This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
SED-MVS99.09 198.91 199.63 399.71 2099.24 499.02 5898.87 5597.65 999.73 199.48 697.53 499.94 398.43 1899.81 1099.70 48
DVP-MVS99.03 298.83 399.63 399.72 1299.25 298.97 6898.58 14697.62 1199.45 999.46 997.42 699.94 398.47 1599.81 1099.69 51
APDe-MVS99.02 398.84 299.55 699.57 3398.96 1299.39 598.93 3797.38 2499.41 1199.54 196.66 1399.84 5298.86 199.85 399.87 1
DPE-MVS98.92 498.67 699.65 299.58 3299.20 798.42 16998.91 4397.58 1499.54 799.46 997.10 999.94 397.64 6099.84 899.83 5
SteuartSystems-ACMMP98.90 598.75 499.36 2199.22 9498.43 3399.10 4598.87 5597.38 2499.35 1499.40 1397.78 399.87 4497.77 4999.85 399.78 13
Skip Steuart: Steuart Systems R&D Blog.
TSAR-MVS + MP.98.78 698.62 799.24 4099.69 2598.28 4899.14 3698.66 13196.84 5199.56 599.31 3596.34 1999.70 11498.32 2599.73 4399.73 36
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
CNVR-MVS98.78 698.56 999.45 1499.32 6898.87 1598.47 16198.81 7697.72 698.76 5299.16 6197.05 1099.78 9598.06 3399.66 5799.69 51
MSP-MVS98.74 898.55 1099.29 3199.75 398.23 4999.26 1898.88 4997.52 1599.41 1198.78 11296.00 3499.79 9197.79 4899.59 7199.85 2
xxxxxxxxxxxxxcwj98.70 998.50 1499.30 3099.46 5198.38 3598.21 19498.52 15897.95 399.32 1599.39 1496.22 2099.84 5297.72 5299.73 4399.67 61
XVS98.70 998.49 1699.34 2399.70 2398.35 4399.29 1498.88 4997.40 2198.46 6899.20 5295.90 4099.89 3597.85 4499.74 4199.78 13
Regformer-298.69 1198.52 1299.19 4399.35 6098.01 6298.37 17398.81 7697.48 1899.21 2199.21 4896.13 2799.80 7998.40 2299.73 4399.75 28
Regformer-198.66 1298.51 1399.12 5799.35 6097.81 7398.37 17398.76 9897.49 1799.20 2299.21 4896.08 2999.79 9198.42 2099.73 4399.75 28
MCST-MVS98.65 1398.37 2199.48 1099.60 3198.87 1598.41 17098.68 12097.04 4698.52 6798.80 11096.78 1299.83 5597.93 3799.61 6799.74 33
Regformer-498.64 1498.53 1198.99 6399.43 5797.37 8698.40 17198.79 9197.46 1999.09 3099.31 3595.86 4299.80 7998.64 399.76 3299.79 10
SD-MVS98.64 1498.68 598.53 9199.33 6598.36 4298.90 7898.85 6497.28 2999.72 399.39 1496.63 1597.60 31798.17 2899.85 399.64 70
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
HFP-MVS98.63 1698.40 1899.32 2899.72 1298.29 4699.23 2198.96 3296.10 8298.94 3999.17 5696.06 3099.92 2197.62 6199.78 2399.75 28
ACMMP_NAP98.61 1798.30 3499.55 699.62 3098.95 1398.82 9798.81 7695.80 9099.16 2699.47 895.37 5799.92 2197.89 4199.75 3899.79 10
region2R98.61 1798.38 2099.29 3199.74 798.16 5599.23 2198.93 3796.15 7798.94 3999.17 5695.91 3999.94 397.55 6999.79 1999.78 13
NCCC98.61 1798.35 2499.38 1799.28 8298.61 2498.45 16298.76 9897.82 598.45 7198.93 9796.65 1499.83 5597.38 7699.41 9799.71 44
SF-MVS98.59 2098.32 3399.41 1699.54 3598.71 1899.04 5398.81 7695.12 12699.32 1599.39 1496.22 2099.84 5297.72 5299.73 4399.67 61
Regformer-398.59 2098.50 1498.86 7399.43 5797.05 10098.40 17198.68 12097.43 2099.06 3199.31 3595.80 4399.77 10098.62 599.76 3299.78 13
ACMMPR98.59 2098.36 2299.29 3199.74 798.15 5699.23 2198.95 3496.10 8298.93 4399.19 5595.70 4499.94 397.62 6199.79 1999.78 13
SMA-MVScopyleft98.58 2398.25 3899.56 599.51 3999.04 1198.95 7298.80 8693.67 19499.37 1399.52 396.52 1799.89 3598.06 3399.81 1099.76 26
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
MTAPA98.58 2398.29 3599.46 1299.76 198.64 2298.90 7898.74 10297.27 3398.02 9099.39 1494.81 7799.96 197.91 3899.79 1999.77 20
HPM-MVS++copyleft98.58 2398.25 3899.55 699.50 4199.08 998.72 12198.66 13197.51 1698.15 8198.83 10795.70 4499.92 2197.53 7199.67 5499.66 65
SR-MVS98.57 2698.35 2499.24 4099.53 3698.18 5399.09 4698.82 7096.58 6199.10 2999.32 3395.39 5599.82 6397.70 5799.63 6499.72 40
CP-MVS98.57 2698.36 2299.19 4399.66 2797.86 6899.34 1198.87 5595.96 8598.60 6499.13 6496.05 3299.94 397.77 4999.86 199.77 20
test117298.56 2898.35 2499.16 5099.53 3697.94 6699.09 4698.83 6896.52 6499.05 3299.34 3195.34 5999.82 6397.86 4399.64 6299.73 36
MSLP-MVS++98.56 2898.57 898.55 8799.26 8596.80 10998.71 12299.05 2497.28 2998.84 4699.28 4096.47 1899.40 15498.52 1399.70 5199.47 98
zzz-MVS98.55 3098.25 3899.46 1299.76 198.64 2298.55 15198.74 10297.27 3398.02 9099.39 1494.81 7799.96 197.91 3899.79 1999.77 20
DeepC-MVS_fast96.70 198.55 3098.34 2899.18 4799.25 8698.04 6098.50 15898.78 9497.72 698.92 4499.28 4095.27 6499.82 6397.55 6999.77 2699.69 51
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
SR-MVS-dyc-post98.54 3298.35 2499.13 5499.49 4597.86 6899.11 4298.80 8696.49 6599.17 2499.35 2895.34 5999.82 6397.72 5299.65 5899.71 44
#test#98.54 3298.27 3699.32 2899.72 1298.29 4698.98 6798.96 3295.65 9898.94 3999.17 5696.06 3099.92 2197.21 8199.78 2399.75 28
APD-MVS_3200maxsize98.53 3498.33 3299.15 5399.50 4197.92 6799.15 3598.81 7696.24 7399.20 2299.37 2295.30 6299.80 7997.73 5199.67 5499.72 40
mPP-MVS98.51 3598.26 3799.25 3999.75 398.04 6099.28 1698.81 7696.24 7398.35 7799.23 4595.46 5199.94 397.42 7499.81 1099.77 20
ZNCC-MVS98.49 3698.20 4499.35 2299.73 1198.39 3499.19 3198.86 6195.77 9198.31 8099.10 6995.46 5199.93 1597.57 6899.81 1099.74 33
PGM-MVS98.49 3698.23 4299.27 3899.72 1298.08 5998.99 6499.49 595.43 10799.03 3399.32 3395.56 4799.94 396.80 10599.77 2699.78 13
EI-MVSNet-Vis-set98.47 3898.39 1998.69 7899.46 5196.49 12498.30 18598.69 11797.21 3698.84 4699.36 2695.41 5499.78 9598.62 599.65 5899.80 9
MVS_111021_HR98.47 3898.34 2898.88 7299.22 9497.32 8797.91 22999.58 397.20 3798.33 7899.00 8595.99 3599.64 12598.05 3599.76 3299.69 51
GST-MVS98.43 4098.12 4799.34 2399.72 1298.38 3599.09 4698.82 7095.71 9498.73 5599.06 7895.27 6499.93 1597.07 8599.63 6499.72 40
EI-MVSNet-UG-set98.41 4198.34 2898.61 8399.45 5596.32 13298.28 18898.68 12097.17 3998.74 5399.37 2295.25 6699.79 9198.57 799.54 8499.73 36
DELS-MVS98.40 4298.20 4498.99 6399.00 10997.66 7597.75 24598.89 4697.71 898.33 7898.97 8794.97 7499.88 4398.42 2099.76 3299.42 107
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
TSAR-MVS + GP.98.38 4398.24 4198.81 7499.22 9497.25 9498.11 21398.29 20497.19 3898.99 3899.02 8096.22 2099.67 12198.52 1398.56 13599.51 89
HPM-MVS_fast98.38 4398.13 4699.12 5799.75 397.86 6899.44 498.82 7094.46 15798.94 3999.20 5295.16 6999.74 10697.58 6599.85 399.77 20
HPM-MVScopyleft98.36 4598.10 4899.13 5499.74 797.82 7299.53 198.80 8694.63 15098.61 6398.97 8795.13 7099.77 10097.65 5999.83 999.79 10
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
ETH3D-3000-0.198.35 4698.00 5399.38 1799.47 4898.68 2198.67 13298.84 6594.66 14999.11 2899.25 4395.46 5199.81 7096.80 10599.73 4399.63 73
APD-MVScopyleft98.35 4698.00 5399.42 1599.51 3998.72 1798.80 10498.82 7094.52 15499.23 2099.25 4395.54 4999.80 7996.52 11499.77 2699.74 33
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
MVS_111021_LR98.34 4898.23 4298.67 8099.27 8396.90 10697.95 22699.58 397.14 4198.44 7299.01 8495.03 7399.62 13097.91 3899.75 3899.50 91
PHI-MVS98.34 4898.06 4999.18 4799.15 10198.12 5899.04 5399.09 2093.32 20798.83 4899.10 6996.54 1699.83 5597.70 5799.76 3299.59 80
testtj98.33 5097.95 5599.47 1199.49 4598.70 1998.83 9498.86 6195.48 10498.91 4599.17 5695.48 5099.93 1595.80 13999.53 8599.76 26
MP-MVScopyleft98.33 5098.01 5299.28 3599.75 398.18 5399.22 2598.79 9196.13 7997.92 10399.23 4594.54 8499.94 396.74 10999.78 2399.73 36
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
MP-MVS-pluss98.31 5297.92 5799.49 999.72 1298.88 1498.43 16798.78 9494.10 16597.69 11599.42 1295.25 6699.92 2198.09 3299.80 1799.67 61
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
abl_698.30 5398.03 5199.13 5499.56 3497.76 7499.13 3998.82 7096.14 7899.26 1899.37 2293.33 10299.93 1596.96 9099.67 5499.69 51
ACMMPcopyleft98.23 5497.95 5599.09 5999.74 797.62 7899.03 5699.41 695.98 8497.60 12499.36 2694.45 8999.93 1597.14 8298.85 12299.70 48
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
test_prior398.22 5597.90 5899.19 4399.31 7098.22 5097.80 24198.84 6596.12 8097.89 10598.69 11995.96 3699.70 11496.89 9599.60 6899.65 67
CANet98.05 5697.76 6198.90 7198.73 12897.27 9098.35 17598.78 9497.37 2697.72 11398.96 9391.53 13899.92 2198.79 299.65 5899.51 89
train_agg97.97 5797.52 7299.33 2799.31 7098.50 2997.92 22798.73 10792.98 22097.74 11198.68 12196.20 2399.80 7996.59 11199.57 7599.68 57
ETH3D cwj APD-0.1697.96 5897.52 7299.29 3199.05 10598.52 2798.33 17798.68 12093.18 21298.68 5799.13 6494.62 8199.83 5596.45 11699.55 8399.52 85
ETV-MVS97.96 5897.81 5998.40 10398.42 15197.27 9098.73 11798.55 15196.84 5198.38 7597.44 23495.39 5599.35 15897.62 6198.89 11898.58 184
UA-Net97.96 5897.62 6498.98 6598.86 12097.47 8398.89 8299.08 2196.67 5898.72 5699.54 193.15 10599.81 7094.87 16698.83 12399.65 67
agg_prior197.95 6197.51 7499.28 3599.30 7598.38 3597.81 24098.72 10993.16 21497.57 12598.66 12496.14 2699.81 7096.63 11099.56 8099.66 65
CDPH-MVS97.94 6297.49 7599.28 3599.47 4898.44 3197.91 22998.67 12892.57 23598.77 5198.85 10495.93 3899.72 10895.56 14999.69 5299.68 57
DeepPCF-MVS96.37 297.93 6398.48 1796.30 24199.00 10989.54 30997.43 26398.87 5598.16 299.26 1899.38 2196.12 2899.64 12598.30 2699.77 2699.72 40
DeepC-MVS95.98 397.88 6497.58 6798.77 7599.25 8696.93 10498.83 9498.75 10196.96 4996.89 14899.50 490.46 15999.87 4497.84 4699.76 3299.52 85
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
DP-MVS Recon97.86 6597.46 7799.06 6199.53 3698.35 4398.33 17798.89 4692.62 23298.05 8698.94 9695.34 5999.65 12396.04 13099.42 9699.19 132
CSCG97.85 6697.74 6298.20 11599.67 2695.16 18199.22 2599.32 793.04 21797.02 14198.92 9995.36 5899.91 3097.43 7399.64 6299.52 85
CS-MVS97.81 6797.61 6598.41 10298.52 14897.15 9899.09 4698.55 15196.18 7697.61 12297.20 24994.59 8399.39 15597.62 6199.10 11198.70 172
MG-MVS97.81 6797.60 6698.44 9899.12 10395.97 14797.75 24598.78 9496.89 5098.46 6899.22 4793.90 9999.68 12094.81 17099.52 8799.67 61
VNet97.79 6997.40 8198.96 6798.88 11897.55 8098.63 13798.93 3796.74 5599.02 3498.84 10690.33 16299.83 5598.53 996.66 18699.50 91
EIA-MVS97.75 7097.58 6798.27 10998.38 15396.44 12699.01 6098.60 13995.88 8797.26 13097.53 22894.97 7499.33 16097.38 7699.20 10799.05 149
PS-MVSNAJ97.73 7197.77 6097.62 15498.68 13695.58 16497.34 27298.51 16197.29 2898.66 6097.88 19594.51 8599.90 3397.87 4299.17 10997.39 216
CPTT-MVS97.72 7297.32 8498.92 6999.64 2897.10 9999.12 4198.81 7692.34 24398.09 8499.08 7693.01 10699.92 2196.06 12999.77 2699.75 28
PVSNet_Blended_VisFu97.70 7397.46 7798.44 9899.27 8395.91 15598.63 13799.16 1794.48 15697.67 11698.88 10292.80 10899.91 3097.11 8399.12 11099.50 91
canonicalmvs97.67 7497.23 8798.98 6598.70 13398.38 3599.34 1198.39 18496.76 5497.67 11697.40 23792.26 11699.49 14598.28 2796.28 20299.08 147
xiu_mvs_v2_base97.66 7597.70 6397.56 15898.61 14295.46 17197.44 26198.46 17197.15 4098.65 6198.15 17594.33 9199.80 7997.84 4698.66 13197.41 214
baseline97.64 7697.44 7998.25 11298.35 15596.20 13699.00 6298.32 19496.33 7298.03 8999.17 5691.35 14199.16 17398.10 3198.29 14999.39 108
casdiffmvs97.63 7797.41 8098.28 10898.33 16096.14 13998.82 9798.32 19496.38 7097.95 9899.21 4891.23 14599.23 16798.12 3098.37 14499.48 96
xiu_mvs_v1_base_debu97.60 7897.56 6997.72 14498.35 15595.98 14297.86 23698.51 16197.13 4299.01 3598.40 14991.56 13499.80 7998.53 998.68 12797.37 218
xiu_mvs_v1_base97.60 7897.56 6997.72 14498.35 15595.98 14297.86 23698.51 16197.13 4299.01 3598.40 14991.56 13499.80 7998.53 998.68 12797.37 218
xiu_mvs_v1_base_debi97.60 7897.56 6997.72 14498.35 15595.98 14297.86 23698.51 16197.13 4299.01 3598.40 14991.56 13499.80 7998.53 998.68 12797.37 218
ETH3 D test640097.59 8197.01 9699.34 2399.40 5998.56 2598.20 19798.81 7691.63 26598.44 7298.85 10493.98 9899.82 6394.11 19499.69 5299.64 70
diffmvs97.58 8297.40 8198.13 12098.32 16295.81 15998.06 21698.37 18796.20 7598.74 5398.89 10191.31 14399.25 16498.16 2998.52 13699.34 111
MVSFormer97.57 8397.49 7597.84 13598.07 18095.76 16099.47 298.40 18294.98 13398.79 4998.83 10792.34 11398.41 26496.91 9299.59 7199.34 111
alignmvs97.56 8497.07 9499.01 6298.66 13798.37 4198.83 9498.06 24596.74 5598.00 9697.65 21790.80 15399.48 14998.37 2396.56 19099.19 132
DPM-MVS97.55 8596.99 9899.23 4299.04 10798.55 2697.17 28598.35 19094.85 14097.93 10298.58 13295.07 7299.71 11392.60 23599.34 10299.43 106
OMC-MVS97.55 8597.34 8398.20 11599.33 6595.92 15498.28 18898.59 14195.52 10397.97 9799.10 6993.28 10499.49 14595.09 16398.88 11999.19 132
PAPM_NR97.46 8797.11 9198.50 9399.50 4196.41 12898.63 13798.60 13995.18 12297.06 13998.06 18194.26 9399.57 13493.80 20398.87 12199.52 85
EPP-MVSNet97.46 8797.28 8597.99 12898.64 13995.38 17399.33 1398.31 19693.61 19797.19 13299.07 7794.05 9599.23 16796.89 9598.43 14399.37 110
3Dnovator94.51 597.46 8796.93 10099.07 6097.78 19797.64 7699.35 1099.06 2297.02 4793.75 24499.16 6189.25 17799.92 2197.22 8099.75 3899.64 70
CNLPA97.45 9097.03 9598.73 7699.05 10597.44 8598.07 21598.53 15695.32 11596.80 15398.53 13693.32 10399.72 10894.31 18799.31 10499.02 151
lupinMVS97.44 9197.22 8898.12 12298.07 18095.76 16097.68 25097.76 26194.50 15598.79 4998.61 12792.34 11399.30 16197.58 6599.59 7199.31 117
3Dnovator+94.38 697.43 9296.78 10799.38 1797.83 19598.52 2799.37 798.71 11397.09 4592.99 27099.13 6489.36 17499.89 3596.97 8899.57 7599.71 44
Vis-MVSNetpermissive97.42 9397.11 9198.34 10698.66 13796.23 13599.22 2599.00 2796.63 6098.04 8899.21 4888.05 21199.35 15896.01 13299.21 10699.45 104
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
API-MVS97.41 9497.25 8697.91 13298.70 13396.80 10998.82 9798.69 11794.53 15298.11 8398.28 16494.50 8899.57 13494.12 19399.49 8897.37 218
sss97.39 9596.98 9998.61 8398.60 14396.61 11798.22 19398.93 3793.97 17398.01 9498.48 14191.98 12699.85 4996.45 11698.15 15199.39 108
PVSNet_Blended97.38 9697.12 9098.14 11899.25 8695.35 17697.28 27799.26 893.13 21597.94 10098.21 17192.74 10999.81 7096.88 9899.40 9999.27 124
112197.37 9796.77 11199.16 5099.34 6297.99 6598.19 20198.68 12090.14 29998.01 9498.97 8794.80 7999.87 4493.36 21599.46 9399.61 75
WTY-MVS97.37 9796.92 10198.72 7798.86 12096.89 10898.31 18398.71 11395.26 11897.67 11698.56 13592.21 11999.78 9595.89 13496.85 18199.48 96
jason97.32 9997.08 9398.06 12597.45 22795.59 16397.87 23597.91 25694.79 14198.55 6698.83 10791.12 14699.23 16797.58 6599.60 6899.34 111
jason: jason.
MVS_Test97.28 10097.00 9798.13 12098.33 16095.97 14798.74 11398.07 24194.27 16198.44 7298.07 18092.48 11199.26 16396.43 11898.19 15099.16 137
EPNet97.28 10096.87 10398.51 9294.98 32596.14 13998.90 7897.02 30498.28 195.99 18199.11 6791.36 14099.89 3596.98 8799.19 10899.50 91
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
test_yl97.22 10296.78 10798.54 8998.73 12896.60 11898.45 16298.31 19694.70 14398.02 9098.42 14790.80 15399.70 11496.81 10396.79 18399.34 111
DCV-MVSNet97.22 10296.78 10798.54 8998.73 12896.60 11898.45 16298.31 19694.70 14398.02 9098.42 14790.80 15399.70 11496.81 10396.79 18399.34 111
IS-MVSNet97.22 10296.88 10298.25 11298.85 12296.36 13099.19 3197.97 25195.39 10997.23 13198.99 8691.11 14798.93 20594.60 17598.59 13399.47 98
PLCcopyleft95.07 497.20 10596.78 10798.44 9899.29 7896.31 13498.14 20898.76 9892.41 24196.39 17298.31 16294.92 7699.78 9594.06 19698.77 12699.23 127
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
CHOSEN 280x42097.18 10697.18 8997.20 17298.81 12493.27 25595.78 32899.15 1895.25 11996.79 15498.11 17892.29 11599.07 18898.56 899.85 399.25 126
LS3D97.16 10796.66 11698.68 7998.53 14797.19 9698.93 7598.90 4492.83 22895.99 18199.37 2292.12 12299.87 4493.67 20799.57 7598.97 156
AdaColmapbinary97.15 10896.70 11298.48 9599.16 9996.69 11498.01 22198.89 4694.44 15896.83 14998.68 12190.69 15699.76 10294.36 18499.29 10598.98 155
Effi-MVS+97.12 10996.69 11398.39 10498.19 17196.72 11397.37 26898.43 17893.71 18797.65 11998.02 18392.20 12099.25 16496.87 10197.79 16299.19 132
CHOSEN 1792x268897.12 10996.80 10498.08 12399.30 7594.56 21398.05 21799.71 193.57 19897.09 13598.91 10088.17 20699.89 3596.87 10199.56 8099.81 8
F-COLMAP97.09 11196.80 10497.97 12999.45 5594.95 19498.55 15198.62 13893.02 21896.17 17798.58 13294.01 9699.81 7093.95 19898.90 11799.14 140
TAMVS97.02 11296.79 10697.70 14798.06 18295.31 17898.52 15398.31 19693.95 17497.05 14098.61 12793.49 10198.52 24695.33 15597.81 16199.29 122
CDS-MVSNet96.99 11396.69 11397.90 13398.05 18395.98 14298.20 19798.33 19393.67 19496.95 14298.49 14093.54 10098.42 25795.24 16197.74 16599.31 117
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
CANet_DTU96.96 11496.55 11998.21 11498.17 17596.07 14197.98 22498.21 21297.24 3597.13 13498.93 9786.88 23499.91 3095.00 16599.37 10198.66 178
114514_t96.93 11596.27 12898.92 6999.50 4197.63 7798.85 9098.90 4484.80 33297.77 10899.11 6792.84 10799.66 12294.85 16799.77 2699.47 98
MAR-MVS96.91 11696.40 12498.45 9798.69 13596.90 10698.66 13598.68 12092.40 24297.07 13897.96 18891.54 13799.75 10493.68 20598.92 11698.69 174
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
HyFIR lowres test96.90 11796.49 12298.14 11899.33 6595.56 16697.38 26699.65 292.34 24397.61 12298.20 17289.29 17699.10 18596.97 8897.60 17099.77 20
Vis-MVSNet (Re-imp)96.87 11896.55 11997.83 13698.73 12895.46 17199.20 2998.30 20294.96 13596.60 16098.87 10390.05 16598.59 24093.67 20798.60 13299.46 102
PAPR96.84 11996.24 13098.65 8198.72 13296.92 10597.36 27098.57 14793.33 20696.67 15697.57 22594.30 9299.56 13691.05 27098.59 13399.47 98
HY-MVS93.96 896.82 12096.23 13198.57 8598.46 15097.00 10198.14 20898.21 21293.95 17496.72 15597.99 18791.58 13399.76 10294.51 18096.54 19198.95 159
UGNet96.78 12196.30 12798.19 11798.24 16595.89 15798.88 8598.93 3797.39 2396.81 15297.84 20082.60 29199.90 3396.53 11399.49 8898.79 167
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
PVSNet_BlendedMVS96.73 12296.60 11797.12 17899.25 8695.35 17698.26 19199.26 894.28 16097.94 10097.46 23192.74 10999.81 7096.88 9893.32 24696.20 309
mvs_anonymous96.70 12396.53 12197.18 17498.19 17193.78 23498.31 18398.19 21594.01 17094.47 20698.27 16792.08 12498.46 25197.39 7597.91 15799.31 117
1112_ss96.63 12496.00 13798.50 9398.56 14496.37 12998.18 20598.10 23492.92 22394.84 19598.43 14592.14 12199.58 13394.35 18596.51 19299.56 84
mvs-test196.60 12596.68 11596.37 23597.89 19291.81 27598.56 14998.10 23496.57 6296.52 16797.94 19090.81 15199.45 15295.72 14298.01 15497.86 204
PMMVS96.60 12596.33 12697.41 16497.90 19193.93 23097.35 27198.41 18092.84 22797.76 10997.45 23391.10 14899.20 17096.26 12297.91 15799.11 143
DP-MVS96.59 12795.93 13898.57 8599.34 6296.19 13898.70 12698.39 18489.45 30894.52 20499.35 2891.85 12899.85 4992.89 23198.88 11999.68 57
PatchMatch-RL96.59 12796.03 13698.27 10999.31 7096.51 12397.91 22999.06 2293.72 18696.92 14698.06 18188.50 20099.65 12391.77 25999.00 11498.66 178
XVG-OURS96.55 12996.41 12396.99 18498.75 12793.76 23597.50 26098.52 15895.67 9696.83 14999.30 3888.95 19099.53 14295.88 13596.26 20397.69 210
FIs96.51 13096.12 13397.67 15097.13 24997.54 8199.36 899.22 1495.89 8694.03 23298.35 15591.98 12698.44 25496.40 11992.76 25397.01 227
XVG-OURS-SEG-HR96.51 13096.34 12597.02 18398.77 12693.76 23597.79 24398.50 16695.45 10696.94 14399.09 7487.87 21699.55 14196.76 10895.83 21297.74 207
PS-MVSNAJss96.43 13296.26 12996.92 19395.84 30995.08 18699.16 3498.50 16695.87 8893.84 24098.34 15994.51 8598.61 23596.88 9893.45 24397.06 225
FC-MVSNet-test96.42 13396.05 13497.53 16096.95 25897.27 9099.36 899.23 1295.83 8993.93 23498.37 15392.00 12598.32 27396.02 13192.72 25497.00 228
ab-mvs96.42 13395.71 14698.55 8798.63 14096.75 11297.88 23498.74 10293.84 17996.54 16598.18 17485.34 25999.75 10495.93 13396.35 19699.15 138
PVSNet91.96 1896.35 13596.15 13296.96 18899.17 9892.05 27296.08 32198.68 12093.69 19097.75 11097.80 20688.86 19199.69 11994.26 18999.01 11399.15 138
Test_1112_low_res96.34 13695.66 15098.36 10598.56 14495.94 15097.71 24798.07 24192.10 25294.79 19997.29 24291.75 13099.56 13694.17 19196.50 19399.58 82
Effi-MVS+-dtu96.29 13796.56 11895.51 26997.89 19290.22 30298.80 10498.10 23496.57 6296.45 17196.66 29190.81 15198.91 20795.72 14297.99 15597.40 215
QAPM96.29 13795.40 15498.96 6797.85 19497.60 7999.23 2198.93 3789.76 30393.11 26799.02 8089.11 18299.93 1591.99 25499.62 6699.34 111
Fast-Effi-MVS+96.28 13995.70 14798.03 12698.29 16495.97 14798.58 14398.25 21091.74 26095.29 18897.23 24691.03 15099.15 17692.90 22997.96 15698.97 156
nrg03096.28 13995.72 14397.96 13196.90 26398.15 5699.39 598.31 19695.47 10594.42 21298.35 15592.09 12398.69 22897.50 7289.05 29897.04 226
131496.25 14195.73 14297.79 13897.13 24995.55 16898.19 20198.59 14193.47 20192.03 29597.82 20491.33 14299.49 14594.62 17498.44 14198.32 194
HQP_MVS96.14 14295.90 13996.85 19597.42 22894.60 21198.80 10498.56 14997.28 2995.34 18598.28 16487.09 22999.03 19396.07 12694.27 21996.92 233
tttt051796.07 14395.51 15397.78 13998.41 15294.84 19799.28 1694.33 34194.26 16297.64 12098.64 12684.05 28099.47 15095.34 15497.60 17099.03 150
MVSTER96.06 14495.72 14397.08 18198.23 16695.93 15398.73 11798.27 20594.86 13995.07 18998.09 17988.21 20498.54 24496.59 11193.46 24196.79 252
RRT_MVS96.04 14595.53 15197.56 15897.07 25397.32 8798.57 14898.09 23795.15 12495.02 19198.44 14488.20 20598.58 24296.17 12593.09 25096.79 252
thisisatest053096.01 14695.36 15997.97 12998.38 15395.52 16998.88 8594.19 34394.04 16797.64 12098.31 16283.82 28799.46 15195.29 15897.70 16798.93 160
test_djsdf96.00 14795.69 14896.93 19195.72 31195.49 17099.47 298.40 18294.98 13394.58 20297.86 19789.16 18098.41 26496.91 9294.12 22796.88 242
EI-MVSNet95.96 14895.83 14196.36 23697.93 18993.70 24198.12 21198.27 20593.70 18995.07 18999.02 8092.23 11898.54 24494.68 17193.46 24196.84 248
BH-untuned95.95 14995.72 14396.65 20698.55 14692.26 26898.23 19297.79 26093.73 18594.62 20198.01 18588.97 18999.00 19693.04 22598.51 13798.68 175
MSDG95.93 15095.30 16597.83 13698.90 11695.36 17496.83 30998.37 18791.32 27694.43 21198.73 11890.27 16399.60 13190.05 28498.82 12498.52 185
BH-RMVSNet95.92 15195.32 16397.69 14898.32 16294.64 20598.19 20197.45 28394.56 15196.03 17998.61 12785.02 26299.12 17990.68 27599.06 11299.30 120
Fast-Effi-MVS+-dtu95.87 15295.85 14095.91 25697.74 20191.74 27998.69 12898.15 22695.56 10194.92 19397.68 21688.98 18898.79 22393.19 22097.78 16397.20 222
LFMVS95.86 15394.98 17898.47 9698.87 11996.32 13298.84 9396.02 32393.40 20498.62 6299.20 5274.99 33299.63 12897.72 5297.20 17699.46 102
baseline195.84 15495.12 17198.01 12798.49 14995.98 14298.73 11797.03 30295.37 11296.22 17598.19 17389.96 16799.16 17394.60 17587.48 31498.90 162
OpenMVScopyleft93.04 1395.83 15595.00 17698.32 10797.18 24697.32 8799.21 2898.97 3089.96 30191.14 30399.05 7986.64 23799.92 2193.38 21399.47 9097.73 208
VDD-MVS95.82 15695.23 16697.61 15598.84 12393.98 22998.68 12997.40 28795.02 13297.95 9899.34 3174.37 33699.78 9598.64 396.80 18299.08 147
UniMVSNet (Re)95.78 15795.19 16897.58 15696.99 25797.47 8398.79 10899.18 1695.60 9993.92 23597.04 26691.68 13198.48 24895.80 13987.66 31396.79 252
VPA-MVSNet95.75 15895.11 17297.69 14897.24 23897.27 9098.94 7499.23 1295.13 12595.51 18497.32 24085.73 25298.91 20797.33 7889.55 29196.89 241
HQP-MVS95.72 15995.40 15496.69 20497.20 24294.25 22498.05 21798.46 17196.43 6794.45 20797.73 20986.75 23598.96 20095.30 15694.18 22396.86 246
UniMVSNet_NR-MVSNet95.71 16095.15 16997.40 16696.84 26696.97 10298.74 11399.24 1095.16 12393.88 23797.72 21191.68 13198.31 27595.81 13787.25 31996.92 233
PatchmatchNetpermissive95.71 16095.52 15296.29 24297.58 21190.72 29696.84 30897.52 27694.06 16697.08 13696.96 27589.24 17898.90 21092.03 25398.37 14499.26 125
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
OPM-MVS95.69 16295.33 16296.76 19996.16 29894.63 20698.43 16798.39 18496.64 5995.02 19198.78 11285.15 26199.05 18995.21 16294.20 22296.60 276
ACMM93.85 995.69 16295.38 15896.61 21197.61 20893.84 23398.91 7798.44 17595.25 11994.28 21898.47 14286.04 25099.12 17995.50 15193.95 23296.87 244
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
tpmrst95.63 16495.69 14895.44 27397.54 21788.54 32396.97 29497.56 27093.50 20097.52 12796.93 27989.49 17099.16 17395.25 16096.42 19598.64 180
LPG-MVS_test95.62 16595.34 16096.47 22797.46 22393.54 24498.99 6498.54 15494.67 14794.36 21498.77 11485.39 25699.11 18295.71 14494.15 22596.76 256
CLD-MVS95.62 16595.34 16096.46 23097.52 22093.75 23797.27 27898.46 17195.53 10294.42 21298.00 18686.21 24598.97 19796.25 12394.37 21796.66 271
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
thisisatest051595.61 16794.89 18297.76 14198.15 17695.15 18396.77 31094.41 33992.95 22297.18 13397.43 23584.78 26799.45 15294.63 17297.73 16698.68 175
thres600view795.49 16894.77 18597.67 15098.98 11295.02 18798.85 9096.90 31095.38 11096.63 15896.90 28084.29 27399.59 13288.65 30496.33 19798.40 189
SCA95.46 16995.13 17096.46 23097.67 20491.29 28797.33 27397.60 26894.68 14696.92 14697.10 25383.97 28298.89 21192.59 23798.32 14899.20 129
IterMVS-LS95.46 16995.21 16796.22 24498.12 17793.72 24098.32 18298.13 22993.71 18794.26 21997.31 24192.24 11798.10 29194.63 17290.12 28296.84 248
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
jajsoiax95.45 17195.03 17596.73 20095.42 32294.63 20699.14 3698.52 15895.74 9293.22 26198.36 15483.87 28598.65 23396.95 9194.04 22896.91 238
CVMVSNet95.43 17296.04 13593.57 31097.93 18983.62 33998.12 21198.59 14195.68 9596.56 16199.02 8087.51 22297.51 32193.56 21197.44 17299.60 78
anonymousdsp95.42 17394.91 18196.94 19095.10 32495.90 15699.14 3698.41 18093.75 18293.16 26397.46 23187.50 22498.41 26495.63 14894.03 22996.50 295
DU-MVS95.42 17394.76 18697.40 16696.53 28196.97 10298.66 13598.99 2995.43 10793.88 23797.69 21388.57 19698.31 27595.81 13787.25 31996.92 233
mvs_tets95.41 17595.00 17696.65 20695.58 31594.42 21699.00 6298.55 15195.73 9393.21 26298.38 15283.45 28998.63 23497.09 8494.00 23096.91 238
thres100view90095.38 17694.70 18997.41 16498.98 11294.92 19598.87 8796.90 31095.38 11096.61 15996.88 28184.29 27399.56 13688.11 30596.29 19997.76 205
thres40095.38 17694.62 19297.65 15398.94 11494.98 19198.68 12996.93 30895.33 11396.55 16396.53 29784.23 27699.56 13688.11 30596.29 19998.40 189
BH-w/o95.38 17695.08 17396.26 24398.34 15991.79 27697.70 24897.43 28592.87 22694.24 22197.22 24788.66 19498.84 21791.55 26397.70 16798.16 197
VDDNet95.36 17994.53 19697.86 13498.10 17995.13 18498.85 9097.75 26290.46 29298.36 7699.39 1473.27 33899.64 12597.98 3696.58 18998.81 166
TAPA-MVS93.98 795.35 18094.56 19597.74 14399.13 10294.83 19998.33 17798.64 13686.62 32196.29 17498.61 12794.00 9799.29 16280.00 33699.41 9799.09 144
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
ACMP93.49 1095.34 18194.98 17896.43 23297.67 20493.48 24798.73 11798.44 17594.94 13892.53 28398.53 13684.50 27299.14 17795.48 15294.00 23096.66 271
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
COLMAP_ROBcopyleft93.27 1295.33 18294.87 18396.71 20199.29 7893.24 25798.58 14398.11 23289.92 30293.57 24899.10 6986.37 24399.79 9190.78 27398.10 15397.09 223
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
tfpn200view995.32 18394.62 19297.43 16398.94 11494.98 19198.68 12996.93 30895.33 11396.55 16396.53 29784.23 27699.56 13688.11 30596.29 19997.76 205
Anonymous20240521195.28 18494.49 19897.67 15099.00 10993.75 23798.70 12697.04 30190.66 28996.49 16898.80 11078.13 31699.83 5596.21 12495.36 21599.44 105
thres20095.25 18594.57 19497.28 16998.81 12494.92 19598.20 19797.11 29795.24 12196.54 16596.22 30984.58 27099.53 14287.93 30996.50 19397.39 216
AllTest95.24 18694.65 19196.99 18499.25 8693.21 25898.59 14198.18 21891.36 27293.52 25098.77 11484.67 26899.72 10889.70 29197.87 15998.02 200
LCM-MVSNet-Re95.22 18795.32 16394.91 28798.18 17387.85 33098.75 11095.66 32995.11 12788.96 31996.85 28490.26 16497.65 31595.65 14798.44 14199.22 128
EPNet_dtu95.21 18894.95 18095.99 25196.17 29690.45 30098.16 20797.27 29396.77 5393.14 26698.33 16090.34 16198.42 25785.57 32298.81 12599.09 144
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
XXY-MVS95.20 18994.45 20397.46 16196.75 27196.56 12198.86 8998.65 13593.30 20993.27 26098.27 16784.85 26698.87 21494.82 16991.26 27096.96 230
D2MVS95.18 19095.08 17395.48 27097.10 25192.07 27198.30 18599.13 1994.02 16992.90 27196.73 28889.48 17198.73 22794.48 18193.60 24095.65 321
WR-MVS95.15 19194.46 20197.22 17196.67 27696.45 12598.21 19498.81 7694.15 16393.16 26397.69 21387.51 22298.30 27795.29 15888.62 30496.90 240
TranMVSNet+NR-MVSNet95.14 19294.48 19997.11 17996.45 28696.36 13099.03 5699.03 2595.04 13193.58 24797.93 19188.27 20398.03 29894.13 19286.90 32496.95 232
baseline295.11 19394.52 19796.87 19496.65 27793.56 24398.27 19094.10 34593.45 20292.02 29697.43 23587.45 22699.19 17193.88 20097.41 17497.87 203
miper_enhance_ethall95.10 19494.75 18796.12 24997.53 21993.73 23996.61 31698.08 23992.20 25193.89 23696.65 29392.44 11298.30 27794.21 19091.16 27196.34 303
Anonymous2024052995.10 19494.22 21297.75 14299.01 10894.26 22398.87 8798.83 6885.79 32996.64 15798.97 8778.73 31399.85 4996.27 12194.89 21699.12 142
test-LLR95.10 19494.87 18395.80 26196.77 26889.70 30696.91 29995.21 33195.11 12794.83 19795.72 31987.71 21898.97 19793.06 22398.50 13898.72 170
WR-MVS_H95.05 19794.46 20196.81 19796.86 26595.82 15899.24 2099.24 1093.87 17892.53 28396.84 28590.37 16098.24 28393.24 21887.93 31096.38 302
miper_ehance_all_eth95.01 19894.69 19095.97 25397.70 20393.31 25497.02 29298.07 24192.23 24893.51 25296.96 27591.85 12898.15 28793.68 20591.16 27196.44 300
ADS-MVSNet95.00 19994.45 20396.63 20998.00 18491.91 27496.04 32297.74 26390.15 29796.47 16996.64 29487.89 21498.96 20090.08 28297.06 17799.02 151
VPNet94.99 20094.19 21497.40 16697.16 24796.57 12098.71 12298.97 3095.67 9694.84 19598.24 17080.36 30598.67 23296.46 11587.32 31796.96 230
EPMVS94.99 20094.48 19996.52 22397.22 24091.75 27897.23 27991.66 34994.11 16497.28 12996.81 28685.70 25398.84 21793.04 22597.28 17598.97 156
NR-MVSNet94.98 20294.16 21797.44 16296.53 28197.22 9598.74 11398.95 3494.96 13589.25 31897.69 21389.32 17598.18 28594.59 17787.40 31696.92 233
FMVSNet394.97 20394.26 21197.11 17998.18 17396.62 11598.56 14998.26 20993.67 19494.09 22897.10 25384.25 27598.01 29992.08 24992.14 25796.70 265
CostFormer94.95 20494.73 18895.60 26897.28 23689.06 31697.53 25996.89 31289.66 30596.82 15196.72 28986.05 24898.95 20495.53 15096.13 20898.79 167
PAPM94.95 20494.00 22797.78 13997.04 25495.65 16296.03 32498.25 21091.23 28194.19 22497.80 20691.27 14498.86 21682.61 33197.61 16998.84 165
CP-MVSNet94.94 20694.30 21096.83 19696.72 27395.56 16699.11 4298.95 3493.89 17692.42 28897.90 19387.19 22898.12 29094.32 18688.21 30796.82 251
TR-MVS94.94 20694.20 21397.17 17597.75 19894.14 22697.59 25697.02 30492.28 24795.75 18397.64 21983.88 28498.96 20089.77 28896.15 20798.40 189
RPSCF94.87 20895.40 15493.26 31498.89 11782.06 34498.33 17798.06 24590.30 29696.56 16199.26 4287.09 22999.49 14593.82 20296.32 19898.24 195
DWT-MVSNet_test94.82 20994.36 20896.20 24597.35 23390.79 29498.34 17696.57 32292.91 22495.33 18796.44 30182.00 29399.12 17994.52 17995.78 21398.70 172
GA-MVS94.81 21094.03 22397.14 17697.15 24893.86 23296.76 31197.58 26994.00 17194.76 20097.04 26680.91 30098.48 24891.79 25896.25 20499.09 144
cl_fuxian94.79 21194.43 20595.89 25897.75 19893.12 26197.16 28698.03 24892.23 24893.46 25597.05 26591.39 13998.01 29993.58 21089.21 29696.53 287
V4294.78 21294.14 21996.70 20396.33 29195.22 18098.97 6898.09 23792.32 24594.31 21797.06 26388.39 20198.55 24392.90 22988.87 30296.34 303
CR-MVSNet94.76 21394.15 21896.59 21497.00 25593.43 24894.96 33297.56 27092.46 23696.93 14496.24 30588.15 20797.88 31187.38 31196.65 18798.46 187
v2v48294.69 21494.03 22396.65 20696.17 29694.79 20298.67 13298.08 23992.72 22994.00 23397.16 25187.69 22198.45 25292.91 22888.87 30296.72 261
pmmvs494.69 21493.99 22996.81 19795.74 31095.94 15097.40 26497.67 26590.42 29493.37 25797.59 22389.08 18398.20 28492.97 22791.67 26496.30 307
cl-mvsnet294.68 21694.19 21496.13 24898.11 17893.60 24296.94 29698.31 19692.43 24093.32 25996.87 28386.51 23898.28 28194.10 19591.16 27196.51 293
eth_miper_zixun_eth94.68 21694.41 20695.47 27197.64 20691.71 28096.73 31398.07 24192.71 23093.64 24597.21 24890.54 15898.17 28693.38 21389.76 28696.54 285
PCF-MVS93.45 1194.68 21693.43 25998.42 10198.62 14196.77 11195.48 33098.20 21484.63 33393.34 25898.32 16188.55 19899.81 7084.80 32798.96 11598.68 175
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
MVS94.67 21993.54 25598.08 12396.88 26496.56 12198.19 20198.50 16678.05 34292.69 27898.02 18391.07 14999.63 12890.09 28198.36 14698.04 199
PS-CasMVS94.67 21993.99 22996.71 20196.68 27595.26 17999.13 3999.03 2593.68 19292.33 28997.95 18985.35 25898.10 29193.59 20988.16 30996.79 252
cascas94.63 22193.86 23796.93 19196.91 26294.27 22296.00 32598.51 16185.55 33094.54 20396.23 30784.20 27898.87 21495.80 13996.98 18097.66 211
tpmvs94.60 22294.36 20895.33 27697.46 22388.60 32296.88 30597.68 26491.29 27893.80 24296.42 30288.58 19599.24 16691.06 26896.04 21098.17 196
LTVRE_ROB92.95 1594.60 22293.90 23496.68 20597.41 23194.42 21698.52 15398.59 14191.69 26391.21 30298.35 15584.87 26599.04 19291.06 26893.44 24496.60 276
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
v114494.59 22493.92 23296.60 21396.21 29394.78 20398.59 14198.14 22891.86 25994.21 22397.02 26887.97 21298.41 26491.72 26089.57 28996.61 275
ADS-MVSNet294.58 22594.40 20795.11 28298.00 18488.74 32096.04 32297.30 29090.15 29796.47 16996.64 29487.89 21497.56 31990.08 28297.06 17799.02 151
RRT_test8_iter0594.56 22694.19 21495.67 26697.60 20991.34 28398.93 7598.42 17994.75 14293.39 25697.87 19679.00 31298.61 23596.78 10790.99 27497.07 224
ACMH92.88 1694.55 22793.95 23196.34 23897.63 20793.26 25698.81 10398.49 17093.43 20389.74 31498.53 13681.91 29499.08 18793.69 20493.30 24796.70 265
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
XVG-ACMP-BASELINE94.54 22894.14 21995.75 26496.55 28091.65 28198.11 21398.44 17594.96 13594.22 22297.90 19379.18 31199.11 18294.05 19793.85 23496.48 297
cl-mvsnet194.52 22994.03 22395.99 25197.57 21593.38 25297.05 29097.94 25491.74 26092.81 27397.10 25389.12 18198.07 29592.60 23590.30 28096.53 287
cl-mvsnet_94.51 23094.01 22696.02 25097.58 21193.40 25197.05 29097.96 25391.73 26292.76 27597.08 25989.06 18498.13 28992.61 23490.29 28196.52 290
GBi-Net94.49 23193.80 24096.56 21898.21 16895.00 18898.82 9798.18 21892.46 23694.09 22897.07 26081.16 29797.95 30392.08 24992.14 25796.72 261
test194.49 23193.80 24096.56 21898.21 16895.00 18898.82 9798.18 21892.46 23694.09 22897.07 26081.16 29797.95 30392.08 24992.14 25796.72 261
v894.47 23393.77 24396.57 21796.36 28994.83 19999.05 5298.19 21591.92 25693.16 26396.97 27388.82 19398.48 24891.69 26187.79 31196.39 301
FMVSNet294.47 23393.61 25297.04 18298.21 16896.43 12798.79 10898.27 20592.46 23693.50 25397.09 25781.16 29798.00 30191.09 26691.93 26196.70 265
Patchmatch-test94.42 23593.68 25096.63 20997.60 20991.76 27794.83 33697.49 28089.45 30894.14 22697.10 25388.99 18598.83 21985.37 32598.13 15299.29 122
PEN-MVS94.42 23593.73 24796.49 22596.28 29294.84 19799.17 3399.00 2793.51 19992.23 29197.83 20386.10 24797.90 30792.55 24086.92 32396.74 258
v14419294.39 23793.70 24896.48 22696.06 30194.35 22098.58 14398.16 22591.45 26994.33 21697.02 26887.50 22498.45 25291.08 26789.11 29796.63 273
Baseline_NR-MVSNet94.35 23893.81 23995.96 25496.20 29494.05 22898.61 14096.67 32091.44 27093.85 23997.60 22288.57 19698.14 28894.39 18386.93 32295.68 320
miper_lstm_enhance94.33 23994.07 22295.11 28297.75 19890.97 29197.22 28098.03 24891.67 26492.76 27596.97 27390.03 16697.78 31392.51 24289.64 28896.56 282
v119294.32 24093.58 25396.53 22296.10 29994.45 21598.50 15898.17 22391.54 26794.19 22497.06 26386.95 23398.43 25690.14 28089.57 28996.70 265
ACMH+92.99 1494.30 24193.77 24395.88 25997.81 19692.04 27398.71 12298.37 18793.99 17290.60 31098.47 14280.86 30299.05 18992.75 23392.40 25696.55 284
v14894.29 24293.76 24595.91 25696.10 29992.93 26398.58 14397.97 25192.59 23493.47 25496.95 27788.53 19998.32 27392.56 23987.06 32196.49 296
v1094.29 24293.55 25496.51 22496.39 28894.80 20198.99 6498.19 21591.35 27493.02 26996.99 27188.09 20998.41 26490.50 27788.41 30696.33 305
MVP-Stereo94.28 24493.92 23295.35 27594.95 32692.60 26697.97 22597.65 26691.61 26690.68 30997.09 25786.32 24498.42 25789.70 29199.34 10295.02 328
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
UniMVSNet_ETH3D94.24 24593.33 26196.97 18797.19 24593.38 25298.74 11398.57 14791.21 28393.81 24198.58 13272.85 33998.77 22595.05 16493.93 23398.77 169
OurMVSNet-221017-094.21 24694.00 22794.85 29095.60 31489.22 31498.89 8297.43 28595.29 11692.18 29298.52 13982.86 29098.59 24093.46 21291.76 26396.74 258
v192192094.20 24793.47 25896.40 23495.98 30494.08 22798.52 15398.15 22691.33 27594.25 22097.20 24986.41 24298.42 25790.04 28589.39 29496.69 270
v7n94.19 24893.43 25996.47 22795.90 30694.38 21999.26 1898.34 19291.99 25492.76 27597.13 25288.31 20298.52 24689.48 29687.70 31296.52 290
tpm294.19 24893.76 24595.46 27297.23 23989.04 31797.31 27596.85 31587.08 32096.21 17696.79 28783.75 28898.74 22692.43 24596.23 20598.59 182
TESTMET0.1,194.18 25093.69 24995.63 26796.92 26089.12 31596.91 29994.78 33693.17 21394.88 19496.45 30078.52 31498.92 20693.09 22298.50 13898.85 163
dp94.15 25193.90 23494.90 28897.31 23586.82 33596.97 29497.19 29691.22 28296.02 18096.61 29685.51 25599.02 19590.00 28694.30 21898.85 163
ET-MVSNet_ETH3D94.13 25292.98 26797.58 15698.22 16796.20 13697.31 27595.37 33094.53 15279.56 34097.63 22186.51 23897.53 32096.91 9290.74 27699.02 151
tpm94.13 25293.80 24095.12 28196.50 28387.91 32997.44 26195.89 32892.62 23296.37 17396.30 30484.13 27998.30 27793.24 21891.66 26599.14 140
IterMVS-SCA-FT94.11 25493.87 23694.85 29097.98 18890.56 29997.18 28398.11 23293.75 18292.58 28197.48 23083.97 28297.41 32292.48 24491.30 26896.58 278
Anonymous2023121194.10 25593.26 26496.61 21199.11 10494.28 22199.01 6098.88 4986.43 32392.81 27397.57 22581.66 29698.68 23194.83 16889.02 30096.88 242
IterMVS94.09 25693.85 23894.80 29397.99 18690.35 30197.18 28398.12 23093.68 19292.46 28797.34 23884.05 28097.41 32292.51 24291.33 26796.62 274
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
test-mter94.08 25793.51 25695.80 26196.77 26889.70 30696.91 29995.21 33192.89 22594.83 19795.72 31977.69 31998.97 19793.06 22398.50 13898.72 170
test0.0.03 194.08 25793.51 25695.80 26195.53 31792.89 26497.38 26695.97 32595.11 12792.51 28596.66 29187.71 21896.94 32887.03 31393.67 23697.57 212
v124094.06 25993.29 26396.34 23896.03 30393.90 23198.44 16598.17 22391.18 28494.13 22797.01 27086.05 24898.42 25789.13 30189.50 29296.70 265
X-MVStestdata94.06 25992.30 27999.34 2399.70 2398.35 4399.29 1498.88 4997.40 2198.46 6843.50 35295.90 4099.89 3597.85 4499.74 4199.78 13
DTE-MVSNet93.98 26193.26 26496.14 24796.06 30194.39 21899.20 2998.86 6193.06 21691.78 29797.81 20585.87 25197.58 31890.53 27686.17 32896.46 299
pm-mvs193.94 26293.06 26696.59 21496.49 28495.16 18198.95 7298.03 24892.32 24591.08 30497.84 20084.54 27198.41 26492.16 24786.13 33096.19 310
MS-PatchMatch93.84 26393.63 25194.46 30296.18 29589.45 31097.76 24498.27 20592.23 24892.13 29397.49 22979.50 30898.69 22889.75 28999.38 10095.25 323
tfpnnormal93.66 26492.70 27396.55 22196.94 25995.94 15098.97 6899.19 1591.04 28691.38 30197.34 23884.94 26498.61 23585.45 32489.02 30095.11 325
EU-MVSNet93.66 26494.14 21992.25 31995.96 30583.38 34098.52 15398.12 23094.69 14592.61 28098.13 17787.36 22796.39 33791.82 25790.00 28496.98 229
our_test_393.65 26693.30 26294.69 29595.45 32089.68 30896.91 29997.65 26691.97 25591.66 29996.88 28189.67 16997.93 30688.02 30891.49 26696.48 297
pmmvs593.65 26692.97 26895.68 26595.49 31892.37 26798.20 19797.28 29289.66 30592.58 28197.26 24382.14 29298.09 29393.18 22190.95 27596.58 278
tpm cat193.36 26892.80 27095.07 28497.58 21187.97 32896.76 31197.86 25882.17 33893.53 24996.04 31386.13 24699.13 17889.24 29995.87 21198.10 198
JIA-IIPM93.35 26992.49 27695.92 25596.48 28590.65 29795.01 33196.96 30685.93 32796.08 17887.33 34387.70 22098.78 22491.35 26595.58 21498.34 192
SixPastTwentyTwo93.34 27092.86 26994.75 29495.67 31289.41 31298.75 11096.67 32093.89 17690.15 31298.25 16980.87 30198.27 28290.90 27190.64 27796.57 280
USDC93.33 27192.71 27295.21 27896.83 26790.83 29396.91 29997.50 27893.84 17990.72 30898.14 17677.69 31998.82 22089.51 29593.21 24995.97 315
IB-MVS91.98 1793.27 27291.97 28397.19 17397.47 22293.41 25097.09 28995.99 32493.32 20792.47 28695.73 31778.06 31799.53 14294.59 17782.98 33398.62 181
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
MIMVSNet93.26 27392.21 28096.41 23397.73 20293.13 26095.65 32997.03 30291.27 28094.04 23196.06 31275.33 33097.19 32586.56 31596.23 20598.92 161
ppachtmachnet_test93.22 27492.63 27494.97 28695.45 32090.84 29296.88 30597.88 25790.60 29092.08 29497.26 24388.08 21097.86 31285.12 32690.33 27996.22 308
Patchmtry93.22 27492.35 27895.84 26096.77 26893.09 26294.66 33797.56 27087.37 31992.90 27196.24 30588.15 20797.90 30787.37 31290.10 28396.53 287
FMVSNet193.19 27692.07 28196.56 21897.54 21795.00 18898.82 9798.18 21890.38 29592.27 29097.07 26073.68 33797.95 30389.36 29891.30 26896.72 261
LF4IMVS93.14 27792.79 27194.20 30595.88 30788.67 32197.66 25297.07 29993.81 18191.71 29897.65 21777.96 31898.81 22191.47 26491.92 26295.12 324
testgi93.06 27892.45 27794.88 28996.43 28789.90 30398.75 11097.54 27595.60 9991.63 30097.91 19274.46 33597.02 32786.10 31893.67 23697.72 209
PatchT93.06 27891.97 28396.35 23796.69 27492.67 26594.48 33897.08 29886.62 32197.08 13692.23 33887.94 21397.90 30778.89 34096.69 18598.49 186
test_part192.87 28091.72 28696.32 24097.55 21693.50 24699.04 5398.74 10283.31 33590.81 30797.70 21276.61 32598.60 23994.43 18287.30 31896.85 247
MVS_030492.81 28192.01 28295.23 27797.46 22391.33 28598.17 20698.81 7691.13 28593.80 24295.68 32266.08 34598.06 29690.79 27296.13 20896.32 306
RPMNet92.81 28191.34 28997.24 17097.00 25593.43 24894.96 33298.80 8682.27 33796.93 14492.12 33986.98 23299.82 6376.32 34496.65 18798.46 187
TransMVSNet (Re)92.67 28391.51 28896.15 24696.58 27994.65 20498.90 7896.73 31690.86 28889.46 31797.86 19785.62 25498.09 29386.45 31681.12 33895.71 319
K. test v392.55 28491.91 28594.48 30095.64 31389.24 31399.07 5094.88 33594.04 16786.78 32797.59 22377.64 32297.64 31692.08 24989.43 29396.57 280
DSMNet-mixed92.52 28592.58 27592.33 31894.15 33382.65 34298.30 18594.26 34289.08 31292.65 27995.73 31785.01 26395.76 33886.24 31797.76 16498.59 182
TinyColmap92.31 28691.53 28794.65 29796.92 26089.75 30596.92 29796.68 31990.45 29389.62 31597.85 19976.06 32898.81 22186.74 31492.51 25595.41 322
gg-mvs-nofinetune92.21 28790.58 29497.13 17796.75 27195.09 18595.85 32689.40 35285.43 33194.50 20581.98 34680.80 30398.40 27092.16 24798.33 14797.88 202
FMVSNet591.81 28890.92 29194.49 29997.21 24192.09 27098.00 22397.55 27489.31 31090.86 30695.61 32374.48 33495.32 34085.57 32289.70 28796.07 313
pmmvs691.77 28990.63 29395.17 28094.69 33191.24 28898.67 13297.92 25586.14 32589.62 31597.56 22775.79 32998.34 27190.75 27484.56 33295.94 316
Anonymous2023120691.66 29091.10 29093.33 31294.02 33587.35 33298.58 14397.26 29490.48 29190.16 31196.31 30383.83 28696.53 33579.36 33889.90 28596.12 311
Patchmatch-RL test91.49 29190.85 29293.41 31191.37 34184.40 33792.81 34295.93 32791.87 25887.25 32594.87 32788.99 18596.53 33592.54 24182.00 33599.30 120
test_040291.32 29290.27 29694.48 30096.60 27891.12 28998.50 15897.22 29586.10 32688.30 32296.98 27277.65 32197.99 30278.13 34292.94 25294.34 331
PVSNet_088.72 1991.28 29390.03 29895.00 28597.99 18687.29 33394.84 33598.50 16692.06 25389.86 31395.19 32479.81 30799.39 15592.27 24669.79 34698.33 193
EG-PatchMatch MVS91.13 29490.12 29794.17 30794.73 33089.00 31898.13 21097.81 25989.22 31185.32 33496.46 29967.71 34298.42 25787.89 31093.82 23595.08 326
TDRefinement91.06 29589.68 30095.21 27885.35 34891.49 28298.51 15797.07 29991.47 26888.83 32097.84 20077.31 32399.09 18692.79 23277.98 34195.04 327
UnsupCasMVSNet_eth90.99 29689.92 29994.19 30694.08 33489.83 30497.13 28898.67 12893.69 19085.83 33296.19 31075.15 33196.74 32989.14 30079.41 34096.00 314
test20.0390.89 29790.38 29592.43 31793.48 33688.14 32798.33 17797.56 27093.40 20487.96 32396.71 29080.69 30494.13 34479.15 33986.17 32895.01 329
MDA-MVSNet_test_wron90.71 29889.38 30394.68 29694.83 32890.78 29597.19 28297.46 28187.60 31772.41 34695.72 31986.51 23896.71 33285.92 32086.80 32596.56 282
YYNet190.70 29989.39 30294.62 29894.79 32990.65 29797.20 28197.46 28187.54 31872.54 34595.74 31686.51 23896.66 33386.00 31986.76 32696.54 285
testing_290.61 30088.50 30696.95 18990.08 34595.57 16597.69 24998.06 24593.02 21876.55 34192.48 33761.18 34898.44 25495.45 15391.98 26096.84 248
pmmvs-eth3d90.36 30189.05 30494.32 30491.10 34292.12 26997.63 25596.95 30788.86 31384.91 33593.13 33378.32 31596.74 32988.70 30381.81 33794.09 335
new_pmnet90.06 30289.00 30593.22 31594.18 33288.32 32696.42 32096.89 31286.19 32485.67 33393.62 33177.18 32497.10 32681.61 33389.29 29594.23 332
MDA-MVSNet-bldmvs89.97 30388.35 30894.83 29295.21 32391.34 28397.64 25397.51 27788.36 31571.17 34796.13 31179.22 31096.63 33483.65 32886.27 32796.52 290
CMPMVSbinary66.06 2189.70 30489.67 30189.78 32393.19 33776.56 34697.00 29398.35 19080.97 33981.57 33997.75 20874.75 33398.61 23589.85 28793.63 23894.17 333
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
MIMVSNet189.67 30588.28 30993.82 30892.81 33991.08 29098.01 22197.45 28387.95 31687.90 32495.87 31567.63 34394.56 34378.73 34188.18 30895.83 318
MVS-HIRNet89.46 30688.40 30792.64 31697.58 21182.15 34394.16 34193.05 34875.73 34490.90 30582.52 34579.42 30998.33 27283.53 32998.68 12797.43 213
OpenMVS_ROBcopyleft86.42 2089.00 30787.43 31293.69 30993.08 33889.42 31197.91 22996.89 31278.58 34185.86 33194.69 32869.48 34198.29 28077.13 34393.29 24893.36 340
new-patchmatchnet88.50 30887.45 31191.67 32190.31 34485.89 33697.16 28697.33 28989.47 30783.63 33792.77 33476.38 32695.06 34282.70 33077.29 34294.06 336
PM-MVS87.77 30986.55 31391.40 32291.03 34383.36 34196.92 29795.18 33391.28 27986.48 33093.42 33253.27 34996.74 32989.43 29781.97 33694.11 334
UnsupCasMVSNet_bld87.17 31085.12 31493.31 31391.94 34088.77 31994.92 33498.30 20284.30 33482.30 33890.04 34063.96 34797.25 32485.85 32174.47 34593.93 338
N_pmnet87.12 31187.77 31085.17 32895.46 31961.92 35397.37 26870.66 35885.83 32888.73 32196.04 31385.33 26097.76 31480.02 33590.48 27895.84 317
pmmvs386.67 31284.86 31592.11 32088.16 34687.19 33496.63 31594.75 33779.88 34087.22 32692.75 33566.56 34495.20 34181.24 33476.56 34393.96 337
LCM-MVSNet78.70 31376.24 31886.08 32677.26 35471.99 35094.34 33996.72 31761.62 34876.53 34289.33 34133.91 35692.78 34681.85 33274.60 34493.46 339
Gipumacopyleft78.40 31476.75 31783.38 32995.54 31680.43 34579.42 35097.40 28764.67 34773.46 34480.82 34745.65 35193.14 34566.32 34787.43 31576.56 348
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
PMMVS277.95 31575.44 31985.46 32782.54 34974.95 34894.23 34093.08 34772.80 34574.68 34387.38 34236.36 35591.56 34773.95 34563.94 34789.87 342
FPMVS77.62 31677.14 31679.05 33179.25 35260.97 35495.79 32795.94 32665.96 34667.93 34894.40 32937.73 35488.88 34968.83 34688.46 30587.29 343
ANet_high69.08 31765.37 32180.22 33065.99 35671.96 35190.91 34690.09 35182.62 33649.93 35378.39 34829.36 35781.75 35062.49 34838.52 35186.95 345
tmp_tt68.90 31866.97 32074.68 33350.78 35859.95 35587.13 34783.47 35638.80 35362.21 34996.23 30764.70 34676.91 35488.91 30230.49 35287.19 344
PMVScopyleft61.03 2365.95 31963.57 32373.09 33457.90 35751.22 35885.05 34993.93 34654.45 34944.32 35483.57 34413.22 35889.15 34858.68 34981.00 33978.91 347
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
E-PMN64.94 32064.25 32267.02 33582.28 35059.36 35691.83 34585.63 35452.69 35060.22 35077.28 34941.06 35380.12 35246.15 35141.14 34961.57 350
EMVS64.07 32163.26 32466.53 33681.73 35158.81 35791.85 34484.75 35551.93 35259.09 35175.13 35043.32 35279.09 35342.03 35239.47 35061.69 349
MVEpermissive62.14 2263.28 32259.38 32574.99 33274.33 35565.47 35285.55 34880.50 35752.02 35151.10 35275.00 35110.91 36180.50 35151.60 35053.40 34878.99 346
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
wuyk23d30.17 32330.18 32730.16 33778.61 35343.29 35966.79 35114.21 35917.31 35414.82 35711.93 35711.55 36041.43 35537.08 35319.30 3535.76 353
cdsmvs_eth3d_5k23.98 32431.98 3260.00 3400.00 3610.00 3620.00 35298.59 1410.00 3570.00 35898.61 12790.60 1570.00 3580.00 3560.00 3560.00 354
testmvs21.48 32524.95 32811.09 33914.89 3596.47 36196.56 3179.87 3607.55 35517.93 35539.02 3539.43 3625.90 35716.56 35512.72 35420.91 352
test12320.95 32623.72 32912.64 33813.54 3608.19 36096.55 3186.13 3617.48 35616.74 35637.98 35412.97 3596.05 35616.69 3545.43 35523.68 351
ab-mvs-re8.20 32710.94 3300.00 3400.00 3610.00 3620.00 3520.00 3620.00 3570.00 35898.43 1450.00 3630.00 3580.00 3560.00 3560.00 354
pcd_1.5k_mvsjas7.88 32810.50 3310.00 3400.00 3610.00 3620.00 3520.00 3620.00 3570.00 3580.00 35894.51 850.00 3580.00 3560.00 3560.00 354
uanet_test0.00 3290.00 3320.00 3400.00 3610.00 3620.00 3520.00 3620.00 3570.00 3580.00 3580.00 3630.00 3580.00 3560.00 3560.00 354
sosnet-low-res0.00 3290.00 3320.00 3400.00 3610.00 3620.00 3520.00 3620.00 3570.00 3580.00 3580.00 3630.00 3580.00 3560.00 3560.00 354
sosnet0.00 3290.00 3320.00 3400.00 3610.00 3620.00 3520.00 3620.00 3570.00 3580.00 3580.00 3630.00 3580.00 3560.00 3560.00 354
uncertanet0.00 3290.00 3320.00 3400.00 3610.00 3620.00 3520.00 3620.00 3570.00 3580.00 3580.00 3630.00 3580.00 3560.00 3560.00 354
Regformer0.00 3290.00 3320.00 3400.00 3610.00 3620.00 3520.00 3620.00 3570.00 3580.00 3580.00 3630.00 3580.00 3560.00 3560.00 354
uanet0.00 3290.00 3320.00 3400.00 3610.00 3620.00 3520.00 3620.00 3570.00 3580.00 3580.00 3630.00 3580.00 3560.00 3560.00 354
ZD-MVS99.46 5198.70 1998.79 9193.21 21198.67 5898.97 8795.70 4499.83 5596.07 12699.58 74
RE-MVS-def98.34 2899.49 4597.86 6899.11 4298.80 8696.49 6599.17 2499.35 2895.29 6397.72 5299.65 5899.71 44
IU-MVS99.71 2099.23 698.64 13695.28 11799.63 498.35 2499.81 1099.83 5
OPU-MVS99.37 2099.24 9299.05 1099.02 5899.16 6197.81 299.37 15797.24 7999.73 4399.70 48
test_241102_TWO98.87 5597.65 999.53 899.48 697.34 899.94 398.43 1899.80 1799.83 5
test_241102_ONE99.71 2099.24 498.87 5597.62 1199.73 199.39 1497.53 499.74 106
9.1498.06 4999.47 4898.71 12298.82 7094.36 15999.16 2699.29 3996.05 3299.81 7097.00 8699.71 50
save fliter99.46 5198.38 3598.21 19498.71 11397.95 3
test_0728_THIRD97.32 2799.45 999.46 997.88 199.94 398.47 1599.86 199.85 2
test_0728_SECOND99.71 199.72 1299.35 198.97 6898.88 4999.94 398.47 1599.81 1099.84 4
test072699.72 1299.25 299.06 5198.88 4997.62 1199.56 599.50 497.42 6
GSMVS99.20 129
test_part299.63 2999.18 899.27 17
sam_mvs189.45 17299.20 129
sam_mvs88.99 185
ambc89.49 32486.66 34775.78 34792.66 34396.72 31786.55 32992.50 33646.01 35097.90 30790.32 27882.09 33494.80 330
MTGPAbinary98.74 102
test_post196.68 31430.43 35687.85 21798.69 22892.59 237
test_post31.83 35588.83 19298.91 207
patchmatchnet-post95.10 32689.42 17398.89 211
GG-mvs-BLEND96.59 21496.34 29094.98 19196.51 31988.58 35393.10 26894.34 33080.34 30698.05 29789.53 29496.99 17996.74 258
MTMP98.89 8294.14 344
gm-plane-assit95.88 30787.47 33189.74 30496.94 27899.19 17193.32 217
test9_res96.39 12099.57 7599.69 51
TEST999.31 7098.50 2997.92 22798.73 10792.63 23197.74 11198.68 12196.20 2399.80 79
test_899.29 7898.44 3197.89 23398.72 10992.98 22097.70 11498.66 12496.20 2399.80 79
agg_prior295.87 13699.57 7599.68 57
agg_prior99.30 7598.38 3598.72 10997.57 12599.81 70
TestCases96.99 18499.25 8693.21 25898.18 21891.36 27293.52 25098.77 11484.67 26899.72 10889.70 29197.87 15998.02 200
test_prior498.01 6297.86 236
test_prior297.80 24196.12 8097.89 10598.69 11995.96 3696.89 9599.60 68
test_prior99.19 4399.31 7098.22 5098.84 6599.70 11499.65 67
旧先验297.57 25891.30 27798.67 5899.80 7995.70 146
新几何297.64 253
新几何199.16 5099.34 6298.01 6298.69 11790.06 30098.13 8298.95 9594.60 8299.89 3591.97 25599.47 9099.59 80
旧先验199.29 7897.48 8298.70 11699.09 7495.56 4799.47 9099.61 75
无先验97.58 25798.72 10991.38 27199.87 4493.36 21599.60 78
原ACMM297.67 251
原ACMM198.65 8199.32 6896.62 11598.67 12893.27 21097.81 10798.97 8795.18 6899.83 5593.84 20199.46 9399.50 91
test22299.23 9397.17 9797.40 26498.66 13188.68 31498.05 8698.96 9394.14 9499.53 8599.61 75
testdata299.89 3591.65 262
segment_acmp96.85 11
testdata98.26 11199.20 9795.36 17498.68 12091.89 25798.60 6499.10 6994.44 9099.82 6394.27 18899.44 9599.58 82
testdata197.32 27496.34 71
test1299.18 4799.16 9998.19 5298.53 15698.07 8595.13 7099.72 10899.56 8099.63 73
plane_prior797.42 22894.63 206
plane_prior697.35 23394.61 20987.09 229
plane_prior598.56 14999.03 19396.07 12694.27 21996.92 233
plane_prior498.28 164
plane_prior394.61 20997.02 4795.34 185
plane_prior298.80 10497.28 29
plane_prior197.37 232
plane_prior94.60 21198.44 16596.74 5594.22 221
n20.00 362
nn0.00 362
door-mid94.37 340
lessismore_v094.45 30394.93 32788.44 32491.03 35086.77 32897.64 21976.23 32798.42 25790.31 27985.64 33196.51 293
LGP-MVS_train96.47 22797.46 22393.54 24498.54 15494.67 14794.36 21498.77 11485.39 25699.11 18295.71 14494.15 22596.76 256
test1198.66 131
door94.64 338
HQP5-MVS94.25 224
HQP-NCC97.20 24298.05 21796.43 6794.45 207
ACMP_Plane97.20 24298.05 21796.43 6794.45 207
BP-MVS95.30 156
HQP4-MVS94.45 20798.96 20096.87 244
HQP3-MVS98.46 17194.18 223
HQP2-MVS86.75 235
NP-MVS97.28 23694.51 21497.73 209
MDTV_nov1_ep13_2view84.26 33896.89 30490.97 28797.90 10489.89 16893.91 19999.18 136
MDTV_nov1_ep1395.40 15497.48 22188.34 32596.85 30797.29 29193.74 18497.48 12897.26 24389.18 17999.05 18991.92 25697.43 173
ACMMP++_ref92.97 251
ACMMP++93.61 239
Test By Simon94.64 80
ITE_SJBPF95.44 27397.42 22891.32 28697.50 27895.09 13093.59 24698.35 15581.70 29598.88 21389.71 29093.39 24596.12 311
DeepMVS_CXcopyleft86.78 32597.09 25272.30 34995.17 33475.92 34384.34 33695.19 32470.58 34095.35 33979.98 33789.04 29992.68 341