.13 3499.10 3599.24 9499.07 18399.14 5399.36 1599.88 399.36 4098.20 22198.46 23998.66 2999.93 3099.03 3499.85 5998.65 299
DROMVSNet99.09 3599.05 3999.20 9899.28 13198.93 7299.24 3599.84 599.08 7298.12 22998.37 24998.72 2699.90 5399.05 3199.77 9798.77 285
ACMH+96.62 999.08 3699.00 4299.33 7699.71 3298.83 7798.60 8899.58 3099.11 6099.53 3499.18 8698.81 2299.67 25996.71 18299.77 9799.50 107
GeoE99.05 3798.99 4499.25 9199.44 10398.35 11698.73 7899.56 4498.42 11398.91 14298.81 18198.94 1899.91 4998.35 7599.73 11499.49 111
Gipumacopyleft99.03 3899.16 3098.64 17799.94 298.51 10499.32 1899.75 1199.58 2298.60 18799.62 2198.22 5699.51 31597.70 11499.73 11497.89 327
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
v899.01 3999.16 3098.57 19099.47 9796.31 23698.90 6899.47 7899.03 7699.52 3699.57 2896.93 15399.81 17099.60 499.98 999.60 54
HPM-MVS_fast99.01 3998.82 5299.57 1899.71 3299.35 1299.00 6199.50 6297.33 19998.94 13998.86 16798.75 2499.82 15697.53 12099.71 12699.56 76
APDe-MVS98.99 4198.79 5699.60 1399.21 14599.15 4898.87 7099.48 7297.57 17399.35 6399.24 7897.83 8499.89 6397.88 10399.70 13199.75 23
abl_698.99 4198.78 5799.61 999.45 10199.46 498.60 8899.50 6298.59 10499.24 8699.04 11798.54 3699.89 6396.45 20499.62 16299.50 107
EG-PatchMatch MVS98.99 4199.01 4198.94 14199.50 8097.47 19198.04 14899.59 2898.15 13899.40 5499.36 6198.58 3499.76 21798.78 4899.68 14299.59 60
COLMAP_ROBcopyleft96.50 1098.99 4198.85 5099.41 6199.58 5399.10 6298.74 7699.56 4499.09 7099.33 6699.19 8498.40 4399.72 24095.98 22999.76 10799.42 147
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
Baseline_NR-MVSNet98.98 4598.86 4999.36 6599.82 1698.55 9997.47 21099.57 3799.37 3699.21 9099.61 2396.76 16699.83 14698.06 9199.83 6999.71 27
v1098.97 4699.11 3398.55 19599.44 10396.21 23898.90 6899.55 4898.73 9699.48 4199.60 2596.63 17399.83 14699.70 399.99 599.61 53
DeepC-MVS97.60 498.97 4698.93 4599.10 11399.35 12397.98 15198.01 15499.46 8097.56 17599.54 3199.50 3998.97 1699.84 13198.06 9199.92 3799.49 111
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
baseline98.96 4899.02 4098.76 16899.38 11397.26 20298.49 10399.50 6298.86 9099.19 9299.06 10798.23 5399.69 24798.71 5599.76 10799.33 187
casdiffmvs98.95 4999.00 4298.81 15899.38 11397.33 19797.82 17299.57 3799.17 5799.35 6399.17 9098.35 4899.69 24798.46 6999.73 11499.41 150
NR-MVSNet98.95 4998.82 5299.36 6599.16 16398.72 8899.22 3699.20 17699.10 6799.72 1398.76 18996.38 18699.86 9898.00 9699.82 7299.50 107
Anonymous2024052998.93 5198.87 4799.12 10999.19 15298.22 12699.01 5998.99 23199.25 4899.54 3199.37 5897.04 14599.80 17997.89 10099.52 19999.35 179
DP-MVS98.93 5198.81 5499.28 8399.21 14598.45 10898.46 10899.33 12899.63 1499.48 4199.15 9697.23 13799.75 22497.17 13599.66 15399.63 47
CS-MVS-test98.92 5398.81 5499.25 9199.08 18299.15 4898.71 8199.79 799.37 3698.20 22197.38 31797.86 8299.93 3099.04 3299.85 5998.67 298
SED-MVS98.91 5498.72 6399.49 4999.49 8799.17 3998.10 13999.31 13698.03 14299.66 2099.02 12198.36 4599.88 7496.91 15899.62 16299.41 150
ACMM96.08 1298.91 5498.73 6199.48 5199.55 6899.14 5398.07 14299.37 10797.62 16899.04 11798.96 14298.84 2099.79 19297.43 12499.65 15499.49 111
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
DVP-MVS++98.90 5698.70 6899.51 4598.43 29599.15 4899.43 1099.32 13098.17 13499.26 8199.02 12198.18 6099.88 7497.07 14699.45 21699.49 111
tfpnnormal98.90 5698.90 4698.91 14599.67 4297.82 17099.00 6199.44 8699.45 2999.51 3999.24 7898.20 5999.86 9895.92 23199.69 13799.04 242
MTAPA98.88 5898.64 7699.61 999.67 4299.36 1098.43 11199.20 17698.83 9398.89 14698.90 15496.98 15199.92 3997.16 13699.70 13199.56 76
VPNet98.87 5998.83 5199.01 13499.70 3897.62 18698.43 11199.35 11799.47 2799.28 7599.05 11496.72 16999.82 15698.09 8999.36 22999.59 60
UniMVSNet (Re)98.87 5998.71 6599.35 7099.24 13898.73 8697.73 18299.38 10398.93 8799.12 9998.73 19296.77 16499.86 9898.63 5999.80 8499.46 131
UniMVSNet_NR-MVSNet98.86 6198.68 7199.40 6399.17 16198.74 8397.68 18699.40 9999.14 5899.06 11098.59 22296.71 17099.93 3098.57 6299.77 9799.53 96
APD-MVS_3200maxsize98.84 6298.61 8299.53 3699.19 15299.27 2198.49 10399.33 12898.64 9899.03 12098.98 13797.89 8099.85 11396.54 19899.42 22099.46 131
PM-MVS98.82 6398.72 6399.12 10999.64 4898.54 10297.98 15799.68 1897.62 16899.34 6599.18 8697.54 10999.77 21097.79 10699.74 11199.04 242
DU-MVS98.82 6398.63 7799.39 6499.16 16398.74 8397.54 20299.25 16598.84 9299.06 11098.76 18996.76 16699.93 3098.57 6299.77 9799.50 107
SR-MVS-dyc-post98.81 6598.55 8899.57 1899.20 14999.38 698.48 10699.30 14698.64 9898.95 13398.96 14297.49 11899.86 9896.56 19499.39 22499.45 135
3Dnovator98.27 298.81 6598.73 6199.05 12798.76 24697.81 17299.25 3499.30 14698.57 10898.55 19799.33 6697.95 7999.90 5397.16 13699.67 14899.44 140
zzz-MVS98.79 6798.52 9199.61 999.67 4299.36 1097.33 22099.20 17698.83 9398.89 14698.90 15496.98 15199.92 3997.16 13699.70 13199.56 76
HPM-MVScopyleft98.79 6798.53 9099.59 1799.65 4599.29 1899.16 4599.43 9296.74 23698.61 18598.38 24798.62 3199.87 9196.47 20299.67 14899.59 60
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
SteuartSystems-ACMMP98.79 6798.54 8999.54 2999.73 2599.16 4398.23 12599.31 13697.92 14998.90 14398.90 15498.00 7399.88 7496.15 22399.72 12199.58 66
Skip Steuart: Steuart Systems R&D Blog.
dcpmvs_298.78 7099.11 3397.78 25199.56 6493.67 30899.06 5699.86 499.50 2499.66 2099.26 7497.21 13999.99 298.00 9699.91 4399.68 34
V4298.78 7098.78 5798.76 16899.44 10397.04 21598.27 12299.19 18197.87 15399.25 8599.16 9296.84 15799.78 20499.21 2399.84 6399.46 131
test20.0398.78 7098.77 5998.78 16599.46 9897.20 20897.78 17499.24 17099.04 7599.41 5198.90 15497.65 9799.76 21797.70 11499.79 8999.39 159
DVP-MVScopyleft98.77 7398.52 9199.52 4199.50 8099.21 2798.02 15198.84 25697.97 14599.08 10799.02 12197.61 10399.88 7496.99 15299.63 15999.48 121
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test117298.76 7498.49 9899.57 1899.18 15999.37 998.39 11499.31 13698.43 11298.90 14398.88 16397.49 11899.86 9896.43 20699.37 22899.48 121
test_040298.76 7498.71 6598.93 14299.56 6498.14 13398.45 11099.34 12399.28 4698.95 13398.91 15198.34 4999.79 19295.63 24899.91 4398.86 271
ACMMP_NAP98.75 7698.48 10099.57 1899.58 5399.29 1897.82 17299.25 16596.94 22898.78 16499.12 10098.02 7199.84 13197.13 14299.67 14899.59 60
SixPastTwentyTwo98.75 7698.62 7999.16 10499.83 1597.96 15699.28 3198.20 30099.37 3699.70 1599.65 1992.65 28099.93 3099.04 3299.84 6399.60 54
ACMMPcopyleft98.75 7698.50 9599.52 4199.56 6499.16 4398.87 7099.37 10797.16 21998.82 16199.01 13097.71 9399.87 9196.29 21599.69 13799.54 88
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
Regformer-498.73 7998.68 7198.89 14899.02 19697.22 20597.17 23599.06 21199.21 4999.17 9798.85 17097.45 12199.86 9898.48 6899.70 13199.60 54
XVS98.72 8098.45 10699.53 3699.46 9899.21 2798.65 8399.34 12398.62 10297.54 26998.63 21597.50 11599.83 14696.79 17199.53 19699.56 76
SR-MVS98.71 8198.43 11099.57 1899.18 15999.35 1298.36 11799.29 15398.29 12298.88 15098.85 17097.53 11199.87 9196.14 22499.31 23799.48 121
HFP-MVS98.71 8198.44 10899.51 4599.49 8799.16 4398.52 9799.31 13697.47 18298.58 19198.50 23397.97 7799.85 11396.57 19199.59 17499.53 96
LPG-MVS_test98.71 8198.46 10499.47 5499.57 5798.97 6898.23 12599.48 7296.60 24199.10 10499.06 10798.71 2799.83 14695.58 25199.78 9399.62 48
ACMMPR98.70 8498.42 11299.54 2999.52 7599.14 5398.52 9799.31 13697.47 18298.56 19598.54 22697.75 9199.88 7496.57 19199.59 17499.58 66
CP-MVS98.70 8498.42 11299.52 4199.36 11999.12 5998.72 7999.36 11197.54 17798.30 21698.40 24397.86 8299.89 6396.53 19999.72 12199.56 76
Anonymous2024052198.69 8698.87 4798.16 23199.77 2095.11 26999.08 5199.44 8699.34 4199.33 6699.55 3294.10 25899.94 2599.25 2099.96 1499.42 147
region2R98.69 8698.40 11499.54 2999.53 7399.17 3998.52 9799.31 13697.46 18798.44 20698.51 23097.83 8499.88 7496.46 20399.58 18099.58 66
EI-MVSNet-UG-set98.69 8698.71 6598.62 18299.10 17596.37 23397.23 22798.87 24799.20 5299.19 9298.99 13397.30 12999.85 11398.77 5199.79 8999.65 42
3Dnovator+97.89 398.69 8698.51 9399.24 9498.81 24198.40 10999.02 5899.19 18198.99 7998.07 23499.28 7097.11 14399.84 13196.84 16999.32 23599.47 129
ZNCC-MVS98.68 9098.40 11499.54 2999.57 5799.21 2798.46 10899.29 15397.28 20598.11 23198.39 24598.00 7399.87 9196.86 16899.64 15699.55 84
EI-MVSNet-Vis-set98.68 9098.70 6898.63 18099.09 17896.40 23297.23 22798.86 25299.20 5299.18 9698.97 13997.29 13199.85 11398.72 5499.78 9399.64 43
CSCG98.68 9098.50 9599.20 9899.45 10198.63 9198.56 9399.57 3797.87 15398.85 15498.04 27797.66 9699.84 13196.72 18099.81 7699.13 231
PGM-MVS98.66 9398.37 12099.55 2699.53 7399.18 3898.23 12599.49 7097.01 22698.69 17498.88 16398.00 7399.89 6395.87 23599.59 17499.58 66
GBi-Net98.65 9498.47 10299.17 10198.90 22098.24 12199.20 3999.44 8698.59 10498.95 13399.55 3294.14 25499.86 9897.77 10899.69 13799.41 150
test198.65 9498.47 10299.17 10198.90 22098.24 12199.20 3999.44 8698.59 10498.95 13399.55 3294.14 25499.86 9897.77 10899.69 13799.41 150
LCM-MVSNet-Re98.64 9698.48 10099.11 11198.85 23198.51 10498.49 10399.83 698.37 11499.69 1799.46 4698.21 5899.92 3994.13 28999.30 24098.91 266
mPP-MVS98.64 9698.34 12499.54 2999.54 7199.17 3998.63 8599.24 17097.47 18298.09 23398.68 20197.62 10299.89 6396.22 21899.62 16299.57 71
TSAR-MVS + MP.98.63 9898.49 9899.06 12599.64 4897.90 16198.51 10198.94 23496.96 22799.24 8698.89 16297.83 8499.81 17096.88 16599.49 21099.48 121
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
LS3D98.63 9898.38 11999.36 6597.25 35299.38 699.12 5099.32 13099.21 4998.44 20698.88 16397.31 12899.80 17996.58 18999.34 23398.92 263
RPSCF98.62 10098.36 12199.42 5899.65 4599.42 598.55 9499.57 3797.72 16298.90 14399.26 7496.12 19399.52 31195.72 24299.71 12699.32 189
GST-MVS98.61 10198.30 12999.52 4199.51 7799.20 3398.26 12399.25 16597.44 19098.67 17698.39 24597.68 9499.85 11396.00 22799.51 20299.52 100
Regformer-398.61 10198.61 8298.63 18099.02 19696.53 23097.17 23598.84 25699.13 5999.10 10498.85 17097.24 13699.79 19298.41 7399.70 13199.57 71
v119298.60 10398.66 7498.41 21099.27 13395.88 24597.52 20499.36 11197.41 19299.33 6699.20 8396.37 18799.82 15699.57 699.92 3799.55 84
v114498.60 10398.66 7498.41 21099.36 11995.90 24497.58 19899.34 12397.51 17899.27 7799.15 9696.34 18999.80 17999.47 1299.93 2899.51 103
Regformer-298.60 10398.46 10499.02 13398.85 23197.71 18096.91 25199.09 20798.98 8199.01 12198.64 21197.37 12699.84 13197.75 11399.57 18499.52 100
DPE-MVScopyleft98.59 10698.26 13399.57 1899.27 13399.15 4897.01 24299.39 10197.67 16499.44 4898.99 13397.53 11199.89 6395.40 25599.68 14299.66 38
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
MP-MVS-pluss98.57 10798.23 13799.60 1399.69 4099.35 1297.16 23799.38 10394.87 28998.97 13098.99 13398.01 7299.88 7497.29 13099.70 13199.58 66
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
OPM-MVS98.56 10898.32 12899.25 9199.41 11098.73 8697.13 23999.18 18597.10 22298.75 17098.92 15098.18 6099.65 27296.68 18499.56 18999.37 169
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
VDD-MVS98.56 10898.39 11799.07 12099.13 17098.07 14198.59 9097.01 33099.59 2099.11 10199.27 7294.82 23799.79 19298.34 7699.63 15999.34 181
v2v48298.56 10898.62 7998.37 21499.42 10895.81 24897.58 19899.16 19497.90 15199.28 7599.01 13095.98 20299.79 19299.33 1599.90 4999.51 103
XVG-ACMP-BASELINE98.56 10898.34 12499.22 9799.54 7198.59 9697.71 18399.46 8097.25 20898.98 12798.99 13397.54 10999.84 13195.88 23299.74 11199.23 211
Regformer-198.55 11298.44 10898.87 15098.85 23197.29 19996.91 25198.99 23198.97 8298.99 12598.64 21197.26 13599.81 17097.79 10699.57 18499.51 103
v124098.55 11298.62 7998.32 21799.22 14395.58 25197.51 20699.45 8397.16 21999.45 4799.24 7896.12 19399.85 11399.60 499.88 5499.55 84
IterMVS-LS98.55 11298.70 6898.09 23399.48 9594.73 27697.22 23099.39 10198.97 8299.38 5799.31 6896.00 19899.93 3098.58 6099.97 1199.60 54
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
v14419298.54 11598.57 8798.45 20799.21 14595.98 24297.63 19199.36 11197.15 22199.32 7299.18 8695.84 20999.84 13199.50 1099.91 4399.54 88
v192192098.54 11598.60 8498.38 21399.20 14995.76 25097.56 20099.36 11197.23 21499.38 5799.17 9096.02 19699.84 13199.57 699.90 4999.54 88
SF-MVS98.53 11798.27 13299.32 7899.31 12698.75 8298.19 12999.41 9696.77 23598.83 15798.90 15497.80 8899.82 15695.68 24599.52 19999.38 166
XVG-OURS98.53 11798.34 12499.11 11199.50 8098.82 7995.97 29599.50 6297.30 20399.05 11598.98 13799.35 799.32 34095.72 24299.68 14299.18 223
UGNet98.53 11798.45 10698.79 16297.94 32496.96 21899.08 5198.54 28599.10 6796.82 30799.47 4596.55 17699.84 13198.56 6599.94 2499.55 84
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
patch_mono-298.51 12098.63 7798.17 22999.38 11394.78 27497.36 21799.69 1698.16 13798.49 20399.29 6997.06 14499.97 498.29 7999.91 4399.76 20
#test#98.50 12198.16 14699.51 4599.49 8799.16 4398.03 14999.31 13696.30 25398.58 19198.50 23397.97 7799.85 11395.68 24599.59 17499.53 96
XVG-OURS-SEG-HR98.49 12298.28 13199.14 10799.49 8798.83 7796.54 26999.48 7297.32 20199.11 10198.61 22099.33 899.30 34396.23 21798.38 31299.28 201
FMVSNet298.49 12298.40 11498.75 17098.90 22097.14 21498.61 8799.13 20198.59 10499.19 9299.28 7094.14 25499.82 15697.97 9899.80 8499.29 200
pmmvs-eth3d98.47 12498.34 12498.86 15299.30 12997.76 17597.16 23799.28 15695.54 27399.42 5099.19 8497.27 13299.63 27797.89 10099.97 1199.20 216
MP-MVScopyleft98.46 12598.09 15399.54 2999.57 5799.22 2698.50 10299.19 18197.61 17097.58 26598.66 20697.40 12499.88 7494.72 26999.60 17099.54 88
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
v14898.45 12698.60 8498.00 24299.44 10394.98 27097.44 21399.06 21198.30 11999.32 7298.97 13996.65 17299.62 27998.37 7499.85 5999.39 159
xxxxxxxxxxxxxcwj98.44 12798.24 13599.06 12599.11 17197.97 15296.53 27099.54 5298.24 12598.83 15798.90 15497.80 8899.82 15695.68 24599.52 19999.38 166
AllTest98.44 12798.20 13999.16 10499.50 8098.55 9998.25 12499.58 3096.80 23398.88 15099.06 10797.65 9799.57 29694.45 27699.61 16899.37 169
VNet98.42 12998.30 12998.79 16298.79 24597.29 19998.23 12598.66 27999.31 4398.85 15498.80 18294.80 24099.78 20498.13 8599.13 26899.31 193
ab-mvs98.41 13098.36 12198.59 18699.19 15297.23 20399.32 1898.81 26297.66 16598.62 18399.40 5796.82 16099.80 17995.88 23299.51 20298.75 288
ACMP95.32 1598.41 13098.09 15399.36 6599.51 7798.79 8197.68 18699.38 10395.76 27098.81 16398.82 17998.36 4599.82 15694.75 26699.77 9799.48 121
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
SMA-MVScopyleft98.40 13298.03 16099.51 4599.16 16399.21 2798.05 14699.22 17394.16 30598.98 12799.10 10497.52 11399.79 19296.45 20499.64 15699.53 96
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
MSP-MVS98.40 13298.00 16299.61 999.57 5799.25 2398.57 9299.35 11797.55 17699.31 7497.71 29694.61 24499.88 7496.14 22499.19 25899.70 32
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
SD-MVS98.40 13298.68 7197.54 27098.96 20797.99 14797.88 16599.36 11198.20 13199.63 2699.04 11798.76 2395.33 37596.56 19499.74 11199.31 193
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
EI-MVSNet98.40 13298.51 9398.04 24099.10 17594.73 27697.20 23198.87 24798.97 8299.06 11099.02 12196.00 19899.80 17998.58 6099.82 7299.60 54
WR-MVS98.40 13298.19 14199.03 13099.00 19997.65 18396.85 25498.94 23498.57 10898.89 14698.50 23395.60 21599.85 11397.54 11999.85 5999.59 60
new-patchmatchnet98.35 13798.74 6097.18 28599.24 13892.23 33096.42 27899.48 7298.30 11999.69 1799.53 3697.44 12299.82 15698.84 4599.77 9799.49 111
canonicalmvs98.34 13898.26 13398.58 18798.46 29297.82 17098.96 6599.46 8099.19 5697.46 27695.46 35598.59 3399.46 32498.08 9098.71 30198.46 305
testgi98.32 13998.39 11798.13 23299.57 5795.54 25297.78 17499.49 7097.37 19699.19 9297.65 30098.96 1799.49 31796.50 20198.99 28699.34 181
DeepPCF-MVS96.93 598.32 13998.01 16199.23 9698.39 30098.97 6895.03 33099.18 18596.88 23199.33 6698.78 18598.16 6399.28 34696.74 17799.62 16299.44 140
MVS_111021_LR98.30 14198.12 15198.83 15599.16 16398.03 14596.09 29299.30 14697.58 17298.10 23298.24 26098.25 5199.34 33796.69 18399.65 15499.12 232
EPP-MVSNet98.30 14198.04 15999.07 12099.56 6497.83 16799.29 2798.07 30699.03 7698.59 18999.13 9992.16 28499.90 5396.87 16699.68 14299.49 111
DeepC-MVS_fast96.85 698.30 14198.15 14898.75 17098.61 27597.23 20397.76 17999.09 20797.31 20298.75 17098.66 20697.56 10799.64 27496.10 22699.55 19199.39 159
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
PHI-MVS98.29 14497.95 16599.34 7398.44 29499.16 4398.12 13699.38 10396.01 26298.06 23598.43 24197.80 8899.67 25995.69 24499.58 18099.20 216
Fast-Effi-MVS+-dtu98.27 14598.09 15398.81 15898.43 29598.11 13497.61 19499.50 6298.64 9897.39 28197.52 30898.12 6699.95 1796.90 16398.71 30198.38 311
DELS-MVS98.27 14598.20 13998.48 20498.86 22996.70 22795.60 31499.20 17697.73 16198.45 20598.71 19597.50 11599.82 15698.21 8299.59 17498.93 262
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
Effi-MVS+-dtu98.26 14797.90 17099.35 7098.02 32099.49 398.02 15199.16 19498.29 12297.64 26097.99 27996.44 18299.95 1796.66 18598.93 29198.60 300
MVSFormer98.26 14798.43 11097.77 25298.88 22693.89 30299.39 1399.56 4499.11 6098.16 22598.13 26793.81 26199.97 499.26 1899.57 18499.43 144
MVS_111021_HR98.25 14998.08 15698.75 17099.09 17897.46 19295.97 29599.27 15997.60 17197.99 24098.25 25998.15 6599.38 33496.87 16699.57 18499.42 147
TAMVS98.24 15098.05 15898.80 16099.07 18397.18 21097.88 16598.81 26296.66 24099.17 9799.21 8194.81 23999.77 21096.96 15699.88 5499.44 140
diffmvs98.22 15198.24 13598.17 22999.00 19995.44 25796.38 28099.58 3097.79 15998.53 20098.50 23396.76 16699.74 22897.95 9999.64 15699.34 181
Anonymous2023120698.21 15298.21 13898.20 22799.51 7795.43 25898.13 13499.32 13096.16 25698.93 14098.82 17996.00 19899.83 14697.32 12999.73 11499.36 175
VDDNet98.21 15297.95 16599.01 13499.58 5397.74 17899.01 5997.29 32699.67 1098.97 13099.50 3990.45 29399.80 17997.88 10399.20 25499.48 121
IS-MVSNet98.19 15497.90 17099.08 11799.57 5797.97 15299.31 2298.32 29599.01 7898.98 12799.03 12091.59 28899.79 19295.49 25399.80 8499.48 121
MVS_Test98.18 15598.36 12197.67 25798.48 29094.73 27698.18 13099.02 22497.69 16398.04 23899.11 10297.22 13899.56 29998.57 6298.90 29298.71 291
TSAR-MVS + GP.98.18 15597.98 16398.77 16798.71 25597.88 16296.32 28398.66 27996.33 25099.23 8998.51 23097.48 12099.40 33097.16 13699.46 21499.02 245
CNVR-MVS98.17 15797.87 17299.07 12098.67 26898.24 12197.01 24298.93 23697.25 20897.62 26198.34 25397.27 13299.57 29696.42 20799.33 23499.39 159
PVSNet_Blended_VisFu98.17 15798.15 14898.22 22699.73 2595.15 26697.36 21799.68 1894.45 29898.99 12599.27 7296.87 15699.94 2597.13 14299.91 4399.57 71
HPM-MVS++copyleft98.10 15997.64 18899.48 5199.09 17899.13 5797.52 20498.75 27297.46 18796.90 30297.83 29096.01 19799.84 13195.82 23999.35 23199.46 131
APD-MVScopyleft98.10 15997.67 18399.42 5899.11 17198.93 7297.76 17999.28 15694.97 28698.72 17398.77 18797.04 14599.85 11393.79 30099.54 19299.49 111
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
MVP-Stereo98.08 16197.92 16898.57 19098.96 20796.79 22397.90 16499.18 18596.41 24898.46 20498.95 14695.93 20599.60 28696.51 20098.98 28899.31 193
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
PMMVS298.07 16298.08 15698.04 24099.41 11094.59 28294.59 34499.40 9997.50 17998.82 16198.83 17696.83 15999.84 13197.50 12299.81 7699.71 27
ETH3D-3000-0.198.03 16397.62 19099.29 8199.11 17198.80 8097.47 21099.32 13095.54 27398.43 20998.62 21796.61 17499.77 21093.95 29499.49 21099.30 196
ETV-MVS98.03 16397.86 17398.56 19498.69 26398.07 14197.51 20699.50 6298.10 13997.50 27395.51 35398.41 4299.88 7496.27 21699.24 24997.71 340
Effi-MVS+98.02 16597.82 17598.62 18298.53 28797.19 20997.33 22099.68 1897.30 20396.68 31097.46 31398.56 3599.80 17996.63 18798.20 31798.86 271
MSLP-MVS++98.02 16598.14 15097.64 26198.58 28095.19 26597.48 20899.23 17297.47 18297.90 24398.62 21797.04 14598.81 36597.55 11799.41 22198.94 261
EIA-MVS98.00 16797.74 17998.80 16098.72 25298.09 13598.05 14699.60 2797.39 19496.63 31295.55 35297.68 9499.80 17996.73 17999.27 24498.52 303
MCST-MVS98.00 16797.63 18999.10 11399.24 13898.17 13096.89 25398.73 27595.66 27197.92 24197.70 29897.17 14099.66 26796.18 22299.23 25099.47 129
K. test v398.00 16797.66 18699.03 13099.79 1997.56 18799.19 4392.47 36499.62 1799.52 3699.66 1789.61 29899.96 1099.25 2099.81 7699.56 76
HQP_MVS97.99 17097.67 18398.93 14299.19 15297.65 18397.77 17799.27 15998.20 13197.79 25197.98 28094.90 23399.70 24394.42 27899.51 20299.45 135
MDA-MVSNet-bldmvs97.94 17197.91 16998.06 23899.44 10394.96 27196.63 26799.15 20098.35 11598.83 15799.11 10294.31 25199.85 11396.60 18898.72 29999.37 169
test_part197.91 17297.46 20299.27 8698.80 24398.18 12899.07 5499.36 11199.75 599.63 2699.49 4282.20 35099.89 6398.87 4399.95 1699.74 25
Anonymous20240521197.90 17397.50 19699.08 11798.90 22098.25 12098.53 9696.16 34298.87 8999.11 10198.86 16790.40 29499.78 20497.36 12799.31 23799.19 221
LF4IMVS97.90 17397.69 18298.52 19999.17 16197.66 18297.19 23499.47 7896.31 25297.85 24798.20 26496.71 17099.52 31194.62 27099.72 12198.38 311
UnsupCasMVSNet_eth97.89 17597.60 19298.75 17099.31 12697.17 21197.62 19299.35 11798.72 9798.76 16998.68 20192.57 28199.74 22897.76 11295.60 36199.34 181
TinyColmap97.89 17597.98 16397.60 26398.86 22994.35 28596.21 28899.44 8697.45 18999.06 11098.88 16397.99 7699.28 34694.38 28299.58 18099.18 223
OMC-MVS97.88 17797.49 19799.04 12998.89 22598.63 9196.94 24699.25 16595.02 28498.53 20098.51 23097.27 13299.47 32293.50 30899.51 20299.01 246
CANet97.87 17897.76 17798.19 22897.75 33295.51 25496.76 26099.05 21597.74 16096.93 29698.21 26395.59 21699.89 6397.86 10599.93 2899.19 221
xiu_mvs_v1_base_debu97.86 17998.17 14396.92 29698.98 20493.91 29996.45 27599.17 19197.85 15598.41 21097.14 32798.47 3899.92 3998.02 9399.05 27596.92 352
xiu_mvs_v1_base97.86 17998.17 14396.92 29698.98 20493.91 29996.45 27599.17 19197.85 15598.41 21097.14 32798.47 3899.92 3998.02 9399.05 27596.92 352
xiu_mvs_v1_base_debi97.86 17998.17 14396.92 29698.98 20493.91 29996.45 27599.17 19197.85 15598.41 21097.14 32798.47 3899.92 3998.02 9399.05 27596.92 352
NCCC97.86 17997.47 20199.05 12798.61 27598.07 14196.98 24498.90 24297.63 16797.04 29397.93 28595.99 20199.66 26795.31 25698.82 29599.43 144
PMVScopyleft91.26 2097.86 17997.94 16797.65 25999.71 3297.94 15998.52 9798.68 27898.99 7997.52 27199.35 6297.41 12398.18 36991.59 33799.67 14896.82 355
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
IterMVS-SCA-FT97.85 18498.18 14296.87 29999.27 13391.16 34595.53 31699.25 16599.10 6799.41 5199.35 6293.10 27199.96 1098.65 5899.94 2499.49 111
D2MVS97.84 18597.84 17497.83 24899.14 16894.74 27596.94 24698.88 24595.84 26798.89 14698.96 14294.40 24999.69 24797.55 11799.95 1699.05 238
CPTT-MVS97.84 18597.36 20799.27 8699.31 12698.46 10798.29 12099.27 15994.90 28897.83 24898.37 24994.90 23399.84 13193.85 29999.54 19299.51 103
mvs-test197.83 18797.48 20098.89 14898.02 32099.20 3397.20 23199.16 19498.29 12296.46 32297.17 32496.44 18299.92 3996.66 18597.90 33097.54 346
mvs_anonymous97.83 18798.16 14696.87 29998.18 31291.89 33297.31 22298.90 24297.37 19698.83 15799.46 4696.28 19099.79 19298.90 4098.16 32098.95 257
testtj97.79 18997.25 21399.42 5899.03 19498.85 7597.78 17499.18 18595.83 26898.12 22998.50 23395.50 22099.86 9892.23 33099.07 27499.54 88
h-mvs3397.77 19097.33 21199.10 11399.21 14597.84 16698.35 11898.57 28499.11 6098.58 19199.02 12188.65 30899.96 1098.11 8696.34 35499.49 111
IterMVS97.73 19198.11 15296.57 30699.24 13890.28 34695.52 31899.21 17498.86 9099.33 6699.33 6693.11 27099.94 2598.49 6799.94 2499.48 121
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
MSDG97.71 19297.52 19598.28 22298.91 21996.82 22294.42 34799.37 10797.65 16698.37 21598.29 25897.40 12499.33 33994.09 29099.22 25198.68 297
CDS-MVSNet97.69 19397.35 20898.69 17498.73 25097.02 21796.92 25098.75 27295.89 26698.59 18998.67 20392.08 28699.74 22896.72 18099.81 7699.32 189
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
MS-PatchMatch97.68 19497.75 17897.45 27598.23 31093.78 30597.29 22398.84 25696.10 25898.64 18098.65 20896.04 19599.36 33596.84 16999.14 26599.20 216
Fast-Effi-MVS+97.67 19597.38 20598.57 19098.71 25597.43 19497.23 22799.45 8394.82 29096.13 32696.51 33598.52 3799.91 4996.19 22098.83 29498.37 313
EU-MVSNet97.66 19698.50 9595.13 33599.63 5085.84 36498.35 11898.21 29998.23 12799.54 3199.46 4695.02 23199.68 25698.24 8099.87 5799.87 4
MVS_030497.64 19797.35 20898.52 19997.87 32896.69 22898.59 9098.05 30897.44 19093.74 36398.85 17093.69 26599.88 7498.11 8699.81 7698.98 251
pmmvs597.64 19797.49 19798.08 23699.14 16895.12 26896.70 26499.05 21593.77 31198.62 18398.83 17693.23 26799.75 22498.33 7899.76 10799.36 175
N_pmnet97.63 19997.17 21898.99 13699.27 13397.86 16495.98 29493.41 36195.25 28299.47 4398.90 15495.63 21499.85 11396.91 15899.73 11499.27 203
YYNet197.60 20097.67 18397.39 27999.04 19193.04 31795.27 32398.38 29497.25 20898.92 14198.95 14695.48 22299.73 23296.99 15298.74 29799.41 150
MDA-MVSNet_test_wron97.60 20097.66 18697.41 27899.04 19193.09 31395.27 32398.42 29197.26 20798.88 15098.95 14695.43 22399.73 23297.02 14998.72 29999.41 150
pmmvs497.58 20297.28 21298.51 20198.84 23496.93 22095.40 32298.52 28793.60 31398.61 18598.65 20895.10 23099.60 28696.97 15599.79 8998.99 250
ETH3D cwj APD-0.1697.55 20397.00 22799.19 10098.51 28898.64 9096.85 25499.13 20194.19 30497.65 25998.40 24395.78 21099.81 17093.37 31199.16 26199.12 232
PVSNet_BlendedMVS97.55 20397.53 19497.60 26398.92 21693.77 30696.64 26699.43 9294.49 29497.62 26199.18 8696.82 16099.67 25994.73 26799.93 2899.36 175
ppachtmachnet_test97.50 20597.74 17996.78 30498.70 25991.23 34494.55 34599.05 21596.36 24999.21 9098.79 18496.39 18499.78 20496.74 17799.82 7299.34 181
FMVSNet397.50 20597.24 21598.29 22198.08 31895.83 24797.86 16898.91 24197.89 15298.95 13398.95 14687.06 31399.81 17097.77 10899.69 13799.23 211
CHOSEN 1792x268897.49 20797.14 22298.54 19899.68 4196.09 24196.50 27399.62 2491.58 33798.84 15698.97 13992.36 28299.88 7496.76 17599.95 1699.67 37
CLD-MVS97.49 20797.16 21998.48 20499.07 18397.03 21694.71 33799.21 17494.46 29698.06 23597.16 32597.57 10699.48 32094.46 27599.78 9398.95 257
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
test_prior397.48 20997.00 22798.95 13998.69 26397.95 15795.74 30999.03 22096.48 24596.11 32797.63 30295.92 20699.59 29094.16 28499.20 25499.30 196
hse-mvs297.46 21097.07 22398.64 17798.73 25097.33 19797.45 21297.64 31999.11 6098.58 19197.98 28088.65 30899.79 19298.11 8697.39 33898.81 277
Vis-MVSNet (Re-imp)97.46 21097.16 21998.34 21699.55 6896.10 23998.94 6698.44 29098.32 11898.16 22598.62 21788.76 30499.73 23293.88 29799.79 8999.18 223
jason97.45 21297.35 20897.76 25399.24 13893.93 29895.86 30398.42 29194.24 30298.50 20298.13 26794.82 23799.91 4997.22 13399.73 11499.43 144
jason: jason.
CL-MVSNet_self_test97.44 21397.22 21698.08 23698.57 28295.78 24994.30 35098.79 26596.58 24398.60 18798.19 26594.74 24399.64 27496.41 20898.84 29398.82 274
DSMNet-mixed97.42 21497.60 19296.87 29999.15 16791.46 33698.54 9599.12 20392.87 32397.58 26599.63 2096.21 19199.90 5395.74 24199.54 19299.27 203
USDC97.41 21597.40 20397.44 27698.94 21093.67 30895.17 32699.53 5694.03 30898.97 13099.10 10495.29 22599.34 33795.84 23899.73 11499.30 196
our_test_397.39 21697.73 18196.34 31098.70 25989.78 34894.61 34398.97 23396.50 24499.04 11798.85 17095.98 20299.84 13197.26 13299.67 14899.41 150
c3_l97.36 21797.37 20697.31 28098.09 31793.25 31295.01 33199.16 19497.05 22398.77 16798.72 19492.88 27699.64 27496.93 15799.76 10799.05 238
alignmvs97.35 21896.88 23598.78 16598.54 28598.09 13597.71 18397.69 31699.20 5297.59 26495.90 34788.12 31299.55 30298.18 8498.96 28998.70 293
Patchmtry97.35 21896.97 22998.50 20397.31 35196.47 23198.18 13098.92 23998.95 8698.78 16499.37 5885.44 32899.85 11395.96 23099.83 6999.17 227
DP-MVS Recon97.33 22096.92 23298.57 19099.09 17897.99 14796.79 25799.35 11793.18 31897.71 25598.07 27695.00 23299.31 34193.97 29299.13 26898.42 310
QAPM97.31 22196.81 24198.82 15698.80 24397.49 19099.06 5699.19 18190.22 34997.69 25799.16 9296.91 15499.90 5390.89 34899.41 22199.07 236
UnsupCasMVSNet_bld97.30 22296.92 23298.45 20799.28 13196.78 22696.20 28999.27 15995.42 27898.28 21898.30 25793.16 26999.71 24194.99 26197.37 33998.87 270
F-COLMAP97.30 22296.68 24899.14 10799.19 15298.39 11097.27 22699.30 14692.93 32196.62 31398.00 27895.73 21299.68 25692.62 32598.46 31199.35 179
1112_ss97.29 22496.86 23698.58 18799.34 12596.32 23596.75 26199.58 3093.14 31996.89 30397.48 31192.11 28599.86 9896.91 15899.54 19299.57 71
CANet_DTU97.26 22597.06 22497.84 24797.57 33994.65 28096.19 29098.79 26597.23 21495.14 34998.24 26093.22 26899.84 13197.34 12899.84 6399.04 242
Patchmatch-RL test97.26 22597.02 22697.99 24399.52 7595.53 25396.13 29199.71 1397.47 18299.27 7799.16 9284.30 33799.62 27997.89 10099.77 9798.81 277
CDPH-MVS97.26 22596.66 25199.07 12099.00 19998.15 13196.03 29399.01 22791.21 34397.79 25197.85 28996.89 15599.69 24792.75 32299.38 22799.39 159
PatchMatch-RL97.24 22896.78 24298.61 18499.03 19497.83 16796.36 28199.06 21193.49 31697.36 28397.78 29295.75 21199.49 31793.44 30998.77 29698.52 303
eth_miper_zixun_eth97.23 22997.25 21397.17 28698.00 32292.77 32194.71 33799.18 18597.27 20698.56 19598.74 19191.89 28799.69 24797.06 14899.81 7699.05 238
sss97.21 23096.93 23098.06 23898.83 23695.22 26496.75 26198.48 28994.49 29497.27 28497.90 28692.77 27899.80 17996.57 19199.32 23599.16 230
LFMVS97.20 23196.72 24598.64 17798.72 25296.95 21998.93 6794.14 35899.74 798.78 16499.01 13084.45 33499.73 23297.44 12399.27 24499.25 207
HyFIR lowres test97.19 23296.60 25598.96 13899.62 5297.28 20195.17 32699.50 6294.21 30399.01 12198.32 25686.61 31699.99 297.10 14499.84 6399.60 54
miper_lstm_enhance97.18 23397.16 21997.25 28498.16 31392.85 31995.15 32899.31 13697.25 20898.74 17298.78 18590.07 29599.78 20497.19 13499.80 8499.11 234
CNLPA97.17 23496.71 24698.55 19598.56 28398.05 14496.33 28298.93 23696.91 23097.06 29297.39 31694.38 25099.45 32691.66 33499.18 26098.14 319
xiu_mvs_v2_base97.16 23597.49 19796.17 31598.54 28592.46 32595.45 32098.84 25697.25 20897.48 27596.49 33698.31 5099.90 5396.34 21298.68 30396.15 363
AdaColmapbinary97.14 23696.71 24698.46 20698.34 30297.80 17396.95 24598.93 23695.58 27296.92 29797.66 29995.87 20899.53 30790.97 34599.14 26598.04 322
train_agg97.10 23796.45 26299.07 12098.71 25598.08 13995.96 29799.03 22091.64 33595.85 33397.53 30696.47 18099.76 21793.67 30299.16 26199.36 175
OpenMVScopyleft96.65 797.09 23896.68 24898.32 21798.32 30397.16 21298.86 7299.37 10789.48 35396.29 32599.15 9696.56 17599.90 5392.90 31699.20 25497.89 327
PS-MVSNAJ97.08 23997.39 20496.16 31798.56 28392.46 32595.24 32598.85 25597.25 20897.49 27495.99 34598.07 6799.90 5396.37 20998.67 30496.12 364
RRT_MVS97.07 24096.57 25798.58 18795.89 37296.33 23497.36 21798.77 26897.85 15599.08 10799.12 10082.30 34799.96 1098.82 4699.90 4999.45 135
miper_ehance_all_eth97.06 24197.03 22597.16 28897.83 32993.06 31494.66 34099.09 20795.99 26398.69 17498.45 24092.73 27999.61 28596.79 17199.03 27998.82 274
agg_prior197.06 24196.40 26399.03 13098.68 26697.99 14795.76 30799.01 22791.73 33495.59 33697.50 30996.49 17999.77 21093.71 30199.14 26599.34 181
lupinMVS97.06 24196.86 23697.65 25998.88 22693.89 30295.48 31997.97 30993.53 31498.16 22597.58 30493.81 26199.91 4996.77 17499.57 18499.17 227
API-MVS97.04 24496.91 23497.42 27797.88 32798.23 12598.18 13098.50 28897.57 17397.39 28196.75 33296.77 16499.15 35590.16 35199.02 28294.88 369
cl____97.02 24596.83 23997.58 26597.82 33094.04 29294.66 34099.16 19497.04 22498.63 18198.71 19588.68 30799.69 24797.00 15099.81 7699.00 249
DIV-MVS_self_test97.02 24596.84 23897.58 26597.82 33094.03 29394.66 34099.16 19497.04 22498.63 18198.71 19588.69 30599.69 24797.00 15099.81 7699.01 246
RPMNet97.02 24596.93 23097.30 28197.71 33494.22 28698.11 13799.30 14699.37 3696.91 29999.34 6486.72 31599.87 9197.53 12097.36 34197.81 333
HQP-MVS97.00 24896.49 26198.55 19598.67 26896.79 22396.29 28499.04 21896.05 25995.55 34096.84 33093.84 25999.54 30592.82 31999.26 24799.32 189
bset_n11_16_dypcd96.99 24996.56 25898.27 22399.00 19995.25 26192.18 36794.05 35998.75 9599.01 12198.38 24788.98 30399.93 3098.77 5199.92 3799.64 43
new_pmnet96.99 24996.76 24397.67 25798.72 25294.89 27295.95 29998.20 30092.62 32698.55 19798.54 22694.88 23699.52 31193.96 29399.44 21998.59 302
Test_1112_low_res96.99 24996.55 25998.31 21999.35 12395.47 25695.84 30699.53 5691.51 33996.80 30898.48 23891.36 28999.83 14696.58 18999.53 19699.62 48
PVSNet_Blended96.88 25296.68 24897.47 27498.92 21693.77 30694.71 33799.43 9290.98 34597.62 26197.36 32096.82 16099.67 25994.73 26799.56 18998.98 251
MVSTER96.86 25396.55 25997.79 25097.91 32694.21 28897.56 20098.87 24797.49 18199.06 11099.05 11480.72 35299.80 17998.44 7099.82 7299.37 169
BH-untuned96.83 25496.75 24497.08 28998.74 24993.33 31196.71 26398.26 29796.72 23798.44 20697.37 31995.20 22799.47 32291.89 33297.43 33798.44 308
BH-RMVSNet96.83 25496.58 25697.58 26598.47 29194.05 29196.67 26597.36 32296.70 23997.87 24597.98 28095.14 22999.44 32790.47 35098.58 30999.25 207
PAPM_NR96.82 25696.32 26698.30 22099.07 18396.69 22897.48 20898.76 26995.81 26996.61 31496.47 33894.12 25799.17 35390.82 34997.78 33199.06 237
MG-MVS96.77 25796.61 25397.26 28398.31 30493.06 31495.93 30098.12 30596.45 24797.92 24198.73 19293.77 26399.39 33291.19 34499.04 27899.33 187
112196.73 25896.00 27198.91 14598.95 20997.76 17598.07 14298.73 27587.65 36196.54 31598.13 26794.52 24699.73 23292.38 32899.02 28299.24 210
test_yl96.69 25996.29 26797.90 24498.28 30595.24 26297.29 22397.36 32298.21 12898.17 22397.86 28786.27 31899.55 30294.87 26498.32 31398.89 267
DCV-MVSNet96.69 25996.29 26797.90 24498.28 30595.24 26297.29 22397.36 32298.21 12898.17 22397.86 28786.27 31899.55 30294.87 26498.32 31398.89 267
WTY-MVS96.67 26196.27 26997.87 24698.81 24194.61 28196.77 25997.92 31194.94 28797.12 28797.74 29591.11 29099.82 15693.89 29698.15 32199.18 223
PatchT96.65 26296.35 26497.54 27097.40 34795.32 26097.98 15796.64 33899.33 4296.89 30399.42 5284.32 33699.81 17097.69 11697.49 33497.48 347
TAPA-MVS96.21 1196.63 26395.95 27398.65 17698.93 21298.09 13596.93 24899.28 15683.58 36898.13 22897.78 29296.13 19299.40 33093.52 30699.29 24298.45 307
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
MIMVSNet96.62 26496.25 27097.71 25699.04 19194.66 27999.16 4596.92 33497.23 21497.87 24599.10 10486.11 32299.65 27291.65 33599.21 25398.82 274
Patchmatch-test96.55 26596.34 26597.17 28698.35 30193.06 31498.40 11397.79 31297.33 19998.41 21098.67 20383.68 34199.69 24795.16 25899.31 23798.77 285
PMMVS96.51 26695.98 27298.09 23397.53 34295.84 24694.92 33398.84 25691.58 33796.05 33195.58 35195.68 21399.66 26795.59 25098.09 32498.76 287
PLCcopyleft94.65 1696.51 26695.73 27798.85 15398.75 24897.91 16096.42 27899.06 21190.94 34695.59 33697.38 31794.41 24899.59 29090.93 34698.04 32899.05 238
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
114514_t96.50 26895.77 27598.69 17499.48 9597.43 19497.84 17099.55 4881.42 37096.51 31898.58 22395.53 21799.67 25993.41 31099.58 18098.98 251
test111196.49 26996.82 24095.52 32999.42 10887.08 36099.22 3687.14 37499.11 6099.46 4499.58 2788.69 30599.86 9898.80 4799.95 1699.62 48
MAR-MVS96.47 27095.70 27898.79 16297.92 32599.12 5998.28 12198.60 28392.16 33295.54 34396.17 34394.77 24299.52 31189.62 35398.23 31597.72 339
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
ETH3 D test640096.46 27195.59 28399.08 11798.88 22698.21 12796.53 27099.18 18588.87 35797.08 29097.79 29193.64 26699.77 21088.92 35599.40 22399.28 201
ECVR-MVScopyleft96.42 27296.61 25395.85 32099.38 11388.18 35599.22 3686.00 37699.08 7299.36 6199.57 2888.47 31099.82 15698.52 6699.95 1699.54 88
SCA96.41 27396.66 25195.67 32498.24 30888.35 35395.85 30596.88 33596.11 25797.67 25898.67 20393.10 27199.85 11394.16 28499.22 25198.81 277
DPM-MVS96.32 27495.59 28398.51 20198.76 24697.21 20794.54 34698.26 29791.94 33396.37 32397.25 32293.06 27399.43 32891.42 34098.74 29798.89 267
CMPMVSbinary75.91 2396.29 27595.44 28898.84 15496.25 36898.69 8997.02 24199.12 20388.90 35697.83 24898.86 16789.51 29998.90 36391.92 33199.51 20298.92 263
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
CR-MVSNet96.28 27695.95 27397.28 28297.71 33494.22 28698.11 13798.92 23992.31 32996.91 29999.37 5885.44 32899.81 17097.39 12697.36 34197.81 333
CVMVSNet96.25 27797.21 21793.38 35299.10 17580.56 37897.20 23198.19 30296.94 22899.00 12499.02 12189.50 30099.80 17996.36 21199.59 17499.78 14
AUN-MVS96.24 27895.45 28798.60 18598.70 25997.22 20597.38 21597.65 31795.95 26495.53 34497.96 28482.11 35199.79 19296.31 21397.44 33698.80 282
EPNet96.14 27995.44 28898.25 22490.76 37995.50 25597.92 16194.65 35198.97 8292.98 36498.85 17089.12 30299.87 9195.99 22899.68 14299.39 159
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
wuyk23d96.06 28097.62 19091.38 35598.65 27498.57 9898.85 7396.95 33296.86 23299.90 499.16 9299.18 1198.40 36889.23 35499.77 9777.18 373
miper_enhance_ethall96.01 28195.74 27696.81 30396.41 36692.27 32993.69 35998.89 24491.14 34498.30 21697.35 32190.58 29299.58 29596.31 21399.03 27998.60 300
FMVSNet596.01 28195.20 29698.41 21097.53 34296.10 23998.74 7699.50 6297.22 21798.03 23999.04 11769.80 37299.88 7497.27 13199.71 12699.25 207
baseline195.96 28395.44 28897.52 27298.51 28893.99 29698.39 11496.09 34498.21 12898.40 21497.76 29486.88 31499.63 27795.42 25489.27 37398.95 257
HY-MVS95.94 1395.90 28495.35 29297.55 26997.95 32394.79 27398.81 7596.94 33392.28 33095.17 34898.57 22489.90 29799.75 22491.20 34397.33 34398.10 320
GA-MVS95.86 28595.32 29397.49 27398.60 27794.15 29093.83 35797.93 31095.49 27696.68 31097.42 31583.21 34299.30 34396.22 21898.55 31099.01 246
OpenMVS_ROBcopyleft95.38 1495.84 28695.18 29797.81 24998.41 29997.15 21397.37 21698.62 28283.86 36798.65 17998.37 24994.29 25299.68 25688.41 35698.62 30796.60 358
cl2295.79 28795.39 29196.98 29396.77 36092.79 32094.40 34898.53 28694.59 29397.89 24498.17 26682.82 34699.24 34896.37 20999.03 27998.92 263
131495.74 28895.60 28296.17 31597.53 34292.75 32298.07 14298.31 29691.22 34294.25 35596.68 33395.53 21799.03 35791.64 33697.18 34496.74 356
PVSNet93.40 1795.67 28995.70 27895.57 32798.83 23688.57 35192.50 36497.72 31492.69 32596.49 32196.44 33993.72 26499.43 32893.61 30399.28 24398.71 291
tttt051795.64 29094.98 30197.64 26199.36 11993.81 30498.72 7990.47 37098.08 14098.67 17698.34 25373.88 36999.92 3997.77 10899.51 20299.20 216
PatchmatchNetpermissive95.58 29195.67 28095.30 33497.34 34987.32 35897.65 19096.65 33795.30 28197.07 29198.69 19984.77 33199.75 22494.97 26298.64 30598.83 273
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
TR-MVS95.55 29295.12 29996.86 30297.54 34193.94 29796.49 27496.53 33994.36 30197.03 29496.61 33494.26 25399.16 35486.91 36096.31 35597.47 348
JIA-IIPM95.52 29395.03 30097.00 29196.85 35894.03 29396.93 24895.82 34699.20 5294.63 35399.71 1283.09 34399.60 28694.42 27894.64 36597.36 349
CHOSEN 280x42095.51 29495.47 28595.65 32698.25 30788.27 35493.25 36198.88 24593.53 31494.65 35297.15 32686.17 32099.93 3097.41 12599.93 2898.73 290
ADS-MVSNet295.43 29594.98 30196.76 30598.14 31491.74 33397.92 16197.76 31390.23 34796.51 31898.91 15185.61 32599.85 11392.88 31796.90 34798.69 294
PAPR95.29 29694.47 30697.75 25497.50 34695.14 26794.89 33498.71 27791.39 34195.35 34795.48 35494.57 24599.14 35684.95 36397.37 33998.97 255
thisisatest053095.27 29794.45 30797.74 25599.19 15294.37 28497.86 16890.20 37197.17 21898.22 22097.65 30073.53 37099.90 5396.90 16399.35 23198.95 257
ADS-MVSNet95.24 29894.93 30396.18 31498.14 31490.10 34797.92 16197.32 32590.23 34796.51 31898.91 15185.61 32599.74 22892.88 31796.90 34798.69 294
RRT_test8_iter0595.24 29895.13 29895.57 32797.32 35087.02 36197.99 15599.41 9698.06 14199.12 9999.05 11466.85 37799.85 11398.93 3999.47 21399.84 8
BH-w/o95.13 30094.89 30495.86 31998.20 31191.31 34095.65 31297.37 32193.64 31296.52 31795.70 35093.04 27499.02 35888.10 35795.82 36097.24 350
tpmrst95.07 30195.46 28693.91 34597.11 35484.36 37197.62 19296.96 33194.98 28596.35 32498.80 18285.46 32799.59 29095.60 24996.23 35697.79 336
pmmvs395.03 30294.40 30896.93 29597.70 33692.53 32495.08 32997.71 31588.57 35897.71 25598.08 27579.39 35999.82 15696.19 22099.11 27298.43 309
tpmvs95.02 30395.25 29494.33 34196.39 36785.87 36398.08 14196.83 33695.46 27795.51 34598.69 19985.91 32399.53 30794.16 28496.23 35697.58 344
EPNet_dtu94.93 30494.78 30595.38 33393.58 37687.68 35796.78 25895.69 34897.35 19889.14 37298.09 27488.15 31199.49 31794.95 26399.30 24098.98 251
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
cascas94.79 30594.33 31196.15 31896.02 37192.36 32892.34 36699.26 16485.34 36695.08 35094.96 36292.96 27598.53 36794.41 28198.59 30897.56 345
tpm94.67 30694.34 31095.66 32597.68 33888.42 35297.88 16594.90 35094.46 29696.03 33298.56 22578.66 36199.79 19295.88 23295.01 36498.78 284
test0.0.03 194.51 30793.69 31696.99 29296.05 36993.61 31094.97 33293.49 36096.17 25497.57 26794.88 36382.30 34799.01 36093.60 30494.17 36998.37 313
thres600view794.45 30893.83 31496.29 31199.06 18891.53 33597.99 15594.24 35698.34 11697.44 27895.01 35979.84 35599.67 25984.33 36498.23 31597.66 341
PCF-MVS92.86 1894.36 30993.00 32698.42 20998.70 25997.56 18793.16 36299.11 20579.59 37197.55 26897.43 31492.19 28399.73 23279.85 37299.45 21697.97 326
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
X-MVStestdata94.32 31092.59 32899.53 3699.46 9899.21 2798.65 8399.34 12398.62 10297.54 26945.85 37497.50 11599.83 14696.79 17199.53 19699.56 76
MVS-HIRNet94.32 31095.62 28190.42 35698.46 29275.36 37996.29 28489.13 37395.25 28295.38 34699.75 792.88 27699.19 35294.07 29199.39 22496.72 357
ET-MVSNet_ETH3D94.30 31293.21 32297.58 26598.14 31494.47 28394.78 33693.24 36394.72 29189.56 37195.87 34878.57 36399.81 17096.91 15897.11 34698.46 305
thres100view90094.19 31393.67 31795.75 32399.06 18891.35 33998.03 14994.24 35698.33 11797.40 28094.98 36179.84 35599.62 27983.05 36698.08 32596.29 359
E-PMN94.17 31494.37 30993.58 34996.86 35785.71 36690.11 36997.07 32998.17 13497.82 25097.19 32384.62 33398.94 36189.77 35297.68 33396.09 365
thres40094.14 31593.44 31996.24 31398.93 21291.44 33797.60 19594.29 35497.94 14797.10 28894.31 36779.67 35799.62 27983.05 36698.08 32597.66 341
thisisatest051594.12 31693.16 32396.97 29498.60 27792.90 31893.77 35890.61 36994.10 30696.91 29995.87 34874.99 36899.80 17994.52 27399.12 27198.20 316
tfpn200view994.03 31793.44 31995.78 32298.93 21291.44 33797.60 19594.29 35497.94 14797.10 28894.31 36779.67 35799.62 27983.05 36698.08 32596.29 359
CostFormer93.97 31893.78 31594.51 34097.53 34285.83 36597.98 15795.96 34589.29 35594.99 35198.63 21578.63 36299.62 27994.54 27296.50 35298.09 321
test-LLR93.90 31993.85 31394.04 34396.53 36284.62 36994.05 35492.39 36596.17 25494.12 35795.07 35782.30 34799.67 25995.87 23598.18 31897.82 331
EMVS93.83 32094.02 31293.23 35396.83 35984.96 36789.77 37096.32 34197.92 14997.43 27996.36 34286.17 32098.93 36287.68 35897.73 33295.81 366
baseline293.73 32192.83 32796.42 30997.70 33691.28 34296.84 25689.77 37293.96 31092.44 36695.93 34679.14 36099.77 21092.94 31596.76 35198.21 315
thres20093.72 32293.14 32495.46 33298.66 27391.29 34196.61 26894.63 35297.39 19496.83 30693.71 37079.88 35499.56 29982.40 36998.13 32295.54 368
EPMVS93.72 32293.27 32195.09 33696.04 37087.76 35698.13 13485.01 37794.69 29296.92 29798.64 21178.47 36599.31 34195.04 25996.46 35398.20 316
dp93.47 32493.59 31893.13 35496.64 36181.62 37797.66 18896.42 34092.80 32496.11 32798.64 21178.55 36499.59 29093.31 31292.18 37298.16 318
FPMVS93.44 32592.23 33097.08 28999.25 13797.86 16495.61 31397.16 32892.90 32293.76 36298.65 20875.94 36795.66 37379.30 37397.49 33497.73 338
tpm cat193.29 32693.13 32593.75 34797.39 34884.74 36897.39 21497.65 31783.39 36994.16 35698.41 24282.86 34599.39 33291.56 33895.35 36397.14 351
MVS93.19 32792.09 33196.50 30896.91 35694.03 29398.07 14298.06 30768.01 37294.56 35496.48 33795.96 20499.30 34383.84 36596.89 34996.17 361
tpm293.09 32892.58 32994.62 33997.56 34086.53 36297.66 18895.79 34786.15 36494.07 35998.23 26275.95 36699.53 30790.91 34796.86 35097.81 333
KD-MVS_2432*160092.87 32991.99 33395.51 33091.37 37789.27 34994.07 35298.14 30395.42 27897.25 28596.44 33967.86 37499.24 34891.28 34196.08 35898.02 323
miper_refine_blended92.87 32991.99 33395.51 33091.37 37789.27 34994.07 35298.14 30395.42 27897.25 28596.44 33967.86 37499.24 34891.28 34196.08 35898.02 323
DWT-MVSNet_test92.75 33192.05 33294.85 33796.48 36487.21 35997.83 17194.99 34992.22 33192.72 36594.11 36970.75 37199.46 32495.01 26094.33 36897.87 329
MVEpermissive83.40 2292.50 33291.92 33594.25 34298.83 23691.64 33492.71 36383.52 37895.92 26586.46 37595.46 35595.20 22795.40 37480.51 37198.64 30595.73 367
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
test250692.39 33391.89 33693.89 34699.38 11382.28 37599.32 1866.03 38299.08 7298.77 16799.57 2866.26 37999.84 13198.71 5599.95 1699.54 88
gg-mvs-nofinetune92.37 33491.20 33995.85 32095.80 37392.38 32799.31 2281.84 37999.75 591.83 36899.74 868.29 37399.02 35887.15 35997.12 34596.16 362
test-mter92.33 33591.76 33894.04 34396.53 36284.62 36994.05 35492.39 36594.00 30994.12 35795.07 35765.63 38199.67 25995.87 23598.18 31897.82 331
IB-MVS91.63 1992.24 33690.90 34096.27 31297.22 35391.24 34394.36 34993.33 36292.37 32892.24 36794.58 36666.20 38099.89 6393.16 31494.63 36697.66 341
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
TESTMET0.1,192.19 33791.77 33793.46 35096.48 36482.80 37494.05 35491.52 36894.45 29894.00 36094.88 36366.65 37899.56 29995.78 24098.11 32398.02 323
PAPM91.88 33890.34 34196.51 30798.06 31992.56 32392.44 36597.17 32786.35 36390.38 37096.01 34486.61 31699.21 35170.65 37595.43 36297.75 337
PVSNet_089.98 2191.15 33990.30 34293.70 34897.72 33384.34 37290.24 36897.42 32090.20 35093.79 36193.09 37190.90 29198.89 36486.57 36172.76 37597.87 329
EGC-MVSNET85.24 34080.54 34399.34 7399.77 2099.20 3399.08 5199.29 15312.08 37620.84 37799.42 5297.55 10899.85 11397.08 14599.72 12198.96 256
test_method79.78 34179.50 34480.62 35780.21 38045.76 38270.82 37198.41 29331.08 37580.89 37697.71 29684.85 33097.37 37191.51 33980.03 37498.75 288
tmp_tt78.77 34278.73 34578.90 35858.45 38174.76 38194.20 35178.26 38139.16 37486.71 37492.82 37280.50 35375.19 37786.16 36292.29 37186.74 372
cdsmvs_eth3d_5k24.66 34332.88 3460.00 3610.00 3840.00 3850.00 37299.10 2060.00 3790.00 38097.58 30499.21 100.00 3800.00 3780.00 3780.00 376
testmvs17.12 34420.53 3476.87 36012.05 3824.20 38493.62 3606.73 3834.62 37810.41 37824.33 3758.28 3833.56 3799.69 37715.07 37612.86 375
test12317.04 34520.11 3487.82 35910.25 3834.91 38394.80 3354.47 3844.93 37710.00 37924.28 3769.69 3823.64 37810.14 37612.43 37714.92 374
pcd_1.5k_mvsjas8.17 34610.90 3490.00 3610.00 3840.00 3850.00 3720.00 3850.00 3790.00 3800.00 37998.07 670.00 3800.00 3780.00 3780.00 376
ab-mvs-re8.12 34710.83 3500.00 3610.00 3840.00 3850.00 3720.00 3850.00 3790.00 38097.48 3110.00 3840.00 3800.00 3780.00 3780.00 376
test_blank0.00 3480.00 3510.00 3610.00 3840.00 3850.00 3720.00 3850.00 3790.00 3800.00 3790.00 3840.00 3800.00 3780.00 3780.00 376
uanet_test0.00 3480.00 3510.00 3610.00 3840.00 3850.00 3720.00 3850.00 3790.00 3800.00 3790.00 3840.00 3800.00 3780.00 3780.00 376
DCPMVS0.00 3480.00 3510.00 3610.00 3840.00 3850.00 3720.00 3850.00 3790.00 3800.00 3790.00 3840.00 3800.00 3780.00 3780.00 376
sosnet-low-res0.00 3480.00 3510.00 3610.00 3840.00 3850.00 3720.00 3850.00 3790.00 3800.00 3790.00 3840.00 3800.00 3780.00 3780.00 376
sosnet0.00 3480.00 3510.00 3610.00 3840.00 3850.00 3720.00 3850.00 3790.00 3800.00 3790.00 3840.00 3800.00 3780.00 3780.00 376
uncertanet0.00 3480.00 3510.00 3610.00 3840.00 3850.00 3720.00 3850.00 3790.00 3800.00 3790.00 3840.00 3800.00 3780.00 3780.00 376
Regformer0.00 3480.00 3510.00 3610.00 3840.00 3850.00 3720.00 3850.00 3790.00 3800.00 3790.00 3840.00 3800.00 3780.00 3780.00 376
uanet0.00 3480.00 3510.00 3610.00 3840.00 3850.00 3720.00 3850.00 3790.00 3800.00 3790.00 3840.00 3800.00 3780.00 3780.00 376
FOURS199.73 2599.67 299.43 1099.54 5299.43 3199.26 81
MSC_two_6792asdad99.32 7898.43 29598.37 11298.86 25299.89 6397.14 14099.60 17099.71 27
PC_three_145293.27 31799.40 5498.54 22698.22 5697.00 37295.17 25799.45 21699.49 111
No_MVS99.32 7898.43 29598.37 11298.86 25299.89 6397.14 14099.60 17099.71 27
test_one_060199.39 11299.20 3399.31 13698.49 11098.66 17899.02 12197.64 100
eth-test20.00 384
eth-test0.00 384
ZD-MVS99.01 19898.84 7699.07 21094.10 30698.05 23798.12 27096.36 18899.86 9892.70 32499.19 258
RE-MVS-def98.58 8699.20 14999.38 698.48 10699.30 14698.64 9898.95 13398.96 14297.75 9196.56 19499.39 22499.45 135
IU-MVS99.49 8799.15 4898.87 24792.97 32099.41 5196.76 17599.62 16299.66 38
OPU-MVS98.82 15698.59 27998.30 11798.10 13998.52 22998.18 6098.75 36694.62 27099.48 21299.41 150
test_241102_TWO99.30 14698.03 14299.26 8199.02 12197.51 11499.88 7496.91 15899.60 17099.66 38
test_241102_ONE99.49 8799.17 3999.31 13697.98 14499.66 2098.90 15498.36 4599.48 320
9.1497.78 17699.07 18397.53 20399.32 13095.53 27598.54 19998.70 19897.58 10599.76 21794.32 28399.46 214
save fliter99.11 17197.97 15296.53 27099.02 22498.24 125
test_0728_THIRD98.17 13499.08 10799.02 12197.89 8099.88 7497.07 14699.71 12699.70 32
test_0728_SECOND99.60 1399.50 8099.23 2598.02 15199.32 13099.88 7496.99 15299.63 15999.68 34
test072699.50 8099.21 2798.17 13399.35 11797.97 14599.26 8199.06 10797.61 103
GSMVS98.81 277
test_part299.36 11999.10 6299.05 115
sam_mvs184.74 33298.81 277
sam_mvs84.29 338
ambc98.24 22598.82 23995.97 24398.62 8699.00 23099.27 7799.21 8196.99 15099.50 31696.55 19799.50 20999.26 206
MTGPAbinary99.20 176
test_post197.59 19720.48 37883.07 34499.66 26794.16 284
test_post21.25 37783.86 34099.70 243
patchmatchnet-post98.77 18784.37 33599.85 113
GG-mvs-BLEND94.76 33894.54 37592.13 33199.31 2280.47 38088.73 37391.01 37367.59 37698.16 37082.30 37094.53 36793.98 370
MTMP97.93 16091.91 367
gm-plane-assit94.83 37481.97 37688.07 36094.99 36099.60 28691.76 333
test9_res93.28 31399.15 26499.38 166
TEST998.71 25598.08 13995.96 29799.03 22091.40 34095.85 33397.53 30696.52 17799.76 217
test_898.67 26898.01 14695.91 30299.02 22491.64 33595.79 33597.50 30996.47 18099.76 217
agg_prior292.50 32799.16 26199.37 169
agg_prior98.68 26697.99 14799.01 22795.59 33699.77 210
TestCases99.16 10499.50 8098.55 9999.58 3096.80 23398.88 15099.06 10797.65 9799.57 29694.45 27699.61 16899.37 169
test_prior497.97 15295.86 303
test_prior295.74 30996.48 24596.11 32797.63 30295.92 20694.16 28499.20 254
test_prior98.95 13998.69 26397.95 15799.03 22099.59 29099.30 196
旧先验295.76 30788.56 35997.52 27199.66 26794.48 274
新几何295.93 300
新几何198.91 14598.94 21097.76 17598.76 26987.58 36296.75 30998.10 27294.80 24099.78 20492.73 32399.00 28599.20 216
旧先验198.82 23997.45 19398.76 26998.34 25395.50 22099.01 28499.23 211
无先验95.74 30998.74 27489.38 35499.73 23292.38 32899.22 215
原ACMM295.53 316
原ACMM198.35 21598.90 22096.25 23798.83 26192.48 32796.07 33098.10 27295.39 22499.71 24192.61 32698.99 28699.08 235
test22298.92 21696.93 22095.54 31598.78 26785.72 36596.86 30598.11 27194.43 24799.10 27399.23 211
testdata299.79 19292.80 321
segment_acmp97.02 148
testdata98.09 23398.93 21295.40 25998.80 26490.08 35197.45 27798.37 24995.26 22699.70 24393.58 30598.95 29099.17 227
testdata195.44 32196.32 251
test1298.93 14298.58 28097.83 16798.66 27996.53 31695.51 21999.69 24799.13 26899.27 203
plane_prior799.19 15297.87 163
plane_prior698.99 20397.70 18194.90 233
plane_prior599.27 15999.70 24394.42 27899.51 20299.45 135
plane_prior497.98 280
plane_prior397.78 17497.41 19297.79 251
plane_prior297.77 17798.20 131
plane_prior199.05 190
plane_prior97.65 18397.07 24096.72 23799.36 229
n20.00 385
nn0.00 385
door-mid99.57 37
lessismore_v098.97 13799.73 2597.53 18986.71 37599.37 5999.52 3889.93 29699.92 3998.99 3799.72 12199.44 140
LGP-MVS_train99.47 5499.57 5798.97 6899.48 7296.60 24199.10 10499.06 10798.71 2799.83 14695.58 25199.78 9399.62 48
test1198.87 247
door99.41 96
HQP5-MVS96.79 223
HQP-NCC98.67 26896.29 28496.05 25995.55 340
ACMP_Plane98.67 26896.29 28496.05 25995.55 340
BP-MVS92.82 319
HQP4-MVS95.56 33999.54 30599.32 189
HQP3-MVS99.04 21899.26 247
HQP2-MVS93.84 259
NP-MVS98.84 23497.39 19696.84 330
MDTV_nov1_ep13_2view74.92 38097.69 18590.06 35297.75 25485.78 32493.52 30698.69 294
MDTV_nov1_ep1395.22 29597.06 35583.20 37397.74 18196.16 34294.37 30096.99 29598.83 17683.95 33999.53 30793.90 29597.95 329
ACMMP++_ref99.77 97
ACMMP++99.68 142
Test By Simon96.52 177
ITE_SJBPF98.87 15099.22 14398.48 10699.35 11797.50 17998.28 21898.60 22197.64 10099.35 33693.86 29899.27 24498.79 283
DeepMVS_CXcopyleft93.44 35198.24 30894.21 28894.34 35364.28 37391.34 36994.87 36589.45 30192.77 37677.54 37493.14 37093.35 371