This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
CNVR-MVS99.40 199.26 199.84 499.98 299.51 499.98 898.69 5498.20 399.93 199.98 296.82 19100.00 199.75 22100.00 199.99 20
NCCC99.37 299.25 299.71 1099.96 899.15 1699.97 1698.62 6698.02 699.90 299.95 397.33 13100.00 199.54 33100.00 1100.00 1
MCST-MVS99.32 399.14 499.86 399.97 399.59 399.97 1698.64 6298.47 299.13 7699.92 1196.38 26100.00 199.74 24100.00 1100.00 1
DVP-MVS99.30 499.16 399.73 899.93 2699.29 1099.95 4098.32 14997.28 1899.83 1099.91 1397.22 15100.00 199.99 5100.00 199.89 90
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
SED-MVS99.28 599.11 699.77 699.93 2699.30 899.96 2398.43 11497.27 2099.80 1699.94 496.71 20100.00 1100.00 1100.00 1100.00 1
DPE-MVS99.26 699.10 799.74 799.89 4599.24 1499.87 8798.44 10697.48 1599.64 3499.94 496.68 2299.99 3699.99 5100.00 199.99 20
MSLP-MVS++99.13 799.01 999.49 3199.94 1498.46 5999.98 898.86 4497.10 2599.80 1699.94 495.92 33100.00 199.51 34100.00 1100.00 1
MSP-MVS99.09 899.12 598.98 8099.93 2697.24 10499.95 4098.42 12597.50 1499.52 4799.88 2297.43 1299.71 12899.50 3599.98 33100.00 1
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
HPM-MVS++copyleft99.07 998.88 1399.63 1299.90 4299.02 1999.95 4098.56 7697.56 1399.44 5199.85 3395.38 45100.00 199.31 4399.99 2099.87 93
APDe-MVS99.06 1098.91 1299.51 2899.94 1498.76 4099.91 6998.39 13397.20 2499.46 4999.85 3395.53 4299.79 10999.86 12100.00 199.99 20
SteuartSystems-ACMMP99.02 1198.97 1199.18 5498.72 13797.71 8399.98 898.44 10696.85 2999.80 1699.91 1397.57 699.85 9499.44 3899.99 2099.99 20
Skip Steuart: Steuart Systems R&D Blog.
CHOSEN 280x42099.01 1299.03 898.95 8399.38 10498.87 2798.46 27799.42 2097.03 2799.02 8099.09 13899.35 198.21 21499.73 2799.78 8899.77 104
test_prior398.99 1398.84 1499.43 3599.94 1498.49 5799.95 4098.65 5995.78 5899.73 2699.76 7296.00 2999.80 10699.78 20100.00 199.99 20
xxxxxxxxxxxxxcwj98.98 1498.79 1599.54 2399.82 6598.79 3399.96 2397.52 23297.66 1099.81 1299.89 1994.70 6599.86 9099.84 1399.93 6399.96 70
TSAR-MVS + MP.98.93 1598.77 1699.41 3999.74 7798.67 4499.77 12698.38 13796.73 3599.88 399.74 8194.89 6299.59 13999.80 1899.98 3399.97 63
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
SD-MVS98.92 1698.70 1799.56 2199.70 8598.73 4199.94 5598.34 14696.38 4499.81 1299.76 7294.59 6799.98 4299.84 1399.96 4899.97 63
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
MG-MVS98.91 1798.65 2099.68 1199.94 1499.07 1899.64 16099.44 1897.33 1799.00 8399.72 8494.03 9099.98 4298.73 74100.00 1100.00 1
testtj98.89 1898.69 1899.52 2699.94 1498.56 5399.90 7398.55 8195.14 7799.72 2999.84 4695.46 43100.00 199.65 3299.99 2099.99 20
train_agg98.88 1998.65 2099.59 1899.92 3598.92 2399.96 2398.43 11494.35 10399.71 3099.86 2995.94 3199.85 9499.69 3199.98 3399.99 20
agg_prior198.88 1998.66 1999.54 2399.93 2698.77 3699.96 2398.43 11494.63 9299.63 3599.85 3395.79 3799.85 9499.72 2899.99 2099.99 20
DPM-MVS98.83 2198.46 3099.97 199.33 10699.92 199.96 2398.44 10697.96 799.55 4299.94 497.18 17100.00 193.81 18799.94 5799.98 51
ETH3 D test640098.81 2298.54 2699.59 1899.93 2698.93 2299.93 6198.46 10394.56 9399.84 899.92 1194.32 8099.86 9099.96 899.98 33100.00 1
DeepC-MVS_fast96.59 198.81 2298.54 2699.62 1599.90 4298.85 2999.24 21498.47 10198.14 499.08 7799.91 1393.09 116100.00 199.04 5499.99 20100.00 1
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
Regformer-198.79 2498.60 2399.36 4599.85 5598.34 6299.87 8798.52 8896.05 5399.41 5499.79 6294.93 6099.76 11799.07 4999.90 7299.99 20
Regformer-298.78 2598.59 2499.36 4599.85 5598.32 6399.87 8798.52 8896.04 5499.41 5499.79 6294.92 6199.76 11799.05 5099.90 7299.98 51
SMA-MVScopyleft98.76 2698.48 2999.62 1599.87 5298.87 2799.86 9898.38 13793.19 14799.77 2399.94 495.54 40100.00 199.74 2499.99 20100.00 1
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
MVS_111021_HR98.72 2798.62 2299.01 7899.36 10597.18 10799.93 6199.90 196.81 3398.67 9599.77 6893.92 9299.89 7999.27 4599.94 5799.96 70
XVS98.70 2898.55 2599.15 6199.94 1497.50 9499.94 5598.42 12596.22 4999.41 5499.78 6694.34 7699.96 5398.92 6199.95 5199.99 20
ETH3D-3000-0.198.68 2998.42 3199.47 3499.83 6398.57 5199.90 7398.37 14093.81 12999.81 1299.90 1794.34 7699.86 9099.84 1399.98 3399.97 63
SF-MVS98.67 3098.40 3599.50 2999.77 7398.67 4499.90 7398.21 16693.53 13899.81 1299.89 1994.70 6599.86 9099.84 1399.93 6399.96 70
CDPH-MVS98.65 3198.36 4299.49 3199.94 1498.73 4199.87 8798.33 14793.97 12199.76 2499.87 2694.99 5899.75 12098.55 84100.00 199.98 51
APD-MVScopyleft98.62 3298.35 4399.41 3999.90 4298.51 5699.87 8798.36 14294.08 11499.74 2599.73 8394.08 8899.74 12499.42 3999.99 2099.99 20
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
TSAR-MVS + GP.98.60 3398.51 2898.86 8799.73 8196.63 12399.97 1697.92 19798.07 598.76 9199.55 10695.00 5799.94 6899.91 1197.68 14899.99 20
PAPM98.60 3398.42 3199.14 6396.05 24598.96 2099.90 7399.35 2396.68 3798.35 11099.66 9796.45 2598.51 18599.45 3799.89 7499.96 70
#test#98.59 3598.41 3399.14 6399.96 897.43 9999.95 4098.61 6895.00 7999.31 6399.85 3394.22 83100.00 198.78 7299.98 3399.98 51
Regformer-398.58 3698.41 3399.10 6999.84 6097.57 8899.66 15398.52 8895.79 5799.01 8199.77 6894.40 7199.75 12098.82 6899.83 8199.98 51
HFP-MVS98.56 3798.37 4099.14 6399.96 897.43 9999.95 4098.61 6894.77 8599.31 6399.85 3394.22 83100.00 198.70 7599.98 3399.98 51
Regformer-498.56 3798.39 3799.08 7199.84 6097.52 9199.66 15398.52 8895.76 6099.01 8199.77 6894.33 7999.75 12098.80 7199.83 8199.98 51
region2R98.54 3998.37 4099.05 7399.96 897.18 10799.96 2398.55 8194.87 8399.45 5099.85 3394.07 89100.00 198.67 77100.00 199.98 51
DELS-MVS98.54 3998.22 4899.50 2999.15 11198.65 48100.00 198.58 7297.70 998.21 11799.24 13292.58 12899.94 6898.63 8299.94 5799.92 87
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
PAPR98.52 4198.16 5399.58 2099.97 398.77 3699.95 4098.43 11495.35 7198.03 12099.75 7794.03 9099.98 4298.11 9899.83 8199.99 20
ACMMPR98.50 4298.32 4499.05 7399.96 897.18 10799.95 4098.60 7094.77 8599.31 6399.84 4693.73 98100.00 198.70 7599.98 3399.98 51
ACMMP_NAP98.49 4398.14 5499.54 2399.66 8798.62 5099.85 10198.37 14094.68 8999.53 4499.83 4992.87 120100.00 198.66 8099.84 8099.99 20
EPNet98.49 4398.40 3598.77 9099.62 8996.80 12099.90 7399.51 1597.60 1299.20 7199.36 12393.71 9999.91 7497.99 10598.71 12799.61 127
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
SR-MVS98.46 4598.30 4698.93 8499.88 4997.04 11299.84 10598.35 14494.92 8099.32 6299.80 5893.35 10599.78 11199.30 4499.95 5199.96 70
CP-MVS98.45 4698.32 4498.87 8699.96 896.62 12499.97 1698.39 13394.43 9898.90 8699.87 2694.30 81100.00 199.04 5499.99 2099.99 20
PS-MVSNAJ98.44 4798.20 5099.16 5998.80 13498.92 2399.54 17598.17 17297.34 1699.85 699.85 3391.20 15099.89 7999.41 4099.67 9598.69 199
MVS_111021_LR98.42 4898.38 3898.53 11199.39 10395.79 15699.87 8799.86 296.70 3698.78 9099.79 6292.03 14099.90 7599.17 4699.86 7999.88 92
DP-MVS Recon98.41 4998.02 6199.56 2199.97 398.70 4399.92 6598.44 10692.06 19198.40 10899.84 4695.68 38100.00 198.19 9399.71 9399.97 63
PHI-MVS98.41 4998.21 4999.03 7599.86 5497.10 11199.98 898.80 4990.78 22599.62 3799.78 6695.30 46100.00 199.80 1899.93 6399.99 20
ETH3D cwj APD-0.1698.40 5198.07 5999.40 4199.59 9098.41 6099.86 9898.24 16292.18 18699.73 2699.87 2693.47 10399.85 9499.74 2499.95 5199.93 81
mPP-MVS98.39 5298.20 5098.97 8199.97 396.92 11799.95 4098.38 13795.04 7898.61 9999.80 5893.39 104100.00 198.64 81100.00 199.98 51
test117298.38 5398.25 4798.77 9099.88 4996.56 12799.80 11998.36 14294.68 8999.20 7199.80 5893.28 11099.78 11199.34 4299.92 6799.98 51
PGM-MVS98.34 5498.13 5598.99 7999.92 3597.00 11399.75 13499.50 1693.90 12699.37 6099.76 7293.24 113100.00 197.75 11699.96 4899.98 51
zzz-MVS98.33 5598.00 6299.30 4799.85 5597.93 7899.80 11998.28 15695.76 6097.18 13799.88 2292.74 124100.00 198.67 7799.88 7699.99 20
SR-MVS-dyc-post98.31 5698.17 5298.71 9399.79 7096.37 13499.76 13198.31 15194.43 9899.40 5899.75 7793.28 11099.78 11198.90 6499.92 6799.97 63
ZNCC-MVS98.31 5698.03 6099.17 5799.88 4997.59 8799.94 5598.44 10694.31 10698.50 10399.82 5393.06 11799.99 3698.30 9299.99 2099.93 81
MTAPA98.29 5897.96 6799.30 4799.85 5597.93 7899.39 19698.28 15695.76 6097.18 13799.88 2292.74 124100.00 198.67 7799.88 7699.99 20
GST-MVS98.27 5997.97 6499.17 5799.92 3597.57 8899.93 6198.39 13394.04 11998.80 8999.74 8192.98 118100.00 198.16 9599.76 8999.93 81
CANet98.27 5997.82 7099.63 1299.72 8399.10 1799.98 898.51 9597.00 2898.52 10199.71 8687.80 19099.95 6099.75 2299.38 11399.83 96
EI-MVSNet-Vis-set98.27 5998.11 5798.75 9299.83 6396.59 12699.40 19298.51 9595.29 7398.51 10299.76 7293.60 10299.71 12898.53 8599.52 10699.95 78
APD-MVS_3200maxsize98.25 6298.08 5898.78 8999.81 6896.60 12599.82 11298.30 15493.95 12399.37 6099.77 6892.84 12199.76 11798.95 5899.92 6799.97 63
xiu_mvs_v2_base98.23 6397.97 6499.02 7798.69 13898.66 4699.52 17798.08 18397.05 2699.86 499.86 2990.65 16099.71 12899.39 4198.63 12898.69 199
MP-MVScopyleft98.23 6397.97 6499.03 7599.94 1497.17 11099.95 4098.39 13394.70 8898.26 11599.81 5791.84 144100.00 198.85 6799.97 4499.93 81
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
EI-MVSNet-UG-set98.14 6597.99 6398.60 10299.80 6996.27 13699.36 20198.50 9995.21 7698.30 11299.75 7793.29 10999.73 12798.37 8999.30 11599.81 98
PAPM_NR98.12 6697.93 6898.70 9499.94 1496.13 14699.82 11298.43 11494.56 9397.52 13099.70 8894.40 7199.98 4297.00 13199.98 3399.99 20
WTY-MVS98.10 6797.60 7799.60 1798.92 12599.28 1299.89 8199.52 1395.58 6798.24 11699.39 12093.33 10699.74 12497.98 10795.58 19099.78 103
MP-MVS-pluss98.07 6897.64 7599.38 4499.74 7798.41 6099.74 13798.18 17193.35 14296.45 15499.85 3392.64 12799.97 5198.91 6399.89 7499.77 104
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
112198.03 6997.57 7999.40 4199.74 7798.21 6698.31 28498.62 6692.78 15999.53 4499.83 4995.08 50100.00 194.36 17499.92 6799.99 20
HPM-MVScopyleft97.96 7097.72 7298.68 9599.84 6096.39 13399.90 7398.17 17292.61 16998.62 9899.57 10591.87 14399.67 13598.87 6699.99 2099.99 20
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
PVSNet_Blended97.94 7197.64 7598.83 8899.59 9096.99 114100.00 199.10 2895.38 7098.27 11399.08 13989.00 18199.95 6099.12 4799.25 11699.57 137
PLCcopyleft95.54 397.93 7297.89 6998.05 13599.82 6594.77 18899.92 6598.46 10393.93 12497.20 13699.27 12795.44 4499.97 5197.41 12199.51 10899.41 159
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
ETV-MVS97.92 7397.80 7198.25 12798.14 16496.48 12899.98 897.63 21595.61 6699.29 6799.46 11492.55 12998.82 16599.02 5698.54 12999.46 152
API-MVS97.86 7497.66 7498.47 11499.52 9695.41 16899.47 18598.87 4391.68 20198.84 8799.85 3392.34 13499.99 3698.44 8799.96 48100.00 1
lupinMVS97.85 7597.60 7798.62 10097.28 21197.70 8599.99 497.55 22695.50 6999.43 5299.67 9590.92 15898.71 17598.40 8899.62 9899.45 154
CS-MVS97.84 7697.69 7398.31 12498.28 15396.27 136100.00 197.52 23295.29 7399.25 7099.65 9991.18 15398.94 16298.96 5799.04 12199.73 108
test_yl97.83 7797.37 8499.21 5199.18 10897.98 7599.64 16099.27 2591.43 21097.88 12498.99 14795.84 3599.84 10398.82 6895.32 19499.79 100
DCV-MVSNet97.83 7797.37 8499.21 5199.18 10897.98 7599.64 16099.27 2591.43 21097.88 12498.99 14795.84 3599.84 10398.82 6895.32 19499.79 100
alignmvs97.81 7997.33 8799.25 4998.77 13698.66 4699.99 498.44 10694.40 10298.41 10699.47 11293.65 10099.42 15098.57 8394.26 20399.67 117
HPM-MVS_fast97.80 8097.50 8098.68 9599.79 7096.42 13099.88 8498.16 17591.75 20098.94 8599.54 10891.82 14599.65 13797.62 11899.99 2099.99 20
HY-MVS92.50 797.79 8197.17 9299.63 1298.98 11899.32 697.49 30599.52 1395.69 6498.32 11197.41 20893.32 10799.77 11598.08 10195.75 18799.81 98
CNLPA97.76 8297.38 8398.92 8599.53 9596.84 11899.87 8798.14 17893.78 13196.55 15299.69 9192.28 13599.98 4297.13 12799.44 11199.93 81
ACMMPcopyleft97.74 8397.44 8298.66 9799.92 3596.13 14699.18 21899.45 1794.84 8496.41 15799.71 8691.40 14799.99 3697.99 10598.03 14499.87 93
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
DeepPCF-MVS95.94 297.71 8498.98 1093.92 26299.63 8881.76 33699.96 2398.56 7699.47 199.19 7499.99 194.16 87100.00 199.92 999.93 63100.00 1
abl_697.67 8597.34 8698.66 9799.68 8696.11 14999.68 15098.14 17893.80 13099.27 6899.70 8888.65 18699.98 4297.46 12099.72 9299.89 90
CPTT-MVS97.64 8697.32 8898.58 10599.97 395.77 15799.96 2398.35 14489.90 23898.36 10999.79 6291.18 15399.99 3698.37 8999.99 2099.99 20
sss97.57 8797.03 9799.18 5498.37 14898.04 7299.73 14299.38 2193.46 14098.76 9199.06 14091.21 14999.89 7996.33 14097.01 16499.62 125
EIA-MVS97.53 8897.46 8197.76 14598.04 16894.84 18499.98 897.61 22094.41 10197.90 12399.59 10392.40 13298.87 16398.04 10299.13 11999.59 130
xiu_mvs_v1_base_debu97.43 8997.06 9398.55 10697.74 18798.14 6799.31 20697.86 20396.43 4199.62 3799.69 9185.56 21199.68 13299.05 5098.31 13597.83 208
xiu_mvs_v1_base97.43 8997.06 9398.55 10697.74 18798.14 6799.31 20697.86 20396.43 4199.62 3799.69 9185.56 21199.68 13299.05 5098.31 13597.83 208
xiu_mvs_v1_base_debi97.43 8997.06 9398.55 10697.74 18798.14 6799.31 20697.86 20396.43 4199.62 3799.69 9185.56 21199.68 13299.05 5098.31 13597.83 208
MAR-MVS97.43 8997.19 9098.15 13299.47 10094.79 18799.05 23498.76 5092.65 16798.66 9699.82 5388.52 18799.98 4298.12 9799.63 9799.67 117
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
thisisatest051597.41 9397.02 9898.59 10497.71 19397.52 9199.97 1698.54 8591.83 19697.45 13299.04 14197.50 899.10 15694.75 16496.37 17499.16 179
114514_t97.41 9396.83 10199.14 6399.51 9897.83 8099.89 8198.27 15988.48 26299.06 7899.66 9790.30 16499.64 13896.32 14199.97 4499.96 70
DWT-MVSNet_test97.31 9597.19 9097.66 14898.24 15794.67 18998.86 25498.20 17093.60 13798.09 11898.89 15897.51 798.78 16894.04 18197.28 15799.55 139
OMC-MVS97.28 9697.23 8997.41 15799.76 7493.36 21599.65 15697.95 19396.03 5597.41 13399.70 8889.61 17199.51 14296.73 13898.25 13899.38 161
PVSNet_Blended_VisFu97.27 9796.81 10298.66 9798.81 13396.67 12299.92 6598.64 6294.51 9596.38 15898.49 18389.05 18099.88 8597.10 12998.34 13399.43 157
jason97.24 9896.86 10098.38 12295.73 25797.32 10399.97 1697.40 24895.34 7298.60 10099.54 10887.70 19198.56 18297.94 10899.47 10999.25 174
jason: jason.
AdaColmapbinary97.23 9996.80 10398.51 11299.99 195.60 16499.09 22398.84 4693.32 14396.74 14799.72 8486.04 207100.00 198.01 10399.43 11299.94 80
VNet97.21 10096.57 11099.13 6898.97 11997.82 8199.03 23699.21 2794.31 10699.18 7598.88 16086.26 20699.89 7998.93 6094.32 20299.69 114
PVSNet91.05 1397.13 10196.69 10698.45 11699.52 9695.81 15599.95 4099.65 1094.73 8799.04 7999.21 13484.48 22199.95 6094.92 15698.74 12699.58 136
thisisatest053097.10 10296.72 10598.22 12897.60 19696.70 12199.92 6598.54 8591.11 21797.07 14098.97 15197.47 999.03 15793.73 19296.09 17798.92 189
CSCG97.10 10297.04 9697.27 16499.89 4591.92 24599.90 7399.07 3188.67 25895.26 17799.82 5393.17 11599.98 4298.15 9699.47 10999.90 89
canonicalmvs97.09 10496.32 11699.39 4398.93 12398.95 2199.72 14597.35 25194.45 9697.88 12499.42 11686.71 20199.52 14198.48 8693.97 20799.72 111
diffmvs97.00 10596.64 10798.09 13397.64 19496.17 14599.81 11497.19 26394.67 9198.95 8499.28 12486.43 20498.76 17198.37 8997.42 15499.33 167
thres20096.96 10696.21 11899.22 5098.97 11998.84 3099.85 10199.71 593.17 14896.26 16098.88 16089.87 16999.51 14294.26 17894.91 19799.31 169
MVSFormer96.94 10796.60 10897.95 13797.28 21197.70 8599.55 17397.27 25991.17 21499.43 5299.54 10890.92 15896.89 27794.67 16899.62 9899.25 174
F-COLMAP96.93 10896.95 9996.87 17299.71 8491.74 25099.85 10197.95 19393.11 15095.72 17099.16 13692.35 13399.94 6895.32 15199.35 11498.92 189
DeepC-MVS94.51 496.92 10996.40 11598.45 11699.16 11095.90 15399.66 15398.06 18496.37 4794.37 18699.49 11183.29 23099.90 7597.63 11799.61 10199.55 139
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
tttt051796.85 11096.49 11297.92 13997.48 20295.89 15499.85 10198.54 8590.72 22696.63 14998.93 15797.47 999.02 15893.03 20595.76 18698.85 193
131496.84 11195.96 13099.48 3396.74 23598.52 5598.31 28498.86 4495.82 5689.91 23098.98 14987.49 19399.96 5397.80 11199.73 9199.96 70
CHOSEN 1792x268896.81 11296.53 11197.64 14998.91 12793.07 21799.65 15699.80 395.64 6595.39 17498.86 16484.35 22399.90 7596.98 13299.16 11899.95 78
tfpn200view996.79 11395.99 12399.19 5398.94 12198.82 3199.78 12399.71 592.86 15396.02 16398.87 16289.33 17599.50 14493.84 18494.57 19899.27 172
thres40096.78 11495.99 12399.16 5998.94 12198.82 3199.78 12399.71 592.86 15396.02 16398.87 16289.33 17599.50 14493.84 18494.57 19899.16 179
CANet_DTU96.76 11596.15 11998.60 10298.78 13597.53 9099.84 10597.63 21597.25 2399.20 7199.64 10081.36 24399.98 4292.77 20798.89 12298.28 202
PMMVS96.76 11596.76 10496.76 17598.28 15392.10 24099.91 6997.98 19094.12 11299.53 4499.39 12086.93 20098.73 17396.95 13497.73 14699.45 154
thres100view90096.74 11795.92 13399.18 5498.90 12898.77 3699.74 13799.71 592.59 17195.84 16698.86 16489.25 17799.50 14493.84 18494.57 19899.27 172
TESTMET0.1,196.74 11796.26 11798.16 12997.36 20596.48 12899.96 2398.29 15591.93 19395.77 16998.07 19595.54 4098.29 20790.55 23698.89 12299.70 112
baseline296.71 11996.49 11297.37 16095.63 26495.96 15299.74 13798.88 4292.94 15291.61 21198.97 15197.72 598.62 18094.83 16098.08 14397.53 215
thres600view796.69 12095.87 13699.14 6398.90 12898.78 3599.74 13799.71 592.59 17195.84 16698.86 16489.25 17799.50 14493.44 19794.50 20199.16 179
EPP-MVSNet96.69 12096.60 10896.96 16997.74 18793.05 21999.37 19998.56 7688.75 25695.83 16899.01 14496.01 2898.56 18296.92 13597.20 16099.25 174
HyFIR lowres test96.66 12296.43 11497.36 16199.05 11393.91 20399.70 14799.80 390.54 22796.26 16098.08 19492.15 13898.23 21396.84 13795.46 19199.93 81
MVS96.60 12395.56 14299.72 996.85 22899.22 1598.31 28498.94 3691.57 20490.90 21899.61 10286.66 20299.96 5397.36 12299.88 7699.99 20
UA-Net96.54 12495.96 13098.27 12698.23 15895.71 16198.00 29898.45 10593.72 13498.41 10699.27 12788.71 18599.66 13691.19 22297.69 14799.44 156
EPMVS96.53 12596.01 12298.09 13398.43 14796.12 14896.36 32199.43 1993.53 13897.64 12895.04 29194.41 7098.38 20191.13 22398.11 13999.75 106
test-LLR96.47 12696.04 12197.78 14297.02 21995.44 16699.96 2398.21 16694.07 11595.55 17196.38 24293.90 9498.27 21190.42 23998.83 12499.64 123
MVS_Test96.46 12795.74 13898.61 10198.18 16197.23 10599.31 20697.15 26991.07 21898.84 8797.05 22188.17 18998.97 16094.39 17397.50 15199.61 127
baseline96.43 12895.98 12597.76 14597.34 20695.17 17799.51 17997.17 26693.92 12596.90 14399.28 12485.37 21498.64 17997.50 11996.86 16899.46 152
casdiffmvs96.42 12995.97 12897.77 14497.30 21094.98 18099.84 10597.09 27493.75 13396.58 15099.26 13085.07 21798.78 16897.77 11497.04 16399.54 143
test-mter96.39 13095.93 13297.78 14297.02 21995.44 16699.96 2398.21 16691.81 19895.55 17196.38 24295.17 4798.27 21190.42 23998.83 12499.64 123
CDS-MVSNet96.34 13196.07 12097.13 16697.37 20494.96 18199.53 17697.91 19891.55 20595.37 17598.32 19095.05 5397.13 26193.80 18895.75 18799.30 170
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
Vis-MVSNet (Re-imp)96.32 13295.98 12597.35 16297.93 17394.82 18599.47 18598.15 17791.83 19695.09 17899.11 13791.37 14897.47 24293.47 19697.43 15299.74 107
3Dnovator+91.53 1196.31 13395.24 14999.52 2696.88 22798.64 4999.72 14598.24 16295.27 7588.42 26798.98 14982.76 23299.94 6897.10 12999.83 8199.96 70
Effi-MVS+96.30 13495.69 13998.16 12997.85 17996.26 13897.41 30697.21 26290.37 23098.65 9798.58 17986.61 20398.70 17697.11 12897.37 15699.52 146
IS-MVSNet96.29 13595.90 13497.45 15598.13 16594.80 18699.08 22597.61 22092.02 19295.54 17398.96 15390.64 16198.08 21893.73 19297.41 15599.47 151
3Dnovator91.47 1296.28 13695.34 14799.08 7196.82 23097.47 9799.45 18898.81 4795.52 6889.39 24499.00 14681.97 23599.95 6097.27 12499.83 8199.84 95
tpmrst96.27 13795.98 12597.13 16697.96 17193.15 21696.34 32298.17 17292.07 18998.71 9495.12 28993.91 9398.73 17394.91 15896.62 16999.50 149
CostFormer96.10 13895.88 13596.78 17497.03 21892.55 23297.08 31397.83 20690.04 23798.72 9394.89 29895.01 5698.29 20796.54 13995.77 18599.50 149
PVSNet_BlendedMVS96.05 13995.82 13796.72 17799.59 9096.99 11499.95 4099.10 2894.06 11798.27 11395.80 25689.00 18199.95 6099.12 4787.53 24993.24 310
PatchMatch-RL96.04 14095.40 14497.95 13799.59 9095.22 17699.52 17799.07 3193.96 12296.49 15398.35 18982.28 23499.82 10590.15 24499.22 11798.81 196
1112_ss96.01 14195.20 15198.42 11997.80 18296.41 13199.65 15696.66 30892.71 16292.88 20499.40 11892.16 13799.30 15191.92 21493.66 20899.55 139
PatchmatchNetpermissive95.94 14295.45 14397.39 15997.83 18094.41 19396.05 32698.40 13092.86 15397.09 13995.28 28694.21 8698.07 22089.26 25198.11 13999.70 112
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
TAMVS95.85 14395.58 14196.65 18097.07 21593.50 21099.17 21997.82 20791.39 21395.02 17998.01 19692.20 13697.30 25093.75 19195.83 18499.14 182
LS3D95.84 14495.11 15498.02 13699.85 5595.10 17898.74 26198.50 9987.22 27793.66 19599.86 2987.45 19499.95 6090.94 23099.81 8799.02 187
baseline195.78 14594.86 15798.54 10998.47 14698.07 7099.06 23097.99 18892.68 16594.13 19098.62 17693.28 11098.69 17793.79 18985.76 25898.84 194
Test_1112_low_res95.72 14694.83 15898.42 11997.79 18396.41 13199.65 15696.65 30992.70 16392.86 20596.13 25192.15 13899.30 15191.88 21593.64 20999.55 139
Vis-MVSNetpermissive95.72 14695.15 15397.45 15597.62 19594.28 19599.28 21198.24 16294.27 10996.84 14498.94 15679.39 26298.76 17193.25 19898.49 13099.30 170
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
EPNet_dtu95.71 14895.39 14596.66 17998.92 12593.41 21399.57 16998.90 4096.19 5197.52 13098.56 18192.65 12697.36 24577.89 32498.33 13499.20 177
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
BH-w/o95.71 14895.38 14696.68 17898.49 14592.28 23699.84 10597.50 23692.12 18892.06 20998.79 16884.69 21998.67 17895.29 15299.66 9699.09 185
mvs_anonymous95.65 15095.03 15597.53 15298.19 16095.74 15999.33 20397.49 23790.87 22290.47 22397.10 21788.23 18897.16 25895.92 14697.66 14999.68 115
mvs-test195.53 15195.97 12894.20 25097.77 18485.44 31999.95 4097.06 27794.92 8096.58 15098.72 17085.81 20898.98 15994.80 16198.11 13998.18 203
MVSTER95.53 15195.22 15096.45 18498.56 14097.72 8299.91 6997.67 21392.38 18191.39 21397.14 21597.24 1497.30 25094.80 16187.85 24494.34 245
tpm295.47 15395.18 15296.35 19096.91 22391.70 25496.96 31697.93 19588.04 26798.44 10595.40 27593.32 10797.97 22394.00 18295.61 18999.38 161
QAPM95.40 15494.17 16999.10 6996.92 22297.71 8399.40 19298.68 5589.31 24388.94 25698.89 15882.48 23399.96 5393.12 20499.83 8199.62 125
UGNet95.33 15594.57 16397.62 15198.55 14194.85 18398.67 26899.32 2495.75 6396.80 14696.27 24772.18 30699.96 5394.58 17099.05 12098.04 206
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
RRT_MVS95.23 15694.77 16096.61 18198.28 15398.32 6399.81 11497.41 24692.59 17191.28 21597.76 20295.02 5497.23 25693.65 19487.14 25194.28 248
BH-untuned95.18 15794.83 15896.22 19298.36 14991.22 26199.80 11997.32 25590.91 22191.08 21698.67 17283.51 22798.54 18494.23 17999.61 10198.92 189
BH-RMVSNet95.18 15794.31 16797.80 14198.17 16295.23 17599.76 13197.53 23092.52 17694.27 18899.25 13176.84 27898.80 16690.89 23299.54 10599.35 165
PCF-MVS94.20 595.18 15794.10 17198.43 11898.55 14195.99 15197.91 30097.31 25690.35 23189.48 24399.22 13385.19 21699.89 7990.40 24198.47 13199.41 159
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
dp95.05 16094.43 16596.91 17097.99 17092.73 22696.29 32397.98 19089.70 24195.93 16594.67 30493.83 9798.45 19086.91 28096.53 17199.54 143
Fast-Effi-MVS+95.02 16194.19 16897.52 15397.88 17594.55 19099.97 1697.08 27588.85 25594.47 18597.96 19984.59 22098.41 19389.84 24797.10 16199.59 130
IB-MVS92.85 694.99 16293.94 17498.16 12997.72 19195.69 16399.99 498.81 4794.28 10892.70 20696.90 22595.08 5099.17 15596.07 14373.88 33299.60 129
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
XVG-OURS94.82 16394.74 16195.06 21798.00 16989.19 29099.08 22597.55 22694.10 11394.71 18199.62 10180.51 25499.74 12496.04 14493.06 21596.25 220
ADS-MVSNet94.79 16494.02 17297.11 16897.87 17793.79 20494.24 33298.16 17590.07 23596.43 15594.48 30990.29 16598.19 21587.44 26897.23 15899.36 163
XVG-OURS-SEG-HR94.79 16494.70 16295.08 21698.05 16789.19 29099.08 22597.54 22893.66 13594.87 18099.58 10478.78 26799.79 10997.31 12393.40 21196.25 220
OpenMVScopyleft90.15 1594.77 16693.59 18298.33 12396.07 24497.48 9699.56 17198.57 7490.46 22886.51 29198.95 15578.57 26999.94 6893.86 18399.74 9097.57 214
LFMVS94.75 16793.56 18498.30 12599.03 11495.70 16298.74 26197.98 19087.81 27098.47 10499.39 12067.43 32599.53 14098.01 10395.20 19699.67 117
SCA94.69 16893.81 17897.33 16397.10 21494.44 19198.86 25498.32 14993.30 14496.17 16295.59 26576.48 28297.95 22691.06 22597.43 15299.59 130
ab-mvs94.69 16893.42 18798.51 11298.07 16696.26 13896.49 32098.68 5590.31 23294.54 18297.00 22376.30 28499.71 12895.98 14593.38 21299.56 138
CVMVSNet94.68 17094.94 15693.89 26496.80 23186.92 31199.06 23098.98 3494.45 9694.23 18999.02 14285.60 21095.31 32290.91 23195.39 19399.43 157
cascas94.64 17193.61 17997.74 14797.82 18196.26 13899.96 2397.78 20985.76 29694.00 19197.54 20576.95 27799.21 15397.23 12595.43 19297.76 212
HQP-MVS94.61 17294.50 16494.92 22295.78 25191.85 24699.87 8797.89 19996.82 3093.37 19698.65 17380.65 25298.39 19797.92 10989.60 21994.53 226
RRT_test8_iter0594.58 17394.11 17095.98 19797.88 17596.11 14999.89 8197.45 23991.66 20288.28 26896.71 23396.53 2497.40 24394.73 16683.85 27794.45 236
TR-MVS94.54 17493.56 18497.49 15497.96 17194.34 19498.71 26497.51 23590.30 23394.51 18498.69 17175.56 28998.77 17092.82 20695.99 17999.35 165
DP-MVS94.54 17493.42 18797.91 14099.46 10294.04 19898.93 24697.48 23881.15 32790.04 22799.55 10687.02 19999.95 6088.97 25398.11 13999.73 108
Effi-MVS+-dtu94.53 17695.30 14892.22 29297.77 18482.54 32999.59 16697.06 27794.92 8095.29 17695.37 27985.81 20897.89 22994.80 16197.07 16296.23 222
HQP_MVS94.49 17794.36 16694.87 22395.71 26091.74 25099.84 10597.87 20196.38 4493.01 20098.59 17780.47 25698.37 20297.79 11289.55 22294.52 228
TAPA-MVS92.12 894.42 17893.60 18196.90 17199.33 10691.78 24999.78 12398.00 18789.89 23994.52 18399.47 11291.97 14199.18 15469.90 33999.52 10699.73 108
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
ET-MVSNet_ETH3D94.37 17993.28 19397.64 14998.30 15097.99 7499.99 497.61 22094.35 10371.57 34499.45 11596.23 2795.34 32196.91 13685.14 26599.59 130
MSDG94.37 17993.36 19197.40 15898.88 13093.95 20299.37 19997.38 24985.75 29890.80 21999.17 13584.11 22599.88 8586.35 28198.43 13298.36 201
miper_enhance_ethall94.36 18193.98 17395.49 20498.68 13995.24 17499.73 14297.29 25793.28 14589.86 23295.97 25494.37 7597.05 26792.20 21184.45 26994.19 255
tpmvs94.28 18293.57 18396.40 18798.55 14191.50 25995.70 33198.55 8187.47 27292.15 20894.26 31391.42 14698.95 16188.15 26295.85 18398.76 198
FIs94.10 18393.43 18696.11 19494.70 27796.82 11999.58 16798.93 3992.54 17589.34 24697.31 21187.62 19297.10 26494.22 18086.58 25494.40 238
CLD-MVS94.06 18493.90 17594.55 23696.02 24690.69 26799.98 897.72 21096.62 3991.05 21798.85 16777.21 27498.47 18698.11 9889.51 22494.48 230
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
test0.0.03 193.86 18593.61 17994.64 23195.02 27392.18 23999.93 6198.58 7294.07 11587.96 27298.50 18293.90 9494.96 32681.33 31193.17 21396.78 217
X-MVStestdata93.83 18692.06 21599.15 6199.94 1497.50 9499.94 5598.42 12596.22 4999.41 5441.37 36194.34 7699.96 5398.92 6199.95 5199.99 20
GA-MVS93.83 18692.84 19796.80 17395.73 25793.57 20899.88 8497.24 26192.57 17492.92 20296.66 23578.73 26897.67 23587.75 26694.06 20699.17 178
FC-MVSNet-test93.81 18893.15 19595.80 20294.30 28396.20 14399.42 19198.89 4192.33 18389.03 25597.27 21387.39 19596.83 28193.20 19986.48 25594.36 241
ADS-MVSNet293.80 18993.88 17693.55 27497.87 17785.94 31594.24 33296.84 29890.07 23596.43 15594.48 30990.29 16595.37 32087.44 26897.23 15899.36 163
cl-mvsnet293.77 19093.25 19495.33 21099.49 9994.43 19299.61 16498.09 18190.38 22989.16 25395.61 26390.56 16297.34 24791.93 21384.45 26994.21 254
VDD-MVS93.77 19092.94 19696.27 19198.55 14190.22 27898.77 26097.79 20890.85 22396.82 14599.42 11661.18 34299.77 11598.95 5894.13 20498.82 195
EI-MVSNet93.73 19293.40 19094.74 22796.80 23192.69 22799.06 23097.67 21388.96 25191.39 21399.02 14288.75 18497.30 25091.07 22487.85 24494.22 252
Fast-Effi-MVS+-dtu93.72 19393.86 17793.29 27797.06 21686.16 31399.80 11996.83 29992.66 16692.58 20797.83 20181.39 24297.67 23589.75 24896.87 16796.05 224
tpm93.70 19493.41 18994.58 23495.36 26887.41 30997.01 31496.90 29490.85 22396.72 14894.14 31490.40 16396.84 28090.75 23588.54 23899.51 147
PS-MVSNAJss93.64 19593.31 19294.61 23292.11 31792.19 23899.12 22197.38 24992.51 17788.45 26296.99 22491.20 15097.29 25394.36 17487.71 24694.36 241
gg-mvs-nofinetune93.51 19691.86 22098.47 11497.72 19197.96 7792.62 34098.51 9574.70 34397.33 13469.59 35398.91 397.79 23197.77 11499.56 10499.67 117
nrg03093.51 19692.53 20696.45 18494.36 28197.20 10699.81 11497.16 26891.60 20389.86 23297.46 20686.37 20597.68 23495.88 14780.31 30294.46 231
tpm cat193.51 19692.52 20796.47 18297.77 18491.47 26096.13 32498.06 18480.98 32892.91 20393.78 31789.66 17098.87 16387.03 27696.39 17399.09 185
CR-MVSNet93.45 19992.62 20195.94 19896.29 24092.66 22892.01 34396.23 31792.62 16896.94 14193.31 32191.04 15596.03 31279.23 31895.96 18099.13 183
AUN-MVS93.28 20092.60 20295.34 20998.29 15190.09 28199.31 20698.56 7691.80 19996.35 15998.00 19789.38 17498.28 20992.46 20869.22 33897.64 213
OPM-MVS93.21 20192.80 19894.44 24393.12 30390.85 26699.77 12697.61 22096.19 5191.56 21298.65 17375.16 29498.47 18693.78 19089.39 22593.99 278
miper_ehance_all_eth93.16 20292.60 20294.82 22697.57 19793.56 20999.50 18097.07 27688.75 25688.85 25795.52 26990.97 15796.74 28490.77 23484.45 26994.17 256
VDDNet93.12 20391.91 21896.76 17596.67 23892.65 23098.69 26698.21 16682.81 32197.75 12799.28 12461.57 34099.48 14898.09 10094.09 20598.15 204
Anonymous20240521193.10 20491.99 21696.40 18799.10 11289.65 28798.88 25097.93 19583.71 31694.00 19198.75 16968.79 31799.88 8595.08 15491.71 21799.68 115
UniMVSNet (Re)93.07 20592.13 21295.88 19994.84 27496.24 14299.88 8498.98 3492.49 17989.25 24895.40 27587.09 19897.14 26093.13 20378.16 31494.26 249
bset_n11_16_dypcd93.05 20692.30 21095.31 21190.23 33595.05 17999.44 19097.28 25892.51 17790.65 22196.68 23485.30 21596.71 28794.49 17284.14 27294.16 261
LPG-MVS_test92.96 20792.71 20093.71 26895.43 26688.67 29699.75 13497.62 21792.81 15690.05 22598.49 18375.24 29298.40 19595.84 14889.12 22694.07 270
UniMVSNet_NR-MVSNet92.95 20892.11 21395.49 20494.61 27995.28 17299.83 11199.08 3091.49 20689.21 25096.86 22887.14 19796.73 28593.20 19977.52 31994.46 231
ACMM91.95 1092.88 20992.52 20793.98 26195.75 25689.08 29399.77 12697.52 23293.00 15189.95 22997.99 19876.17 28698.46 18993.63 19588.87 23094.39 239
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
test_djsdf92.83 21092.29 21194.47 24191.90 32092.46 23399.55 17397.27 25991.17 21489.96 22896.07 25381.10 24596.89 27794.67 16888.91 22894.05 272
D2MVS92.76 21192.59 20593.27 27895.13 26989.54 28999.69 14899.38 2192.26 18487.59 27694.61 30685.05 21897.79 23191.59 21888.01 24392.47 321
ACMP92.05 992.74 21292.42 20993.73 26695.91 25088.72 29599.81 11497.53 23094.13 11187.00 28598.23 19174.07 30098.47 18696.22 14288.86 23193.99 278
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
VPA-MVSNet92.70 21391.55 22596.16 19395.09 27096.20 14398.88 25099.00 3391.02 22091.82 21095.29 28576.05 28897.96 22595.62 15081.19 29194.30 246
FMVSNet392.69 21491.58 22395.99 19698.29 15197.42 10199.26 21397.62 21789.80 24089.68 23695.32 28181.62 24196.27 30387.01 27785.65 25994.29 247
IterMVS-LS92.69 21492.11 21394.43 24596.80 23192.74 22499.45 18896.89 29588.98 24989.65 23995.38 27888.77 18396.34 30090.98 22982.04 28594.22 252
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
Patchmatch-test92.65 21691.50 22696.10 19596.85 22890.49 27391.50 34597.19 26382.76 32290.23 22495.59 26595.02 5498.00 22277.41 32696.98 16599.82 97
cl_fuxian92.53 21791.87 21994.52 23797.40 20392.99 22099.40 19296.93 29287.86 26888.69 26095.44 27389.95 16896.44 29690.45 23880.69 29994.14 266
AllTest92.48 21891.64 22195.00 21999.01 11588.43 30098.94 24596.82 30186.50 28688.71 25898.47 18774.73 29699.88 8585.39 28796.18 17596.71 218
DU-MVS92.46 21991.45 22895.49 20494.05 28695.28 17299.81 11498.74 5192.25 18589.21 25096.64 23781.66 23996.73 28593.20 19977.52 31994.46 231
eth_miper_zixun_eth92.41 22091.93 21793.84 26597.28 21190.68 26898.83 25696.97 28788.57 26189.19 25295.73 26089.24 17996.69 28889.97 24681.55 28894.15 263
cl-mvsnet192.32 22191.60 22294.47 24197.31 20992.74 22499.58 16796.75 30586.99 28187.64 27595.54 26789.55 17296.50 29488.58 25682.44 28294.17 256
cl-mvsnet_92.31 22291.58 22394.52 23797.33 20892.77 22299.57 16996.78 30486.97 28287.56 27795.51 27089.43 17396.62 29088.60 25582.44 28294.16 261
LCM-MVSNet-Re92.31 22292.60 20291.43 30097.53 19879.27 34599.02 23791.83 35192.07 18980.31 32594.38 31283.50 22895.48 31897.22 12697.58 15099.54 143
WR-MVS92.31 22291.25 23095.48 20794.45 28095.29 17199.60 16598.68 5590.10 23488.07 27196.89 22680.68 25196.80 28393.14 20279.67 30694.36 241
COLMAP_ROBcopyleft90.47 1492.18 22591.49 22794.25 24999.00 11788.04 30698.42 28296.70 30782.30 32488.43 26599.01 14476.97 27699.85 9486.11 28496.50 17294.86 225
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
test_part192.15 22690.72 23696.44 18698.87 13197.46 9898.99 23998.26 16085.89 29386.34 29696.34 24581.71 23797.48 24191.06 22578.99 30894.37 240
Anonymous2024052992.10 22790.65 23896.47 18298.82 13290.61 27098.72 26398.67 5875.54 34193.90 19398.58 17966.23 32899.90 7594.70 16790.67 21898.90 192
pmmvs492.10 22791.07 23395.18 21492.82 31094.96 18199.48 18496.83 29987.45 27388.66 26196.56 24083.78 22696.83 28189.29 25084.77 26793.75 295
jajsoiax91.92 22991.18 23194.15 25191.35 32690.95 26499.00 23897.42 24492.61 16987.38 28197.08 21872.46 30597.36 24594.53 17188.77 23294.13 267
XXY-MVS91.82 23090.46 24095.88 19993.91 28995.40 16998.87 25397.69 21288.63 26087.87 27397.08 21874.38 29997.89 22991.66 21784.07 27494.35 244
miper_lstm_enhance91.81 23191.39 22993.06 28497.34 20689.18 29299.38 19796.79 30386.70 28587.47 27995.22 28790.00 16795.86 31688.26 26081.37 29094.15 263
mvs_tets91.81 23191.08 23294.00 25991.63 32490.58 27198.67 26897.43 24292.43 18087.37 28297.05 22171.76 30797.32 24994.75 16488.68 23494.11 268
VPNet91.81 23190.46 24095.85 20194.74 27695.54 16598.98 24098.59 7192.14 18790.77 22097.44 20768.73 31997.54 23994.89 15977.89 31694.46 231
RPSCF91.80 23492.79 19988.83 31898.15 16369.87 34998.11 29496.60 31083.93 31494.33 18799.27 12779.60 26199.46 14991.99 21293.16 21497.18 216
PVSNet_088.03 1991.80 23490.27 24696.38 18998.27 15690.46 27499.94 5599.61 1193.99 12086.26 29897.39 21071.13 31299.89 7998.77 7367.05 34298.79 197
anonymousdsp91.79 23690.92 23494.41 24690.76 33192.93 22198.93 24697.17 26689.08 24587.46 28095.30 28278.43 27296.92 27692.38 20988.73 23393.39 306
JIA-IIPM91.76 23790.70 23794.94 22196.11 24387.51 30893.16 33998.13 18075.79 34097.58 12977.68 35092.84 12197.97 22388.47 25996.54 17099.33 167
TranMVSNet+NR-MVSNet91.68 23890.61 23994.87 22393.69 29393.98 20199.69 14898.65 5991.03 21988.44 26396.83 23280.05 25996.18 30690.26 24376.89 32694.45 236
NR-MVSNet91.56 23990.22 24795.60 20394.05 28695.76 15898.25 28798.70 5391.16 21680.78 32496.64 23783.23 23196.57 29291.41 21977.73 31894.46 231
v2v48291.30 24090.07 25295.01 21893.13 30193.79 20499.77 12697.02 28088.05 26689.25 24895.37 27980.73 25097.15 25987.28 27280.04 30594.09 269
WR-MVS_H91.30 24090.35 24394.15 25194.17 28592.62 23199.17 21998.94 3688.87 25486.48 29394.46 31184.36 22296.61 29188.19 26178.51 31293.21 311
V4291.28 24290.12 25194.74 22793.42 29893.46 21199.68 15097.02 28087.36 27489.85 23495.05 29081.31 24497.34 24787.34 27180.07 30493.40 305
CP-MVSNet91.23 24390.22 24794.26 24893.96 28892.39 23599.09 22398.57 7488.95 25286.42 29496.57 23979.19 26496.37 29890.29 24278.95 30994.02 273
XVG-ACMP-BASELINE91.22 24490.75 23592.63 28993.73 29285.61 31698.52 27697.44 24192.77 16089.90 23196.85 22966.64 32798.39 19792.29 21088.61 23593.89 286
v114491.09 24589.83 25394.87 22393.25 30093.69 20799.62 16396.98 28586.83 28489.64 24094.99 29580.94 24797.05 26785.08 29081.16 29293.87 288
FMVSNet291.02 24689.56 25895.41 20897.53 19895.74 15998.98 24097.41 24687.05 27888.43 26595.00 29471.34 30996.24 30585.12 28985.21 26494.25 251
MVP-Stereo90.93 24790.45 24292.37 29191.25 32888.76 29498.05 29796.17 31987.27 27684.04 30995.30 28278.46 27197.27 25583.78 29899.70 9491.09 332
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
IterMVS90.91 24890.17 24993.12 28196.78 23490.42 27698.89 24897.05 27989.03 24786.49 29295.42 27476.59 28195.02 32487.22 27384.09 27393.93 283
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
GBi-Net90.88 24989.82 25494.08 25497.53 19891.97 24198.43 27996.95 28887.05 27889.68 23694.72 30071.34 30996.11 30787.01 27785.65 25994.17 256
test190.88 24989.82 25494.08 25497.53 19891.97 24198.43 27996.95 28887.05 27889.68 23694.72 30071.34 30996.11 30787.01 27785.65 25994.17 256
IterMVS-SCA-FT90.85 25190.16 25092.93 28596.72 23689.96 28298.89 24896.99 28388.95 25286.63 28995.67 26176.48 28295.00 32587.04 27584.04 27693.84 290
v14419290.79 25289.52 26094.59 23393.11 30492.77 22299.56 17196.99 28386.38 28889.82 23594.95 29780.50 25597.10 26483.98 29680.41 30093.90 285
v14890.70 25389.63 25693.92 26292.97 30790.97 26399.75 13496.89 29587.51 27188.27 26995.01 29281.67 23897.04 26987.40 27077.17 32393.75 295
MS-PatchMatch90.65 25490.30 24591.71 29994.22 28485.50 31898.24 28897.70 21188.67 25886.42 29496.37 24467.82 32398.03 22183.62 29999.62 9891.60 329
ACMH89.72 1790.64 25589.63 25693.66 27295.64 26388.64 29898.55 27297.45 23989.03 24781.62 32197.61 20469.75 31598.41 19389.37 24987.62 24893.92 284
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
PS-CasMVS90.63 25689.51 26193.99 26093.83 29091.70 25498.98 24098.52 8888.48 26286.15 29996.53 24175.46 29096.31 30188.83 25478.86 31193.95 281
v119290.62 25789.25 26594.72 22993.13 30193.07 21799.50 18097.02 28086.33 28989.56 24295.01 29279.22 26397.09 26682.34 30681.16 29294.01 275
v890.54 25889.17 26694.66 23093.43 29793.40 21499.20 21696.94 29185.76 29687.56 27794.51 30781.96 23697.19 25784.94 29178.25 31393.38 307
v192192090.46 25989.12 26794.50 23992.96 30892.46 23399.49 18296.98 28586.10 29189.61 24195.30 28278.55 27097.03 27182.17 30780.89 29894.01 275
our_test_390.39 26089.48 26393.12 28192.40 31489.57 28899.33 20396.35 31687.84 26985.30 30494.99 29584.14 22496.09 31080.38 31584.56 26893.71 300
PatchT90.38 26188.75 27595.25 21395.99 24790.16 27991.22 34797.54 22876.80 33697.26 13586.01 34591.88 14296.07 31166.16 34695.91 18299.51 147
ACMH+89.98 1690.35 26289.54 25992.78 28895.99 24786.12 31498.81 25897.18 26589.38 24283.14 31497.76 20268.42 32198.43 19189.11 25286.05 25793.78 294
Baseline_NR-MVSNet90.33 26389.51 26192.81 28792.84 30989.95 28399.77 12693.94 34784.69 31189.04 25495.66 26281.66 23996.52 29390.99 22876.98 32491.97 327
MIMVSNet90.30 26488.67 27695.17 21596.45 23991.64 25692.39 34197.15 26985.99 29290.50 22293.19 32366.95 32694.86 32882.01 30893.43 21099.01 188
LTVRE_ROB88.28 1890.29 26589.05 27094.02 25795.08 27190.15 28097.19 31097.43 24284.91 30983.99 31097.06 22074.00 30198.28 20984.08 29487.71 24693.62 301
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
v1090.25 26688.82 27394.57 23593.53 29593.43 21299.08 22596.87 29785.00 30687.34 28394.51 30780.93 24897.02 27382.85 30379.23 30793.26 309
v124090.20 26788.79 27494.44 24393.05 30692.27 23799.38 19796.92 29385.89 29389.36 24594.87 29977.89 27397.03 27180.66 31481.08 29494.01 275
PEN-MVS90.19 26889.06 26993.57 27393.06 30590.90 26599.06 23098.47 10188.11 26585.91 30196.30 24676.67 27995.94 31587.07 27476.91 32593.89 286
pmmvs590.17 26989.09 26893.40 27592.10 31889.77 28699.74 13795.58 33085.88 29587.24 28495.74 25873.41 30396.48 29588.54 25783.56 27893.95 281
EU-MVSNet90.14 27090.34 24489.54 31592.55 31381.06 33998.69 26698.04 18691.41 21286.59 29096.84 23180.83 24993.31 34186.20 28281.91 28694.26 249
UniMVSNet_ETH3D90.06 27188.58 27794.49 24094.67 27888.09 30597.81 30297.57 22583.91 31588.44 26397.41 20857.44 34697.62 23791.41 21988.59 23797.77 211
USDC90.00 27288.96 27193.10 28394.81 27588.16 30498.71 26495.54 33193.66 13583.75 31297.20 21465.58 33098.31 20683.96 29787.49 25092.85 316
Anonymous2023121189.86 27388.44 27994.13 25398.93 12390.68 26898.54 27498.26 16076.28 33786.73 28795.54 26770.60 31397.56 23890.82 23380.27 30394.15 263
OurMVSNet-221017-089.81 27489.48 26390.83 30591.64 32381.21 33798.17 29295.38 33391.48 20785.65 30397.31 21172.66 30497.29 25388.15 26284.83 26693.97 280
RPMNet89.76 27587.28 29097.19 16596.29 24092.66 22892.01 34398.31 15170.19 34896.94 14185.87 34687.25 19699.78 11162.69 34995.96 18099.13 183
Patchmtry89.70 27688.49 27893.33 27696.24 24289.94 28591.37 34696.23 31778.22 33487.69 27493.31 32191.04 15596.03 31280.18 31782.10 28494.02 273
v7n89.65 27788.29 28293.72 26792.22 31690.56 27299.07 22997.10 27385.42 30486.73 28794.72 30080.06 25897.13 26181.14 31278.12 31593.49 303
ppachtmachnet_test89.58 27888.35 28093.25 27992.40 31490.44 27599.33 20396.73 30685.49 30285.90 30295.77 25781.09 24696.00 31476.00 33282.49 28193.30 308
DTE-MVSNet89.40 27988.24 28392.88 28692.66 31289.95 28399.10 22298.22 16587.29 27585.12 30696.22 24876.27 28595.30 32383.56 30075.74 32993.41 304
pm-mvs189.36 28087.81 28794.01 25893.40 29991.93 24498.62 27196.48 31486.25 29083.86 31196.14 25073.68 30297.04 26986.16 28375.73 33093.04 314
tfpnnormal89.29 28187.61 28894.34 24794.35 28294.13 19798.95 24498.94 3683.94 31384.47 30895.51 27074.84 29597.39 24477.05 32980.41 30091.48 331
MVS_030489.28 28288.31 28192.21 29397.05 21786.53 31297.76 30399.57 1285.58 30193.86 19492.71 32551.04 35296.30 30284.49 29392.72 21693.79 293
LF4IMVS89.25 28388.85 27290.45 30992.81 31181.19 33898.12 29394.79 34091.44 20986.29 29797.11 21665.30 33298.11 21788.53 25885.25 26392.07 324
testgi89.01 28488.04 28591.90 29793.49 29684.89 32299.73 14295.66 32893.89 12885.14 30598.17 19259.68 34394.66 33077.73 32588.88 22996.16 223
SixPastTwentyTwo88.73 28588.01 28690.88 30391.85 32182.24 33198.22 29095.18 33888.97 25082.26 31796.89 22671.75 30896.67 28984.00 29582.98 27993.72 299
FMVSNet188.50 28686.64 29294.08 25495.62 26591.97 24198.43 27996.95 28883.00 31986.08 30094.72 30059.09 34496.11 30781.82 31084.07 27494.17 256
FMVSNet588.32 28787.47 28990.88 30396.90 22688.39 30297.28 30895.68 32782.60 32384.67 30792.40 33079.83 26091.16 34576.39 33181.51 28993.09 312
DSMNet-mixed88.28 28888.24 28388.42 32289.64 33875.38 34798.06 29689.86 35485.59 30088.20 27092.14 33176.15 28791.95 34378.46 32296.05 17897.92 207
K. test v388.05 28987.24 29190.47 30891.82 32282.23 33298.96 24397.42 24489.05 24676.93 33595.60 26468.49 32095.42 31985.87 28681.01 29693.75 295
KD-MVS_2432*160088.00 29086.10 29493.70 27096.91 22394.04 19897.17 31197.12 27184.93 30781.96 31892.41 32892.48 13094.51 33179.23 31852.68 35092.56 318
miper_refine_blended88.00 29086.10 29493.70 27096.91 22394.04 19897.17 31197.12 27184.93 30781.96 31892.41 32892.48 13094.51 33179.23 31852.68 35092.56 318
TinyColmap87.87 29286.51 29391.94 29695.05 27285.57 31797.65 30494.08 34584.40 31281.82 32096.85 22962.14 33998.33 20480.25 31686.37 25691.91 328
TransMVSNet (Re)87.25 29385.28 29893.16 28093.56 29491.03 26298.54 27494.05 34683.69 31781.09 32396.16 24975.32 29196.40 29776.69 33068.41 33992.06 325
Patchmatch-RL test86.90 29485.98 29689.67 31484.45 34775.59 34689.71 34892.43 34986.89 28377.83 33390.94 33494.22 8393.63 33887.75 26669.61 33599.79 100
Anonymous2023120686.32 29585.42 29789.02 31789.11 34080.53 34399.05 23495.28 33485.43 30382.82 31593.92 31574.40 29893.44 34066.99 34481.83 28793.08 313
MVS-HIRNet86.22 29683.19 30795.31 21196.71 23790.29 27792.12 34297.33 25462.85 34986.82 28670.37 35269.37 31697.49 24075.12 33397.99 14598.15 204
pmmvs685.69 29783.84 30391.26 30290.00 33784.41 32497.82 30196.15 32075.86 33981.29 32295.39 27761.21 34196.87 27983.52 30173.29 33392.50 320
test_040285.58 29883.94 30290.50 30793.81 29185.04 32198.55 27295.20 33776.01 33879.72 32895.13 28864.15 33596.26 30466.04 34786.88 25390.21 339
UnsupCasMVSNet_eth85.52 29983.99 30090.10 31189.36 33983.51 32696.65 31897.99 18889.14 24475.89 33993.83 31663.25 33793.92 33481.92 30967.90 34192.88 315
MDA-MVSNet_test_wron85.51 30083.32 30692.10 29490.96 32988.58 29999.20 21696.52 31279.70 33157.12 35292.69 32679.11 26593.86 33677.10 32877.46 32193.86 289
YYNet185.50 30183.33 30592.00 29590.89 33088.38 30399.22 21596.55 31179.60 33257.26 35192.72 32479.09 26693.78 33777.25 32777.37 32293.84 290
EG-PatchMatch MVS85.35 30283.81 30489.99 31390.39 33381.89 33498.21 29196.09 32181.78 32674.73 34193.72 31851.56 35197.12 26379.16 32188.61 23590.96 334
TDRefinement84.76 30382.56 31091.38 30174.58 35384.80 32397.36 30794.56 34384.73 31080.21 32696.12 25263.56 33698.39 19787.92 26463.97 34390.95 335
CMPMVSbinary61.59 2184.75 30485.14 29983.57 32890.32 33462.54 35296.98 31597.59 22474.33 34469.95 34696.66 23564.17 33498.32 20587.88 26588.41 24089.84 341
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
test20.0384.72 30583.99 30086.91 32588.19 34280.62 34298.88 25095.94 32388.36 26478.87 32994.62 30568.75 31889.11 34966.52 34575.82 32891.00 333
CL-MVSNet_2432*160084.50 30683.15 30888.53 32186.00 34581.79 33598.82 25797.35 25185.12 30583.62 31390.91 33576.66 28091.40 34469.53 34060.36 34792.40 322
new_pmnet84.49 30782.92 30989.21 31690.03 33682.60 32896.89 31795.62 32980.59 32975.77 34089.17 33765.04 33394.79 32972.12 33681.02 29590.23 338
MDA-MVSNet-bldmvs84.09 30881.52 31491.81 29891.32 32788.00 30798.67 26895.92 32480.22 33055.60 35393.32 32068.29 32293.60 33973.76 33476.61 32793.82 292
pmmvs-eth3d84.03 30981.97 31290.20 31084.15 34887.09 31098.10 29594.73 34283.05 31874.10 34287.77 34165.56 33194.01 33381.08 31369.24 33789.49 343
OpenMVS_ROBcopyleft79.82 2083.77 31081.68 31390.03 31288.30 34182.82 32798.46 27795.22 33673.92 34576.00 33891.29 33355.00 34896.94 27568.40 34288.51 23990.34 337
DIV-MVS_2432*160083.59 31182.06 31188.20 32386.93 34380.70 34197.21 30996.38 31582.87 32082.49 31688.97 33867.63 32492.32 34273.75 33562.30 34691.58 330
MIMVSNet182.58 31280.51 31688.78 31986.68 34484.20 32596.65 31895.41 33278.75 33378.59 33192.44 32751.88 35089.76 34865.26 34878.95 30992.38 323
new-patchmatchnet81.19 31379.34 31786.76 32682.86 35080.36 34497.92 29995.27 33582.09 32572.02 34386.87 34362.81 33890.74 34771.10 33763.08 34489.19 345
PM-MVS80.47 31478.88 31885.26 32783.79 34972.22 34895.89 32991.08 35285.71 29976.56 33788.30 33936.64 35493.90 33582.39 30569.57 33689.66 342
pmmvs380.27 31577.77 31987.76 32480.32 35182.43 33098.23 28991.97 35072.74 34678.75 33087.97 34057.30 34790.99 34670.31 33862.37 34589.87 340
N_pmnet80.06 31680.78 31577.89 33191.94 31945.28 36098.80 25956.82 36378.10 33580.08 32793.33 31977.03 27595.76 31768.14 34382.81 28092.64 317
UnsupCasMVSNet_bld79.97 31777.03 32088.78 31985.62 34681.98 33393.66 33797.35 25175.51 34270.79 34583.05 34748.70 35394.91 32778.31 32360.29 34889.46 344
FPMVS68.72 31868.72 32168.71 33665.95 35744.27 36295.97 32894.74 34151.13 35153.26 35490.50 33625.11 35983.00 35360.80 35080.97 29778.87 349
LCM-MVSNet67.77 31964.73 32376.87 33262.95 35956.25 35689.37 34993.74 34844.53 35361.99 34880.74 34820.42 36186.53 35169.37 34159.50 34987.84 346
PMMVS267.15 32064.15 32476.14 33370.56 35662.07 35393.89 33587.52 35858.09 35060.02 34978.32 34922.38 36084.54 35259.56 35147.03 35281.80 348
Gipumacopyleft66.95 32165.00 32272.79 33491.52 32567.96 35066.16 35595.15 33947.89 35258.54 35067.99 35429.74 35687.54 35050.20 35377.83 31762.87 353
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
tmp_tt65.23 32262.94 32572.13 33544.90 36250.03 35881.05 35289.42 35738.45 35448.51 35699.90 1754.09 34978.70 35591.84 21618.26 35787.64 347
ANet_high56.10 32352.24 32667.66 33749.27 36156.82 35583.94 35182.02 35970.47 34733.28 36064.54 35517.23 36369.16 35745.59 35523.85 35677.02 350
PMVScopyleft49.05 2353.75 32451.34 32860.97 33940.80 36334.68 36374.82 35489.62 35637.55 35528.67 36172.12 3517.09 36581.63 35443.17 35668.21 34066.59 352
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
E-PMN52.30 32552.18 32752.67 34071.51 35445.40 35993.62 33876.60 36136.01 35643.50 35764.13 35627.11 35867.31 35831.06 35826.06 35445.30 357
MVEpermissive53.74 2251.54 32647.86 33062.60 33859.56 36050.93 35779.41 35377.69 36035.69 35736.27 35961.76 3585.79 36769.63 35637.97 35736.61 35367.24 351
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
EMVS51.44 32751.22 32952.11 34170.71 35544.97 36194.04 33475.66 36235.34 35842.40 35861.56 35928.93 35765.87 35927.64 35924.73 35545.49 356
testmvs40.60 32844.45 33129.05 34319.49 36514.11 36699.68 15018.47 36420.74 35964.59 34798.48 18610.95 36417.09 36256.66 35211.01 35855.94 355
test12337.68 32939.14 33233.31 34219.94 36424.83 36598.36 2839.75 36515.53 36051.31 35587.14 34219.62 36217.74 36147.10 3543.47 36057.36 354
cdsmvs_eth3d_5k23.43 33031.24 3330.00 3450.00 3660.00 3670.00 35798.09 1810.00 3620.00 36399.67 9583.37 2290.00 3630.00 3610.00 3610.00 359
wuyk23d20.37 33120.84 33418.99 34465.34 35827.73 36450.43 3567.67 3669.50 3618.01 3626.34 3626.13 36626.24 36023.40 36010.69 3592.99 358
ab-mvs-re8.28 33211.04 3350.00 3450.00 3660.00 3670.00 3570.00 3670.00 3620.00 36399.40 1180.00 3680.00 3630.00 3610.00 3610.00 359
pcd_1.5k_mvsjas7.60 33310.13 3360.00 3450.00 3660.00 3670.00 3570.00 3670.00 3620.00 3630.00 36391.20 1500.00 3630.00 3610.00 3610.00 359
uanet_test0.00 3340.00 3370.00 3450.00 3660.00 3670.00 3570.00 3670.00 3620.00 3630.00 3630.00 3680.00 3630.00 3610.00 3610.00 359
sosnet-low-res0.00 3340.00 3370.00 3450.00 3660.00 3670.00 3570.00 3670.00 3620.00 3630.00 3630.00 3680.00 3630.00 3610.00 3610.00 359
sosnet0.00 3340.00 3370.00 3450.00 3660.00 3670.00 3570.00 3670.00 3620.00 3630.00 3630.00 3680.00 3630.00 3610.00 3610.00 359
uncertanet0.00 3340.00 3370.00 3450.00 3660.00 3670.00 3570.00 3670.00 3620.00 3630.00 3630.00 3680.00 3630.00 3610.00 3610.00 359
Regformer0.00 3340.00 3370.00 3450.00 3660.00 3670.00 3570.00 3670.00 3620.00 3630.00 3630.00 3680.00 3630.00 3610.00 3610.00 359
uanet0.00 3340.00 3370.00 3450.00 3660.00 3670.00 3570.00 3670.00 3620.00 3630.00 3630.00 3680.00 3630.00 3610.00 3610.00 359
ZD-MVS99.92 3598.57 5198.52 8892.34 18299.31 6399.83 4995.06 5299.80 10699.70 3099.97 44
RE-MVS-def98.13 5599.79 7096.37 13499.76 13198.31 15194.43 9899.40 5899.75 7792.95 11998.90 6499.92 6799.97 63
IU-MVS99.93 2699.31 798.41 12997.71 899.84 8100.00 1100.00 1100.00 1
OPU-MVS99.93 299.89 4599.80 299.96 2399.80 5897.44 11100.00 1100.00 199.98 33100.00 1
test_241102_TWO98.43 11497.27 2099.80 1699.94 497.18 17100.00 1100.00 1100.00 1100.00 1
test_241102_ONE99.93 2699.30 898.43 11497.26 2299.80 1699.88 2296.71 20100.00 1
9.1498.38 3899.87 5299.91 6998.33 14793.22 14699.78 2299.89 1994.57 6899.85 9499.84 1399.97 44
save fliter99.82 6598.79 3399.96 2398.40 13097.66 10
test_0728_THIRD96.48 4099.83 1099.91 1397.87 4100.00 199.92 9100.00 1100.00 1
test_0728_SECOND99.82 599.94 1499.47 599.95 4098.43 114100.00 199.99 5100.00 1100.00 1
test072699.93 2699.29 1099.96 2398.42 12597.28 1899.86 499.94 497.22 15
GSMVS99.59 130
test_part299.89 4599.25 1399.49 48
sam_mvs194.72 6499.59 130
sam_mvs94.25 82
ambc83.23 32977.17 35262.61 35187.38 35094.55 34476.72 33686.65 34430.16 35596.36 29984.85 29269.86 33490.73 336
MTGPAbinary98.28 156
test_post195.78 33059.23 36093.20 11497.74 23391.06 225
test_post63.35 35794.43 6998.13 216
patchmatchnet-post91.70 33295.12 4897.95 226
GG-mvs-BLEND98.54 10998.21 15998.01 7393.87 33698.52 8897.92 12297.92 20099.02 297.94 22898.17 9499.58 10399.67 117
MTMP99.87 8796.49 313
gm-plane-assit96.97 22193.76 20691.47 20898.96 15398.79 16794.92 156
test9_res99.71 2999.99 20100.00 1
TEST999.92 3598.92 2399.96 2398.43 11493.90 12699.71 3099.86 2995.88 3499.85 94
test_899.92 3598.88 2699.96 2398.43 11494.35 10399.69 3299.85 3395.94 3199.85 94
agg_prior299.48 36100.00 1100.00 1
agg_prior99.93 2698.77 3698.43 11499.63 3599.85 94
TestCases95.00 21999.01 11588.43 30096.82 30186.50 28688.71 25898.47 18774.73 29699.88 8585.39 28796.18 17596.71 218
test_prior498.05 7199.94 55
test_prior299.95 4095.78 5899.73 2699.76 7296.00 2999.78 20100.00 1
test_prior99.43 3599.94 1498.49 5798.65 5999.80 10699.99 20
旧先验299.46 18794.21 11099.85 699.95 6096.96 133
新几何299.40 192
新几何199.42 3899.75 7698.27 6598.63 6592.69 16499.55 4299.82 5394.40 71100.00 191.21 22199.94 5799.99 20
旧先验199.76 7497.52 9198.64 6299.85 3395.63 3999.94 5799.99 20
无先验99.49 18298.71 5293.46 140100.00 194.36 17499.99 20
原ACMM299.90 73
原ACMM198.96 8299.73 8196.99 11498.51 9594.06 11799.62 3799.85 3394.97 5999.96 5395.11 15399.95 5199.92 87
test22299.55 9497.41 10299.34 20298.55 8191.86 19599.27 6899.83 4993.84 9699.95 5199.99 20
testdata299.99 3690.54 237
segment_acmp96.68 22
testdata98.42 11999.47 10095.33 17098.56 7693.78 13199.79 2199.85 3393.64 10199.94 6894.97 15599.94 57100.00 1
testdata199.28 21196.35 48
test1299.43 3599.74 7798.56 5398.40 13099.65 3394.76 6399.75 12099.98 3399.99 20
plane_prior795.71 26091.59 258
plane_prior695.76 25591.72 25380.47 256
plane_prior597.87 20198.37 20297.79 11289.55 22294.52 228
plane_prior498.59 177
plane_prior391.64 25696.63 3893.01 200
plane_prior299.84 10596.38 44
plane_prior195.73 257
plane_prior91.74 25099.86 9896.76 3489.59 221
n20.00 367
nn0.00 367
door-mid89.69 355
lessismore_v090.53 30690.58 33280.90 34095.80 32577.01 33495.84 25566.15 32996.95 27483.03 30275.05 33193.74 298
LGP-MVS_train93.71 26895.43 26688.67 29697.62 21792.81 15690.05 22598.49 18375.24 29298.40 19595.84 14889.12 22694.07 270
test1198.44 106
door90.31 353
HQP5-MVS91.85 246
HQP-NCC95.78 25199.87 8796.82 3093.37 196
ACMP_Plane95.78 25199.87 8796.82 3093.37 196
BP-MVS97.92 109
HQP4-MVS93.37 19698.39 19794.53 226
HQP3-MVS97.89 19989.60 219
HQP2-MVS80.65 252
NP-MVS95.77 25491.79 24898.65 173
MDTV_nov1_ep13_2view96.26 13896.11 32591.89 19498.06 11994.40 7194.30 17799.67 117
MDTV_nov1_ep1395.69 13997.90 17494.15 19695.98 32798.44 10693.12 14997.98 12195.74 25895.10 4998.58 18190.02 24596.92 166
ACMMP++_ref87.04 252
ACMMP++88.23 241
Test By Simon92.82 123
ITE_SJBPF92.38 29095.69 26285.14 32095.71 32692.81 15689.33 24798.11 19370.23 31498.42 19285.91 28588.16 24293.59 302
DeepMVS_CXcopyleft82.92 33095.98 24958.66 35496.01 32292.72 16178.34 33295.51 27058.29 34598.08 21882.57 30485.29 26292.03 326