CNVR-MVS | | | 99.40 1 | 99.26 1 | 99.84 4 | 99.98 2 | 99.51 4 | 99.98 8 | 98.69 54 | 98.20 3 | 99.93 1 | 99.98 2 | 96.82 19 | 100.00 1 | 99.75 22 | 100.00 1 | 99.99 20 |
|
NCCC | | | 99.37 2 | 99.25 2 | 99.71 10 | 99.96 8 | 99.15 16 | 99.97 16 | 98.62 66 | 98.02 6 | 99.90 2 | 99.95 3 | 97.33 13 | 100.00 1 | 99.54 33 | 100.00 1 | 100.00 1 |
|
MCST-MVS | | | 99.32 3 | 99.14 4 | 99.86 3 | 99.97 3 | 99.59 3 | 99.97 16 | 98.64 62 | 98.47 2 | 99.13 76 | 99.92 11 | 96.38 26 | 100.00 1 | 99.74 24 | 100.00 1 | 100.00 1 |
|
DVP-MVS | | | 99.30 4 | 99.16 3 | 99.73 8 | 99.93 26 | 99.29 10 | 99.95 40 | 98.32 149 | 97.28 18 | 99.83 10 | 99.91 13 | 97.22 15 | 100.00 1 | 99.99 5 | 100.00 1 | 99.89 90 |
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025 |
SED-MVS | | | 99.28 5 | 99.11 6 | 99.77 6 | 99.93 26 | 99.30 8 | 99.96 23 | 98.43 114 | 97.27 20 | 99.80 16 | 99.94 4 | 96.71 20 | 100.00 1 | 100.00 1 | 100.00 1 | 100.00 1 |
|
DPE-MVS | | | 99.26 6 | 99.10 7 | 99.74 7 | 99.89 45 | 99.24 14 | 99.87 87 | 98.44 106 | 97.48 15 | 99.64 34 | 99.94 4 | 96.68 22 | 99.99 36 | 99.99 5 | 100.00 1 | 99.99 20 |
|
MSLP-MVS++ | | | 99.13 7 | 99.01 9 | 99.49 31 | 99.94 14 | 98.46 59 | 99.98 8 | 98.86 44 | 97.10 25 | 99.80 16 | 99.94 4 | 95.92 33 | 100.00 1 | 99.51 34 | 100.00 1 | 100.00 1 |
|
MSP-MVS | | | 99.09 8 | 99.12 5 | 98.98 80 | 99.93 26 | 97.24 104 | 99.95 40 | 98.42 125 | 97.50 14 | 99.52 47 | 99.88 22 | 97.43 12 | 99.71 128 | 99.50 35 | 99.98 33 | 100.00 1 |
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025 |
HPM-MVS++ |  | | 99.07 9 | 98.88 13 | 99.63 12 | 99.90 42 | 99.02 19 | 99.95 40 | 98.56 76 | 97.56 13 | 99.44 51 | 99.85 33 | 95.38 45 | 100.00 1 | 99.31 43 | 99.99 20 | 99.87 93 |
|
APDe-MVS | | | 99.06 10 | 98.91 12 | 99.51 28 | 99.94 14 | 98.76 40 | 99.91 69 | 98.39 133 | 97.20 24 | 99.46 49 | 99.85 33 | 95.53 42 | 99.79 109 | 99.86 12 | 100.00 1 | 99.99 20 |
|
SteuartSystems-ACMMP | | | 99.02 11 | 98.97 11 | 99.18 54 | 98.72 137 | 97.71 83 | 99.98 8 | 98.44 106 | 96.85 29 | 99.80 16 | 99.91 13 | 97.57 6 | 99.85 94 | 99.44 38 | 99.99 20 | 99.99 20 |
Skip Steuart: Steuart Systems R&D Blog. |
CHOSEN 280x420 | | | 99.01 12 | 99.03 8 | 98.95 83 | 99.38 104 | 98.87 27 | 98.46 277 | 99.42 20 | 97.03 27 | 99.02 80 | 99.09 138 | 99.35 1 | 98.21 214 | 99.73 27 | 99.78 88 | 99.77 104 |
|
test_prior3 | | | 98.99 13 | 98.84 14 | 99.43 35 | 99.94 14 | 98.49 57 | 99.95 40 | 98.65 59 | 95.78 58 | 99.73 26 | 99.76 72 | 96.00 29 | 99.80 106 | 99.78 20 | 100.00 1 | 99.99 20 |
|
xxxxxxxxxxxxxcwj | | | 98.98 14 | 98.79 15 | 99.54 23 | 99.82 65 | 98.79 33 | 99.96 23 | 97.52 232 | 97.66 10 | 99.81 12 | 99.89 19 | 94.70 65 | 99.86 90 | 99.84 13 | 99.93 63 | 99.96 70 |
|
TSAR-MVS + MP. | | | 98.93 15 | 98.77 16 | 99.41 39 | 99.74 77 | 98.67 44 | 99.77 126 | 98.38 137 | 96.73 35 | 99.88 3 | 99.74 81 | 94.89 62 | 99.59 139 | 99.80 18 | 99.98 33 | 99.97 63 |
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
SD-MVS | | | 98.92 16 | 98.70 17 | 99.56 21 | 99.70 85 | 98.73 41 | 99.94 55 | 98.34 146 | 96.38 44 | 99.81 12 | 99.76 72 | 94.59 67 | 99.98 42 | 99.84 13 | 99.96 48 | 99.97 63 |
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
MG-MVS | | | 98.91 17 | 98.65 20 | 99.68 11 | 99.94 14 | 99.07 18 | 99.64 160 | 99.44 18 | 97.33 17 | 99.00 83 | 99.72 84 | 94.03 90 | 99.98 42 | 98.73 74 | 100.00 1 | 100.00 1 |
|
testtj | | | 98.89 18 | 98.69 18 | 99.52 26 | 99.94 14 | 98.56 53 | 99.90 73 | 98.55 81 | 95.14 77 | 99.72 29 | 99.84 46 | 95.46 43 | 100.00 1 | 99.65 32 | 99.99 20 | 99.99 20 |
|
train_agg | | | 98.88 19 | 98.65 20 | 99.59 18 | 99.92 35 | 98.92 23 | 99.96 23 | 98.43 114 | 94.35 103 | 99.71 30 | 99.86 29 | 95.94 31 | 99.85 94 | 99.69 31 | 99.98 33 | 99.99 20 |
|
agg_prior1 | | | 98.88 19 | 98.66 19 | 99.54 23 | 99.93 26 | 98.77 36 | 99.96 23 | 98.43 114 | 94.63 92 | 99.63 35 | 99.85 33 | 95.79 37 | 99.85 94 | 99.72 28 | 99.99 20 | 99.99 20 |
|
DPM-MVS | | | 98.83 21 | 98.46 30 | 99.97 1 | 99.33 106 | 99.92 1 | 99.96 23 | 98.44 106 | 97.96 7 | 99.55 42 | 99.94 4 | 97.18 17 | 100.00 1 | 93.81 187 | 99.94 57 | 99.98 51 |
|
ETH3 D test6400 | | | 98.81 22 | 98.54 26 | 99.59 18 | 99.93 26 | 98.93 22 | 99.93 61 | 98.46 103 | 94.56 93 | 99.84 8 | 99.92 11 | 94.32 80 | 99.86 90 | 99.96 8 | 99.98 33 | 100.00 1 |
|
DeepC-MVS_fast | | 96.59 1 | 98.81 22 | 98.54 26 | 99.62 15 | 99.90 42 | 98.85 29 | 99.24 214 | 98.47 101 | 98.14 4 | 99.08 77 | 99.91 13 | 93.09 116 | 100.00 1 | 99.04 54 | 99.99 20 | 100.00 1 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
Regformer-1 | | | 98.79 24 | 98.60 23 | 99.36 45 | 99.85 55 | 98.34 62 | 99.87 87 | 98.52 88 | 96.05 53 | 99.41 54 | 99.79 62 | 94.93 60 | 99.76 117 | 99.07 49 | 99.90 72 | 99.99 20 |
|
Regformer-2 | | | 98.78 25 | 98.59 24 | 99.36 45 | 99.85 55 | 98.32 63 | 99.87 87 | 98.52 88 | 96.04 54 | 99.41 54 | 99.79 62 | 94.92 61 | 99.76 117 | 99.05 50 | 99.90 72 | 99.98 51 |
|
SMA-MVS |  | | 98.76 26 | 98.48 29 | 99.62 15 | 99.87 52 | 98.87 27 | 99.86 98 | 98.38 137 | 93.19 147 | 99.77 23 | 99.94 4 | 95.54 40 | 100.00 1 | 99.74 24 | 99.99 20 | 100.00 1 |
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
MVS_111021_HR | | | 98.72 27 | 98.62 22 | 99.01 78 | 99.36 105 | 97.18 107 | 99.93 61 | 99.90 1 | 96.81 33 | 98.67 95 | 99.77 68 | 93.92 92 | 99.89 79 | 99.27 45 | 99.94 57 | 99.96 70 |
|
XVS | | | 98.70 28 | 98.55 25 | 99.15 61 | 99.94 14 | 97.50 94 | 99.94 55 | 98.42 125 | 96.22 49 | 99.41 54 | 99.78 66 | 94.34 76 | 99.96 53 | 98.92 61 | 99.95 51 | 99.99 20 |
|
ETH3D-3000-0.1 | | | 98.68 29 | 98.42 31 | 99.47 34 | 99.83 63 | 98.57 51 | 99.90 73 | 98.37 140 | 93.81 129 | 99.81 12 | 99.90 17 | 94.34 76 | 99.86 90 | 99.84 13 | 99.98 33 | 99.97 63 |
|
SF-MVS | | | 98.67 30 | 98.40 35 | 99.50 29 | 99.77 73 | 98.67 44 | 99.90 73 | 98.21 166 | 93.53 138 | 99.81 12 | 99.89 19 | 94.70 65 | 99.86 90 | 99.84 13 | 99.93 63 | 99.96 70 |
|
CDPH-MVS | | | 98.65 31 | 98.36 42 | 99.49 31 | 99.94 14 | 98.73 41 | 99.87 87 | 98.33 147 | 93.97 121 | 99.76 24 | 99.87 26 | 94.99 58 | 99.75 120 | 98.55 84 | 100.00 1 | 99.98 51 |
|
APD-MVS |  | | 98.62 32 | 98.35 43 | 99.41 39 | 99.90 42 | 98.51 56 | 99.87 87 | 98.36 142 | 94.08 114 | 99.74 25 | 99.73 83 | 94.08 88 | 99.74 124 | 99.42 39 | 99.99 20 | 99.99 20 |
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
TSAR-MVS + GP. | | | 98.60 33 | 98.51 28 | 98.86 87 | 99.73 81 | 96.63 123 | 99.97 16 | 97.92 197 | 98.07 5 | 98.76 91 | 99.55 106 | 95.00 57 | 99.94 68 | 99.91 11 | 97.68 148 | 99.99 20 |
|
PAPM | | | 98.60 33 | 98.42 31 | 99.14 63 | 96.05 245 | 98.96 20 | 99.90 73 | 99.35 23 | 96.68 37 | 98.35 110 | 99.66 97 | 96.45 25 | 98.51 185 | 99.45 37 | 99.89 74 | 99.96 70 |
|
#test# | | | 98.59 35 | 98.41 33 | 99.14 63 | 99.96 8 | 97.43 99 | 99.95 40 | 98.61 68 | 95.00 79 | 99.31 63 | 99.85 33 | 94.22 83 | 100.00 1 | 98.78 72 | 99.98 33 | 99.98 51 |
|
Regformer-3 | | | 98.58 36 | 98.41 33 | 99.10 69 | 99.84 60 | 97.57 88 | 99.66 153 | 98.52 88 | 95.79 57 | 99.01 81 | 99.77 68 | 94.40 71 | 99.75 120 | 98.82 68 | 99.83 81 | 99.98 51 |
|
HFP-MVS | | | 98.56 37 | 98.37 40 | 99.14 63 | 99.96 8 | 97.43 99 | 99.95 40 | 98.61 68 | 94.77 85 | 99.31 63 | 99.85 33 | 94.22 83 | 100.00 1 | 98.70 75 | 99.98 33 | 99.98 51 |
|
Regformer-4 | | | 98.56 37 | 98.39 37 | 99.08 71 | 99.84 60 | 97.52 91 | 99.66 153 | 98.52 88 | 95.76 60 | 99.01 81 | 99.77 68 | 94.33 79 | 99.75 120 | 98.80 71 | 99.83 81 | 99.98 51 |
|
region2R | | | 98.54 39 | 98.37 40 | 99.05 73 | 99.96 8 | 97.18 107 | 99.96 23 | 98.55 81 | 94.87 83 | 99.45 50 | 99.85 33 | 94.07 89 | 100.00 1 | 98.67 77 | 100.00 1 | 99.98 51 |
|
DELS-MVS | | | 98.54 39 | 98.22 48 | 99.50 29 | 99.15 111 | 98.65 48 | 100.00 1 | 98.58 72 | 97.70 9 | 98.21 117 | 99.24 132 | 92.58 128 | 99.94 68 | 98.63 82 | 99.94 57 | 99.92 87 |
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
PAPR | | | 98.52 41 | 98.16 53 | 99.58 20 | 99.97 3 | 98.77 36 | 99.95 40 | 98.43 114 | 95.35 71 | 98.03 120 | 99.75 77 | 94.03 90 | 99.98 42 | 98.11 98 | 99.83 81 | 99.99 20 |
|
ACMMPR | | | 98.50 42 | 98.32 44 | 99.05 73 | 99.96 8 | 97.18 107 | 99.95 40 | 98.60 70 | 94.77 85 | 99.31 63 | 99.84 46 | 93.73 98 | 100.00 1 | 98.70 75 | 99.98 33 | 99.98 51 |
|
ACMMP_NAP | | | 98.49 43 | 98.14 54 | 99.54 23 | 99.66 87 | 98.62 50 | 99.85 101 | 98.37 140 | 94.68 89 | 99.53 44 | 99.83 49 | 92.87 120 | 100.00 1 | 98.66 80 | 99.84 80 | 99.99 20 |
|
EPNet | | | 98.49 43 | 98.40 35 | 98.77 90 | 99.62 89 | 96.80 120 | 99.90 73 | 99.51 15 | 97.60 12 | 99.20 71 | 99.36 123 | 93.71 99 | 99.91 74 | 97.99 105 | 98.71 127 | 99.61 127 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
SR-MVS | | | 98.46 45 | 98.30 46 | 98.93 84 | 99.88 49 | 97.04 112 | 99.84 105 | 98.35 144 | 94.92 80 | 99.32 62 | 99.80 58 | 93.35 105 | 99.78 111 | 99.30 44 | 99.95 51 | 99.96 70 |
|
CP-MVS | | | 98.45 46 | 98.32 44 | 98.87 86 | 99.96 8 | 96.62 124 | 99.97 16 | 98.39 133 | 94.43 98 | 98.90 86 | 99.87 26 | 94.30 81 | 100.00 1 | 99.04 54 | 99.99 20 | 99.99 20 |
|
PS-MVSNAJ | | | 98.44 47 | 98.20 50 | 99.16 59 | 98.80 134 | 98.92 23 | 99.54 175 | 98.17 172 | 97.34 16 | 99.85 6 | 99.85 33 | 91.20 150 | 99.89 79 | 99.41 40 | 99.67 95 | 98.69 199 |
|
MVS_111021_LR | | | 98.42 48 | 98.38 38 | 98.53 111 | 99.39 103 | 95.79 156 | 99.87 87 | 99.86 2 | 96.70 36 | 98.78 90 | 99.79 62 | 92.03 140 | 99.90 75 | 99.17 46 | 99.86 79 | 99.88 92 |
|
DP-MVS Recon | | | 98.41 49 | 98.02 61 | 99.56 21 | 99.97 3 | 98.70 43 | 99.92 65 | 98.44 106 | 92.06 191 | 98.40 108 | 99.84 46 | 95.68 38 | 100.00 1 | 98.19 93 | 99.71 93 | 99.97 63 |
|
PHI-MVS | | | 98.41 49 | 98.21 49 | 99.03 75 | 99.86 54 | 97.10 111 | 99.98 8 | 98.80 49 | 90.78 225 | 99.62 37 | 99.78 66 | 95.30 46 | 100.00 1 | 99.80 18 | 99.93 63 | 99.99 20 |
|
ETH3D cwj APD-0.16 | | | 98.40 51 | 98.07 59 | 99.40 41 | 99.59 90 | 98.41 60 | 99.86 98 | 98.24 162 | 92.18 186 | 99.73 26 | 99.87 26 | 93.47 103 | 99.85 94 | 99.74 24 | 99.95 51 | 99.93 81 |
|
mPP-MVS | | | 98.39 52 | 98.20 50 | 98.97 81 | 99.97 3 | 96.92 117 | 99.95 40 | 98.38 137 | 95.04 78 | 98.61 99 | 99.80 58 | 93.39 104 | 100.00 1 | 98.64 81 | 100.00 1 | 99.98 51 |
|
test1172 | | | 98.38 53 | 98.25 47 | 98.77 90 | 99.88 49 | 96.56 127 | 99.80 119 | 98.36 142 | 94.68 89 | 99.20 71 | 99.80 58 | 93.28 110 | 99.78 111 | 99.34 42 | 99.92 67 | 99.98 51 |
|
PGM-MVS | | | 98.34 54 | 98.13 55 | 98.99 79 | 99.92 35 | 97.00 113 | 99.75 134 | 99.50 16 | 93.90 126 | 99.37 60 | 99.76 72 | 93.24 113 | 100.00 1 | 97.75 116 | 99.96 48 | 99.98 51 |
|
zzz-MVS | | | 98.33 55 | 98.00 62 | 99.30 47 | 99.85 55 | 97.93 78 | 99.80 119 | 98.28 156 | 95.76 60 | 97.18 137 | 99.88 22 | 92.74 124 | 100.00 1 | 98.67 77 | 99.88 76 | 99.99 20 |
|
SR-MVS-dyc-post | | | 98.31 56 | 98.17 52 | 98.71 93 | 99.79 70 | 96.37 134 | 99.76 131 | 98.31 151 | 94.43 98 | 99.40 58 | 99.75 77 | 93.28 110 | 99.78 111 | 98.90 64 | 99.92 67 | 99.97 63 |
|
ZNCC-MVS | | | 98.31 56 | 98.03 60 | 99.17 57 | 99.88 49 | 97.59 87 | 99.94 55 | 98.44 106 | 94.31 106 | 98.50 103 | 99.82 53 | 93.06 117 | 99.99 36 | 98.30 92 | 99.99 20 | 99.93 81 |
|
MTAPA | | | 98.29 58 | 97.96 67 | 99.30 47 | 99.85 55 | 97.93 78 | 99.39 196 | 98.28 156 | 95.76 60 | 97.18 137 | 99.88 22 | 92.74 124 | 100.00 1 | 98.67 77 | 99.88 76 | 99.99 20 |
|
GST-MVS | | | 98.27 59 | 97.97 64 | 99.17 57 | 99.92 35 | 97.57 88 | 99.93 61 | 98.39 133 | 94.04 119 | 98.80 89 | 99.74 81 | 92.98 118 | 100.00 1 | 98.16 95 | 99.76 89 | 99.93 81 |
|
CANet | | | 98.27 59 | 97.82 70 | 99.63 12 | 99.72 83 | 99.10 17 | 99.98 8 | 98.51 95 | 97.00 28 | 98.52 101 | 99.71 86 | 87.80 190 | 99.95 60 | 99.75 22 | 99.38 113 | 99.83 96 |
|
EI-MVSNet-Vis-set | | | 98.27 59 | 98.11 57 | 98.75 92 | 99.83 63 | 96.59 126 | 99.40 192 | 98.51 95 | 95.29 73 | 98.51 102 | 99.76 72 | 93.60 102 | 99.71 128 | 98.53 85 | 99.52 106 | 99.95 78 |
|
APD-MVS_3200maxsize | | | 98.25 62 | 98.08 58 | 98.78 89 | 99.81 68 | 96.60 125 | 99.82 112 | 98.30 154 | 93.95 123 | 99.37 60 | 99.77 68 | 92.84 121 | 99.76 117 | 98.95 58 | 99.92 67 | 99.97 63 |
|
xiu_mvs_v2_base | | | 98.23 63 | 97.97 64 | 99.02 77 | 98.69 138 | 98.66 46 | 99.52 177 | 98.08 183 | 97.05 26 | 99.86 4 | 99.86 29 | 90.65 160 | 99.71 128 | 99.39 41 | 98.63 128 | 98.69 199 |
|
MP-MVS |  | | 98.23 63 | 97.97 64 | 99.03 75 | 99.94 14 | 97.17 110 | 99.95 40 | 98.39 133 | 94.70 88 | 98.26 115 | 99.81 57 | 91.84 144 | 100.00 1 | 98.85 67 | 99.97 44 | 99.93 81 |
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
EI-MVSNet-UG-set | | | 98.14 65 | 97.99 63 | 98.60 102 | 99.80 69 | 96.27 136 | 99.36 201 | 98.50 99 | 95.21 76 | 98.30 112 | 99.75 77 | 93.29 109 | 99.73 127 | 98.37 89 | 99.30 115 | 99.81 98 |
|
PAPM_NR | | | 98.12 66 | 97.93 68 | 98.70 94 | 99.94 14 | 96.13 146 | 99.82 112 | 98.43 114 | 94.56 93 | 97.52 130 | 99.70 88 | 94.40 71 | 99.98 42 | 97.00 131 | 99.98 33 | 99.99 20 |
|
WTY-MVS | | | 98.10 67 | 97.60 77 | 99.60 17 | 98.92 125 | 99.28 12 | 99.89 81 | 99.52 13 | 95.58 67 | 98.24 116 | 99.39 120 | 93.33 106 | 99.74 124 | 97.98 107 | 95.58 190 | 99.78 103 |
|
MP-MVS-pluss | | | 98.07 68 | 97.64 75 | 99.38 44 | 99.74 77 | 98.41 60 | 99.74 137 | 98.18 171 | 93.35 142 | 96.45 154 | 99.85 33 | 92.64 127 | 99.97 51 | 98.91 63 | 99.89 74 | 99.77 104 |
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss |
1121 | | | 98.03 69 | 97.57 79 | 99.40 41 | 99.74 77 | 98.21 66 | 98.31 284 | 98.62 66 | 92.78 159 | 99.53 44 | 99.83 49 | 95.08 50 | 100.00 1 | 94.36 174 | 99.92 67 | 99.99 20 |
|
HPM-MVS |  | | 97.96 70 | 97.72 72 | 98.68 95 | 99.84 60 | 96.39 133 | 99.90 73 | 98.17 172 | 92.61 169 | 98.62 98 | 99.57 105 | 91.87 143 | 99.67 135 | 98.87 66 | 99.99 20 | 99.99 20 |
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023 |
PVSNet_Blended | | | 97.94 71 | 97.64 75 | 98.83 88 | 99.59 90 | 96.99 114 | 100.00 1 | 99.10 28 | 95.38 70 | 98.27 113 | 99.08 139 | 89.00 181 | 99.95 60 | 99.12 47 | 99.25 116 | 99.57 137 |
|
PLC |  | 95.54 3 | 97.93 72 | 97.89 69 | 98.05 135 | 99.82 65 | 94.77 188 | 99.92 65 | 98.46 103 | 93.93 124 | 97.20 136 | 99.27 127 | 95.44 44 | 99.97 51 | 97.41 121 | 99.51 108 | 99.41 159 |
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
ETV-MVS | | | 97.92 73 | 97.80 71 | 98.25 127 | 98.14 164 | 96.48 128 | 99.98 8 | 97.63 215 | 95.61 66 | 99.29 67 | 99.46 114 | 92.55 129 | 98.82 165 | 99.02 56 | 98.54 129 | 99.46 152 |
|
API-MVS | | | 97.86 74 | 97.66 74 | 98.47 114 | 99.52 96 | 95.41 168 | 99.47 185 | 98.87 43 | 91.68 201 | 98.84 87 | 99.85 33 | 92.34 134 | 99.99 36 | 98.44 87 | 99.96 48 | 100.00 1 |
|
lupinMVS | | | 97.85 75 | 97.60 77 | 98.62 100 | 97.28 211 | 97.70 85 | 99.99 4 | 97.55 226 | 95.50 69 | 99.43 52 | 99.67 95 | 90.92 158 | 98.71 175 | 98.40 88 | 99.62 98 | 99.45 154 |
|
CS-MVS | | | 97.84 76 | 97.69 73 | 98.31 124 | 98.28 153 | 96.27 136 | 100.00 1 | 97.52 232 | 95.29 73 | 99.25 70 | 99.65 99 | 91.18 153 | 98.94 162 | 98.96 57 | 99.04 121 | 99.73 108 |
|
test_yl | | | 97.83 77 | 97.37 84 | 99.21 51 | 99.18 108 | 97.98 75 | 99.64 160 | 99.27 25 | 91.43 210 | 97.88 124 | 98.99 147 | 95.84 35 | 99.84 103 | 98.82 68 | 95.32 194 | 99.79 100 |
|
DCV-MVSNet | | | 97.83 77 | 97.37 84 | 99.21 51 | 99.18 108 | 97.98 75 | 99.64 160 | 99.27 25 | 91.43 210 | 97.88 124 | 98.99 147 | 95.84 35 | 99.84 103 | 98.82 68 | 95.32 194 | 99.79 100 |
|
alignmvs | | | 97.81 79 | 97.33 87 | 99.25 49 | 98.77 136 | 98.66 46 | 99.99 4 | 98.44 106 | 94.40 102 | 98.41 106 | 99.47 112 | 93.65 100 | 99.42 150 | 98.57 83 | 94.26 203 | 99.67 117 |
|
HPM-MVS_fast | | | 97.80 80 | 97.50 80 | 98.68 95 | 99.79 70 | 96.42 130 | 99.88 84 | 98.16 175 | 91.75 200 | 98.94 85 | 99.54 108 | 91.82 145 | 99.65 137 | 97.62 118 | 99.99 20 | 99.99 20 |
|
HY-MVS | | 92.50 7 | 97.79 81 | 97.17 92 | 99.63 12 | 98.98 118 | 99.32 6 | 97.49 305 | 99.52 13 | 95.69 64 | 98.32 111 | 97.41 208 | 93.32 107 | 99.77 115 | 98.08 101 | 95.75 187 | 99.81 98 |
|
CNLPA | | | 97.76 82 | 97.38 83 | 98.92 85 | 99.53 95 | 96.84 118 | 99.87 87 | 98.14 178 | 93.78 131 | 96.55 152 | 99.69 91 | 92.28 135 | 99.98 42 | 97.13 127 | 99.44 111 | 99.93 81 |
|
ACMMP |  | | 97.74 83 | 97.44 82 | 98.66 97 | 99.92 35 | 96.13 146 | 99.18 218 | 99.45 17 | 94.84 84 | 96.41 157 | 99.71 86 | 91.40 147 | 99.99 36 | 97.99 105 | 98.03 144 | 99.87 93 |
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
DeepPCF-MVS | | 95.94 2 | 97.71 84 | 98.98 10 | 93.92 262 | 99.63 88 | 81.76 336 | 99.96 23 | 98.56 76 | 99.47 1 | 99.19 74 | 99.99 1 | 94.16 87 | 100.00 1 | 99.92 9 | 99.93 63 | 100.00 1 |
|
abl_6 | | | 97.67 85 | 97.34 86 | 98.66 97 | 99.68 86 | 96.11 149 | 99.68 150 | 98.14 178 | 93.80 130 | 99.27 68 | 99.70 88 | 88.65 186 | 99.98 42 | 97.46 120 | 99.72 92 | 99.89 90 |
|
CPTT-MVS | | | 97.64 86 | 97.32 88 | 98.58 105 | 99.97 3 | 95.77 157 | 99.96 23 | 98.35 144 | 89.90 238 | 98.36 109 | 99.79 62 | 91.18 153 | 99.99 36 | 98.37 89 | 99.99 20 | 99.99 20 |
|
sss | | | 97.57 87 | 97.03 97 | 99.18 54 | 98.37 148 | 98.04 72 | 99.73 142 | 99.38 21 | 93.46 140 | 98.76 91 | 99.06 140 | 91.21 149 | 99.89 79 | 96.33 140 | 97.01 164 | 99.62 125 |
|
EIA-MVS | | | 97.53 88 | 97.46 81 | 97.76 145 | 98.04 168 | 94.84 184 | 99.98 8 | 97.61 220 | 94.41 101 | 97.90 123 | 99.59 103 | 92.40 132 | 98.87 163 | 98.04 102 | 99.13 119 | 99.59 130 |
|
xiu_mvs_v1_base_debu | | | 97.43 89 | 97.06 93 | 98.55 106 | 97.74 187 | 98.14 67 | 99.31 206 | 97.86 203 | 96.43 41 | 99.62 37 | 99.69 91 | 85.56 211 | 99.68 132 | 99.05 50 | 98.31 135 | 97.83 208 |
|
xiu_mvs_v1_base | | | 97.43 89 | 97.06 93 | 98.55 106 | 97.74 187 | 98.14 67 | 99.31 206 | 97.86 203 | 96.43 41 | 99.62 37 | 99.69 91 | 85.56 211 | 99.68 132 | 99.05 50 | 98.31 135 | 97.83 208 |
|
xiu_mvs_v1_base_debi | | | 97.43 89 | 97.06 93 | 98.55 106 | 97.74 187 | 98.14 67 | 99.31 206 | 97.86 203 | 96.43 41 | 99.62 37 | 99.69 91 | 85.56 211 | 99.68 132 | 99.05 50 | 98.31 135 | 97.83 208 |
|
MAR-MVS | | | 97.43 89 | 97.19 90 | 98.15 132 | 99.47 100 | 94.79 187 | 99.05 234 | 98.76 50 | 92.65 167 | 98.66 96 | 99.82 53 | 88.52 187 | 99.98 42 | 98.12 97 | 99.63 97 | 99.67 117 |
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
thisisatest0515 | | | 97.41 93 | 97.02 98 | 98.59 104 | 97.71 193 | 97.52 91 | 99.97 16 | 98.54 85 | 91.83 196 | 97.45 132 | 99.04 141 | 97.50 8 | 99.10 156 | 94.75 164 | 96.37 174 | 99.16 179 |
|
114514_t | | | 97.41 93 | 96.83 101 | 99.14 63 | 99.51 98 | 97.83 80 | 99.89 81 | 98.27 159 | 88.48 262 | 99.06 78 | 99.66 97 | 90.30 164 | 99.64 138 | 96.32 141 | 99.97 44 | 99.96 70 |
|
DWT-MVSNet_test | | | 97.31 95 | 97.19 90 | 97.66 148 | 98.24 157 | 94.67 189 | 98.86 254 | 98.20 170 | 93.60 137 | 98.09 118 | 98.89 158 | 97.51 7 | 98.78 168 | 94.04 181 | 97.28 157 | 99.55 139 |
|
OMC-MVS | | | 97.28 96 | 97.23 89 | 97.41 157 | 99.76 74 | 93.36 215 | 99.65 156 | 97.95 193 | 96.03 55 | 97.41 133 | 99.70 88 | 89.61 171 | 99.51 142 | 96.73 138 | 98.25 138 | 99.38 161 |
|
PVSNet_Blended_VisFu | | | 97.27 97 | 96.81 102 | 98.66 97 | 98.81 133 | 96.67 122 | 99.92 65 | 98.64 62 | 94.51 95 | 96.38 158 | 98.49 183 | 89.05 180 | 99.88 85 | 97.10 129 | 98.34 133 | 99.43 157 |
|
jason | | | 97.24 98 | 96.86 100 | 98.38 122 | 95.73 257 | 97.32 103 | 99.97 16 | 97.40 248 | 95.34 72 | 98.60 100 | 99.54 108 | 87.70 191 | 98.56 182 | 97.94 108 | 99.47 109 | 99.25 174 |
jason: jason. |
AdaColmap |  | | 97.23 99 | 96.80 103 | 98.51 112 | 99.99 1 | 95.60 164 | 99.09 223 | 98.84 46 | 93.32 143 | 96.74 147 | 99.72 84 | 86.04 207 | 100.00 1 | 98.01 103 | 99.43 112 | 99.94 80 |
|
VNet | | | 97.21 100 | 96.57 110 | 99.13 68 | 98.97 119 | 97.82 81 | 99.03 236 | 99.21 27 | 94.31 106 | 99.18 75 | 98.88 160 | 86.26 206 | 99.89 79 | 98.93 60 | 94.32 202 | 99.69 114 |
|
PVSNet | | 91.05 13 | 97.13 101 | 96.69 106 | 98.45 116 | 99.52 96 | 95.81 155 | 99.95 40 | 99.65 10 | 94.73 87 | 99.04 79 | 99.21 134 | 84.48 221 | 99.95 60 | 94.92 156 | 98.74 126 | 99.58 136 |
|
thisisatest0530 | | | 97.10 102 | 96.72 105 | 98.22 128 | 97.60 196 | 96.70 121 | 99.92 65 | 98.54 85 | 91.11 217 | 97.07 140 | 98.97 151 | 97.47 9 | 99.03 157 | 93.73 192 | 96.09 177 | 98.92 189 |
|
CSCG | | | 97.10 102 | 97.04 96 | 97.27 164 | 99.89 45 | 91.92 245 | 99.90 73 | 99.07 31 | 88.67 258 | 95.26 177 | 99.82 53 | 93.17 115 | 99.98 42 | 98.15 96 | 99.47 109 | 99.90 89 |
|
canonicalmvs | | | 97.09 104 | 96.32 116 | 99.39 43 | 98.93 123 | 98.95 21 | 99.72 145 | 97.35 251 | 94.45 96 | 97.88 124 | 99.42 116 | 86.71 201 | 99.52 141 | 98.48 86 | 93.97 207 | 99.72 111 |
|
diffmvs | | | 97.00 105 | 96.64 107 | 98.09 133 | 97.64 194 | 96.17 145 | 99.81 114 | 97.19 263 | 94.67 91 | 98.95 84 | 99.28 124 | 86.43 204 | 98.76 171 | 98.37 89 | 97.42 154 | 99.33 167 |
|
thres200 | | | 96.96 106 | 96.21 118 | 99.22 50 | 98.97 119 | 98.84 30 | 99.85 101 | 99.71 5 | 93.17 148 | 96.26 160 | 98.88 160 | 89.87 169 | 99.51 142 | 94.26 178 | 94.91 197 | 99.31 169 |
|
MVSFormer | | | 96.94 107 | 96.60 108 | 97.95 137 | 97.28 211 | 97.70 85 | 99.55 173 | 97.27 259 | 91.17 214 | 99.43 52 | 99.54 108 | 90.92 158 | 96.89 277 | 94.67 168 | 99.62 98 | 99.25 174 |
|
F-COLMAP | | | 96.93 108 | 96.95 99 | 96.87 172 | 99.71 84 | 91.74 250 | 99.85 101 | 97.95 193 | 93.11 150 | 95.72 170 | 99.16 136 | 92.35 133 | 99.94 68 | 95.32 151 | 99.35 114 | 98.92 189 |
|
DeepC-MVS | | 94.51 4 | 96.92 109 | 96.40 115 | 98.45 116 | 99.16 110 | 95.90 153 | 99.66 153 | 98.06 184 | 96.37 47 | 94.37 186 | 99.49 111 | 83.29 230 | 99.90 75 | 97.63 117 | 99.61 101 | 99.55 139 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
tttt0517 | | | 96.85 110 | 96.49 112 | 97.92 139 | 97.48 202 | 95.89 154 | 99.85 101 | 98.54 85 | 90.72 226 | 96.63 149 | 98.93 157 | 97.47 9 | 99.02 158 | 93.03 205 | 95.76 186 | 98.85 193 |
|
1314 | | | 96.84 111 | 95.96 130 | 99.48 33 | 96.74 235 | 98.52 55 | 98.31 284 | 98.86 44 | 95.82 56 | 89.91 230 | 98.98 149 | 87.49 193 | 99.96 53 | 97.80 111 | 99.73 91 | 99.96 70 |
|
CHOSEN 1792x2688 | | | 96.81 112 | 96.53 111 | 97.64 149 | 98.91 127 | 93.07 217 | 99.65 156 | 99.80 3 | 95.64 65 | 95.39 174 | 98.86 164 | 84.35 223 | 99.90 75 | 96.98 132 | 99.16 118 | 99.95 78 |
|
tfpn200view9 | | | 96.79 113 | 95.99 123 | 99.19 53 | 98.94 121 | 98.82 31 | 99.78 123 | 99.71 5 | 92.86 153 | 96.02 163 | 98.87 162 | 89.33 175 | 99.50 144 | 93.84 184 | 94.57 198 | 99.27 172 |
|
thres400 | | | 96.78 114 | 95.99 123 | 99.16 59 | 98.94 121 | 98.82 31 | 99.78 123 | 99.71 5 | 92.86 153 | 96.02 163 | 98.87 162 | 89.33 175 | 99.50 144 | 93.84 184 | 94.57 198 | 99.16 179 |
|
CANet_DTU | | | 96.76 115 | 96.15 119 | 98.60 102 | 98.78 135 | 97.53 90 | 99.84 105 | 97.63 215 | 97.25 23 | 99.20 71 | 99.64 100 | 81.36 243 | 99.98 42 | 92.77 207 | 98.89 122 | 98.28 202 |
|
PMMVS | | | 96.76 115 | 96.76 104 | 96.76 175 | 98.28 153 | 92.10 240 | 99.91 69 | 97.98 190 | 94.12 112 | 99.53 44 | 99.39 120 | 86.93 200 | 98.73 173 | 96.95 134 | 97.73 146 | 99.45 154 |
|
thres100view900 | | | 96.74 117 | 95.92 133 | 99.18 54 | 98.90 128 | 98.77 36 | 99.74 137 | 99.71 5 | 92.59 171 | 95.84 166 | 98.86 164 | 89.25 177 | 99.50 144 | 93.84 184 | 94.57 198 | 99.27 172 |
|
TESTMET0.1,1 | | | 96.74 117 | 96.26 117 | 98.16 129 | 97.36 205 | 96.48 128 | 99.96 23 | 98.29 155 | 91.93 193 | 95.77 169 | 98.07 195 | 95.54 40 | 98.29 207 | 90.55 236 | 98.89 122 | 99.70 112 |
|
baseline2 | | | 96.71 119 | 96.49 112 | 97.37 160 | 95.63 264 | 95.96 152 | 99.74 137 | 98.88 42 | 92.94 152 | 91.61 211 | 98.97 151 | 97.72 5 | 98.62 180 | 94.83 160 | 98.08 143 | 97.53 215 |
|
thres600view7 | | | 96.69 120 | 95.87 136 | 99.14 63 | 98.90 128 | 98.78 35 | 99.74 137 | 99.71 5 | 92.59 171 | 95.84 166 | 98.86 164 | 89.25 177 | 99.50 144 | 93.44 197 | 94.50 201 | 99.16 179 |
|
EPP-MVSNet | | | 96.69 120 | 96.60 108 | 96.96 169 | 97.74 187 | 93.05 219 | 99.37 199 | 98.56 76 | 88.75 256 | 95.83 168 | 99.01 144 | 96.01 28 | 98.56 182 | 96.92 135 | 97.20 160 | 99.25 174 |
|
HyFIR lowres test | | | 96.66 122 | 96.43 114 | 97.36 161 | 99.05 113 | 93.91 203 | 99.70 147 | 99.80 3 | 90.54 227 | 96.26 160 | 98.08 194 | 92.15 138 | 98.23 213 | 96.84 137 | 95.46 191 | 99.93 81 |
|
MVS | | | 96.60 123 | 95.56 142 | 99.72 9 | 96.85 228 | 99.22 15 | 98.31 284 | 98.94 36 | 91.57 204 | 90.90 218 | 99.61 102 | 86.66 202 | 99.96 53 | 97.36 122 | 99.88 76 | 99.99 20 |
|
UA-Net | | | 96.54 124 | 95.96 130 | 98.27 126 | 98.23 158 | 95.71 161 | 98.00 298 | 98.45 105 | 93.72 134 | 98.41 106 | 99.27 127 | 88.71 185 | 99.66 136 | 91.19 222 | 97.69 147 | 99.44 156 |
|
EPMVS | | | 96.53 125 | 96.01 122 | 98.09 133 | 98.43 147 | 96.12 148 | 96.36 321 | 99.43 19 | 93.53 138 | 97.64 128 | 95.04 291 | 94.41 70 | 98.38 201 | 91.13 223 | 98.11 139 | 99.75 106 |
|
test-LLR | | | 96.47 126 | 96.04 121 | 97.78 142 | 97.02 219 | 95.44 166 | 99.96 23 | 98.21 166 | 94.07 115 | 95.55 171 | 96.38 242 | 93.90 94 | 98.27 211 | 90.42 239 | 98.83 124 | 99.64 123 |
|
MVS_Test | | | 96.46 127 | 95.74 138 | 98.61 101 | 98.18 161 | 97.23 105 | 99.31 206 | 97.15 269 | 91.07 218 | 98.84 87 | 97.05 221 | 88.17 189 | 98.97 160 | 94.39 173 | 97.50 151 | 99.61 127 |
|
baseline | | | 96.43 128 | 95.98 125 | 97.76 145 | 97.34 206 | 95.17 177 | 99.51 179 | 97.17 266 | 93.92 125 | 96.90 143 | 99.28 124 | 85.37 214 | 98.64 179 | 97.50 119 | 96.86 168 | 99.46 152 |
|
casdiffmvs | | | 96.42 129 | 95.97 128 | 97.77 144 | 97.30 210 | 94.98 180 | 99.84 105 | 97.09 274 | 93.75 133 | 96.58 150 | 99.26 130 | 85.07 217 | 98.78 168 | 97.77 114 | 97.04 163 | 99.54 143 |
|
test-mter | | | 96.39 130 | 95.93 132 | 97.78 142 | 97.02 219 | 95.44 166 | 99.96 23 | 98.21 166 | 91.81 198 | 95.55 171 | 96.38 242 | 95.17 47 | 98.27 211 | 90.42 239 | 98.83 124 | 99.64 123 |
|
CDS-MVSNet | | | 96.34 131 | 96.07 120 | 97.13 166 | 97.37 204 | 94.96 181 | 99.53 176 | 97.91 198 | 91.55 205 | 95.37 175 | 98.32 190 | 95.05 53 | 97.13 261 | 93.80 188 | 95.75 187 | 99.30 170 |
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
Vis-MVSNet (Re-imp) | | | 96.32 132 | 95.98 125 | 97.35 162 | 97.93 173 | 94.82 185 | 99.47 185 | 98.15 177 | 91.83 196 | 95.09 178 | 99.11 137 | 91.37 148 | 97.47 242 | 93.47 196 | 97.43 152 | 99.74 107 |
|
3Dnovator+ | | 91.53 11 | 96.31 133 | 95.24 149 | 99.52 26 | 96.88 227 | 98.64 49 | 99.72 145 | 98.24 162 | 95.27 75 | 88.42 267 | 98.98 149 | 82.76 232 | 99.94 68 | 97.10 129 | 99.83 81 | 99.96 70 |
|
Effi-MVS+ | | | 96.30 134 | 95.69 139 | 98.16 129 | 97.85 179 | 96.26 138 | 97.41 306 | 97.21 262 | 90.37 230 | 98.65 97 | 98.58 179 | 86.61 203 | 98.70 176 | 97.11 128 | 97.37 156 | 99.52 146 |
|
IS-MVSNet | | | 96.29 135 | 95.90 134 | 97.45 155 | 98.13 165 | 94.80 186 | 99.08 225 | 97.61 220 | 92.02 192 | 95.54 173 | 98.96 153 | 90.64 161 | 98.08 218 | 93.73 192 | 97.41 155 | 99.47 151 |
|
3Dnovator | | 91.47 12 | 96.28 136 | 95.34 147 | 99.08 71 | 96.82 230 | 97.47 97 | 99.45 188 | 98.81 47 | 95.52 68 | 89.39 244 | 99.00 146 | 81.97 235 | 99.95 60 | 97.27 124 | 99.83 81 | 99.84 95 |
|
tpmrst | | | 96.27 137 | 95.98 125 | 97.13 166 | 97.96 171 | 93.15 216 | 96.34 322 | 98.17 172 | 92.07 189 | 98.71 94 | 95.12 289 | 93.91 93 | 98.73 173 | 94.91 158 | 96.62 169 | 99.50 149 |
|
CostFormer | | | 96.10 138 | 95.88 135 | 96.78 174 | 97.03 218 | 92.55 232 | 97.08 313 | 97.83 206 | 90.04 237 | 98.72 93 | 94.89 298 | 95.01 56 | 98.29 207 | 96.54 139 | 95.77 185 | 99.50 149 |
|
PVSNet_BlendedMVS | | | 96.05 139 | 95.82 137 | 96.72 177 | 99.59 90 | 96.99 114 | 99.95 40 | 99.10 28 | 94.06 117 | 98.27 113 | 95.80 256 | 89.00 181 | 99.95 60 | 99.12 47 | 87.53 249 | 93.24 310 |
|
PatchMatch-RL | | | 96.04 140 | 95.40 144 | 97.95 137 | 99.59 90 | 95.22 176 | 99.52 177 | 99.07 31 | 93.96 122 | 96.49 153 | 98.35 189 | 82.28 234 | 99.82 105 | 90.15 244 | 99.22 117 | 98.81 196 |
|
1112_ss | | | 96.01 141 | 95.20 151 | 98.42 119 | 97.80 182 | 96.41 131 | 99.65 156 | 96.66 308 | 92.71 162 | 92.88 204 | 99.40 118 | 92.16 137 | 99.30 151 | 91.92 214 | 93.66 208 | 99.55 139 |
|
PatchmatchNet |  | | 95.94 142 | 95.45 143 | 97.39 159 | 97.83 180 | 94.41 193 | 96.05 326 | 98.40 130 | 92.86 153 | 97.09 139 | 95.28 286 | 94.21 86 | 98.07 220 | 89.26 251 | 98.11 139 | 99.70 112 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
TAMVS | | | 95.85 143 | 95.58 141 | 96.65 180 | 97.07 215 | 93.50 210 | 99.17 219 | 97.82 207 | 91.39 213 | 95.02 179 | 98.01 196 | 92.20 136 | 97.30 250 | 93.75 191 | 95.83 184 | 99.14 182 |
|
LS3D | | | 95.84 144 | 95.11 154 | 98.02 136 | 99.85 55 | 95.10 178 | 98.74 261 | 98.50 99 | 87.22 277 | 93.66 195 | 99.86 29 | 87.45 194 | 99.95 60 | 90.94 230 | 99.81 87 | 99.02 187 |
|
baseline1 | | | 95.78 145 | 94.86 157 | 98.54 109 | 98.47 146 | 98.07 70 | 99.06 230 | 97.99 188 | 92.68 165 | 94.13 190 | 98.62 176 | 93.28 110 | 98.69 177 | 93.79 189 | 85.76 258 | 98.84 194 |
|
Test_1112_low_res | | | 95.72 146 | 94.83 158 | 98.42 119 | 97.79 183 | 96.41 131 | 99.65 156 | 96.65 309 | 92.70 163 | 92.86 205 | 96.13 251 | 92.15 138 | 99.30 151 | 91.88 215 | 93.64 209 | 99.55 139 |
|
Vis-MVSNet |  | | 95.72 146 | 95.15 153 | 97.45 155 | 97.62 195 | 94.28 195 | 99.28 211 | 98.24 162 | 94.27 109 | 96.84 144 | 98.94 156 | 79.39 262 | 98.76 171 | 93.25 198 | 98.49 130 | 99.30 170 |
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
EPNet_dtu | | | 95.71 148 | 95.39 145 | 96.66 179 | 98.92 125 | 93.41 213 | 99.57 169 | 98.90 40 | 96.19 51 | 97.52 130 | 98.56 181 | 92.65 126 | 97.36 245 | 77.89 324 | 98.33 134 | 99.20 177 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
BH-w/o | | | 95.71 148 | 95.38 146 | 96.68 178 | 98.49 145 | 92.28 236 | 99.84 105 | 97.50 236 | 92.12 188 | 92.06 209 | 98.79 168 | 84.69 219 | 98.67 178 | 95.29 152 | 99.66 96 | 99.09 185 |
|
mvs_anonymous | | | 95.65 150 | 95.03 155 | 97.53 152 | 98.19 160 | 95.74 159 | 99.33 203 | 97.49 237 | 90.87 222 | 90.47 223 | 97.10 217 | 88.23 188 | 97.16 258 | 95.92 146 | 97.66 149 | 99.68 115 |
|
mvs-test1 | | | 95.53 151 | 95.97 128 | 94.20 250 | 97.77 184 | 85.44 319 | 99.95 40 | 97.06 277 | 94.92 80 | 96.58 150 | 98.72 170 | 85.81 208 | 98.98 159 | 94.80 161 | 98.11 139 | 98.18 203 |
|
MVSTER | | | 95.53 151 | 95.22 150 | 96.45 184 | 98.56 140 | 97.72 82 | 99.91 69 | 97.67 213 | 92.38 181 | 91.39 213 | 97.14 215 | 97.24 14 | 97.30 250 | 94.80 161 | 87.85 244 | 94.34 245 |
|
tpm2 | | | 95.47 153 | 95.18 152 | 96.35 190 | 96.91 223 | 91.70 254 | 96.96 316 | 97.93 195 | 88.04 267 | 98.44 105 | 95.40 275 | 93.32 107 | 97.97 223 | 94.00 182 | 95.61 189 | 99.38 161 |
|
QAPM | | | 95.40 154 | 94.17 169 | 99.10 69 | 96.92 222 | 97.71 83 | 99.40 192 | 98.68 55 | 89.31 243 | 88.94 256 | 98.89 158 | 82.48 233 | 99.96 53 | 93.12 204 | 99.83 81 | 99.62 125 |
|
UGNet | | | 95.33 155 | 94.57 163 | 97.62 151 | 98.55 141 | 94.85 183 | 98.67 268 | 99.32 24 | 95.75 63 | 96.80 146 | 96.27 247 | 72.18 306 | 99.96 53 | 94.58 170 | 99.05 120 | 98.04 206 |
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
RRT_MVS | | | 95.23 156 | 94.77 160 | 96.61 181 | 98.28 153 | 98.32 63 | 99.81 114 | 97.41 246 | 92.59 171 | 91.28 215 | 97.76 202 | 95.02 54 | 97.23 256 | 93.65 194 | 87.14 251 | 94.28 248 |
|
BH-untuned | | | 95.18 157 | 94.83 158 | 96.22 192 | 98.36 149 | 91.22 261 | 99.80 119 | 97.32 255 | 90.91 221 | 91.08 216 | 98.67 172 | 83.51 227 | 98.54 184 | 94.23 179 | 99.61 101 | 98.92 189 |
|
BH-RMVSNet | | | 95.18 157 | 94.31 167 | 97.80 141 | 98.17 162 | 95.23 175 | 99.76 131 | 97.53 230 | 92.52 176 | 94.27 188 | 99.25 131 | 76.84 278 | 98.80 166 | 90.89 232 | 99.54 105 | 99.35 165 |
|
PCF-MVS | | 94.20 5 | 95.18 157 | 94.10 171 | 98.43 118 | 98.55 141 | 95.99 151 | 97.91 300 | 97.31 256 | 90.35 231 | 89.48 243 | 99.22 133 | 85.19 216 | 99.89 79 | 90.40 241 | 98.47 131 | 99.41 159 |
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
dp | | | 95.05 160 | 94.43 165 | 96.91 170 | 97.99 170 | 92.73 226 | 96.29 323 | 97.98 190 | 89.70 241 | 95.93 165 | 94.67 304 | 93.83 97 | 98.45 190 | 86.91 280 | 96.53 171 | 99.54 143 |
|
Fast-Effi-MVS+ | | | 95.02 161 | 94.19 168 | 97.52 153 | 97.88 175 | 94.55 190 | 99.97 16 | 97.08 275 | 88.85 255 | 94.47 185 | 97.96 199 | 84.59 220 | 98.41 193 | 89.84 247 | 97.10 161 | 99.59 130 |
|
IB-MVS | | 92.85 6 | 94.99 162 | 93.94 174 | 98.16 129 | 97.72 191 | 95.69 163 | 99.99 4 | 98.81 47 | 94.28 108 | 92.70 206 | 96.90 225 | 95.08 50 | 99.17 155 | 96.07 143 | 73.88 332 | 99.60 129 |
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
XVG-OURS | | | 94.82 163 | 94.74 161 | 95.06 217 | 98.00 169 | 89.19 290 | 99.08 225 | 97.55 226 | 94.10 113 | 94.71 181 | 99.62 101 | 80.51 254 | 99.74 124 | 96.04 144 | 93.06 215 | 96.25 220 |
|
ADS-MVSNet | | | 94.79 164 | 94.02 172 | 97.11 168 | 97.87 177 | 93.79 204 | 94.24 332 | 98.16 175 | 90.07 235 | 96.43 155 | 94.48 309 | 90.29 165 | 98.19 215 | 87.44 268 | 97.23 158 | 99.36 163 |
|
XVG-OURS-SEG-HR | | | 94.79 164 | 94.70 162 | 95.08 216 | 98.05 167 | 89.19 290 | 99.08 225 | 97.54 228 | 93.66 135 | 94.87 180 | 99.58 104 | 78.78 267 | 99.79 109 | 97.31 123 | 93.40 211 | 96.25 220 |
|
OpenMVS |  | 90.15 15 | 94.77 166 | 93.59 182 | 98.33 123 | 96.07 244 | 97.48 96 | 99.56 171 | 98.57 74 | 90.46 228 | 86.51 291 | 98.95 155 | 78.57 269 | 99.94 68 | 93.86 183 | 99.74 90 | 97.57 214 |
|
LFMVS | | | 94.75 167 | 93.56 184 | 98.30 125 | 99.03 114 | 95.70 162 | 98.74 261 | 97.98 190 | 87.81 270 | 98.47 104 | 99.39 120 | 67.43 325 | 99.53 140 | 98.01 103 | 95.20 196 | 99.67 117 |
|
SCA | | | 94.69 168 | 93.81 178 | 97.33 163 | 97.10 214 | 94.44 191 | 98.86 254 | 98.32 149 | 93.30 144 | 96.17 162 | 95.59 265 | 76.48 282 | 97.95 226 | 91.06 225 | 97.43 152 | 99.59 130 |
|
ab-mvs | | | 94.69 168 | 93.42 187 | 98.51 112 | 98.07 166 | 96.26 138 | 96.49 320 | 98.68 55 | 90.31 232 | 94.54 182 | 97.00 223 | 76.30 284 | 99.71 128 | 95.98 145 | 93.38 212 | 99.56 138 |
|
CVMVSNet | | | 94.68 170 | 94.94 156 | 93.89 264 | 96.80 231 | 86.92 311 | 99.06 230 | 98.98 34 | 94.45 96 | 94.23 189 | 99.02 142 | 85.60 210 | 95.31 322 | 90.91 231 | 95.39 193 | 99.43 157 |
|
cascas | | | 94.64 171 | 93.61 179 | 97.74 147 | 97.82 181 | 96.26 138 | 99.96 23 | 97.78 209 | 85.76 296 | 94.00 191 | 97.54 205 | 76.95 277 | 99.21 153 | 97.23 125 | 95.43 192 | 97.76 212 |
|
HQP-MVS | | | 94.61 172 | 94.50 164 | 94.92 222 | 95.78 251 | 91.85 246 | 99.87 87 | 97.89 199 | 96.82 30 | 93.37 196 | 98.65 173 | 80.65 252 | 98.39 197 | 97.92 109 | 89.60 219 | 94.53 226 |
|
RRT_test8_iter05 | | | 94.58 173 | 94.11 170 | 95.98 197 | 97.88 175 | 96.11 149 | 99.89 81 | 97.45 239 | 91.66 202 | 88.28 268 | 96.71 233 | 96.53 24 | 97.40 243 | 94.73 166 | 83.85 277 | 94.45 236 |
|
TR-MVS | | | 94.54 174 | 93.56 184 | 97.49 154 | 97.96 171 | 94.34 194 | 98.71 264 | 97.51 235 | 90.30 233 | 94.51 184 | 98.69 171 | 75.56 289 | 98.77 170 | 92.82 206 | 95.99 179 | 99.35 165 |
|
DP-MVS | | | 94.54 174 | 93.42 187 | 97.91 140 | 99.46 102 | 94.04 198 | 98.93 246 | 97.48 238 | 81.15 327 | 90.04 227 | 99.55 106 | 87.02 199 | 99.95 60 | 88.97 253 | 98.11 139 | 99.73 108 |
|
Effi-MVS+-dtu | | | 94.53 176 | 95.30 148 | 92.22 292 | 97.77 184 | 82.54 329 | 99.59 166 | 97.06 277 | 94.92 80 | 95.29 176 | 95.37 279 | 85.81 208 | 97.89 229 | 94.80 161 | 97.07 162 | 96.23 222 |
|
HQP_MVS | | | 94.49 177 | 94.36 166 | 94.87 223 | 95.71 260 | 91.74 250 | 99.84 105 | 97.87 201 | 96.38 44 | 93.01 200 | 98.59 177 | 80.47 256 | 98.37 202 | 97.79 112 | 89.55 222 | 94.52 228 |
|
TAPA-MVS | | 92.12 8 | 94.42 178 | 93.60 181 | 96.90 171 | 99.33 106 | 91.78 249 | 99.78 123 | 98.00 187 | 89.89 239 | 94.52 183 | 99.47 112 | 91.97 141 | 99.18 154 | 69.90 339 | 99.52 106 | 99.73 108 |
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
ET-MVSNet_ETH3D | | | 94.37 179 | 93.28 193 | 97.64 149 | 98.30 150 | 97.99 74 | 99.99 4 | 97.61 220 | 94.35 103 | 71.57 344 | 99.45 115 | 96.23 27 | 95.34 321 | 96.91 136 | 85.14 265 | 99.59 130 |
|
MSDG | | | 94.37 179 | 93.36 191 | 97.40 158 | 98.88 130 | 93.95 202 | 99.37 199 | 97.38 249 | 85.75 298 | 90.80 219 | 99.17 135 | 84.11 225 | 99.88 85 | 86.35 281 | 98.43 132 | 98.36 201 |
|
miper_enhance_ethall | | | 94.36 181 | 93.98 173 | 95.49 204 | 98.68 139 | 95.24 174 | 99.73 142 | 97.29 257 | 93.28 145 | 89.86 232 | 95.97 254 | 94.37 75 | 97.05 267 | 92.20 211 | 84.45 269 | 94.19 255 |
|
tpmvs | | | 94.28 182 | 93.57 183 | 96.40 187 | 98.55 141 | 91.50 259 | 95.70 331 | 98.55 81 | 87.47 272 | 92.15 208 | 94.26 313 | 91.42 146 | 98.95 161 | 88.15 262 | 95.85 183 | 98.76 198 |
|
FIs | | | 94.10 183 | 93.43 186 | 96.11 194 | 94.70 277 | 96.82 119 | 99.58 167 | 98.93 39 | 92.54 175 | 89.34 246 | 97.31 211 | 87.62 192 | 97.10 264 | 94.22 180 | 86.58 254 | 94.40 238 |
|
CLD-MVS | | | 94.06 184 | 93.90 175 | 94.55 236 | 96.02 246 | 90.69 267 | 99.98 8 | 97.72 210 | 96.62 39 | 91.05 217 | 98.85 167 | 77.21 274 | 98.47 186 | 98.11 98 | 89.51 224 | 94.48 230 |
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
test0.0.03 1 | | | 93.86 185 | 93.61 179 | 94.64 231 | 95.02 273 | 92.18 239 | 99.93 61 | 98.58 72 | 94.07 115 | 87.96 272 | 98.50 182 | 93.90 94 | 94.96 326 | 81.33 311 | 93.17 213 | 96.78 217 |
|
X-MVStestdata | | | 93.83 186 | 92.06 215 | 99.15 61 | 99.94 14 | 97.50 94 | 99.94 55 | 98.42 125 | 96.22 49 | 99.41 54 | 41.37 361 | 94.34 76 | 99.96 53 | 98.92 61 | 99.95 51 | 99.99 20 |
|
GA-MVS | | | 93.83 186 | 92.84 197 | 96.80 173 | 95.73 257 | 93.57 208 | 99.88 84 | 97.24 261 | 92.57 174 | 92.92 202 | 96.66 235 | 78.73 268 | 97.67 235 | 87.75 266 | 94.06 206 | 99.17 178 |
|
FC-MVSNet-test | | | 93.81 188 | 93.15 195 | 95.80 202 | 94.30 283 | 96.20 143 | 99.42 191 | 98.89 41 | 92.33 183 | 89.03 255 | 97.27 213 | 87.39 195 | 96.83 281 | 93.20 199 | 86.48 255 | 94.36 241 |
|
ADS-MVSNet2 | | | 93.80 189 | 93.88 176 | 93.55 274 | 97.87 177 | 85.94 315 | 94.24 332 | 96.84 298 | 90.07 235 | 96.43 155 | 94.48 309 | 90.29 165 | 95.37 320 | 87.44 268 | 97.23 158 | 99.36 163 |
|
cl-mvsnet2 | | | 93.77 190 | 93.25 194 | 95.33 210 | 99.49 99 | 94.43 192 | 99.61 164 | 98.09 181 | 90.38 229 | 89.16 253 | 95.61 263 | 90.56 162 | 97.34 247 | 91.93 213 | 84.45 269 | 94.21 254 |
|
VDD-MVS | | | 93.77 190 | 92.94 196 | 96.27 191 | 98.55 141 | 90.22 278 | 98.77 260 | 97.79 208 | 90.85 223 | 96.82 145 | 99.42 116 | 61.18 342 | 99.77 115 | 98.95 58 | 94.13 204 | 98.82 195 |
|
EI-MVSNet | | | 93.73 192 | 93.40 190 | 94.74 227 | 96.80 231 | 92.69 227 | 99.06 230 | 97.67 213 | 88.96 251 | 91.39 213 | 99.02 142 | 88.75 184 | 97.30 250 | 91.07 224 | 87.85 244 | 94.22 252 |
|
Fast-Effi-MVS+-dtu | | | 93.72 193 | 93.86 177 | 93.29 277 | 97.06 216 | 86.16 313 | 99.80 119 | 96.83 299 | 92.66 166 | 92.58 207 | 97.83 201 | 81.39 242 | 97.67 235 | 89.75 248 | 96.87 167 | 96.05 224 |
|
tpm | | | 93.70 194 | 93.41 189 | 94.58 234 | 95.36 268 | 87.41 309 | 97.01 314 | 96.90 294 | 90.85 223 | 96.72 148 | 94.14 314 | 90.40 163 | 96.84 280 | 90.75 235 | 88.54 238 | 99.51 147 |
|
PS-MVSNAJss | | | 93.64 195 | 93.31 192 | 94.61 232 | 92.11 317 | 92.19 238 | 99.12 221 | 97.38 249 | 92.51 177 | 88.45 262 | 96.99 224 | 91.20 150 | 97.29 253 | 94.36 174 | 87.71 246 | 94.36 241 |
|
gg-mvs-nofinetune | | | 93.51 196 | 91.86 220 | 98.47 114 | 97.72 191 | 97.96 77 | 92.62 340 | 98.51 95 | 74.70 343 | 97.33 134 | 69.59 353 | 98.91 3 | 97.79 231 | 97.77 114 | 99.56 104 | 99.67 117 |
|
nrg030 | | | 93.51 196 | 92.53 206 | 96.45 184 | 94.36 281 | 97.20 106 | 99.81 114 | 97.16 268 | 91.60 203 | 89.86 232 | 97.46 206 | 86.37 205 | 97.68 234 | 95.88 147 | 80.31 302 | 94.46 231 |
|
tpm cat1 | | | 93.51 196 | 92.52 207 | 96.47 182 | 97.77 184 | 91.47 260 | 96.13 324 | 98.06 184 | 80.98 328 | 92.91 203 | 93.78 317 | 89.66 170 | 98.87 163 | 87.03 276 | 96.39 173 | 99.09 185 |
|
CR-MVSNet | | | 93.45 199 | 92.62 201 | 95.94 198 | 96.29 240 | 92.66 228 | 92.01 343 | 96.23 317 | 92.62 168 | 96.94 141 | 93.31 321 | 91.04 155 | 96.03 312 | 79.23 318 | 95.96 180 | 99.13 183 |
|
AUN-MVS | | | 93.28 200 | 92.60 202 | 95.34 209 | 98.29 151 | 90.09 281 | 99.31 206 | 98.56 76 | 91.80 199 | 96.35 159 | 98.00 197 | 89.38 174 | 98.28 209 | 92.46 208 | 69.22 338 | 97.64 213 |
|
OPM-MVS | | | 93.21 201 | 92.80 198 | 94.44 243 | 93.12 303 | 90.85 266 | 99.77 126 | 97.61 220 | 96.19 51 | 91.56 212 | 98.65 173 | 75.16 294 | 98.47 186 | 93.78 190 | 89.39 225 | 93.99 278 |
|
miper_ehance_all_eth | | | 93.16 202 | 92.60 202 | 94.82 226 | 97.57 197 | 93.56 209 | 99.50 180 | 97.07 276 | 88.75 256 | 88.85 257 | 95.52 269 | 90.97 157 | 96.74 284 | 90.77 234 | 84.45 269 | 94.17 256 |
|
VDDNet | | | 93.12 203 | 91.91 218 | 96.76 175 | 96.67 238 | 92.65 230 | 98.69 266 | 98.21 166 | 82.81 321 | 97.75 127 | 99.28 124 | 61.57 340 | 99.48 148 | 98.09 100 | 94.09 205 | 98.15 204 |
|
Anonymous202405211 | | | 93.10 204 | 91.99 216 | 96.40 187 | 99.10 112 | 89.65 287 | 98.88 250 | 97.93 195 | 83.71 316 | 94.00 191 | 98.75 169 | 68.79 317 | 99.88 85 | 95.08 154 | 91.71 217 | 99.68 115 |
|
UniMVSNet (Re) | | | 93.07 205 | 92.13 212 | 95.88 199 | 94.84 274 | 96.24 142 | 99.88 84 | 98.98 34 | 92.49 179 | 89.25 248 | 95.40 275 | 87.09 198 | 97.14 260 | 93.13 203 | 78.16 314 | 94.26 249 |
|
bset_n11_16_dypcd | | | 93.05 206 | 92.30 210 | 95.31 211 | 90.23 335 | 95.05 179 | 99.44 190 | 97.28 258 | 92.51 177 | 90.65 221 | 96.68 234 | 85.30 215 | 96.71 287 | 94.49 172 | 84.14 272 | 94.16 261 |
|
LPG-MVS_test | | | 92.96 207 | 92.71 200 | 93.71 268 | 95.43 266 | 88.67 296 | 99.75 134 | 97.62 217 | 92.81 156 | 90.05 225 | 98.49 183 | 75.24 292 | 98.40 195 | 95.84 148 | 89.12 226 | 94.07 270 |
|
UniMVSNet_NR-MVSNet | | | 92.95 208 | 92.11 213 | 95.49 204 | 94.61 279 | 95.28 172 | 99.83 111 | 99.08 30 | 91.49 206 | 89.21 250 | 96.86 228 | 87.14 197 | 96.73 285 | 93.20 199 | 77.52 319 | 94.46 231 |
|
ACMM | | 91.95 10 | 92.88 209 | 92.52 207 | 93.98 261 | 95.75 256 | 89.08 293 | 99.77 126 | 97.52 232 | 93.00 151 | 89.95 229 | 97.99 198 | 76.17 286 | 98.46 189 | 93.63 195 | 88.87 230 | 94.39 239 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
test_djsdf | | | 92.83 210 | 92.29 211 | 94.47 241 | 91.90 320 | 92.46 233 | 99.55 173 | 97.27 259 | 91.17 214 | 89.96 228 | 96.07 253 | 81.10 245 | 96.89 277 | 94.67 168 | 88.91 228 | 94.05 272 |
|
D2MVS | | | 92.76 211 | 92.59 205 | 93.27 278 | 95.13 269 | 89.54 289 | 99.69 148 | 99.38 21 | 92.26 184 | 87.59 276 | 94.61 306 | 85.05 218 | 97.79 231 | 91.59 218 | 88.01 243 | 92.47 321 |
|
ACMP | | 92.05 9 | 92.74 212 | 92.42 209 | 93.73 266 | 95.91 250 | 88.72 295 | 99.81 114 | 97.53 230 | 94.13 111 | 87.00 285 | 98.23 191 | 74.07 300 | 98.47 186 | 96.22 142 | 88.86 231 | 93.99 278 |
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
VPA-MVSNet | | | 92.70 213 | 91.55 225 | 96.16 193 | 95.09 270 | 96.20 143 | 98.88 250 | 99.00 33 | 91.02 220 | 91.82 210 | 95.29 285 | 76.05 288 | 97.96 225 | 95.62 150 | 81.19 291 | 94.30 246 |
|
FMVSNet3 | | | 92.69 214 | 91.58 223 | 95.99 196 | 98.29 151 | 97.42 101 | 99.26 213 | 97.62 217 | 89.80 240 | 89.68 236 | 95.32 281 | 81.62 241 | 96.27 303 | 87.01 277 | 85.65 259 | 94.29 247 |
|
IterMVS-LS | | | 92.69 214 | 92.11 213 | 94.43 245 | 96.80 231 | 92.74 224 | 99.45 188 | 96.89 295 | 88.98 249 | 89.65 239 | 95.38 278 | 88.77 183 | 96.34 300 | 90.98 229 | 82.04 285 | 94.22 252 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
Patchmatch-test | | | 92.65 216 | 91.50 226 | 96.10 195 | 96.85 228 | 90.49 273 | 91.50 345 | 97.19 263 | 82.76 322 | 90.23 224 | 95.59 265 | 95.02 54 | 98.00 222 | 77.41 326 | 96.98 165 | 99.82 97 |
|
cl_fuxian | | | 92.53 217 | 91.87 219 | 94.52 237 | 97.40 203 | 92.99 220 | 99.40 192 | 96.93 292 | 87.86 268 | 88.69 260 | 95.44 273 | 89.95 168 | 96.44 296 | 90.45 238 | 80.69 299 | 94.14 266 |
|
AllTest | | | 92.48 218 | 91.64 221 | 95.00 219 | 99.01 115 | 88.43 300 | 98.94 245 | 96.82 301 | 86.50 286 | 88.71 258 | 98.47 187 | 74.73 296 | 99.88 85 | 85.39 287 | 96.18 175 | 96.71 218 |
|
DU-MVS | | | 92.46 219 | 91.45 228 | 95.49 204 | 94.05 286 | 95.28 172 | 99.81 114 | 98.74 51 | 92.25 185 | 89.21 250 | 96.64 237 | 81.66 239 | 96.73 285 | 93.20 199 | 77.52 319 | 94.46 231 |
|
eth_miper_zixun_eth | | | 92.41 220 | 91.93 217 | 93.84 265 | 97.28 211 | 90.68 268 | 98.83 256 | 96.97 287 | 88.57 261 | 89.19 252 | 95.73 260 | 89.24 179 | 96.69 288 | 89.97 246 | 81.55 288 | 94.15 263 |
|
cl-mvsnet1 | | | 92.32 221 | 91.60 222 | 94.47 241 | 97.31 209 | 92.74 224 | 99.58 167 | 96.75 305 | 86.99 281 | 87.64 275 | 95.54 267 | 89.55 172 | 96.50 294 | 88.58 256 | 82.44 282 | 94.17 256 |
|
cl-mvsnet_ | | | 92.31 222 | 91.58 223 | 94.52 237 | 97.33 208 | 92.77 222 | 99.57 169 | 96.78 304 | 86.97 282 | 87.56 277 | 95.51 270 | 89.43 173 | 96.62 290 | 88.60 255 | 82.44 282 | 94.16 261 |
|
LCM-MVSNet-Re | | | 92.31 222 | 92.60 202 | 91.43 300 | 97.53 198 | 79.27 345 | 99.02 237 | 91.83 351 | 92.07 189 | 80.31 325 | 94.38 312 | 83.50 228 | 95.48 318 | 97.22 126 | 97.58 150 | 99.54 143 |
|
WR-MVS | | | 92.31 222 | 91.25 230 | 95.48 207 | 94.45 280 | 95.29 171 | 99.60 165 | 98.68 55 | 90.10 234 | 88.07 271 | 96.89 226 | 80.68 251 | 96.80 283 | 93.14 202 | 79.67 306 | 94.36 241 |
|
COLMAP_ROB |  | 90.47 14 | 92.18 225 | 91.49 227 | 94.25 249 | 99.00 117 | 88.04 306 | 98.42 282 | 96.70 307 | 82.30 324 | 88.43 265 | 99.01 144 | 76.97 276 | 99.85 94 | 86.11 284 | 96.50 172 | 94.86 225 |
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
test_part1 | | | 92.15 226 | 90.72 236 | 96.44 186 | 98.87 131 | 97.46 98 | 98.99 239 | 98.26 160 | 85.89 293 | 86.34 296 | 96.34 245 | 81.71 237 | 97.48 241 | 91.06 225 | 78.99 308 | 94.37 240 |
|
Anonymous20240529 | | | 92.10 227 | 90.65 238 | 96.47 182 | 98.82 132 | 90.61 270 | 98.72 263 | 98.67 58 | 75.54 341 | 93.90 193 | 98.58 179 | 66.23 328 | 99.90 75 | 94.70 167 | 90.67 218 | 98.90 192 |
|
pmmvs4 | | | 92.10 227 | 91.07 233 | 95.18 214 | 92.82 310 | 94.96 181 | 99.48 184 | 96.83 299 | 87.45 273 | 88.66 261 | 96.56 240 | 83.78 226 | 96.83 281 | 89.29 250 | 84.77 267 | 93.75 295 |
|
jajsoiax | | | 91.92 229 | 91.18 231 | 94.15 251 | 91.35 326 | 90.95 264 | 99.00 238 | 97.42 244 | 92.61 169 | 87.38 281 | 97.08 218 | 72.46 305 | 97.36 245 | 94.53 171 | 88.77 232 | 94.13 267 |
|
XXY-MVS | | | 91.82 230 | 90.46 240 | 95.88 199 | 93.91 289 | 95.40 169 | 98.87 253 | 97.69 212 | 88.63 260 | 87.87 273 | 97.08 218 | 74.38 299 | 97.89 229 | 91.66 217 | 84.07 274 | 94.35 244 |
|
miper_lstm_enhance | | | 91.81 231 | 91.39 229 | 93.06 284 | 97.34 206 | 89.18 292 | 99.38 197 | 96.79 303 | 86.70 285 | 87.47 279 | 95.22 287 | 90.00 167 | 95.86 316 | 88.26 260 | 81.37 290 | 94.15 263 |
|
mvs_tets | | | 91.81 231 | 91.08 232 | 94.00 259 | 91.63 324 | 90.58 271 | 98.67 268 | 97.43 242 | 92.43 180 | 87.37 282 | 97.05 221 | 71.76 307 | 97.32 249 | 94.75 164 | 88.68 234 | 94.11 268 |
|
VPNet | | | 91.81 231 | 90.46 240 | 95.85 201 | 94.74 276 | 95.54 165 | 98.98 240 | 98.59 71 | 92.14 187 | 90.77 220 | 97.44 207 | 68.73 319 | 97.54 239 | 94.89 159 | 77.89 316 | 94.46 231 |
|
RPSCF | | | 91.80 234 | 92.79 199 | 88.83 318 | 98.15 163 | 69.87 349 | 98.11 294 | 96.60 310 | 83.93 314 | 94.33 187 | 99.27 127 | 79.60 261 | 99.46 149 | 91.99 212 | 93.16 214 | 97.18 216 |
|
PVSNet_0 | | 88.03 19 | 91.80 234 | 90.27 246 | 96.38 189 | 98.27 156 | 90.46 274 | 99.94 55 | 99.61 11 | 93.99 120 | 86.26 298 | 97.39 210 | 71.13 312 | 99.89 79 | 98.77 73 | 67.05 342 | 98.79 197 |
|
anonymousdsp | | | 91.79 236 | 90.92 234 | 94.41 246 | 90.76 331 | 92.93 221 | 98.93 246 | 97.17 266 | 89.08 245 | 87.46 280 | 95.30 282 | 78.43 272 | 96.92 276 | 92.38 209 | 88.73 233 | 93.39 306 |
|
JIA-IIPM | | | 91.76 237 | 90.70 237 | 94.94 221 | 96.11 243 | 87.51 308 | 93.16 339 | 98.13 180 | 75.79 340 | 97.58 129 | 77.68 350 | 92.84 121 | 97.97 223 | 88.47 259 | 96.54 170 | 99.33 167 |
|
TranMVSNet+NR-MVSNet | | | 91.68 238 | 90.61 239 | 94.87 223 | 93.69 293 | 93.98 201 | 99.69 148 | 98.65 59 | 91.03 219 | 88.44 263 | 96.83 232 | 80.05 259 | 96.18 306 | 90.26 243 | 76.89 326 | 94.45 236 |
|
NR-MVSNet | | | 91.56 239 | 90.22 247 | 95.60 203 | 94.05 286 | 95.76 158 | 98.25 287 | 98.70 53 | 91.16 216 | 80.78 324 | 96.64 237 | 83.23 231 | 96.57 292 | 91.41 219 | 77.73 318 | 94.46 231 |
|
v2v482 | | | 91.30 240 | 90.07 252 | 95.01 218 | 93.13 301 | 93.79 204 | 99.77 126 | 97.02 280 | 88.05 266 | 89.25 248 | 95.37 279 | 80.73 250 | 97.15 259 | 87.28 272 | 80.04 305 | 94.09 269 |
|
WR-MVS_H | | | 91.30 240 | 90.35 243 | 94.15 251 | 94.17 285 | 92.62 231 | 99.17 219 | 98.94 36 | 88.87 254 | 86.48 293 | 94.46 311 | 84.36 222 | 96.61 291 | 88.19 261 | 78.51 312 | 93.21 311 |
|
V42 | | | 91.28 242 | 90.12 251 | 94.74 227 | 93.42 298 | 93.46 211 | 99.68 150 | 97.02 280 | 87.36 274 | 89.85 234 | 95.05 290 | 81.31 244 | 97.34 247 | 87.34 271 | 80.07 304 | 93.40 305 |
|
CP-MVSNet | | | 91.23 243 | 90.22 247 | 94.26 248 | 93.96 288 | 92.39 235 | 99.09 223 | 98.57 74 | 88.95 252 | 86.42 294 | 96.57 239 | 79.19 264 | 96.37 298 | 90.29 242 | 78.95 309 | 94.02 273 |
|
XVG-ACMP-BASELINE | | | 91.22 244 | 90.75 235 | 92.63 289 | 93.73 292 | 85.61 316 | 98.52 276 | 97.44 241 | 92.77 160 | 89.90 231 | 96.85 229 | 66.64 327 | 98.39 197 | 92.29 210 | 88.61 235 | 93.89 286 |
|
v1144 | | | 91.09 245 | 89.83 253 | 94.87 223 | 93.25 300 | 93.69 207 | 99.62 163 | 96.98 285 | 86.83 284 | 89.64 240 | 94.99 295 | 80.94 247 | 97.05 267 | 85.08 290 | 81.16 292 | 93.87 288 |
|
FMVSNet2 | | | 91.02 246 | 89.56 258 | 95.41 208 | 97.53 198 | 95.74 159 | 98.98 240 | 97.41 246 | 87.05 278 | 88.43 265 | 95.00 294 | 71.34 309 | 96.24 305 | 85.12 289 | 85.21 264 | 94.25 251 |
|
MVP-Stereo | | | 90.93 247 | 90.45 242 | 92.37 291 | 91.25 328 | 88.76 294 | 98.05 297 | 96.17 319 | 87.27 276 | 84.04 309 | 95.30 282 | 78.46 271 | 97.27 255 | 83.78 298 | 99.70 94 | 91.09 332 |
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application. |
IterMVS | | | 90.91 248 | 90.17 249 | 93.12 281 | 96.78 234 | 90.42 276 | 98.89 248 | 97.05 279 | 89.03 247 | 86.49 292 | 95.42 274 | 76.59 281 | 95.02 324 | 87.22 273 | 84.09 273 | 93.93 283 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
GBi-Net | | | 90.88 249 | 89.82 254 | 94.08 254 | 97.53 198 | 91.97 241 | 98.43 279 | 96.95 288 | 87.05 278 | 89.68 236 | 94.72 300 | 71.34 309 | 96.11 307 | 87.01 277 | 85.65 259 | 94.17 256 |
|
test1 | | | 90.88 249 | 89.82 254 | 94.08 254 | 97.53 198 | 91.97 241 | 98.43 279 | 96.95 288 | 87.05 278 | 89.68 236 | 94.72 300 | 71.34 309 | 96.11 307 | 87.01 277 | 85.65 259 | 94.17 256 |
|
IterMVS-SCA-FT | | | 90.85 251 | 90.16 250 | 92.93 285 | 96.72 236 | 89.96 282 | 98.89 248 | 96.99 283 | 88.95 252 | 86.63 289 | 95.67 261 | 76.48 282 | 95.00 325 | 87.04 275 | 84.04 276 | 93.84 290 |
|
v144192 | | | 90.79 252 | 89.52 260 | 94.59 233 | 93.11 304 | 92.77 222 | 99.56 171 | 96.99 283 | 86.38 288 | 89.82 235 | 94.95 297 | 80.50 255 | 97.10 264 | 83.98 296 | 80.41 300 | 93.90 285 |
|
v148 | | | 90.70 253 | 89.63 256 | 93.92 262 | 92.97 307 | 90.97 263 | 99.75 134 | 96.89 295 | 87.51 271 | 88.27 269 | 95.01 292 | 81.67 238 | 97.04 269 | 87.40 270 | 77.17 323 | 93.75 295 |
|
MS-PatchMatch | | | 90.65 254 | 90.30 245 | 91.71 299 | 94.22 284 | 85.50 318 | 98.24 288 | 97.70 211 | 88.67 258 | 86.42 294 | 96.37 244 | 67.82 323 | 98.03 221 | 83.62 299 | 99.62 98 | 91.60 329 |
|
ACMH | | 89.72 17 | 90.64 255 | 89.63 256 | 93.66 272 | 95.64 263 | 88.64 298 | 98.55 272 | 97.45 239 | 89.03 247 | 81.62 321 | 97.61 204 | 69.75 315 | 98.41 193 | 89.37 249 | 87.62 248 | 93.92 284 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
PS-CasMVS | | | 90.63 256 | 89.51 261 | 93.99 260 | 93.83 290 | 91.70 254 | 98.98 240 | 98.52 88 | 88.48 262 | 86.15 299 | 96.53 241 | 75.46 290 | 96.31 301 | 88.83 254 | 78.86 311 | 93.95 281 |
|
v1192 | | | 90.62 257 | 89.25 265 | 94.72 229 | 93.13 301 | 93.07 217 | 99.50 180 | 97.02 280 | 86.33 289 | 89.56 242 | 95.01 292 | 79.22 263 | 97.09 266 | 82.34 306 | 81.16 292 | 94.01 275 |
|
v8 | | | 90.54 258 | 89.17 266 | 94.66 230 | 93.43 297 | 93.40 214 | 99.20 216 | 96.94 291 | 85.76 296 | 87.56 277 | 94.51 307 | 81.96 236 | 97.19 257 | 84.94 291 | 78.25 313 | 93.38 307 |
|
v1921920 | | | 90.46 259 | 89.12 267 | 94.50 239 | 92.96 308 | 92.46 233 | 99.49 182 | 96.98 285 | 86.10 291 | 89.61 241 | 95.30 282 | 78.55 270 | 97.03 271 | 82.17 307 | 80.89 298 | 94.01 275 |
|
our_test_3 | | | 90.39 260 | 89.48 263 | 93.12 281 | 92.40 314 | 89.57 288 | 99.33 203 | 96.35 316 | 87.84 269 | 85.30 304 | 94.99 295 | 84.14 224 | 96.09 310 | 80.38 315 | 84.56 268 | 93.71 300 |
|
PatchT | | | 90.38 261 | 88.75 275 | 95.25 213 | 95.99 247 | 90.16 279 | 91.22 347 | 97.54 228 | 76.80 336 | 97.26 135 | 86.01 345 | 91.88 142 | 96.07 311 | 66.16 346 | 95.91 182 | 99.51 147 |
|
ACMH+ | | 89.98 16 | 90.35 262 | 89.54 259 | 92.78 288 | 95.99 247 | 86.12 314 | 98.81 258 | 97.18 265 | 89.38 242 | 83.14 314 | 97.76 202 | 68.42 321 | 98.43 191 | 89.11 252 | 86.05 257 | 93.78 294 |
|
Baseline_NR-MVSNet | | | 90.33 263 | 89.51 261 | 92.81 287 | 92.84 309 | 89.95 283 | 99.77 126 | 93.94 347 | 84.69 311 | 89.04 254 | 95.66 262 | 81.66 239 | 96.52 293 | 90.99 228 | 76.98 324 | 91.97 327 |
|
MIMVSNet | | | 90.30 264 | 88.67 276 | 95.17 215 | 96.45 239 | 91.64 256 | 92.39 341 | 97.15 269 | 85.99 292 | 90.50 222 | 93.19 323 | 66.95 326 | 94.86 328 | 82.01 308 | 93.43 210 | 99.01 188 |
|
LTVRE_ROB | | 88.28 18 | 90.29 265 | 89.05 270 | 94.02 257 | 95.08 271 | 90.15 280 | 97.19 310 | 97.43 242 | 84.91 309 | 83.99 310 | 97.06 220 | 74.00 301 | 98.28 209 | 84.08 294 | 87.71 246 | 93.62 301 |
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
v10 | | | 90.25 266 | 88.82 273 | 94.57 235 | 93.53 295 | 93.43 212 | 99.08 225 | 96.87 297 | 85.00 306 | 87.34 283 | 94.51 307 | 80.93 248 | 97.02 273 | 82.85 303 | 79.23 307 | 93.26 309 |
|
v1240 | | | 90.20 267 | 88.79 274 | 94.44 243 | 93.05 306 | 92.27 237 | 99.38 197 | 96.92 293 | 85.89 293 | 89.36 245 | 94.87 299 | 77.89 273 | 97.03 271 | 80.66 314 | 81.08 294 | 94.01 275 |
|
PEN-MVS | | | 90.19 268 | 89.06 269 | 93.57 273 | 93.06 305 | 90.90 265 | 99.06 230 | 98.47 101 | 88.11 265 | 85.91 301 | 96.30 246 | 76.67 279 | 95.94 315 | 87.07 274 | 76.91 325 | 93.89 286 |
|
pmmvs5 | | | 90.17 269 | 89.09 268 | 93.40 275 | 92.10 318 | 89.77 286 | 99.74 137 | 95.58 330 | 85.88 295 | 87.24 284 | 95.74 258 | 73.41 303 | 96.48 295 | 88.54 257 | 83.56 278 | 93.95 281 |
|
EU-MVSNet | | | 90.14 270 | 90.34 244 | 89.54 315 | 92.55 313 | 81.06 339 | 98.69 266 | 98.04 186 | 91.41 212 | 86.59 290 | 96.84 231 | 80.83 249 | 93.31 341 | 86.20 282 | 81.91 286 | 94.26 249 |
|
UniMVSNet_ETH3D | | | 90.06 271 | 88.58 277 | 94.49 240 | 94.67 278 | 88.09 305 | 97.81 302 | 97.57 225 | 83.91 315 | 88.44 263 | 97.41 208 | 57.44 346 | 97.62 237 | 91.41 219 | 88.59 237 | 97.77 211 |
|
USDC | | | 90.00 272 | 88.96 271 | 93.10 283 | 94.81 275 | 88.16 304 | 98.71 264 | 95.54 331 | 93.66 135 | 83.75 312 | 97.20 214 | 65.58 330 | 98.31 206 | 83.96 297 | 87.49 250 | 92.85 316 |
|
Anonymous20231211 | | | 89.86 273 | 88.44 279 | 94.13 253 | 98.93 123 | 90.68 268 | 98.54 274 | 98.26 160 | 76.28 337 | 86.73 287 | 95.54 267 | 70.60 313 | 97.56 238 | 90.82 233 | 80.27 303 | 94.15 263 |
|
OurMVSNet-221017-0 | | | 89.81 274 | 89.48 263 | 90.83 305 | 91.64 323 | 81.21 337 | 98.17 292 | 95.38 333 | 91.48 207 | 85.65 303 | 97.31 211 | 72.66 304 | 97.29 253 | 88.15 262 | 84.83 266 | 93.97 280 |
|
RPMNet | | | 89.76 275 | 87.28 290 | 97.19 165 | 96.29 240 | 92.66 228 | 92.01 343 | 98.31 151 | 70.19 348 | 96.94 141 | 85.87 346 | 87.25 196 | 99.78 111 | 62.69 349 | 95.96 180 | 99.13 183 |
|
Patchmtry | | | 89.70 276 | 88.49 278 | 93.33 276 | 96.24 242 | 89.94 285 | 91.37 346 | 96.23 317 | 78.22 334 | 87.69 274 | 93.31 321 | 91.04 155 | 96.03 312 | 80.18 317 | 82.10 284 | 94.02 273 |
|
v7n | | | 89.65 277 | 88.29 282 | 93.72 267 | 92.22 316 | 90.56 272 | 99.07 229 | 97.10 273 | 85.42 304 | 86.73 287 | 94.72 300 | 80.06 258 | 97.13 261 | 81.14 312 | 78.12 315 | 93.49 303 |
|
ppachtmachnet_test | | | 89.58 278 | 88.35 280 | 93.25 279 | 92.40 314 | 90.44 275 | 99.33 203 | 96.73 306 | 85.49 302 | 85.90 302 | 95.77 257 | 81.09 246 | 96.00 314 | 76.00 332 | 82.49 281 | 93.30 308 |
|
DTE-MVSNet | | | 89.40 279 | 88.24 283 | 92.88 286 | 92.66 312 | 89.95 283 | 99.10 222 | 98.22 165 | 87.29 275 | 85.12 306 | 96.22 248 | 76.27 285 | 95.30 323 | 83.56 300 | 75.74 329 | 93.41 304 |
|
pm-mvs1 | | | 89.36 280 | 87.81 287 | 94.01 258 | 93.40 299 | 91.93 244 | 98.62 271 | 96.48 314 | 86.25 290 | 83.86 311 | 96.14 250 | 73.68 302 | 97.04 269 | 86.16 283 | 75.73 330 | 93.04 314 |
|
tfpnnormal | | | 89.29 281 | 87.61 288 | 94.34 247 | 94.35 282 | 94.13 197 | 98.95 244 | 98.94 36 | 83.94 313 | 84.47 308 | 95.51 270 | 74.84 295 | 97.39 244 | 77.05 329 | 80.41 300 | 91.48 331 |
|
MVS_0304 | | | 89.28 282 | 88.31 281 | 92.21 293 | 97.05 217 | 86.53 312 | 97.76 303 | 99.57 12 | 85.58 301 | 93.86 194 | 92.71 325 | 51.04 352 | 96.30 302 | 84.49 293 | 92.72 216 | 93.79 293 |
|
LF4IMVS | | | 89.25 283 | 88.85 272 | 90.45 309 | 92.81 311 | 81.19 338 | 98.12 293 | 94.79 340 | 91.44 209 | 86.29 297 | 97.11 216 | 65.30 332 | 98.11 217 | 88.53 258 | 85.25 263 | 92.07 324 |
|
testgi | | | 89.01 284 | 88.04 285 | 91.90 297 | 93.49 296 | 84.89 322 | 99.73 142 | 95.66 328 | 93.89 128 | 85.14 305 | 98.17 192 | 59.68 343 | 94.66 330 | 77.73 325 | 88.88 229 | 96.16 223 |
|
SixPastTwentyTwo | | | 88.73 285 | 88.01 286 | 90.88 303 | 91.85 321 | 82.24 331 | 98.22 290 | 95.18 338 | 88.97 250 | 82.26 317 | 96.89 226 | 71.75 308 | 96.67 289 | 84.00 295 | 82.98 279 | 93.72 299 |
|
FMVSNet1 | | | 88.50 286 | 86.64 292 | 94.08 254 | 95.62 265 | 91.97 241 | 98.43 279 | 96.95 288 | 83.00 319 | 86.08 300 | 94.72 300 | 59.09 344 | 96.11 307 | 81.82 310 | 84.07 274 | 94.17 256 |
|
FMVSNet5 | | | 88.32 287 | 87.47 289 | 90.88 303 | 96.90 226 | 88.39 302 | 97.28 308 | 95.68 327 | 82.60 323 | 84.67 307 | 92.40 330 | 79.83 260 | 91.16 345 | 76.39 331 | 81.51 289 | 93.09 312 |
|
DSMNet-mixed | | | 88.28 288 | 88.24 283 | 88.42 322 | 89.64 338 | 75.38 347 | 98.06 296 | 89.86 354 | 85.59 300 | 88.20 270 | 92.14 331 | 76.15 287 | 91.95 343 | 78.46 322 | 96.05 178 | 97.92 207 |
|
K. test v3 | | | 88.05 289 | 87.24 291 | 90.47 308 | 91.82 322 | 82.23 332 | 98.96 243 | 97.42 244 | 89.05 246 | 76.93 335 | 95.60 264 | 68.49 320 | 95.42 319 | 85.87 286 | 81.01 296 | 93.75 295 |
|
KD-MVS_2432*1600 | | | 88.00 290 | 86.10 294 | 93.70 270 | 96.91 223 | 94.04 198 | 97.17 311 | 97.12 271 | 84.93 307 | 81.96 318 | 92.41 328 | 92.48 130 | 94.51 331 | 79.23 318 | 52.68 350 | 92.56 318 |
|
miper_refine_blended | | | 88.00 290 | 86.10 294 | 93.70 270 | 96.91 223 | 94.04 198 | 97.17 311 | 97.12 271 | 84.93 307 | 81.96 318 | 92.41 328 | 92.48 130 | 94.51 331 | 79.23 318 | 52.68 350 | 92.56 318 |
|
TinyColmap | | | 87.87 292 | 86.51 293 | 91.94 296 | 95.05 272 | 85.57 317 | 97.65 304 | 94.08 345 | 84.40 312 | 81.82 320 | 96.85 229 | 62.14 339 | 98.33 204 | 80.25 316 | 86.37 256 | 91.91 328 |
|
TransMVSNet (Re) | | | 87.25 293 | 85.28 298 | 93.16 280 | 93.56 294 | 91.03 262 | 98.54 274 | 94.05 346 | 83.69 317 | 81.09 323 | 96.16 249 | 75.32 291 | 96.40 297 | 76.69 330 | 68.41 339 | 92.06 325 |
|
Patchmatch-RL test | | | 86.90 294 | 85.98 296 | 89.67 314 | 84.45 347 | 75.59 346 | 89.71 348 | 92.43 349 | 86.89 283 | 77.83 333 | 90.94 334 | 94.22 83 | 93.63 338 | 87.75 266 | 69.61 335 | 99.79 100 |
|
Anonymous20231206 | | | 86.32 295 | 85.42 297 | 89.02 317 | 89.11 340 | 80.53 343 | 99.05 234 | 95.28 334 | 85.43 303 | 82.82 315 | 93.92 315 | 74.40 298 | 93.44 340 | 66.99 344 | 81.83 287 | 93.08 313 |
|
MVS-HIRNet | | | 86.22 296 | 83.19 307 | 95.31 211 | 96.71 237 | 90.29 277 | 92.12 342 | 97.33 254 | 62.85 349 | 86.82 286 | 70.37 352 | 69.37 316 | 97.49 240 | 75.12 333 | 97.99 145 | 98.15 204 |
|
pmmvs6 | | | 85.69 297 | 83.84 303 | 91.26 302 | 90.00 337 | 84.41 324 | 97.82 301 | 96.15 320 | 75.86 339 | 81.29 322 | 95.39 277 | 61.21 341 | 96.87 279 | 83.52 301 | 73.29 333 | 92.50 320 |
|
test_0402 | | | 85.58 298 | 83.94 302 | 90.50 307 | 93.81 291 | 85.04 321 | 98.55 272 | 95.20 337 | 76.01 338 | 79.72 328 | 95.13 288 | 64.15 335 | 96.26 304 | 66.04 347 | 86.88 253 | 90.21 339 |
|
UnsupCasMVSNet_eth | | | 85.52 299 | 83.99 300 | 90.10 311 | 89.36 339 | 83.51 326 | 96.65 318 | 97.99 188 | 89.14 244 | 75.89 339 | 93.83 316 | 63.25 337 | 93.92 334 | 81.92 309 | 67.90 341 | 92.88 315 |
|
MDA-MVSNet_test_wron | | | 85.51 300 | 83.32 306 | 92.10 294 | 90.96 329 | 88.58 299 | 99.20 216 | 96.52 312 | 79.70 331 | 57.12 352 | 92.69 326 | 79.11 265 | 93.86 336 | 77.10 328 | 77.46 321 | 93.86 289 |
|
YYNet1 | | | 85.50 301 | 83.33 305 | 92.00 295 | 90.89 330 | 88.38 303 | 99.22 215 | 96.55 311 | 79.60 332 | 57.26 351 | 92.72 324 | 79.09 266 | 93.78 337 | 77.25 327 | 77.37 322 | 93.84 290 |
|
EG-PatchMatch MVS | | | 85.35 302 | 83.81 304 | 89.99 313 | 90.39 333 | 81.89 334 | 98.21 291 | 96.09 321 | 81.78 326 | 74.73 341 | 93.72 318 | 51.56 351 | 97.12 263 | 79.16 321 | 88.61 235 | 90.96 334 |
|
TDRefinement | | | 84.76 303 | 82.56 310 | 91.38 301 | 74.58 353 | 84.80 323 | 97.36 307 | 94.56 343 | 84.73 310 | 80.21 326 | 96.12 252 | 63.56 336 | 98.39 197 | 87.92 264 | 63.97 343 | 90.95 335 |
|
CMPMVS |  | 61.59 21 | 84.75 304 | 85.14 299 | 83.57 328 | 90.32 334 | 62.54 352 | 96.98 315 | 97.59 224 | 74.33 344 | 69.95 346 | 96.66 235 | 64.17 334 | 98.32 205 | 87.88 265 | 88.41 240 | 89.84 341 |
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
test20.03 | | | 84.72 305 | 83.99 300 | 86.91 325 | 88.19 342 | 80.62 342 | 98.88 250 | 95.94 323 | 88.36 264 | 78.87 329 | 94.62 305 | 68.75 318 | 89.11 349 | 66.52 345 | 75.82 328 | 91.00 333 |
|
CL-MVSNet_2432*1600 | | | 84.50 306 | 83.15 308 | 88.53 321 | 86.00 345 | 81.79 335 | 98.82 257 | 97.35 251 | 85.12 305 | 83.62 313 | 90.91 335 | 76.66 280 | 91.40 344 | 69.53 340 | 60.36 347 | 92.40 322 |
|
new_pmnet | | | 84.49 307 | 82.92 309 | 89.21 316 | 90.03 336 | 82.60 328 | 96.89 317 | 95.62 329 | 80.59 329 | 75.77 340 | 89.17 337 | 65.04 333 | 94.79 329 | 72.12 336 | 81.02 295 | 90.23 338 |
|
MDA-MVSNet-bldmvs | | | 84.09 308 | 81.52 314 | 91.81 298 | 91.32 327 | 88.00 307 | 98.67 268 | 95.92 324 | 80.22 330 | 55.60 353 | 93.32 320 | 68.29 322 | 93.60 339 | 73.76 334 | 76.61 327 | 93.82 292 |
|
pmmvs-eth3d | | | 84.03 309 | 81.97 312 | 90.20 310 | 84.15 348 | 87.09 310 | 98.10 295 | 94.73 342 | 83.05 318 | 74.10 342 | 87.77 341 | 65.56 331 | 94.01 333 | 81.08 313 | 69.24 337 | 89.49 343 |
|
OpenMVS_ROB |  | 79.82 20 | 83.77 310 | 81.68 313 | 90.03 312 | 88.30 341 | 82.82 327 | 98.46 277 | 95.22 336 | 73.92 345 | 76.00 338 | 91.29 333 | 55.00 348 | 96.94 275 | 68.40 342 | 88.51 239 | 90.34 337 |
|
DIV-MVS_2432*1600 | | | 83.59 311 | 82.06 311 | 88.20 323 | 86.93 343 | 80.70 341 | 97.21 309 | 96.38 315 | 82.87 320 | 82.49 316 | 88.97 338 | 67.63 324 | 92.32 342 | 73.75 335 | 62.30 346 | 91.58 330 |
|
MIMVSNet1 | | | 82.58 312 | 80.51 316 | 88.78 319 | 86.68 344 | 84.20 325 | 96.65 318 | 95.41 332 | 78.75 333 | 78.59 331 | 92.44 327 | 51.88 350 | 89.76 348 | 65.26 348 | 78.95 309 | 92.38 323 |
|
new-patchmatchnet | | | 81.19 313 | 79.34 317 | 86.76 326 | 82.86 350 | 80.36 344 | 97.92 299 | 95.27 335 | 82.09 325 | 72.02 343 | 86.87 343 | 62.81 338 | 90.74 347 | 71.10 337 | 63.08 344 | 89.19 345 |
|
PM-MVS | | | 80.47 314 | 78.88 318 | 85.26 327 | 83.79 349 | 72.22 348 | 95.89 329 | 91.08 352 | 85.71 299 | 76.56 337 | 88.30 339 | 36.64 354 | 93.90 335 | 82.39 305 | 69.57 336 | 89.66 342 |
|
pmmvs3 | | | 80.27 315 | 77.77 319 | 87.76 324 | 80.32 351 | 82.43 330 | 98.23 289 | 91.97 350 | 72.74 346 | 78.75 330 | 87.97 340 | 57.30 347 | 90.99 346 | 70.31 338 | 62.37 345 | 89.87 340 |
|
N_pmnet | | | 80.06 316 | 80.78 315 | 77.89 331 | 91.94 319 | 45.28 360 | 98.80 259 | 56.82 363 | 78.10 335 | 80.08 327 | 93.33 319 | 77.03 275 | 95.76 317 | 68.14 343 | 82.81 280 | 92.64 317 |
|
UnsupCasMVSNet_bld | | | 79.97 317 | 77.03 320 | 88.78 319 | 85.62 346 | 81.98 333 | 93.66 337 | 97.35 251 | 75.51 342 | 70.79 345 | 83.05 347 | 48.70 353 | 94.91 327 | 78.31 323 | 60.29 348 | 89.46 344 |
|
FPMVS | | | 68.72 318 | 68.72 321 | 68.71 336 | 65.95 357 | 44.27 362 | 95.97 328 | 94.74 341 | 51.13 351 | 53.26 354 | 90.50 336 | 25.11 359 | 83.00 353 | 60.80 350 | 80.97 297 | 78.87 349 |
|
LCM-MVSNet | | | 67.77 319 | 64.73 323 | 76.87 332 | 62.95 359 | 56.25 356 | 89.37 349 | 93.74 348 | 44.53 353 | 61.99 348 | 80.74 348 | 20.42 361 | 86.53 351 | 69.37 341 | 59.50 349 | 87.84 346 |
|
PMMVS2 | | | 67.15 320 | 64.15 324 | 76.14 333 | 70.56 356 | 62.07 353 | 93.89 335 | 87.52 358 | 58.09 350 | 60.02 349 | 78.32 349 | 22.38 360 | 84.54 352 | 59.56 351 | 47.03 352 | 81.80 348 |
|
Gipuma |  | | 66.95 321 | 65.00 322 | 72.79 334 | 91.52 325 | 67.96 350 | 66.16 355 | 95.15 339 | 47.89 352 | 58.54 350 | 67.99 354 | 29.74 356 | 87.54 350 | 50.20 353 | 77.83 317 | 62.87 353 |
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
tmp_tt | | | 65.23 322 | 62.94 325 | 72.13 335 | 44.90 362 | 50.03 358 | 81.05 352 | 89.42 357 | 38.45 354 | 48.51 356 | 99.90 17 | 54.09 349 | 78.70 355 | 91.84 216 | 18.26 357 | 87.64 347 |
|
ANet_high | | | 56.10 323 | 52.24 326 | 67.66 337 | 49.27 361 | 56.82 355 | 83.94 351 | 82.02 359 | 70.47 347 | 33.28 360 | 64.54 355 | 17.23 363 | 69.16 357 | 45.59 355 | 23.85 356 | 77.02 350 |
|
PMVS |  | 49.05 23 | 53.75 324 | 51.34 328 | 60.97 339 | 40.80 363 | 34.68 363 | 74.82 354 | 89.62 356 | 37.55 355 | 28.67 361 | 72.12 351 | 7.09 365 | 81.63 354 | 43.17 356 | 68.21 340 | 66.59 352 |
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
E-PMN | | | 52.30 325 | 52.18 327 | 52.67 340 | 71.51 354 | 45.40 359 | 93.62 338 | 76.60 361 | 36.01 356 | 43.50 357 | 64.13 356 | 27.11 358 | 67.31 358 | 31.06 358 | 26.06 354 | 45.30 357 |
|
MVE |  | 53.74 22 | 51.54 326 | 47.86 330 | 62.60 338 | 59.56 360 | 50.93 357 | 79.41 353 | 77.69 360 | 35.69 357 | 36.27 359 | 61.76 358 | 5.79 367 | 69.63 356 | 37.97 357 | 36.61 353 | 67.24 351 |
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
EMVS | | | 51.44 327 | 51.22 329 | 52.11 341 | 70.71 355 | 44.97 361 | 94.04 334 | 75.66 362 | 35.34 358 | 42.40 358 | 61.56 359 | 28.93 357 | 65.87 359 | 27.64 359 | 24.73 355 | 45.49 356 |
|
testmvs | | | 40.60 328 | 44.45 331 | 29.05 343 | 19.49 365 | 14.11 366 | 99.68 150 | 18.47 364 | 20.74 359 | 64.59 347 | 98.48 186 | 10.95 364 | 17.09 362 | 56.66 352 | 11.01 358 | 55.94 355 |
|
test123 | | | 37.68 329 | 39.14 332 | 33.31 342 | 19.94 364 | 24.83 365 | 98.36 283 | 9.75 365 | 15.53 360 | 51.31 355 | 87.14 342 | 19.62 362 | 17.74 361 | 47.10 354 | 3.47 360 | 57.36 354 |
|
cdsmvs_eth3d_5k | | | 23.43 330 | 31.24 333 | 0.00 345 | 0.00 366 | 0.00 367 | 0.00 357 | 98.09 181 | 0.00 362 | 0.00 363 | 99.67 95 | 83.37 229 | 0.00 363 | 0.00 361 | 0.00 361 | 0.00 359 |
|
wuyk23d | | | 20.37 331 | 20.84 334 | 18.99 344 | 65.34 358 | 27.73 364 | 50.43 356 | 7.67 366 | 9.50 361 | 8.01 362 | 6.34 362 | 6.13 366 | 26.24 360 | 23.40 360 | 10.69 359 | 2.99 358 |
|
ab-mvs-re | | | 8.28 332 | 11.04 335 | 0.00 345 | 0.00 366 | 0.00 367 | 0.00 357 | 0.00 367 | 0.00 362 | 0.00 363 | 99.40 118 | 0.00 368 | 0.00 363 | 0.00 361 | 0.00 361 | 0.00 359 |
|
pcd_1.5k_mvsjas | | | 7.60 333 | 10.13 336 | 0.00 345 | 0.00 366 | 0.00 367 | 0.00 357 | 0.00 367 | 0.00 362 | 0.00 363 | 0.00 363 | 91.20 150 | 0.00 363 | 0.00 361 | 0.00 361 | 0.00 359 |
|
uanet_test | | | 0.00 334 | 0.00 337 | 0.00 345 | 0.00 366 | 0.00 367 | 0.00 357 | 0.00 367 | 0.00 362 | 0.00 363 | 0.00 363 | 0.00 368 | 0.00 363 | 0.00 361 | 0.00 361 | 0.00 359 |
|
sosnet-low-res | | | 0.00 334 | 0.00 337 | 0.00 345 | 0.00 366 | 0.00 367 | 0.00 357 | 0.00 367 | 0.00 362 | 0.00 363 | 0.00 363 | 0.00 368 | 0.00 363 | 0.00 361 | 0.00 361 | 0.00 359 |
|
sosnet | | | 0.00 334 | 0.00 337 | 0.00 345 | 0.00 366 | 0.00 367 | 0.00 357 | 0.00 367 | 0.00 362 | 0.00 363 | 0.00 363 | 0.00 368 | 0.00 363 | 0.00 361 | 0.00 361 | 0.00 359 |
|
uncertanet | | | 0.00 334 | 0.00 337 | 0.00 345 | 0.00 366 | 0.00 367 | 0.00 357 | 0.00 367 | 0.00 362 | 0.00 363 | 0.00 363 | 0.00 368 | 0.00 363 | 0.00 361 | 0.00 361 | 0.00 359 |
|
Regformer | | | 0.00 334 | 0.00 337 | 0.00 345 | 0.00 366 | 0.00 367 | 0.00 357 | 0.00 367 | 0.00 362 | 0.00 363 | 0.00 363 | 0.00 368 | 0.00 363 | 0.00 361 | 0.00 361 | 0.00 359 |
|
uanet | | | 0.00 334 | 0.00 337 | 0.00 345 | 0.00 366 | 0.00 367 | 0.00 357 | 0.00 367 | 0.00 362 | 0.00 363 | 0.00 363 | 0.00 368 | 0.00 363 | 0.00 361 | 0.00 361 | 0.00 359 |
|
ZD-MVS | | | | | | 99.92 35 | 98.57 51 | | 98.52 88 | 92.34 182 | 99.31 63 | 99.83 49 | 95.06 52 | 99.80 106 | 99.70 30 | 99.97 44 | |
|
RE-MVS-def | | | | 98.13 55 | | 99.79 70 | 96.37 134 | 99.76 131 | 98.31 151 | 94.43 98 | 99.40 58 | 99.75 77 | 92.95 119 | | 98.90 64 | 99.92 67 | 99.97 63 |
|
IU-MVS | | | | | | 99.93 26 | 99.31 7 | | 98.41 129 | 97.71 8 | 99.84 8 | | | | 100.00 1 | 100.00 1 | 100.00 1 |
|
OPU-MVS | | | | | 99.93 2 | 99.89 45 | 99.80 2 | 99.96 23 | | | | 99.80 58 | 97.44 11 | 100.00 1 | 100.00 1 | 99.98 33 | 100.00 1 |
|
test_241102_TWO | | | | | | | | | 98.43 114 | 97.27 20 | 99.80 16 | 99.94 4 | 97.18 17 | 100.00 1 | 100.00 1 | 100.00 1 | 100.00 1 |
|
test_241102_ONE | | | | | | 99.93 26 | 99.30 8 | | 98.43 114 | 97.26 22 | 99.80 16 | 99.88 22 | 96.71 20 | 100.00 1 | | | |
|
9.14 | | | | 98.38 38 | | 99.87 52 | | 99.91 69 | 98.33 147 | 93.22 146 | 99.78 22 | 99.89 19 | 94.57 68 | 99.85 94 | 99.84 13 | 99.97 44 | |
|
save fliter | | | | | | 99.82 65 | 98.79 33 | 99.96 23 | 98.40 130 | 97.66 10 | | | | | | | |
|
test_0728_THIRD | | | | | | | | | | 96.48 40 | 99.83 10 | 99.91 13 | 97.87 4 | 100.00 1 | 99.92 9 | 100.00 1 | 100.00 1 |
|
test_0728_SECOND | | | | | 99.82 5 | 99.94 14 | 99.47 5 | 99.95 40 | 98.43 114 | | | | | 100.00 1 | 99.99 5 | 100.00 1 | 100.00 1 |
|
test0726 | | | | | | 99.93 26 | 99.29 10 | 99.96 23 | 98.42 125 | 97.28 18 | 99.86 4 | 99.94 4 | 97.22 15 | | | | |
|
GSMVS | | | | | | | | | | | | | | | | | 99.59 130 |
|
test_part2 | | | | | | 99.89 45 | 99.25 13 | | | | 99.49 48 | | | | | | |
|
sam_mvs1 | | | | | | | | | | | | | 94.72 64 | | | | 99.59 130 |
|
sam_mvs | | | | | | | | | | | | | 94.25 82 | | | | |
|
ambc | | | | | 83.23 329 | 77.17 352 | 62.61 351 | 87.38 350 | 94.55 344 | | 76.72 336 | 86.65 344 | 30.16 355 | 96.36 299 | 84.85 292 | 69.86 334 | 90.73 336 |
|
MTGPA |  | | | | | | | | 98.28 156 | | | | | | | | |
|
test_post1 | | | | | | | | 95.78 330 | | | | 59.23 360 | 93.20 114 | 97.74 233 | 91.06 225 | | |
|
test_post | | | | | | | | | | | | 63.35 357 | 94.43 69 | 98.13 216 | | | |
|
patchmatchnet-post | | | | | | | | | | | | 91.70 332 | 95.12 48 | 97.95 226 | | | |
|
GG-mvs-BLEND | | | | | 98.54 109 | 98.21 159 | 98.01 73 | 93.87 336 | 98.52 88 | | 97.92 122 | 97.92 200 | 99.02 2 | 97.94 228 | 98.17 94 | 99.58 103 | 99.67 117 |
|
MTMP | | | | | | | | 99.87 87 | 96.49 313 | | | | | | | | |
|
gm-plane-assit | | | | | | 96.97 221 | 93.76 206 | | | 91.47 208 | | 98.96 153 | | 98.79 167 | 94.92 156 | | |
|
test9_res | | | | | | | | | | | | | | | 99.71 29 | 99.99 20 | 100.00 1 |
|
TEST9 | | | | | | 99.92 35 | 98.92 23 | 99.96 23 | 98.43 114 | 93.90 126 | 99.71 30 | 99.86 29 | 95.88 34 | 99.85 94 | | | |
|
test_8 | | | | | | 99.92 35 | 98.88 26 | 99.96 23 | 98.43 114 | 94.35 103 | 99.69 32 | 99.85 33 | 95.94 31 | 99.85 94 | | | |
|
agg_prior2 | | | | | | | | | | | | | | | 99.48 36 | 100.00 1 | 100.00 1 |
|
agg_prior | | | | | | 99.93 26 | 98.77 36 | | 98.43 114 | | 99.63 35 | | | 99.85 94 | | | |
|
TestCases | | | | | 95.00 219 | 99.01 115 | 88.43 300 | | 96.82 301 | 86.50 286 | 88.71 258 | 98.47 187 | 74.73 296 | 99.88 85 | 85.39 287 | 96.18 175 | 96.71 218 |
|
test_prior4 | | | | | | | 98.05 71 | 99.94 55 | | | | | | | | | |
|
test_prior2 | | | | | | | | 99.95 40 | | 95.78 58 | 99.73 26 | 99.76 72 | 96.00 29 | | 99.78 20 | 100.00 1 | |
|
test_prior | | | | | 99.43 35 | 99.94 14 | 98.49 57 | | 98.65 59 | | | | | 99.80 106 | | | 99.99 20 |
|
旧先验2 | | | | | | | | 99.46 187 | | 94.21 110 | 99.85 6 | | | 99.95 60 | 96.96 133 | | |
|
æ–°å‡ ä½•2 | | | | | | | | 99.40 192 | | | | | | | | | |
|
æ–°å‡ ä½•1 | | | | | 99.42 38 | 99.75 76 | 98.27 65 | | 98.63 65 | 92.69 164 | 99.55 42 | 99.82 53 | 94.40 71 | 100.00 1 | 91.21 221 | 99.94 57 | 99.99 20 |
|
旧先验1 | | | | | | 99.76 74 | 97.52 91 | | 98.64 62 | | | 99.85 33 | 95.63 39 | | | 99.94 57 | 99.99 20 |
|
æ— å…ˆéªŒ | | | | | | | | 99.49 182 | 98.71 52 | 93.46 140 | | | | 100.00 1 | 94.36 174 | | 99.99 20 |
|
原ACMM2 | | | | | | | | 99.90 73 | | | | | | | | | |
|
原ACMM1 | | | | | 98.96 82 | 99.73 81 | 96.99 114 | | 98.51 95 | 94.06 117 | 99.62 37 | 99.85 33 | 94.97 59 | 99.96 53 | 95.11 153 | 99.95 51 | 99.92 87 |
|
test222 | | | | | | 99.55 94 | 97.41 102 | 99.34 202 | 98.55 81 | 91.86 195 | 99.27 68 | 99.83 49 | 93.84 96 | | | 99.95 51 | 99.99 20 |
|
testdata2 | | | | | | | | | | | | | | 99.99 36 | 90.54 237 | | |
|
segment_acmp | | | | | | | | | | | | | 96.68 22 | | | | |
|
testdata | | | | | 98.42 119 | 99.47 100 | 95.33 170 | | 98.56 76 | 93.78 131 | 99.79 21 | 99.85 33 | 93.64 101 | 99.94 68 | 94.97 155 | 99.94 57 | 100.00 1 |
|
testdata1 | | | | | | | | 99.28 211 | | 96.35 48 | | | | | | | |
|
test12 | | | | | 99.43 35 | 99.74 77 | 98.56 53 | | 98.40 130 | | 99.65 33 | | 94.76 63 | 99.75 120 | | 99.98 33 | 99.99 20 |
|
plane_prior7 | | | | | | 95.71 260 | 91.59 258 | | | | | | | | | | |
|
plane_prior6 | | | | | | 95.76 255 | 91.72 253 | | | | | | 80.47 256 | | | | |
|
plane_prior5 | | | | | | | | | 97.87 201 | | | | | 98.37 202 | 97.79 112 | 89.55 222 | 94.52 228 |
|
plane_prior4 | | | | | | | | | | | | 98.59 177 | | | | | |
|
plane_prior3 | | | | | | | 91.64 256 | | | 96.63 38 | 93.01 200 | | | | | | |
|
plane_prior2 | | | | | | | | 99.84 105 | | 96.38 44 | | | | | | | |
|
plane_prior1 | | | | | | 95.73 257 | | | | | | | | | | | |
|
plane_prior | | | | | | | 91.74 250 | 99.86 98 | | 96.76 34 | | | | | | 89.59 221 | |
|
n2 | | | | | | | | | 0.00 367 | | | | | | | | |
|
nn | | | | | | | | | 0.00 367 | | | | | | | | |
|
door-mid | | | | | | | | | 89.69 355 | | | | | | | | |
|
lessismore_v0 | | | | | 90.53 306 | 90.58 332 | 80.90 340 | | 95.80 325 | | 77.01 334 | 95.84 255 | 66.15 329 | 96.95 274 | 83.03 302 | 75.05 331 | 93.74 298 |
|
LGP-MVS_train | | | | | 93.71 268 | 95.43 266 | 88.67 296 | | 97.62 217 | 92.81 156 | 90.05 225 | 98.49 183 | 75.24 292 | 98.40 195 | 95.84 148 | 89.12 226 | 94.07 270 |
|
test11 | | | | | | | | | 98.44 106 | | | | | | | | |
|
door | | | | | | | | | 90.31 353 | | | | | | | | |
|
HQP5-MVS | | | | | | | 91.85 246 | | | | | | | | | | |
|
HQP-NCC | | | | | | 95.78 251 | | 99.87 87 | | 96.82 30 | 93.37 196 | | | | | | |
|
ACMP_Plane | | | | | | 95.78 251 | | 99.87 87 | | 96.82 30 | 93.37 196 | | | | | | |
|
BP-MVS | | | | | | | | | | | | | | | 97.92 109 | | |
|
HQP4-MVS | | | | | | | | | | | 93.37 196 | | | 98.39 197 | | | 94.53 226 |
|
HQP3-MVS | | | | | | | | | 97.89 199 | | | | | | | 89.60 219 | |
|
HQP2-MVS | | | | | | | | | | | | | 80.65 252 | | | | |
|
NP-MVS | | | | | | 95.77 254 | 91.79 248 | | | | | 98.65 173 | | | | | |
|
MDTV_nov1_ep13_2view | | | | | | | 96.26 138 | 96.11 325 | | 91.89 194 | 98.06 119 | | 94.40 71 | | 94.30 177 | | 99.67 117 |
|
MDTV_nov1_ep13 | | | | 95.69 139 | | 97.90 174 | 94.15 196 | 95.98 327 | 98.44 106 | 93.12 149 | 97.98 121 | 95.74 258 | 95.10 49 | 98.58 181 | 90.02 245 | 96.92 166 | |
|
ACMMP++_ref | | | | | | | | | | | | | | | | 87.04 252 | |
|
ACMMP++ | | | | | | | | | | | | | | | | 88.23 241 | |
|
Test By Simon | | | | | | | | | | | | | 92.82 123 | | | | |
|
ITE_SJBPF | | | | | 92.38 290 | 95.69 262 | 85.14 320 | | 95.71 326 | 92.81 156 | 89.33 247 | 98.11 193 | 70.23 314 | 98.42 192 | 85.91 285 | 88.16 242 | 93.59 302 |
|
DeepMVS_CX |  | | | | 82.92 330 | 95.98 249 | 58.66 354 | | 96.01 322 | 92.72 161 | 78.34 332 | 95.51 270 | 58.29 345 | 98.08 218 | 82.57 304 | 85.29 262 | 92.03 326 |
|