MCST-MVS | | | 91.08 1 | 91.46 2 | 89.94 4 | 97.66 2 | 73.37 9 | 97.13 2 | 95.58 8 | 89.33 1 | 85.77 39 | 96.26 24 | 72.84 22 | 99.38 1 | 92.64 4 | 95.93 8 | 97.08 7 |
|
DPM-MVS | | | 90.70 2 | 90.52 5 | 91.24 1 | 89.68 151 | 76.68 2 | 97.29 1 | 95.35 10 | 82.87 14 | 91.58 8 | 97.22 4 | 79.93 3 | 99.10 7 | 83.12 72 | 97.64 2 | 97.94 1 |
|
MSP-MVS | | | 90.38 3 | 91.87 1 | 85.88 82 | 92.83 76 | 64.03 187 | 93.06 100 | 94.33 48 | 82.19 19 | 93.65 2 | 96.15 27 | 85.89 1 | 97.19 79 | 91.02 15 | 97.75 1 | 96.43 22 |
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025 |
CNVR-MVS | | | 90.32 4 | 90.89 4 | 88.61 16 | 96.76 7 | 70.65 23 | 96.47 12 | 94.83 23 | 84.83 8 | 89.07 19 | 96.80 12 | 70.86 29 | 99.06 11 | 92.64 4 | 95.71 9 | 96.12 30 |
|
ETH3 D test6400 | | | 90.27 5 | 90.44 6 | 89.75 6 | 96.82 6 | 74.33 7 | 95.89 16 | 94.80 26 | 77.13 78 | 89.13 18 | 97.38 2 | 74.49 15 | 98.48 24 | 92.32 9 | 95.98 6 | 96.46 21 |
|
DELS-MVS | | | 90.05 6 | 90.09 8 | 89.94 4 | 93.14 70 | 73.88 8 | 97.01 3 | 94.40 45 | 88.32 2 | 85.71 41 | 94.91 63 | 74.11 16 | 98.91 13 | 87.26 44 | 95.94 7 | 97.03 8 |
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
SED-MVS | | | 89.94 7 | 90.36 7 | 88.70 13 | 96.45 11 | 69.38 43 | 96.89 4 | 94.44 40 | 71.65 185 | 92.11 3 | 97.21 5 | 76.79 7 | 99.11 4 | 92.34 6 | 95.36 12 | 97.62 2 |
|
DeepPCF-MVS | | 81.17 1 | 89.72 8 | 91.38 3 | 84.72 123 | 93.00 73 | 58.16 279 | 96.72 7 | 94.41 43 | 86.50 5 | 90.25 14 | 97.83 1 | 75.46 12 | 98.67 19 | 92.78 3 | 95.49 11 | 97.32 4 |
|
CANet | | | 89.61 9 | 89.99 9 | 88.46 17 | 94.39 38 | 69.71 39 | 96.53 11 | 93.78 60 | 86.89 4 | 89.68 15 | 95.78 31 | 65.94 60 | 99.10 7 | 92.99 2 | 93.91 40 | 96.58 15 |
|
DVP-MVS | | | 89.41 10 | 89.73 11 | 88.45 18 | 96.40 14 | 69.99 31 | 96.64 8 | 94.52 36 | 71.92 171 | 90.55 12 | 96.93 10 | 73.77 17 | 99.08 9 | 91.91 10 | 94.90 19 | 96.29 26 |
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025 |
HPM-MVS++ |  | | 89.37 11 | 89.95 10 | 87.64 26 | 95.10 29 | 68.23 71 | 95.24 31 | 94.49 38 | 82.43 17 | 88.90 20 | 96.35 21 | 71.89 28 | 98.63 20 | 88.76 30 | 96.40 4 | 96.06 31 |
|
NCCC | | | 89.07 12 | 89.46 12 | 87.91 21 | 96.60 9 | 69.05 50 | 96.38 13 | 94.64 33 | 84.42 9 | 86.74 30 | 96.20 25 | 66.56 56 | 98.76 18 | 89.03 28 | 94.56 29 | 95.92 37 |
|
DPE-MVS | | | 88.77 13 | 89.21 13 | 87.45 33 | 96.26 18 | 67.56 86 | 94.17 52 | 94.15 53 | 68.77 232 | 90.74 11 | 97.27 3 | 76.09 10 | 98.49 23 | 90.58 17 | 94.91 18 | 96.30 25 |
|
SMA-MVS |  | | 88.14 14 | 88.29 17 | 87.67 25 | 93.21 67 | 68.72 58 | 93.85 73 | 94.03 56 | 74.18 117 | 91.74 7 | 96.67 13 | 65.61 65 | 98.42 28 | 89.24 24 | 96.08 5 | 95.88 39 |
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
PS-MVSNAJ | | | 88.14 14 | 87.61 24 | 89.71 7 | 92.06 95 | 76.72 1 | 95.75 19 | 93.26 86 | 83.86 10 | 89.55 16 | 96.06 28 | 53.55 194 | 97.89 44 | 91.10 13 | 93.31 50 | 94.54 88 |
|
TSAR-MVS + MP. | | | 88.11 16 | 88.64 14 | 86.54 61 | 91.73 109 | 68.04 74 | 90.36 205 | 93.55 73 | 82.89 13 | 91.29 9 | 92.89 113 | 72.27 25 | 96.03 128 | 87.99 35 | 94.77 23 | 95.54 46 |
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
TSAR-MVS + GP. | | | 87.96 17 | 88.37 16 | 86.70 55 | 93.51 60 | 65.32 148 | 95.15 34 | 93.84 59 | 78.17 66 | 85.93 38 | 94.80 67 | 75.80 11 | 98.21 31 | 89.38 21 | 88.78 98 | 96.59 13 |
|
DeepC-MVS_fast | | 79.48 2 | 87.95 18 | 88.00 18 | 87.79 24 | 95.86 24 | 68.32 66 | 95.74 20 | 94.11 55 | 83.82 11 | 83.49 63 | 96.19 26 | 64.53 76 | 98.44 26 | 83.42 71 | 94.88 22 | 96.61 12 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
xiu_mvs_v2_base | | | 87.92 19 | 87.38 29 | 89.55 10 | 91.41 121 | 76.43 3 | 95.74 20 | 93.12 95 | 83.53 12 | 89.55 16 | 95.95 29 | 53.45 198 | 97.68 50 | 91.07 14 | 92.62 59 | 94.54 88 |
|
EPNet | | | 87.84 20 | 88.38 15 | 86.23 74 | 93.30 63 | 66.05 129 | 95.26 30 | 94.84 22 | 87.09 3 | 88.06 22 | 94.53 72 | 66.79 53 | 97.34 70 | 83.89 68 | 91.68 73 | 95.29 56 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
lupinMVS | | | 87.74 21 | 87.77 21 | 87.63 30 | 89.24 161 | 71.18 18 | 96.57 10 | 92.90 103 | 82.70 16 | 87.13 26 | 95.27 47 | 64.99 70 | 95.80 133 | 89.34 22 | 91.80 71 | 95.93 36 |
|
ETH3D-3000-0.1 | | | 87.61 22 | 87.89 19 | 86.75 52 | 93.58 57 | 67.21 97 | 94.31 50 | 94.14 54 | 72.92 146 | 87.13 26 | 96.62 14 | 67.81 44 | 97.94 39 | 90.13 18 | 94.42 32 | 95.09 68 |
|
APDe-MVS | | | 87.54 23 | 87.84 20 | 86.65 56 | 96.07 21 | 66.30 124 | 94.84 44 | 93.78 60 | 69.35 223 | 88.39 21 | 96.34 22 | 67.74 45 | 97.66 54 | 90.62 16 | 93.44 49 | 96.01 34 |
|
SD-MVS | | | 87.49 24 | 87.49 26 | 87.50 32 | 93.60 56 | 68.82 56 | 93.90 70 | 92.63 114 | 76.86 82 | 87.90 23 | 95.76 32 | 66.17 57 | 97.63 56 | 89.06 26 | 91.48 77 | 96.05 32 |
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
test_prior3 | | | 87.38 25 | 87.70 22 | 86.42 66 | 94.71 33 | 67.35 93 | 95.10 36 | 93.10 96 | 75.40 99 | 85.25 48 | 95.61 37 | 67.94 40 | 96.84 101 | 87.47 39 | 94.77 23 | 95.05 70 |
|
alignmvs | | | 87.28 26 | 86.97 34 | 88.24 20 | 91.30 122 | 71.14 20 | 95.61 24 | 93.56 72 | 79.30 47 | 87.07 29 | 95.25 49 | 68.43 34 | 96.93 99 | 87.87 36 | 84.33 137 | 96.65 11 |
|
Regformer-1 | | | 87.24 27 | 87.60 25 | 86.15 76 | 95.14 27 | 65.83 137 | 93.95 66 | 95.12 15 | 82.11 21 | 84.25 54 | 95.73 33 | 67.88 43 | 98.35 29 | 85.60 54 | 88.64 100 | 94.26 96 |
|
train_agg | | | 87.21 28 | 87.42 28 | 86.60 57 | 94.18 40 | 67.28 95 | 94.16 53 | 93.51 74 | 71.87 176 | 85.52 43 | 95.33 42 | 68.19 36 | 97.27 77 | 89.09 25 | 94.90 19 | 95.25 63 |
|
xxxxxxxxxxxxxcwj | | | 87.14 29 | 87.19 31 | 86.99 45 | 93.84 49 | 67.89 78 | 95.05 38 | 84.72 302 | 78.19 64 | 86.25 31 | 96.44 18 | 66.98 49 | 97.79 47 | 88.68 31 | 94.56 29 | 95.28 58 |
|
MG-MVS | | | 87.11 30 | 86.27 40 | 89.62 8 | 97.79 1 | 76.27 4 | 94.96 42 | 94.49 38 | 78.74 60 | 83.87 62 | 92.94 110 | 64.34 78 | 96.94 97 | 75.19 130 | 94.09 36 | 95.66 42 |
|
ETH3D cwj APD-0.16 | | | 87.06 31 | 87.18 32 | 86.71 53 | 91.99 99 | 67.48 91 | 92.97 105 | 94.21 51 | 71.48 196 | 85.72 40 | 96.32 23 | 68.13 38 | 98.00 38 | 89.06 26 | 94.70 27 | 94.65 84 |
|
SF-MVS | | | 87.03 32 | 87.09 33 | 86.84 47 | 92.70 82 | 67.45 92 | 93.64 81 | 93.76 63 | 70.78 208 | 86.25 31 | 96.44 18 | 66.98 49 | 97.79 47 | 88.68 31 | 94.56 29 | 95.28 58 |
|
agg_prior1 | | | 87.02 33 | 87.26 30 | 86.28 73 | 94.16 44 | 66.97 106 | 94.08 59 | 93.31 84 | 71.85 178 | 84.49 52 | 95.39 40 | 68.91 33 | 96.75 105 | 88.84 29 | 94.32 34 | 95.13 66 |
|
Regformer-2 | | | 87.00 34 | 87.43 27 | 85.71 92 | 95.14 27 | 64.73 166 | 93.95 66 | 94.95 20 | 81.69 26 | 84.03 60 | 95.73 33 | 67.35 47 | 98.19 33 | 85.40 56 | 88.64 100 | 94.20 98 |
|
CSCG | | | 86.87 35 | 86.26 41 | 88.72 12 | 95.05 30 | 70.79 22 | 93.83 77 | 95.33 11 | 68.48 236 | 77.63 118 | 94.35 81 | 73.04 20 | 98.45 25 | 84.92 60 | 93.71 45 | 96.92 9 |
|
canonicalmvs | | | 86.85 36 | 86.25 42 | 88.66 15 | 91.80 108 | 71.92 13 | 93.54 86 | 91.71 148 | 80.26 38 | 87.55 24 | 95.25 49 | 63.59 90 | 96.93 99 | 88.18 34 | 84.34 136 | 97.11 6 |
|
PHI-MVS | | | 86.83 37 | 86.85 37 | 86.78 51 | 93.47 61 | 65.55 144 | 95.39 29 | 95.10 17 | 71.77 182 | 85.69 42 | 96.52 15 | 62.07 104 | 98.77 17 | 86.06 52 | 95.60 10 | 96.03 33 |
|
SteuartSystems-ACMMP | | | 86.82 38 | 86.90 35 | 86.58 59 | 90.42 137 | 66.38 121 | 96.09 15 | 93.87 58 | 77.73 71 | 84.01 61 | 95.66 35 | 63.39 92 | 97.94 39 | 87.40 41 | 93.55 48 | 95.42 47 |
Skip Steuart: Steuart Systems R&D Blog. |
PVSNet_Blended | | | 86.73 39 | 86.86 36 | 86.31 72 | 93.76 51 | 67.53 88 | 96.33 14 | 93.61 70 | 82.34 18 | 81.00 81 | 93.08 105 | 63.19 95 | 97.29 73 | 87.08 45 | 91.38 78 | 94.13 104 |
|
testtj | | | 86.62 40 | 86.66 39 | 86.50 63 | 96.95 5 | 65.70 139 | 94.41 48 | 93.45 78 | 67.74 238 | 86.19 34 | 96.39 20 | 64.38 77 | 97.91 42 | 87.33 42 | 93.14 53 | 95.90 38 |
|
CS-MVS | | | 86.61 41 | 86.85 37 | 85.88 82 | 91.52 117 | 66.25 126 | 95.42 27 | 92.25 124 | 80.36 37 | 84.10 59 | 94.82 66 | 62.88 99 | 96.08 124 | 88.25 33 | 92.07 69 | 95.30 55 |
|
jason | | | 86.40 42 | 86.17 43 | 87.11 41 | 86.16 219 | 70.54 25 | 95.71 23 | 92.19 131 | 82.00 23 | 84.58 51 | 94.34 82 | 61.86 106 | 95.53 153 | 87.76 37 | 90.89 84 | 95.27 60 |
jason: jason. |
WTY-MVS | | | 86.32 43 | 85.81 48 | 87.85 22 | 92.82 78 | 69.37 45 | 95.20 32 | 95.25 12 | 82.71 15 | 81.91 70 | 94.73 68 | 67.93 42 | 97.63 56 | 79.55 100 | 82.25 148 | 96.54 16 |
|
MSLP-MVS++ | | | 86.27 44 | 85.91 47 | 87.35 36 | 92.01 98 | 68.97 53 | 95.04 40 | 92.70 108 | 79.04 55 | 81.50 74 | 96.50 17 | 58.98 135 | 96.78 103 | 83.49 70 | 93.93 39 | 96.29 26 |
|
VNet | | | 86.20 45 | 85.65 52 | 87.84 23 | 93.92 47 | 69.99 31 | 95.73 22 | 95.94 6 | 78.43 62 | 86.00 37 | 93.07 107 | 58.22 138 | 97.00 89 | 85.22 57 | 84.33 137 | 96.52 17 |
|
MVS_111021_HR | | | 86.19 46 | 85.80 49 | 87.37 35 | 93.17 69 | 69.79 37 | 93.99 64 | 93.76 63 | 79.08 54 | 78.88 107 | 93.99 91 | 62.25 103 | 98.15 34 | 85.93 53 | 91.15 82 | 94.15 103 |
|
ACMMP_NAP | | | 86.05 47 | 85.80 49 | 86.80 50 | 91.58 113 | 67.53 88 | 91.79 150 | 93.49 77 | 74.93 107 | 84.61 50 | 95.30 44 | 59.42 128 | 97.92 41 | 86.13 51 | 94.92 17 | 94.94 75 |
|
ETV-MVS | | | 86.01 48 | 86.11 44 | 85.70 93 | 90.21 142 | 67.02 105 | 93.43 91 | 91.92 139 | 81.21 29 | 84.13 58 | 94.07 90 | 60.93 113 | 95.63 143 | 89.28 23 | 89.81 92 | 94.46 94 |
|
APD-MVS |  | | 85.93 49 | 85.99 45 | 85.76 89 | 95.98 23 | 65.21 151 | 93.59 84 | 92.58 116 | 66.54 249 | 86.17 35 | 95.88 30 | 63.83 84 | 97.00 89 | 86.39 50 | 92.94 55 | 95.06 69 |
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
PAPM | | | 85.89 50 | 85.46 53 | 87.18 39 | 88.20 185 | 72.42 12 | 92.41 126 | 92.77 106 | 82.11 21 | 80.34 87 | 93.07 107 | 68.27 35 | 95.02 163 | 78.39 112 | 93.59 47 | 94.09 106 |
|
Regformer-3 | | | 85.80 51 | 85.92 46 | 85.46 99 | 94.17 42 | 65.09 159 | 92.95 107 | 95.11 16 | 81.13 30 | 81.68 72 | 95.04 54 | 65.82 62 | 98.32 30 | 83.02 73 | 84.36 134 | 92.97 141 |
|
CDPH-MVS | | | 85.71 52 | 85.46 53 | 86.46 64 | 94.75 32 | 67.19 98 | 93.89 71 | 92.83 105 | 70.90 204 | 83.09 65 | 95.28 45 | 63.62 88 | 97.36 68 | 80.63 94 | 94.18 35 | 94.84 77 |
|
DeepC-MVS | | 77.85 3 | 85.52 53 | 85.24 55 | 86.37 69 | 88.80 170 | 66.64 115 | 92.15 131 | 93.68 67 | 81.07 31 | 76.91 128 | 93.64 96 | 62.59 101 | 98.44 26 | 85.50 55 | 92.84 57 | 94.03 110 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
Regformer-4 | | | 85.45 54 | 85.69 51 | 84.73 121 | 94.17 42 | 63.23 204 | 92.95 107 | 94.83 23 | 80.66 34 | 81.29 75 | 95.04 54 | 65.12 68 | 98.08 36 | 82.74 75 | 84.36 134 | 92.88 145 |
|
casdiffmvs | | | 85.37 55 | 84.87 60 | 86.84 47 | 88.25 183 | 69.07 49 | 93.04 102 | 91.76 145 | 81.27 28 | 80.84 83 | 92.07 130 | 64.23 79 | 96.06 126 | 84.98 59 | 87.43 110 | 95.39 48 |
|
ZNCC-MVS | | | 85.33 56 | 85.08 57 | 86.06 77 | 93.09 72 | 65.65 141 | 93.89 71 | 93.41 82 | 73.75 128 | 79.94 91 | 94.68 70 | 60.61 116 | 98.03 37 | 82.63 78 | 93.72 44 | 94.52 90 |
|
MP-MVS-pluss | | | 85.24 57 | 85.13 56 | 85.56 96 | 91.42 119 | 65.59 143 | 91.54 162 | 92.51 118 | 74.56 110 | 80.62 84 | 95.64 36 | 59.15 132 | 97.00 89 | 86.94 47 | 93.80 41 | 94.07 108 |
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss |
PAPR | | | 85.15 58 | 84.47 62 | 87.18 39 | 96.02 22 | 68.29 67 | 91.85 148 | 93.00 100 | 76.59 86 | 79.03 103 | 95.00 56 | 61.59 107 | 97.61 58 | 78.16 114 | 89.00 97 | 95.63 43 |
|
MP-MVS |  | | 85.02 59 | 84.97 58 | 85.17 110 | 92.60 84 | 64.27 183 | 93.24 95 | 92.27 123 | 73.13 140 | 79.63 96 | 94.43 75 | 61.90 105 | 97.17 80 | 85.00 58 | 92.56 60 | 94.06 109 |
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
baseline | | | 85.01 60 | 84.44 64 | 86.71 53 | 88.33 180 | 68.73 57 | 90.24 209 | 91.82 144 | 81.05 32 | 81.18 77 | 92.50 120 | 63.69 87 | 96.08 124 | 84.45 63 | 86.71 118 | 95.32 53 |
|
#test# | | | 84.98 61 | 84.74 61 | 85.72 90 | 93.75 53 | 65.01 160 | 94.09 58 | 93.19 90 | 73.55 134 | 79.22 100 | 94.93 60 | 59.04 133 | 97.67 51 | 82.66 76 | 92.21 64 | 94.49 92 |
|
CHOSEN 1792x2688 | | | 84.98 61 | 83.45 74 | 89.57 9 | 89.94 146 | 75.14 5 | 92.07 137 | 92.32 121 | 81.87 24 | 75.68 135 | 88.27 176 | 60.18 119 | 98.60 21 | 80.46 96 | 90.27 91 | 94.96 74 |
|
EIA-MVS | | | 84.84 63 | 84.88 59 | 84.69 124 | 91.30 122 | 62.36 222 | 93.85 73 | 92.04 134 | 79.45 45 | 79.33 99 | 94.28 85 | 62.42 102 | 96.35 114 | 80.05 97 | 91.25 81 | 95.38 49 |
|
zzz-MVS | | | 84.73 64 | 84.47 62 | 85.50 97 | 91.89 104 | 65.16 153 | 91.55 161 | 92.23 125 | 75.32 101 | 80.53 85 | 95.21 51 | 56.06 167 | 97.16 81 | 84.86 61 | 92.55 61 | 94.18 99 |
|
HFP-MVS | | | 84.73 64 | 84.40 65 | 85.72 90 | 93.75 53 | 65.01 160 | 93.50 88 | 93.19 90 | 72.19 165 | 79.22 100 | 94.93 60 | 59.04 133 | 97.67 51 | 81.55 85 | 92.21 64 | 94.49 92 |
|
MVS | | | 84.66 66 | 82.86 88 | 90.06 2 | 90.93 128 | 74.56 6 | 87.91 253 | 95.54 9 | 68.55 234 | 72.35 172 | 94.71 69 | 59.78 124 | 98.90 14 | 81.29 91 | 94.69 28 | 96.74 10 |
|
GST-MVS | | | 84.63 67 | 84.29 66 | 85.66 94 | 92.82 78 | 65.27 149 | 93.04 102 | 93.13 94 | 73.20 138 | 78.89 104 | 94.18 87 | 59.41 129 | 97.85 46 | 81.45 87 | 92.48 63 | 93.86 117 |
|
ACMMPR | | | 84.37 68 | 84.06 67 | 85.28 106 | 93.56 58 | 64.37 178 | 93.50 88 | 93.15 93 | 72.19 165 | 78.85 109 | 94.86 64 | 56.69 159 | 97.45 62 | 81.55 85 | 92.20 66 | 94.02 111 |
|
region2R | | | 84.36 69 | 84.03 68 | 85.36 104 | 93.54 59 | 64.31 180 | 93.43 91 | 92.95 101 | 72.16 168 | 78.86 108 | 94.84 65 | 56.97 154 | 97.53 60 | 81.38 89 | 92.11 68 | 94.24 97 |
|
LFMVS | | | 84.34 70 | 82.73 91 | 89.18 11 | 94.76 31 | 73.25 10 | 94.99 41 | 91.89 140 | 71.90 173 | 82.16 69 | 93.49 100 | 47.98 244 | 97.05 84 | 82.55 79 | 84.82 130 | 97.25 5 |
|
test_yl | | | 84.28 71 | 83.16 82 | 87.64 26 | 94.52 36 | 69.24 46 | 95.78 17 | 95.09 18 | 69.19 226 | 81.09 78 | 92.88 114 | 57.00 152 | 97.44 63 | 81.11 92 | 81.76 152 | 96.23 28 |
|
DCV-MVSNet | | | 84.28 71 | 83.16 82 | 87.64 26 | 94.52 36 | 69.24 46 | 95.78 17 | 95.09 18 | 69.19 226 | 81.09 78 | 92.88 114 | 57.00 152 | 97.44 63 | 81.11 92 | 81.76 152 | 96.23 28 |
|
diffmvs | | | 84.28 71 | 83.83 69 | 85.61 95 | 87.40 200 | 68.02 75 | 90.88 190 | 89.24 236 | 80.54 35 | 81.64 73 | 92.52 119 | 59.83 123 | 94.52 182 | 87.32 43 | 85.11 128 | 94.29 95 |
|
HY-MVS | | 76.49 5 | 84.28 71 | 83.36 80 | 87.02 44 | 92.22 92 | 67.74 82 | 84.65 276 | 94.50 37 | 79.15 51 | 82.23 68 | 87.93 183 | 66.88 51 | 96.94 97 | 80.53 95 | 82.20 149 | 96.39 24 |
|
MAR-MVS | | | 84.18 75 | 83.43 75 | 86.44 65 | 96.25 19 | 65.93 134 | 94.28 51 | 94.27 50 | 74.41 111 | 79.16 102 | 95.61 37 | 53.99 189 | 98.88 16 | 69.62 175 | 93.26 51 | 94.50 91 |
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
MVS_Test | | | 84.16 76 | 83.20 81 | 87.05 43 | 91.56 114 | 69.82 36 | 89.99 218 | 92.05 133 | 77.77 70 | 82.84 66 | 86.57 198 | 63.93 83 | 96.09 122 | 74.91 136 | 89.18 96 | 95.25 63 |
|
CANet_DTU | | | 84.09 77 | 83.52 71 | 85.81 86 | 90.30 140 | 66.82 110 | 91.87 146 | 89.01 249 | 85.27 6 | 86.09 36 | 93.74 95 | 47.71 247 | 96.98 93 | 77.90 117 | 89.78 94 | 93.65 121 |
|
ET-MVSNet_ETH3D | | | 84.01 78 | 83.15 84 | 86.58 59 | 90.78 134 | 70.89 21 | 94.74 45 | 94.62 34 | 81.44 27 | 58.19 294 | 93.64 96 | 73.64 19 | 92.35 255 | 82.66 76 | 78.66 174 | 96.50 19 |
|
PVSNet_Blended_VisFu | | | 83.97 79 | 83.50 72 | 85.39 103 | 90.02 144 | 66.59 118 | 93.77 78 | 91.73 146 | 77.43 77 | 77.08 127 | 89.81 162 | 63.77 86 | 96.97 94 | 79.67 99 | 88.21 103 | 92.60 149 |
|
DWT-MVSNet_test | | | 83.95 80 | 82.80 89 | 87.41 34 | 92.90 75 | 70.07 30 | 89.12 235 | 94.42 42 | 82.15 20 | 77.64 117 | 91.77 134 | 70.81 30 | 96.22 117 | 65.03 221 | 81.36 156 | 95.94 35 |
|
MTAPA | | | 83.91 81 | 83.38 79 | 85.50 97 | 91.89 104 | 65.16 153 | 81.75 295 | 92.23 125 | 75.32 101 | 80.53 85 | 95.21 51 | 56.06 167 | 97.16 81 | 84.86 61 | 92.55 61 | 94.18 99 |
|
XVS | | | 83.87 82 | 83.47 73 | 85.05 111 | 93.22 65 | 63.78 190 | 92.92 109 | 92.66 111 | 73.99 120 | 78.18 112 | 94.31 84 | 55.25 173 | 97.41 65 | 79.16 103 | 91.58 75 | 93.95 113 |
|
Effi-MVS+ | | | 83.82 83 | 82.76 90 | 86.99 45 | 89.56 154 | 69.40 42 | 91.35 172 | 86.12 292 | 72.59 151 | 83.22 64 | 92.81 117 | 59.60 126 | 96.01 130 | 81.76 83 | 87.80 107 | 95.56 45 |
|
EI-MVSNet-Vis-set | | | 83.77 84 | 83.67 70 | 84.06 139 | 92.79 81 | 63.56 200 | 91.76 153 | 94.81 25 | 79.65 44 | 77.87 114 | 94.09 88 | 63.35 93 | 97.90 43 | 79.35 101 | 79.36 166 | 90.74 182 |
|
MVSFormer | | | 83.75 85 | 82.88 87 | 86.37 69 | 89.24 161 | 71.18 18 | 89.07 236 | 90.69 184 | 65.80 254 | 87.13 26 | 94.34 82 | 64.99 70 | 92.67 241 | 72.83 145 | 91.80 71 | 95.27 60 |
|
CP-MVS | | | 83.71 86 | 83.40 78 | 84.65 125 | 93.14 70 | 63.84 188 | 94.59 46 | 92.28 122 | 71.03 202 | 77.41 121 | 94.92 62 | 55.21 176 | 96.19 118 | 81.32 90 | 90.70 86 | 93.91 115 |
|
baseline2 | | | 83.68 87 | 83.42 77 | 84.48 131 | 87.37 201 | 66.00 131 | 90.06 213 | 95.93 7 | 79.71 43 | 69.08 207 | 90.39 152 | 77.92 4 | 96.28 115 | 78.91 107 | 81.38 155 | 91.16 178 |
|
thisisatest0515 | | | 83.41 88 | 82.49 94 | 86.16 75 | 89.46 157 | 68.26 69 | 93.54 86 | 94.70 30 | 74.31 114 | 75.75 134 | 90.92 142 | 72.62 23 | 96.52 112 | 69.64 173 | 81.50 154 | 93.71 119 |
|
PVSNet_BlendedMVS | | | 83.38 89 | 83.43 75 | 83.22 157 | 93.76 51 | 67.53 88 | 94.06 60 | 93.61 70 | 79.13 52 | 81.00 81 | 85.14 212 | 63.19 95 | 97.29 73 | 87.08 45 | 73.91 205 | 84.83 272 |
|
PGM-MVS | | | 83.25 90 | 82.70 92 | 84.92 115 | 92.81 80 | 64.07 186 | 90.44 201 | 92.20 130 | 71.28 197 | 77.23 124 | 94.43 75 | 55.17 177 | 97.31 72 | 79.33 102 | 91.38 78 | 93.37 126 |
|
HPM-MVS |  | | 83.25 90 | 82.95 86 | 84.17 137 | 92.25 91 | 62.88 215 | 90.91 187 | 91.86 141 | 70.30 213 | 77.12 125 | 93.96 92 | 56.75 157 | 96.28 115 | 82.04 81 | 91.34 80 | 93.34 127 |
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023 |
EI-MVSNet-UG-set | | | 83.14 92 | 82.96 85 | 83.67 149 | 92.28 90 | 63.19 206 | 91.38 170 | 94.68 31 | 79.22 49 | 76.60 129 | 93.75 94 | 62.64 100 | 97.76 49 | 78.07 115 | 78.01 177 | 90.05 190 |
|
VDD-MVS | | | 83.06 93 | 81.81 103 | 86.81 49 | 90.86 132 | 67.70 83 | 95.40 28 | 91.50 157 | 75.46 96 | 81.78 71 | 92.34 127 | 40.09 280 | 97.13 83 | 86.85 48 | 82.04 150 | 95.60 44 |
|
PAPM_NR | | | 82.97 94 | 81.84 101 | 86.37 69 | 94.10 46 | 66.76 113 | 87.66 257 | 92.84 104 | 69.96 216 | 74.07 151 | 93.57 98 | 63.10 97 | 97.50 61 | 70.66 168 | 90.58 88 | 94.85 76 |
|
mPP-MVS | | | 82.96 95 | 82.44 95 | 84.52 129 | 92.83 76 | 62.92 213 | 92.76 112 | 91.85 142 | 71.52 193 | 75.61 138 | 94.24 86 | 53.48 197 | 96.99 92 | 78.97 106 | 90.73 85 | 93.64 122 |
|
SR-MVS | | | 82.81 96 | 82.58 93 | 83.50 154 | 93.35 62 | 61.16 238 | 92.23 130 | 91.28 166 | 64.48 262 | 81.27 76 | 95.28 45 | 53.71 193 | 95.86 132 | 82.87 74 | 88.77 99 | 93.49 125 |
|
DP-MVS Recon | | | 82.73 97 | 81.65 104 | 85.98 79 | 97.31 4 | 67.06 102 | 95.15 34 | 91.99 136 | 69.08 229 | 76.50 131 | 93.89 93 | 54.48 185 | 98.20 32 | 70.76 166 | 85.66 125 | 92.69 146 |
|
CLD-MVS | | | 82.73 97 | 82.35 97 | 83.86 142 | 87.90 192 | 67.65 85 | 95.45 26 | 92.18 132 | 85.06 7 | 72.58 165 | 92.27 128 | 52.46 204 | 95.78 134 | 84.18 64 | 79.06 169 | 88.16 214 |
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
sss | | | 82.71 99 | 82.38 96 | 83.73 146 | 89.25 160 | 59.58 264 | 92.24 129 | 94.89 21 | 77.96 68 | 79.86 93 | 92.38 125 | 56.70 158 | 97.05 84 | 77.26 120 | 80.86 160 | 94.55 86 |
|
3Dnovator | | 73.91 6 | 82.69 100 | 80.82 113 | 88.31 19 | 89.57 153 | 71.26 17 | 92.60 120 | 94.39 46 | 78.84 57 | 67.89 226 | 92.48 123 | 48.42 239 | 98.52 22 | 68.80 185 | 94.40 33 | 95.15 65 |
|
MVSTER | | | 82.47 101 | 82.05 98 | 83.74 144 | 92.68 83 | 69.01 51 | 91.90 145 | 93.21 87 | 79.83 39 | 72.14 173 | 85.71 208 | 74.72 13 | 94.72 173 | 75.72 127 | 72.49 215 | 87.50 219 |
|
TESTMET0.1,1 | | | 82.41 102 | 81.98 100 | 83.72 147 | 88.08 186 | 63.74 192 | 92.70 115 | 93.77 62 | 79.30 47 | 77.61 119 | 87.57 188 | 58.19 139 | 94.08 196 | 73.91 140 | 86.68 119 | 93.33 129 |
|
CostFormer | | | 82.33 103 | 81.15 108 | 85.86 85 | 89.01 166 | 68.46 63 | 82.39 293 | 93.01 98 | 75.59 94 | 80.25 88 | 81.57 253 | 72.03 27 | 94.96 165 | 79.06 105 | 77.48 186 | 94.16 102 |
|
API-MVS | | | 82.28 104 | 80.53 119 | 87.54 31 | 96.13 20 | 70.59 24 | 93.63 82 | 91.04 177 | 65.72 256 | 75.45 140 | 92.83 116 | 56.11 166 | 98.89 15 | 64.10 226 | 89.75 95 | 93.15 135 |
|
IB-MVS | | 77.80 4 | 82.18 105 | 80.46 121 | 87.35 36 | 89.14 163 | 70.28 28 | 95.59 25 | 95.17 14 | 78.85 56 | 70.19 194 | 85.82 206 | 70.66 31 | 97.67 51 | 72.19 155 | 66.52 254 | 94.09 106 |
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
xiu_mvs_v1_base_debu | | | 82.16 106 | 81.12 109 | 85.26 107 | 86.42 213 | 68.72 58 | 92.59 122 | 90.44 192 | 73.12 141 | 84.20 55 | 94.36 77 | 38.04 291 | 95.73 137 | 84.12 65 | 86.81 113 | 91.33 172 |
|
xiu_mvs_v1_base | | | 82.16 106 | 81.12 109 | 85.26 107 | 86.42 213 | 68.72 58 | 92.59 122 | 90.44 192 | 73.12 141 | 84.20 55 | 94.36 77 | 38.04 291 | 95.73 137 | 84.12 65 | 86.81 113 | 91.33 172 |
|
xiu_mvs_v1_base_debi | | | 82.16 106 | 81.12 109 | 85.26 107 | 86.42 213 | 68.72 58 | 92.59 122 | 90.44 192 | 73.12 141 | 84.20 55 | 94.36 77 | 38.04 291 | 95.73 137 | 84.12 65 | 86.81 113 | 91.33 172 |
|
3Dnovator+ | | 73.60 7 | 82.10 109 | 80.60 118 | 86.60 57 | 90.89 131 | 66.80 112 | 95.20 32 | 93.44 80 | 74.05 119 | 67.42 232 | 92.49 122 | 49.46 229 | 97.65 55 | 70.80 165 | 91.68 73 | 95.33 51 |
|
MVS_111021_LR | | | 82.02 110 | 81.52 105 | 83.51 153 | 88.42 178 | 62.88 215 | 89.77 221 | 88.93 251 | 76.78 84 | 75.55 139 | 93.10 103 | 50.31 221 | 95.38 156 | 83.82 69 | 87.02 112 | 92.26 161 |
|
PMMVS | | | 81.98 111 | 82.04 99 | 81.78 192 | 89.76 150 | 56.17 296 | 91.13 183 | 90.69 184 | 77.96 68 | 80.09 90 | 93.57 98 | 46.33 255 | 94.99 164 | 81.41 88 | 87.46 109 | 94.17 101 |
|
test1172 | | | 81.90 112 | 81.83 102 | 82.13 184 | 93.23 64 | 57.52 287 | 91.61 160 | 90.98 179 | 64.32 264 | 80.20 89 | 95.00 56 | 51.26 214 | 95.61 145 | 81.73 84 | 88.13 104 | 93.26 131 |
|
baseline1 | | | 81.84 113 | 81.03 112 | 84.28 136 | 91.60 112 | 66.62 116 | 91.08 184 | 91.66 151 | 81.87 24 | 74.86 143 | 91.67 138 | 69.98 32 | 94.92 168 | 71.76 159 | 64.75 267 | 91.29 177 |
|
EPP-MVSNet | | | 81.79 114 | 81.52 105 | 82.61 168 | 88.77 171 | 60.21 256 | 93.02 104 | 93.66 69 | 68.52 235 | 72.90 160 | 90.39 152 | 72.19 26 | 94.96 165 | 74.93 135 | 79.29 168 | 92.67 147 |
|
APD-MVS_3200maxsize | | | 81.64 115 | 81.32 107 | 82.59 169 | 92.36 87 | 58.74 273 | 91.39 168 | 91.01 178 | 63.35 270 | 79.72 95 | 94.62 71 | 51.82 207 | 96.14 120 | 79.71 98 | 87.93 106 | 92.89 144 |
|
ACMMP |  | | 81.49 116 | 80.67 116 | 83.93 141 | 91.71 110 | 62.90 214 | 92.13 132 | 92.22 129 | 71.79 181 | 71.68 181 | 93.49 100 | 50.32 220 | 96.96 95 | 78.47 111 | 84.22 141 | 91.93 164 |
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
CDS-MVSNet | | | 81.43 117 | 80.74 114 | 83.52 152 | 86.26 217 | 64.45 172 | 92.09 135 | 90.65 187 | 75.83 93 | 73.95 153 | 89.81 162 | 63.97 82 | 92.91 231 | 71.27 162 | 82.82 145 | 93.20 134 |
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
mvs_anonymous | | | 81.36 118 | 79.99 125 | 85.46 99 | 90.39 139 | 68.40 64 | 86.88 267 | 90.61 188 | 74.41 111 | 70.31 193 | 84.67 218 | 63.79 85 | 92.32 256 | 73.13 142 | 85.70 124 | 95.67 41 |
|
1121 | | | 81.25 119 | 80.05 123 | 84.87 118 | 92.30 89 | 64.31 180 | 87.91 253 | 91.39 161 | 59.44 301 | 79.94 91 | 92.91 111 | 57.09 148 | 97.01 87 | 66.63 200 | 92.81 58 | 93.29 130 |
|
thisisatest0530 | | | 81.15 120 | 80.07 122 | 84.39 133 | 88.26 182 | 65.63 142 | 91.40 166 | 94.62 34 | 71.27 198 | 70.93 185 | 89.18 165 | 72.47 24 | 96.04 127 | 65.62 215 | 76.89 192 | 91.49 169 |
|
Fast-Effi-MVS+ | | | 81.14 121 | 80.01 124 | 84.51 130 | 90.24 141 | 65.86 135 | 94.12 57 | 89.15 242 | 73.81 127 | 75.37 141 | 88.26 177 | 57.26 146 | 94.53 181 | 66.97 199 | 84.92 129 | 93.15 135 |
|
HQP-MVS | | | 81.14 121 | 80.64 117 | 82.64 167 | 87.54 196 | 63.66 197 | 94.06 60 | 91.70 149 | 79.80 40 | 74.18 147 | 90.30 154 | 51.63 211 | 95.61 145 | 77.63 118 | 78.90 170 | 88.63 204 |
|
SR-MVS-dyc-post | | | 81.06 123 | 80.70 115 | 82.15 182 | 92.02 96 | 58.56 275 | 90.90 188 | 90.45 189 | 62.76 276 | 78.89 104 | 94.46 73 | 51.26 214 | 95.61 145 | 78.77 109 | 86.77 116 | 92.28 158 |
|
HyFIR lowres test | | | 81.03 124 | 79.56 133 | 85.43 101 | 87.81 193 | 68.11 73 | 90.18 210 | 90.01 213 | 70.65 210 | 72.95 159 | 86.06 204 | 63.61 89 | 94.50 183 | 75.01 134 | 79.75 164 | 93.67 120 |
|
nrg030 | | | 80.93 125 | 79.86 127 | 84.13 138 | 83.69 257 | 68.83 55 | 93.23 96 | 91.20 167 | 75.55 95 | 75.06 142 | 88.22 180 | 63.04 98 | 94.74 172 | 81.88 82 | 66.88 251 | 88.82 202 |
|
Vis-MVSNet |  | | 80.92 126 | 79.98 126 | 83.74 144 | 88.48 175 | 61.80 228 | 93.44 90 | 88.26 271 | 73.96 123 | 77.73 115 | 91.76 135 | 49.94 225 | 94.76 170 | 65.84 212 | 90.37 90 | 94.65 84 |
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
1314 | | | 80.70 127 | 78.95 145 | 85.94 81 | 87.77 194 | 67.56 86 | 87.91 253 | 92.55 117 | 72.17 167 | 67.44 231 | 93.09 104 | 50.27 222 | 97.04 86 | 71.68 161 | 87.64 108 | 93.23 133 |
|
RRT_test8_iter05 | | | 80.61 128 | 79.62 131 | 83.60 151 | 91.87 107 | 66.90 108 | 93.42 93 | 93.68 67 | 77.09 80 | 68.83 213 | 85.63 209 | 66.82 52 | 95.42 154 | 76.46 125 | 62.74 280 | 88.48 207 |
|
tpmrst | | | 80.57 129 | 79.14 144 | 84.84 119 | 90.10 143 | 68.28 68 | 81.70 296 | 89.72 224 | 77.63 73 | 75.96 133 | 79.54 284 | 64.94 72 | 92.71 238 | 75.43 128 | 77.28 189 | 93.55 123 |
|
1112_ss | | | 80.56 130 | 79.83 128 | 82.77 163 | 88.65 172 | 60.78 244 | 92.29 127 | 88.36 266 | 72.58 152 | 72.46 169 | 94.95 58 | 65.09 69 | 93.42 219 | 66.38 206 | 77.71 179 | 94.10 105 |
|
VDDNet | | | 80.50 131 | 78.26 152 | 87.21 38 | 86.19 218 | 69.79 37 | 94.48 47 | 91.31 163 | 60.42 293 | 79.34 98 | 90.91 143 | 38.48 287 | 96.56 111 | 82.16 80 | 81.05 158 | 95.27 60 |
|
BH-w/o | | | 80.49 132 | 79.30 140 | 84.05 140 | 90.83 133 | 64.36 179 | 93.60 83 | 89.42 231 | 74.35 113 | 69.09 206 | 90.15 157 | 55.23 175 | 95.61 145 | 64.61 223 | 86.43 122 | 92.17 162 |
|
TAMVS | | | 80.37 133 | 79.45 136 | 83.13 159 | 85.14 234 | 63.37 201 | 91.23 177 | 90.76 183 | 74.81 109 | 72.65 163 | 88.49 171 | 60.63 115 | 92.95 226 | 69.41 177 | 81.95 151 | 93.08 138 |
|
HQP_MVS | | | 80.34 134 | 79.75 129 | 82.12 185 | 86.94 207 | 62.42 220 | 93.13 98 | 91.31 163 | 78.81 58 | 72.53 166 | 89.14 167 | 50.66 218 | 95.55 151 | 76.74 121 | 78.53 175 | 88.39 210 |
|
HPM-MVS_fast | | | 80.25 135 | 79.55 135 | 82.33 175 | 91.55 115 | 59.95 259 | 91.32 174 | 89.16 241 | 65.23 260 | 74.71 144 | 93.07 107 | 47.81 246 | 95.74 136 | 74.87 138 | 88.23 102 | 91.31 176 |
|
ab-mvs | | | 80.18 136 | 78.31 151 | 85.80 87 | 88.44 177 | 65.49 147 | 83.00 290 | 92.67 110 | 71.82 180 | 77.36 122 | 85.01 213 | 54.50 182 | 96.59 108 | 76.35 126 | 75.63 198 | 95.32 53 |
|
IS-MVSNet | | | 80.14 137 | 79.41 137 | 82.33 175 | 87.91 191 | 60.08 258 | 91.97 143 | 88.27 269 | 72.90 147 | 71.44 183 | 91.73 137 | 61.44 108 | 93.66 214 | 62.47 238 | 86.53 120 | 93.24 132 |
|
test-LLR | | | 80.10 138 | 79.56 133 | 81.72 194 | 86.93 209 | 61.17 236 | 92.70 115 | 91.54 154 | 71.51 194 | 75.62 136 | 86.94 195 | 53.83 190 | 92.38 252 | 72.21 153 | 84.76 132 | 91.60 167 |
|
PVSNet | | 73.49 8 | 80.05 139 | 78.63 147 | 84.31 134 | 90.92 129 | 64.97 162 | 92.47 125 | 91.05 176 | 79.18 50 | 72.43 170 | 90.51 150 | 37.05 303 | 94.06 198 | 68.06 188 | 86.00 123 | 93.90 116 |
|
UA-Net | | | 80.02 140 | 79.65 130 | 81.11 209 | 89.33 158 | 57.72 283 | 86.33 270 | 89.00 250 | 77.44 76 | 81.01 80 | 89.15 166 | 59.33 130 | 95.90 131 | 61.01 245 | 84.28 139 | 89.73 194 |
|
test-mter | | | 79.96 141 | 79.38 139 | 81.72 194 | 86.93 209 | 61.17 236 | 92.70 115 | 91.54 154 | 73.85 125 | 75.62 136 | 86.94 195 | 49.84 227 | 92.38 252 | 72.21 153 | 84.76 132 | 91.60 167 |
|
QAPM | | | 79.95 142 | 77.39 170 | 87.64 26 | 89.63 152 | 71.41 16 | 93.30 94 | 93.70 66 | 65.34 259 | 67.39 234 | 91.75 136 | 47.83 245 | 98.96 12 | 57.71 260 | 89.81 92 | 92.54 151 |
|
UGNet | | | 79.87 143 | 78.68 146 | 83.45 156 | 89.96 145 | 61.51 233 | 92.13 132 | 90.79 182 | 76.83 83 | 78.85 109 | 86.33 201 | 38.16 289 | 96.17 119 | 67.93 190 | 87.17 111 | 92.67 147 |
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
abl_6 | | | 79.82 144 | 79.20 142 | 81.70 196 | 89.85 147 | 58.34 277 | 88.47 246 | 90.07 208 | 62.56 279 | 77.71 116 | 93.08 105 | 47.65 248 | 96.78 103 | 77.94 116 | 85.45 127 | 89.99 191 |
|
tpm2 | | | 79.80 145 | 77.95 158 | 85.34 105 | 88.28 181 | 68.26 69 | 81.56 298 | 91.42 160 | 70.11 214 | 77.59 120 | 80.50 271 | 67.40 46 | 94.26 191 | 67.34 195 | 77.35 187 | 93.51 124 |
|
thres200 | | | 79.66 146 | 78.33 150 | 83.66 150 | 92.54 85 | 65.82 138 | 93.06 100 | 96.31 3 | 74.90 108 | 73.30 156 | 88.66 169 | 59.67 125 | 95.61 145 | 47.84 296 | 78.67 173 | 89.56 197 |
|
test_part1 | | | 79.63 147 | 77.86 161 | 84.93 114 | 92.50 86 | 71.43 15 | 94.15 55 | 91.08 174 | 72.51 154 | 70.66 186 | 84.98 214 | 59.84 122 | 95.07 162 | 72.07 156 | 62.94 278 | 88.30 213 |
|
CPTT-MVS | | | 79.59 148 | 79.16 143 | 80.89 218 | 91.54 116 | 59.80 261 | 92.10 134 | 88.54 264 | 60.42 293 | 72.96 158 | 93.28 102 | 48.27 240 | 92.80 235 | 78.89 108 | 86.50 121 | 90.06 189 |
|
Test_1112_low_res | | | 79.56 149 | 78.60 148 | 82.43 171 | 88.24 184 | 60.39 253 | 92.09 135 | 87.99 275 | 72.10 169 | 71.84 177 | 87.42 190 | 64.62 75 | 93.04 223 | 65.80 213 | 77.30 188 | 93.85 118 |
|
tttt0517 | | | 79.50 150 | 78.53 149 | 82.41 174 | 87.22 203 | 61.43 235 | 89.75 222 | 94.76 27 | 69.29 224 | 67.91 225 | 88.06 182 | 72.92 21 | 95.63 143 | 62.91 234 | 73.90 206 | 90.16 188 |
|
FIs | | | 79.47 151 | 79.41 137 | 79.67 241 | 85.95 222 | 59.40 266 | 91.68 157 | 93.94 57 | 78.06 67 | 68.96 210 | 88.28 175 | 66.61 55 | 91.77 267 | 66.20 209 | 74.99 199 | 87.82 216 |
|
BH-RMVSNet | | | 79.46 152 | 77.65 163 | 84.89 116 | 91.68 111 | 65.66 140 | 93.55 85 | 88.09 273 | 72.93 145 | 73.37 155 | 91.12 141 | 46.20 257 | 96.12 121 | 56.28 265 | 85.61 126 | 92.91 143 |
|
PCF-MVS | | 73.15 9 | 79.29 153 | 77.63 164 | 84.29 135 | 86.06 220 | 65.96 133 | 87.03 263 | 91.10 172 | 69.86 218 | 69.79 202 | 90.64 146 | 57.54 145 | 96.59 108 | 64.37 225 | 82.29 147 | 90.32 186 |
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
Vis-MVSNet (Re-imp) | | | 79.24 154 | 79.57 132 | 78.24 261 | 88.46 176 | 52.29 315 | 90.41 203 | 89.12 244 | 74.24 116 | 69.13 205 | 91.91 132 | 65.77 63 | 90.09 291 | 59.00 257 | 88.09 105 | 92.33 155 |
|
114514_t | | | 79.17 155 | 77.67 162 | 83.68 148 | 95.32 26 | 65.53 145 | 92.85 111 | 91.60 153 | 63.49 269 | 67.92 224 | 90.63 148 | 46.65 252 | 95.72 141 | 67.01 198 | 83.54 142 | 89.79 192 |
|
VPA-MVSNet | | | 79.03 156 | 78.00 156 | 82.11 188 | 85.95 222 | 64.48 171 | 93.22 97 | 94.66 32 | 75.05 106 | 74.04 152 | 84.95 215 | 52.17 206 | 93.52 216 | 74.90 137 | 67.04 250 | 88.32 212 |
|
OPM-MVS | | | 79.00 157 | 78.09 154 | 81.73 193 | 83.52 260 | 63.83 189 | 91.64 159 | 90.30 199 | 76.36 89 | 71.97 176 | 89.93 161 | 46.30 256 | 95.17 161 | 75.10 131 | 77.70 180 | 86.19 246 |
|
EI-MVSNet | | | 78.97 158 | 78.22 153 | 81.25 204 | 85.33 230 | 62.73 218 | 89.53 226 | 93.21 87 | 72.39 159 | 72.14 173 | 90.13 158 | 60.99 111 | 94.72 173 | 67.73 192 | 72.49 215 | 86.29 243 |
|
AdaColmap |  | | 78.94 159 | 77.00 175 | 84.76 120 | 96.34 16 | 65.86 135 | 92.66 119 | 87.97 276 | 62.18 282 | 70.56 187 | 92.37 126 | 43.53 269 | 97.35 69 | 64.50 224 | 82.86 144 | 91.05 180 |
|
miper_enhance_ethall | | | 78.86 160 | 77.97 157 | 81.54 198 | 88.00 190 | 65.17 152 | 91.41 164 | 89.15 242 | 75.19 104 | 68.79 214 | 83.98 225 | 67.17 48 | 92.82 233 | 72.73 147 | 65.30 258 | 86.62 239 |
|
VPNet | | | 78.82 161 | 77.53 166 | 82.70 165 | 84.52 244 | 66.44 120 | 93.93 68 | 92.23 125 | 80.46 36 | 72.60 164 | 88.38 174 | 49.18 233 | 93.13 222 | 72.47 151 | 63.97 275 | 88.55 206 |
|
EPNet_dtu | | | 78.80 162 | 79.26 141 | 77.43 269 | 88.06 187 | 49.71 328 | 91.96 144 | 91.95 138 | 77.67 72 | 76.56 130 | 91.28 140 | 58.51 137 | 90.20 289 | 56.37 264 | 80.95 159 | 92.39 153 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
tfpn200view9 | | | 78.79 163 | 77.43 167 | 82.88 161 | 92.21 93 | 64.49 169 | 92.05 138 | 96.28 4 | 73.48 135 | 71.75 179 | 88.26 177 | 60.07 120 | 95.32 157 | 45.16 305 | 77.58 182 | 88.83 200 |
|
TR-MVS | | | 78.77 164 | 77.37 171 | 82.95 160 | 90.49 136 | 60.88 242 | 93.67 80 | 90.07 208 | 70.08 215 | 74.51 145 | 91.37 139 | 45.69 258 | 95.70 142 | 60.12 251 | 80.32 161 | 92.29 157 |
|
mvs-test1 | | | 78.74 165 | 77.95 158 | 81.14 207 | 83.22 262 | 57.13 291 | 93.96 65 | 87.78 277 | 75.42 97 | 72.68 162 | 90.80 145 | 45.08 262 | 94.54 180 | 75.08 132 | 77.49 185 | 91.74 166 |
|
thres400 | | | 78.68 166 | 77.43 167 | 82.43 171 | 92.21 93 | 64.49 169 | 92.05 138 | 96.28 4 | 73.48 135 | 71.75 179 | 88.26 177 | 60.07 120 | 95.32 157 | 45.16 305 | 77.58 182 | 87.48 220 |
|
BH-untuned | | | 78.68 166 | 77.08 172 | 83.48 155 | 89.84 148 | 63.74 192 | 92.70 115 | 88.59 262 | 71.57 191 | 66.83 240 | 88.65 170 | 51.75 209 | 95.39 155 | 59.03 256 | 84.77 131 | 91.32 175 |
|
OMC-MVS | | | 78.67 168 | 77.91 160 | 80.95 216 | 85.76 226 | 57.40 289 | 88.49 245 | 88.67 259 | 73.85 125 | 72.43 170 | 92.10 129 | 49.29 232 | 94.55 179 | 72.73 147 | 77.89 178 | 90.91 181 |
|
tpm | | | 78.58 169 | 77.03 173 | 83.22 157 | 85.94 224 | 64.56 167 | 83.21 288 | 91.14 171 | 78.31 63 | 73.67 154 | 79.68 282 | 64.01 81 | 92.09 261 | 66.07 210 | 71.26 225 | 93.03 139 |
|
OpenMVS |  | 70.45 11 | 78.54 170 | 75.92 189 | 86.41 68 | 85.93 225 | 71.68 14 | 92.74 113 | 92.51 118 | 66.49 250 | 64.56 255 | 91.96 131 | 43.88 268 | 98.10 35 | 54.61 269 | 90.65 87 | 89.44 198 |
|
EPMVS | | | 78.49 171 | 75.98 188 | 86.02 78 | 91.21 124 | 69.68 40 | 80.23 308 | 91.20 167 | 75.25 103 | 72.48 168 | 78.11 292 | 54.65 181 | 93.69 213 | 57.66 261 | 83.04 143 | 94.69 80 |
|
AUN-MVS | | | 78.37 172 | 77.43 167 | 81.17 206 | 86.60 212 | 57.45 288 | 89.46 228 | 91.16 169 | 74.11 118 | 74.40 146 | 90.49 151 | 55.52 172 | 94.57 176 | 74.73 139 | 60.43 303 | 91.48 170 |
|
thres100view900 | | | 78.37 172 | 77.01 174 | 82.46 170 | 91.89 104 | 63.21 205 | 91.19 181 | 96.33 1 | 72.28 162 | 70.45 190 | 87.89 184 | 60.31 117 | 95.32 157 | 45.16 305 | 77.58 182 | 88.83 200 |
|
GA-MVS | | | 78.33 174 | 76.23 185 | 84.65 125 | 83.65 258 | 66.30 124 | 91.44 163 | 90.14 206 | 76.01 91 | 70.32 192 | 84.02 224 | 42.50 272 | 94.72 173 | 70.98 163 | 77.00 191 | 92.94 142 |
|
cascas | | | 78.18 175 | 75.77 191 | 85.41 102 | 87.14 205 | 69.11 48 | 92.96 106 | 91.15 170 | 66.71 248 | 70.47 188 | 86.07 203 | 37.49 297 | 96.48 113 | 70.15 171 | 79.80 163 | 90.65 183 |
|
UniMVSNet_NR-MVSNet | | | 78.15 176 | 77.55 165 | 79.98 232 | 84.46 246 | 60.26 254 | 92.25 128 | 93.20 89 | 77.50 75 | 68.88 211 | 86.61 197 | 66.10 58 | 92.13 259 | 66.38 206 | 62.55 281 | 87.54 218 |
|
thres600view7 | | | 78.00 177 | 76.66 179 | 82.03 190 | 91.93 101 | 63.69 195 | 91.30 175 | 96.33 1 | 72.43 157 | 70.46 189 | 87.89 184 | 60.31 117 | 94.92 168 | 42.64 317 | 76.64 193 | 87.48 220 |
|
FC-MVSNet-test | | | 77.99 178 | 78.08 155 | 77.70 264 | 84.89 239 | 55.51 301 | 90.27 207 | 93.75 65 | 76.87 81 | 66.80 241 | 87.59 187 | 65.71 64 | 90.23 288 | 62.89 235 | 73.94 204 | 87.37 223 |
|
Anonymous202405211 | | | 77.96 179 | 75.33 195 | 85.87 84 | 93.73 55 | 64.52 168 | 94.85 43 | 85.36 298 | 62.52 280 | 76.11 132 | 90.18 156 | 29.43 328 | 97.29 73 | 68.51 186 | 77.24 190 | 95.81 40 |
|
cl-mvsnet2 | | | 77.94 180 | 76.78 177 | 81.42 200 | 87.57 195 | 64.93 164 | 90.67 196 | 88.86 254 | 72.45 156 | 67.63 230 | 82.68 238 | 64.07 80 | 92.91 231 | 71.79 157 | 65.30 258 | 86.44 240 |
|
XXY-MVS | | | 77.94 180 | 76.44 182 | 82.43 171 | 82.60 268 | 64.44 173 | 92.01 140 | 91.83 143 | 73.59 133 | 70.00 197 | 85.82 206 | 54.43 186 | 94.76 170 | 69.63 174 | 68.02 244 | 88.10 215 |
|
MS-PatchMatch | | | 77.90 182 | 76.50 181 | 82.12 185 | 85.99 221 | 69.95 34 | 91.75 155 | 92.70 108 | 73.97 122 | 62.58 274 | 84.44 221 | 41.11 277 | 95.78 134 | 63.76 229 | 92.17 67 | 80.62 316 |
|
FMVSNet3 | | | 77.73 183 | 76.04 187 | 82.80 162 | 91.20 125 | 68.99 52 | 91.87 146 | 91.99 136 | 73.35 137 | 67.04 237 | 83.19 234 | 56.62 160 | 92.14 258 | 59.80 253 | 69.34 233 | 87.28 226 |
|
miper_ehance_all_eth | | | 77.60 184 | 76.44 182 | 81.09 213 | 85.70 227 | 64.41 176 | 90.65 197 | 88.64 261 | 72.31 160 | 67.37 235 | 82.52 239 | 64.77 74 | 92.64 244 | 70.67 167 | 65.30 258 | 86.24 245 |
|
UniMVSNet (Re) | | | 77.58 185 | 76.78 177 | 79.98 232 | 84.11 252 | 60.80 243 | 91.76 153 | 93.17 92 | 76.56 87 | 69.93 200 | 84.78 217 | 63.32 94 | 92.36 254 | 64.89 222 | 62.51 283 | 86.78 233 |
|
PatchmatchNet |  | | 77.46 186 | 74.63 201 | 85.96 80 | 89.55 155 | 70.35 27 | 79.97 312 | 89.55 227 | 72.23 164 | 70.94 184 | 76.91 303 | 57.03 150 | 92.79 236 | 54.27 271 | 81.17 157 | 94.74 79 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
v2v482 | | | 77.42 187 | 75.65 193 | 82.73 164 | 80.38 285 | 67.13 101 | 91.85 148 | 90.23 203 | 75.09 105 | 69.37 203 | 83.39 232 | 53.79 192 | 94.44 184 | 71.77 158 | 65.00 264 | 86.63 238 |
|
RRT_MVS | | | 77.38 188 | 76.59 180 | 79.77 239 | 90.91 130 | 63.61 199 | 91.15 182 | 90.91 180 | 72.28 162 | 72.06 175 | 87.28 193 | 43.92 267 | 89.04 298 | 73.32 141 | 67.47 248 | 86.67 234 |
|
CHOSEN 280x420 | | | 77.35 189 | 76.95 176 | 78.55 256 | 87.07 206 | 62.68 219 | 69.71 334 | 82.95 318 | 68.80 231 | 71.48 182 | 87.27 194 | 66.03 59 | 84.00 327 | 76.47 124 | 82.81 146 | 88.95 199 |
|
PS-MVSNAJss | | | 77.26 190 | 76.31 184 | 80.13 229 | 80.64 283 | 59.16 270 | 90.63 200 | 91.06 175 | 72.80 148 | 68.58 218 | 84.57 220 | 53.55 194 | 93.96 205 | 72.97 143 | 71.96 219 | 87.27 227 |
|
gg-mvs-nofinetune | | | 77.18 191 | 74.31 208 | 85.80 87 | 91.42 119 | 68.36 65 | 71.78 329 | 94.72 29 | 49.61 331 | 77.12 125 | 45.92 347 | 77.41 6 | 93.98 204 | 67.62 193 | 93.16 52 | 95.05 70 |
|
MVP-Stereo | | | 77.12 192 | 76.23 185 | 79.79 238 | 81.72 274 | 66.34 123 | 89.29 229 | 90.88 181 | 70.56 211 | 62.01 277 | 82.88 235 | 49.34 230 | 94.13 193 | 65.55 217 | 93.80 41 | 78.88 328 |
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application. |
X-MVStestdata | | | 76.86 193 | 74.13 213 | 85.05 111 | 93.22 65 | 63.78 190 | 92.92 109 | 92.66 111 | 73.99 120 | 78.18 112 | 10.19 359 | 55.25 173 | 97.41 65 | 79.16 103 | 91.58 75 | 93.95 113 |
|
DU-MVS | | | 76.86 193 | 75.84 190 | 79.91 234 | 82.96 266 | 60.26 254 | 91.26 176 | 91.54 154 | 76.46 88 | 68.88 211 | 86.35 199 | 56.16 164 | 92.13 259 | 66.38 206 | 62.55 281 | 87.35 224 |
|
Anonymous20240529 | | | 76.84 195 | 74.15 212 | 84.88 117 | 91.02 126 | 64.95 163 | 93.84 76 | 91.09 173 | 53.57 322 | 73.00 157 | 87.42 190 | 35.91 307 | 97.32 71 | 69.14 181 | 72.41 217 | 92.36 154 |
|
cl_fuxian | | | 76.83 196 | 75.47 194 | 80.93 217 | 85.02 237 | 64.18 185 | 90.39 204 | 88.11 272 | 71.66 184 | 66.65 242 | 81.64 251 | 63.58 91 | 92.56 245 | 69.31 179 | 62.86 279 | 86.04 251 |
|
WR-MVS | | | 76.76 197 | 75.74 192 | 79.82 237 | 84.60 242 | 62.27 225 | 92.60 120 | 92.51 118 | 76.06 90 | 67.87 227 | 85.34 210 | 56.76 156 | 90.24 287 | 62.20 239 | 63.69 277 | 86.94 231 |
|
v1144 | | | 76.73 198 | 74.88 198 | 82.27 177 | 80.23 290 | 66.60 117 | 91.68 157 | 90.21 205 | 73.69 130 | 69.06 208 | 81.89 246 | 52.73 202 | 94.40 185 | 69.21 180 | 65.23 261 | 85.80 257 |
|
IterMVS-LS | | | 76.49 199 | 75.18 197 | 80.43 222 | 84.49 245 | 62.74 217 | 90.64 198 | 88.80 255 | 72.40 158 | 65.16 250 | 81.72 249 | 60.98 112 | 92.27 257 | 67.74 191 | 64.65 269 | 86.29 243 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
V42 | | | 76.46 200 | 74.55 204 | 82.19 181 | 79.14 302 | 67.82 80 | 90.26 208 | 89.42 231 | 73.75 128 | 68.63 217 | 81.89 246 | 51.31 213 | 94.09 195 | 71.69 160 | 64.84 265 | 84.66 273 |
|
v148 | | | 76.19 201 | 74.47 206 | 81.36 201 | 80.05 291 | 64.44 173 | 91.75 155 | 90.23 203 | 73.68 131 | 67.13 236 | 80.84 266 | 55.92 170 | 93.86 211 | 68.95 183 | 61.73 292 | 85.76 260 |
|
Effi-MVS+-dtu | | | 76.14 202 | 75.28 196 | 78.72 255 | 83.22 262 | 55.17 303 | 89.87 219 | 87.78 277 | 75.42 97 | 67.98 223 | 81.43 255 | 45.08 262 | 92.52 247 | 75.08 132 | 71.63 220 | 88.48 207 |
|
cl-mvsnet_ | | | 76.07 203 | 74.67 199 | 80.28 225 | 85.15 233 | 61.76 229 | 90.12 211 | 88.73 257 | 71.16 199 | 65.43 247 | 81.57 253 | 61.15 109 | 92.95 226 | 66.54 203 | 62.17 285 | 86.13 249 |
|
cl-mvsnet1 | | | 76.07 203 | 74.67 199 | 80.28 225 | 85.14 234 | 61.75 230 | 90.12 211 | 88.73 257 | 71.16 199 | 65.42 248 | 81.60 252 | 61.15 109 | 92.94 230 | 66.54 203 | 62.16 287 | 86.14 247 |
|
FMVSNet2 | | | 76.07 203 | 74.01 215 | 82.26 179 | 88.85 167 | 67.66 84 | 91.33 173 | 91.61 152 | 70.84 205 | 65.98 244 | 82.25 242 | 48.03 241 | 92.00 263 | 58.46 258 | 68.73 239 | 87.10 228 |
|
v144192 | | | 76.05 206 | 74.03 214 | 82.12 185 | 79.50 296 | 66.55 119 | 91.39 168 | 89.71 225 | 72.30 161 | 68.17 221 | 81.33 258 | 51.75 209 | 94.03 202 | 67.94 189 | 64.19 271 | 85.77 258 |
|
NR-MVSNet | | | 76.05 206 | 74.59 202 | 80.44 221 | 82.96 266 | 62.18 226 | 90.83 192 | 91.73 146 | 77.12 79 | 60.96 280 | 86.35 199 | 59.28 131 | 91.80 266 | 60.74 246 | 61.34 296 | 87.35 224 |
|
v1192 | | | 75.98 208 | 73.92 216 | 82.15 182 | 79.73 292 | 66.24 127 | 91.22 178 | 89.75 219 | 72.67 150 | 68.49 219 | 81.42 256 | 49.86 226 | 94.27 189 | 67.08 197 | 65.02 263 | 85.95 254 |
|
eth_miper_zixun_eth | | | 75.96 209 | 74.40 207 | 80.66 219 | 84.66 241 | 63.02 208 | 89.28 230 | 88.27 269 | 71.88 175 | 65.73 245 | 81.65 250 | 59.45 127 | 92.81 234 | 68.13 187 | 60.53 301 | 86.14 247 |
|
bset_n11_16_dypcd | | | 75.95 210 | 74.16 211 | 81.30 203 | 76.91 321 | 65.14 155 | 88.89 238 | 87.48 280 | 74.30 115 | 69.90 201 | 83.40 231 | 42.16 275 | 92.42 250 | 78.39 112 | 66.03 255 | 86.32 242 |
|
TranMVSNet+NR-MVSNet | | | 75.86 211 | 74.52 205 | 79.89 235 | 82.44 269 | 60.64 250 | 91.37 171 | 91.37 162 | 76.63 85 | 67.65 229 | 86.21 202 | 52.37 205 | 91.55 271 | 61.84 241 | 60.81 299 | 87.48 220 |
|
SCA | | | 75.82 212 | 72.76 227 | 85.01 113 | 86.63 211 | 70.08 29 | 81.06 302 | 89.19 239 | 71.60 190 | 70.01 196 | 77.09 301 | 45.53 259 | 90.25 284 | 60.43 248 | 73.27 208 | 94.68 81 |
|
LPG-MVS_test | | | 75.82 212 | 74.58 203 | 79.56 245 | 84.31 249 | 59.37 267 | 90.44 201 | 89.73 222 | 69.49 221 | 64.86 251 | 88.42 172 | 38.65 285 | 94.30 187 | 72.56 149 | 72.76 212 | 85.01 270 |
|
GBi-Net | | | 75.65 214 | 73.83 217 | 81.10 210 | 88.85 167 | 65.11 156 | 90.01 215 | 90.32 195 | 70.84 205 | 67.04 237 | 80.25 276 | 48.03 241 | 91.54 272 | 59.80 253 | 69.34 233 | 86.64 235 |
|
test1 | | | 75.65 214 | 73.83 217 | 81.10 210 | 88.85 167 | 65.11 156 | 90.01 215 | 90.32 195 | 70.84 205 | 67.04 237 | 80.25 276 | 48.03 241 | 91.54 272 | 59.80 253 | 69.34 233 | 86.64 235 |
|
v1921920 | | | 75.63 216 | 73.49 221 | 82.06 189 | 79.38 297 | 66.35 122 | 91.07 186 | 89.48 228 | 71.98 170 | 67.99 222 | 81.22 261 | 49.16 235 | 93.90 208 | 66.56 202 | 64.56 270 | 85.92 256 |
|
ACMP | | 71.68 10 | 75.58 217 | 74.23 210 | 79.62 243 | 84.97 238 | 59.64 262 | 90.80 193 | 89.07 247 | 70.39 212 | 62.95 270 | 87.30 192 | 38.28 288 | 93.87 209 | 72.89 144 | 71.45 223 | 85.36 266 |
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
v8 | | | 75.35 218 | 73.26 223 | 81.61 197 | 80.67 282 | 66.82 110 | 89.54 225 | 89.27 235 | 71.65 185 | 63.30 268 | 80.30 275 | 54.99 179 | 94.06 198 | 67.33 196 | 62.33 284 | 83.94 278 |
|
tpm cat1 | | | 75.30 219 | 72.21 235 | 84.58 128 | 88.52 173 | 67.77 81 | 78.16 321 | 88.02 274 | 61.88 286 | 68.45 220 | 76.37 307 | 60.65 114 | 94.03 202 | 53.77 274 | 74.11 202 | 91.93 164 |
|
PLC |  | 68.80 14 | 75.23 220 | 73.68 219 | 79.86 236 | 92.93 74 | 58.68 274 | 90.64 198 | 88.30 267 | 60.90 290 | 64.43 259 | 90.53 149 | 42.38 273 | 94.57 176 | 56.52 263 | 76.54 194 | 86.33 241 |
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
v1240 | | | 75.21 221 | 72.98 225 | 81.88 191 | 79.20 299 | 66.00 131 | 90.75 195 | 89.11 245 | 71.63 189 | 67.41 233 | 81.22 261 | 47.36 249 | 93.87 209 | 65.46 218 | 64.72 268 | 85.77 258 |
|
Fast-Effi-MVS+-dtu | | | 75.04 222 | 73.37 222 | 80.07 230 | 80.86 279 | 59.52 265 | 91.20 180 | 85.38 297 | 71.90 173 | 65.20 249 | 84.84 216 | 41.46 276 | 92.97 225 | 66.50 205 | 72.96 211 | 87.73 217 |
|
dp | | | 75.01 223 | 72.09 236 | 83.76 143 | 89.28 159 | 66.22 128 | 79.96 313 | 89.75 219 | 71.16 199 | 67.80 228 | 77.19 300 | 51.81 208 | 92.54 246 | 50.39 282 | 71.44 224 | 92.51 152 |
|
TAPA-MVS | | 70.22 12 | 74.94 224 | 73.53 220 | 79.17 250 | 90.40 138 | 52.07 316 | 89.19 233 | 89.61 226 | 62.69 278 | 70.07 195 | 92.67 118 | 48.89 238 | 94.32 186 | 38.26 331 | 79.97 162 | 91.12 179 |
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
v10 | | | 74.77 225 | 72.54 232 | 81.46 199 | 80.33 288 | 66.71 114 | 89.15 234 | 89.08 246 | 70.94 203 | 63.08 269 | 79.86 280 | 52.52 203 | 94.04 201 | 65.70 214 | 62.17 285 | 83.64 280 |
|
XVG-OURS-SEG-HR | | | 74.70 226 | 73.08 224 | 79.57 244 | 78.25 312 | 57.33 290 | 80.49 304 | 87.32 282 | 63.22 272 | 68.76 215 | 90.12 160 | 44.89 264 | 91.59 270 | 70.55 169 | 74.09 203 | 89.79 192 |
|
ACMM | | 69.62 13 | 74.34 227 | 72.73 228 | 79.17 250 | 84.25 251 | 57.87 281 | 90.36 205 | 89.93 214 | 63.17 273 | 65.64 246 | 86.04 205 | 37.79 295 | 94.10 194 | 65.89 211 | 71.52 222 | 85.55 263 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
CNLPA | | | 74.31 228 | 72.30 234 | 80.32 223 | 91.49 118 | 61.66 231 | 90.85 191 | 80.72 324 | 56.67 315 | 63.85 263 | 90.64 146 | 46.75 251 | 90.84 279 | 53.79 273 | 75.99 197 | 88.47 209 |
|
XVG-OURS | | | 74.25 229 | 72.46 233 | 79.63 242 | 78.45 311 | 57.59 286 | 80.33 306 | 87.39 281 | 63.86 267 | 68.76 215 | 89.62 164 | 40.50 279 | 91.72 268 | 69.00 182 | 74.25 201 | 89.58 195 |
|
CVMVSNet | | | 74.04 230 | 74.27 209 | 73.33 300 | 85.33 230 | 43.94 342 | 89.53 226 | 88.39 265 | 54.33 321 | 70.37 191 | 90.13 158 | 49.17 234 | 84.05 325 | 61.83 242 | 79.36 166 | 91.99 163 |
|
Baseline_NR-MVSNet | | | 73.99 231 | 72.83 226 | 77.48 268 | 80.78 280 | 59.29 269 | 91.79 150 | 84.55 305 | 68.85 230 | 68.99 209 | 80.70 267 | 56.16 164 | 92.04 262 | 62.67 236 | 60.98 298 | 81.11 310 |
|
pmmvs4 | | | 73.92 232 | 71.81 239 | 80.25 227 | 79.17 300 | 65.24 150 | 87.43 260 | 87.26 284 | 67.64 242 | 63.46 266 | 83.91 226 | 48.96 237 | 91.53 275 | 62.94 233 | 65.49 257 | 83.96 277 |
|
D2MVS | | | 73.80 233 | 72.02 237 | 79.15 252 | 79.15 301 | 62.97 209 | 88.58 244 | 90.07 208 | 72.94 144 | 59.22 288 | 78.30 289 | 42.31 274 | 92.70 240 | 65.59 216 | 72.00 218 | 81.79 307 |
|
CR-MVSNet | | | 73.79 234 | 70.82 246 | 82.70 165 | 83.15 264 | 67.96 76 | 70.25 331 | 84.00 310 | 73.67 132 | 69.97 198 | 72.41 322 | 57.82 142 | 89.48 295 | 52.99 277 | 73.13 209 | 90.64 184 |
|
test_djsdf | | | 73.76 235 | 72.56 231 | 77.39 270 | 77.00 320 | 53.93 308 | 89.07 236 | 90.69 184 | 65.80 254 | 63.92 261 | 82.03 245 | 43.14 271 | 92.67 241 | 72.83 145 | 68.53 240 | 85.57 262 |
|
pmmvs5 | | | 73.35 236 | 71.52 241 | 78.86 254 | 78.64 309 | 60.61 251 | 91.08 184 | 86.90 285 | 67.69 239 | 63.32 267 | 83.64 227 | 44.33 266 | 90.53 281 | 62.04 240 | 66.02 256 | 85.46 264 |
|
Anonymous20231211 | | | 73.08 237 | 70.39 248 | 81.13 208 | 90.62 135 | 63.33 202 | 91.40 166 | 90.06 211 | 51.84 326 | 64.46 258 | 80.67 269 | 36.49 305 | 94.07 197 | 63.83 228 | 64.17 272 | 85.98 253 |
|
miper_lstm_enhance | | | 73.05 238 | 71.73 240 | 77.03 274 | 83.80 255 | 58.32 278 | 81.76 294 | 88.88 252 | 69.80 219 | 61.01 279 | 78.23 291 | 57.19 147 | 87.51 313 | 65.34 219 | 59.53 305 | 85.27 269 |
|
jajsoiax | | | 73.05 238 | 71.51 242 | 77.67 265 | 77.46 317 | 54.83 304 | 88.81 240 | 90.04 212 | 69.13 228 | 62.85 272 | 83.51 229 | 31.16 323 | 92.75 237 | 70.83 164 | 69.80 229 | 85.43 265 |
|
LCM-MVSNet-Re | | | 72.93 240 | 71.84 238 | 76.18 283 | 88.49 174 | 48.02 332 | 80.07 311 | 70.17 344 | 73.96 123 | 52.25 316 | 80.09 279 | 49.98 224 | 88.24 304 | 67.35 194 | 84.23 140 | 92.28 158 |
|
pm-mvs1 | | | 72.89 241 | 71.09 244 | 78.26 260 | 79.10 303 | 57.62 285 | 90.80 193 | 89.30 234 | 67.66 240 | 62.91 271 | 81.78 248 | 49.11 236 | 92.95 226 | 60.29 250 | 58.89 308 | 84.22 276 |
|
tpmvs | | | 72.88 242 | 69.76 254 | 82.22 180 | 90.98 127 | 67.05 103 | 78.22 320 | 88.30 267 | 63.10 274 | 64.35 260 | 74.98 314 | 55.09 178 | 94.27 189 | 43.25 311 | 69.57 232 | 85.34 267 |
|
test0.0.03 1 | | | 72.76 243 | 72.71 229 | 72.88 304 | 80.25 289 | 47.99 333 | 91.22 178 | 89.45 229 | 71.51 194 | 62.51 275 | 87.66 186 | 53.83 190 | 85.06 322 | 50.16 283 | 67.84 247 | 85.58 261 |
|
UniMVSNet_ETH3D | | | 72.74 244 | 70.53 247 | 79.36 247 | 78.62 310 | 56.64 294 | 85.01 274 | 89.20 238 | 63.77 268 | 64.84 253 | 84.44 221 | 34.05 312 | 91.86 265 | 63.94 227 | 70.89 227 | 89.57 196 |
|
mvs_tets | | | 72.71 245 | 71.11 243 | 77.52 266 | 77.41 318 | 54.52 306 | 88.45 247 | 89.76 218 | 68.76 233 | 62.70 273 | 83.26 233 | 29.49 327 | 92.71 238 | 70.51 170 | 69.62 231 | 85.34 267 |
|
FMVSNet1 | | | 72.71 245 | 69.91 252 | 81.10 210 | 83.60 259 | 65.11 156 | 90.01 215 | 90.32 195 | 63.92 266 | 63.56 265 | 80.25 276 | 36.35 306 | 91.54 272 | 54.46 270 | 66.75 252 | 86.64 235 |
|
IterMVS | | | 72.65 247 | 70.83 245 | 78.09 262 | 82.17 270 | 62.96 210 | 87.64 258 | 86.28 289 | 71.56 192 | 60.44 282 | 78.85 287 | 45.42 261 | 86.66 317 | 63.30 231 | 61.83 289 | 84.65 274 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
PatchMatch-RL | | | 72.06 248 | 69.98 249 | 78.28 259 | 89.51 156 | 55.70 300 | 83.49 282 | 83.39 316 | 61.24 289 | 63.72 264 | 82.76 236 | 34.77 310 | 93.03 224 | 53.37 276 | 77.59 181 | 86.12 250 |
|
PVSNet_0 | | 68.08 15 | 71.81 249 | 68.32 261 | 82.27 177 | 84.68 240 | 62.31 224 | 88.68 242 | 90.31 198 | 75.84 92 | 57.93 299 | 80.65 270 | 37.85 294 | 94.19 192 | 69.94 172 | 29.05 350 | 90.31 187 |
|
MIMVSNet | | | 71.64 250 | 68.44 259 | 81.23 205 | 81.97 273 | 64.44 173 | 73.05 328 | 88.80 255 | 69.67 220 | 64.59 254 | 74.79 315 | 32.79 315 | 87.82 308 | 53.99 272 | 76.35 195 | 91.42 171 |
|
IterMVS-SCA-FT | | | 71.55 251 | 69.97 250 | 76.32 281 | 81.48 275 | 60.67 249 | 87.64 258 | 85.99 293 | 66.17 252 | 59.50 286 | 78.88 286 | 45.53 259 | 83.65 329 | 62.58 237 | 61.93 288 | 84.63 275 |
|
v7n | | | 71.31 252 | 68.65 257 | 79.28 248 | 76.40 323 | 60.77 245 | 86.71 268 | 89.45 229 | 64.17 265 | 58.77 293 | 78.24 290 | 44.59 265 | 93.54 215 | 57.76 259 | 61.75 291 | 83.52 283 |
|
anonymousdsp | | | 71.14 253 | 69.37 255 | 76.45 280 | 72.95 332 | 54.71 305 | 84.19 278 | 88.88 252 | 61.92 285 | 62.15 276 | 79.77 281 | 38.14 290 | 91.44 277 | 68.90 184 | 67.45 249 | 83.21 289 |
|
F-COLMAP | | | 70.66 254 | 68.44 259 | 77.32 271 | 86.37 216 | 55.91 298 | 88.00 251 | 86.32 288 | 56.94 313 | 57.28 302 | 88.07 181 | 33.58 313 | 92.49 248 | 51.02 280 | 68.37 241 | 83.55 281 |
|
WR-MVS_H | | | 70.59 255 | 69.94 251 | 72.53 306 | 81.03 278 | 51.43 319 | 87.35 261 | 92.03 135 | 67.38 243 | 60.23 283 | 80.70 267 | 55.84 171 | 83.45 331 | 46.33 301 | 58.58 309 | 82.72 295 |
|
CP-MVSNet | | | 70.50 256 | 69.91 252 | 72.26 309 | 80.71 281 | 51.00 322 | 87.23 262 | 90.30 199 | 67.84 237 | 59.64 285 | 82.69 237 | 50.23 223 | 82.30 339 | 51.28 279 | 59.28 306 | 83.46 285 |
|
RPMNet | | | 70.42 257 | 65.68 273 | 84.63 127 | 83.15 264 | 67.96 76 | 70.25 331 | 90.45 189 | 46.83 339 | 69.97 198 | 65.10 338 | 56.48 163 | 95.30 160 | 35.79 336 | 73.13 209 | 90.64 184 |
|
tfpnnormal | | | 70.10 258 | 67.36 264 | 78.32 258 | 83.45 261 | 60.97 241 | 88.85 239 | 92.77 106 | 64.85 261 | 60.83 281 | 78.53 288 | 43.52 270 | 93.48 217 | 31.73 346 | 61.70 293 | 80.52 317 |
|
TransMVSNet (Re) | | | 70.07 259 | 67.66 263 | 77.31 272 | 80.62 284 | 59.13 271 | 91.78 152 | 84.94 301 | 65.97 253 | 60.08 284 | 80.44 272 | 50.78 217 | 91.87 264 | 48.84 289 | 45.46 335 | 80.94 312 |
|
CL-MVSNet_2432*1600 | | | 69.92 260 | 68.09 262 | 75.41 286 | 73.25 331 | 55.90 299 | 90.05 214 | 89.90 215 | 69.96 216 | 61.96 278 | 76.54 304 | 51.05 216 | 87.64 310 | 49.51 287 | 50.59 328 | 82.70 297 |
|
DP-MVS | | | 69.90 261 | 66.48 267 | 80.14 228 | 95.36 25 | 62.93 211 | 89.56 223 | 76.11 331 | 50.27 330 | 57.69 300 | 85.23 211 | 39.68 281 | 95.73 137 | 33.35 340 | 71.05 226 | 81.78 308 |
|
PS-CasMVS | | | 69.86 262 | 69.13 256 | 72.07 312 | 80.35 287 | 50.57 324 | 87.02 264 | 89.75 219 | 67.27 244 | 59.19 289 | 82.28 241 | 46.58 253 | 82.24 340 | 50.69 281 | 59.02 307 | 83.39 287 |
|
MSDG | | | 69.54 263 | 65.73 272 | 80.96 215 | 85.11 236 | 63.71 194 | 84.19 278 | 83.28 317 | 56.95 312 | 54.50 307 | 84.03 223 | 31.50 321 | 96.03 128 | 42.87 315 | 69.13 236 | 83.14 291 |
|
PEN-MVS | | | 69.46 264 | 68.56 258 | 72.17 311 | 79.27 298 | 49.71 328 | 86.90 266 | 89.24 236 | 67.24 247 | 59.08 290 | 82.51 240 | 47.23 250 | 83.54 330 | 48.42 291 | 57.12 310 | 83.25 288 |
|
LS3D | | | 69.17 265 | 66.40 268 | 77.50 267 | 91.92 102 | 56.12 297 | 85.12 273 | 80.37 325 | 46.96 337 | 56.50 304 | 87.51 189 | 37.25 298 | 93.71 212 | 32.52 345 | 79.40 165 | 82.68 298 |
|
PatchT | | | 69.11 266 | 65.37 277 | 80.32 223 | 82.07 272 | 63.68 196 | 67.96 340 | 87.62 279 | 50.86 329 | 69.37 203 | 65.18 337 | 57.09 148 | 88.53 302 | 41.59 320 | 66.60 253 | 88.74 203 |
|
KD-MVS_2432*1600 | | | 69.03 267 | 66.37 269 | 77.01 275 | 85.56 228 | 61.06 239 | 81.44 299 | 90.25 201 | 67.27 244 | 58.00 297 | 76.53 305 | 54.49 183 | 87.63 311 | 48.04 293 | 35.77 346 | 82.34 301 |
|
miper_refine_blended | | | 69.03 267 | 66.37 269 | 77.01 275 | 85.56 228 | 61.06 239 | 81.44 299 | 90.25 201 | 67.27 244 | 58.00 297 | 76.53 305 | 54.49 183 | 87.63 311 | 48.04 293 | 35.77 346 | 82.34 301 |
|
MVS_0304 | | | 68.99 269 | 67.23 266 | 74.28 295 | 80.36 286 | 52.54 313 | 87.01 265 | 86.36 287 | 59.89 299 | 66.22 243 | 73.56 318 | 24.25 337 | 88.03 306 | 57.34 262 | 70.11 228 | 82.27 303 |
|
ACMH | | 63.93 17 | 68.62 270 | 64.81 278 | 80.03 231 | 85.22 232 | 63.25 203 | 87.72 256 | 84.66 304 | 60.83 291 | 51.57 319 | 79.43 285 | 27.29 333 | 94.96 165 | 41.76 318 | 64.84 265 | 81.88 306 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
EG-PatchMatch MVS | | | 68.55 271 | 65.41 276 | 77.96 263 | 78.69 308 | 62.93 211 | 89.86 220 | 89.17 240 | 60.55 292 | 50.27 324 | 77.73 295 | 22.60 342 | 94.06 198 | 47.18 299 | 72.65 214 | 76.88 335 |
|
ADS-MVSNet | | | 68.54 272 | 64.38 285 | 81.03 214 | 88.06 187 | 66.90 108 | 68.01 338 | 84.02 309 | 57.57 307 | 64.48 256 | 69.87 330 | 38.68 283 | 89.21 297 | 40.87 322 | 67.89 245 | 86.97 229 |
|
DTE-MVSNet | | | 68.46 273 | 67.33 265 | 71.87 314 | 77.94 315 | 49.00 331 | 86.16 271 | 88.58 263 | 66.36 251 | 58.19 294 | 82.21 243 | 46.36 254 | 83.87 328 | 44.97 308 | 55.17 317 | 82.73 294 |
|
our_test_3 | | | 68.29 274 | 64.69 280 | 79.11 253 | 78.92 304 | 64.85 165 | 88.40 248 | 85.06 299 | 60.32 295 | 52.68 314 | 76.12 309 | 40.81 278 | 89.80 294 | 44.25 310 | 55.65 315 | 82.67 299 |
|
Patchmatch-RL test | | | 68.17 275 | 64.49 283 | 79.19 249 | 71.22 336 | 53.93 308 | 70.07 333 | 71.54 343 | 69.22 225 | 56.79 303 | 62.89 340 | 56.58 161 | 88.61 299 | 69.53 176 | 52.61 323 | 95.03 73 |
|
XVG-ACMP-BASELINE | | | 68.04 276 | 65.53 275 | 75.56 285 | 74.06 330 | 52.37 314 | 78.43 317 | 85.88 294 | 62.03 283 | 58.91 292 | 81.21 263 | 20.38 345 | 91.15 278 | 60.69 247 | 68.18 242 | 83.16 290 |
|
FMVSNet5 | | | 68.04 276 | 65.66 274 | 75.18 288 | 84.43 247 | 57.89 280 | 83.54 281 | 86.26 290 | 61.83 287 | 53.64 312 | 73.30 319 | 37.15 301 | 85.08 321 | 48.99 288 | 61.77 290 | 82.56 300 |
|
ppachtmachnet_test | | | 67.72 278 | 63.70 287 | 79.77 239 | 78.92 304 | 66.04 130 | 88.68 242 | 82.90 319 | 60.11 297 | 55.45 305 | 75.96 310 | 39.19 282 | 90.55 280 | 39.53 326 | 52.55 324 | 82.71 296 |
|
ACMH+ | | 65.35 16 | 67.65 279 | 64.55 281 | 76.96 277 | 84.59 243 | 57.10 292 | 88.08 250 | 80.79 323 | 58.59 306 | 53.00 313 | 81.09 265 | 26.63 335 | 92.95 226 | 46.51 300 | 61.69 294 | 80.82 313 |
|
pmmvs6 | | | 67.57 280 | 64.76 279 | 76.00 284 | 72.82 334 | 53.37 310 | 88.71 241 | 86.78 286 | 53.19 323 | 57.58 301 | 78.03 293 | 35.33 309 | 92.41 251 | 55.56 267 | 54.88 319 | 82.21 304 |
|
Anonymous20231206 | | | 67.53 281 | 65.78 271 | 72.79 305 | 74.95 327 | 47.59 335 | 88.23 249 | 87.32 282 | 61.75 288 | 58.07 296 | 77.29 298 | 37.79 295 | 87.29 315 | 42.91 313 | 63.71 276 | 83.48 284 |
|
Patchmtry | | | 67.53 281 | 63.93 286 | 78.34 257 | 82.12 271 | 64.38 177 | 68.72 335 | 84.00 310 | 48.23 336 | 59.24 287 | 72.41 322 | 57.82 142 | 89.27 296 | 46.10 302 | 56.68 314 | 81.36 309 |
|
USDC | | | 67.43 283 | 64.51 282 | 76.19 282 | 77.94 315 | 55.29 302 | 78.38 318 | 85.00 300 | 73.17 139 | 48.36 330 | 80.37 273 | 21.23 344 | 92.48 249 | 52.15 278 | 64.02 274 | 80.81 314 |
|
ADS-MVSNet2 | | | 66.90 284 | 63.44 289 | 77.26 273 | 88.06 187 | 60.70 248 | 68.01 338 | 75.56 334 | 57.57 307 | 64.48 256 | 69.87 330 | 38.68 283 | 84.10 324 | 40.87 322 | 67.89 245 | 86.97 229 |
|
CMPMVS |  | 48.56 21 | 66.77 285 | 64.41 284 | 73.84 297 | 70.65 339 | 50.31 325 | 77.79 322 | 85.73 296 | 45.54 340 | 44.76 338 | 82.14 244 | 35.40 308 | 90.14 290 | 63.18 232 | 74.54 200 | 81.07 311 |
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
OpenMVS_ROB |  | 61.12 18 | 66.39 286 | 62.92 292 | 76.80 279 | 76.51 322 | 57.77 282 | 89.22 231 | 83.41 315 | 55.48 319 | 53.86 311 | 77.84 294 | 26.28 336 | 93.95 206 | 34.90 338 | 68.76 238 | 78.68 330 |
|
LTVRE_ROB | | 59.60 19 | 66.27 287 | 63.54 288 | 74.45 292 | 84.00 254 | 51.55 318 | 67.08 341 | 83.53 313 | 58.78 304 | 54.94 306 | 80.31 274 | 34.54 311 | 93.23 221 | 40.64 324 | 68.03 243 | 78.58 331 |
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
JIA-IIPM | | | 66.06 288 | 62.45 295 | 76.88 278 | 81.42 277 | 54.45 307 | 57.49 349 | 88.67 259 | 49.36 332 | 63.86 262 | 46.86 346 | 56.06 167 | 90.25 284 | 49.53 286 | 68.83 237 | 85.95 254 |
|
Patchmatch-test | | | 65.86 289 | 60.94 301 | 80.62 220 | 83.75 256 | 58.83 272 | 58.91 348 | 75.26 336 | 44.50 343 | 50.95 323 | 77.09 301 | 58.81 136 | 87.90 307 | 35.13 337 | 64.03 273 | 95.12 67 |
|
UnsupCasMVSNet_eth | | | 65.79 290 | 63.10 290 | 73.88 296 | 70.71 338 | 50.29 326 | 81.09 301 | 89.88 216 | 72.58 152 | 49.25 328 | 74.77 316 | 32.57 317 | 87.43 314 | 55.96 266 | 41.04 341 | 83.90 279 |
|
pmmvs-eth3d | | | 65.53 291 | 62.32 296 | 75.19 287 | 69.39 342 | 59.59 263 | 82.80 291 | 83.43 314 | 62.52 280 | 51.30 321 | 72.49 320 | 32.86 314 | 87.16 316 | 55.32 268 | 50.73 327 | 78.83 329 |
|
SixPastTwentyTwo | | | 64.92 292 | 61.78 299 | 74.34 294 | 78.74 307 | 49.76 327 | 83.42 285 | 79.51 328 | 62.86 275 | 50.27 324 | 77.35 296 | 30.92 325 | 90.49 282 | 45.89 303 | 47.06 333 | 82.78 292 |
|
OurMVSNet-221017-0 | | | 64.68 293 | 62.17 297 | 72.21 310 | 76.08 326 | 47.35 336 | 80.67 303 | 81.02 322 | 56.19 316 | 51.60 318 | 79.66 283 | 27.05 334 | 88.56 301 | 53.60 275 | 53.63 322 | 80.71 315 |
|
test_0402 | | | 64.54 294 | 61.09 300 | 74.92 289 | 84.10 253 | 60.75 246 | 87.95 252 | 79.71 327 | 52.03 325 | 52.41 315 | 77.20 299 | 32.21 319 | 91.64 269 | 23.14 349 | 61.03 297 | 72.36 341 |
|
testgi | | | 64.48 295 | 62.87 293 | 69.31 318 | 71.24 335 | 40.62 346 | 85.49 272 | 79.92 326 | 65.36 258 | 54.18 309 | 83.49 230 | 23.74 340 | 84.55 323 | 41.60 319 | 60.79 300 | 82.77 293 |
|
RPSCF | | | 64.24 296 | 61.98 298 | 71.01 315 | 76.10 325 | 45.00 339 | 75.83 325 | 75.94 332 | 46.94 338 | 58.96 291 | 84.59 219 | 31.40 322 | 82.00 341 | 47.76 297 | 60.33 304 | 86.04 251 |
|
EU-MVSNet | | | 64.01 297 | 63.01 291 | 67.02 325 | 74.40 329 | 38.86 351 | 83.27 286 | 86.19 291 | 45.11 341 | 54.27 308 | 81.15 264 | 36.91 304 | 80.01 344 | 48.79 290 | 57.02 311 | 82.19 305 |
|
test20.03 | | | 63.83 298 | 62.65 294 | 67.38 324 | 70.58 340 | 39.94 347 | 86.57 269 | 84.17 307 | 63.29 271 | 51.86 317 | 77.30 297 | 37.09 302 | 82.47 337 | 38.87 330 | 54.13 321 | 79.73 323 |
|
MDA-MVSNet_test_wron | | | 63.78 299 | 60.16 302 | 74.64 290 | 78.15 313 | 60.41 252 | 83.49 282 | 84.03 308 | 56.17 318 | 39.17 346 | 71.59 328 | 37.22 299 | 83.24 334 | 42.87 315 | 48.73 330 | 80.26 320 |
|
YYNet1 | | | 63.76 300 | 60.14 303 | 74.62 291 | 78.06 314 | 60.19 257 | 83.46 284 | 83.99 312 | 56.18 317 | 39.25 345 | 71.56 329 | 37.18 300 | 83.34 332 | 42.90 314 | 48.70 331 | 80.32 319 |
|
K. test v3 | | | 63.09 301 | 59.61 305 | 73.53 299 | 76.26 324 | 49.38 330 | 83.27 286 | 77.15 330 | 64.35 263 | 47.77 331 | 72.32 324 | 28.73 329 | 87.79 309 | 49.93 285 | 36.69 345 | 83.41 286 |
|
COLMAP_ROB |  | 57.96 20 | 62.98 302 | 59.65 304 | 72.98 303 | 81.44 276 | 53.00 312 | 83.75 280 | 75.53 335 | 48.34 335 | 48.81 329 | 81.40 257 | 24.14 338 | 90.30 283 | 32.95 342 | 60.52 302 | 75.65 338 |
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
AllTest | | | 61.66 303 | 58.06 307 | 72.46 307 | 79.57 293 | 51.42 320 | 80.17 309 | 68.61 346 | 51.25 327 | 45.88 333 | 81.23 259 | 19.86 346 | 86.58 318 | 38.98 328 | 57.01 312 | 79.39 325 |
|
UnsupCasMVSNet_bld | | | 61.60 304 | 57.71 308 | 73.29 301 | 68.73 343 | 51.64 317 | 78.61 316 | 89.05 248 | 57.20 311 | 46.11 332 | 61.96 341 | 28.70 330 | 88.60 300 | 50.08 284 | 38.90 343 | 79.63 324 |
|
MDA-MVSNet-bldmvs | | | 61.54 305 | 57.70 309 | 73.05 302 | 79.53 295 | 57.00 293 | 83.08 289 | 81.23 321 | 57.57 307 | 34.91 348 | 72.45 321 | 32.79 315 | 86.26 320 | 35.81 335 | 41.95 339 | 75.89 337 |
|
DIV-MVS_2432*1600 | | | 60.87 306 | 58.60 306 | 67.68 322 | 66.13 344 | 39.93 348 | 75.63 326 | 84.70 303 | 57.32 310 | 49.57 327 | 68.45 333 | 29.55 326 | 82.87 335 | 48.09 292 | 47.94 332 | 80.25 321 |
|
TinyColmap | | | 60.32 307 | 56.42 313 | 72.00 313 | 78.78 306 | 53.18 311 | 78.36 319 | 75.64 333 | 52.30 324 | 41.59 344 | 75.82 312 | 14.76 351 | 88.35 303 | 35.84 334 | 54.71 320 | 74.46 339 |
|
MVS-HIRNet | | | 60.25 308 | 55.55 314 | 74.35 293 | 84.37 248 | 56.57 295 | 71.64 330 | 74.11 337 | 34.44 348 | 45.54 337 | 42.24 350 | 31.11 324 | 89.81 292 | 40.36 325 | 76.10 196 | 76.67 336 |
|
MIMVSNet1 | | | 60.16 309 | 57.33 310 | 68.67 319 | 69.71 341 | 44.13 341 | 78.92 315 | 84.21 306 | 55.05 320 | 44.63 339 | 71.85 326 | 23.91 339 | 81.54 343 | 32.63 344 | 55.03 318 | 80.35 318 |
|
PM-MVS | | | 59.40 310 | 56.59 311 | 67.84 320 | 63.63 346 | 41.86 343 | 76.76 323 | 63.22 352 | 59.01 303 | 51.07 322 | 72.27 325 | 11.72 353 | 83.25 333 | 61.34 243 | 50.28 329 | 78.39 332 |
|
new-patchmatchnet | | | 59.30 311 | 56.48 312 | 67.79 321 | 65.86 345 | 44.19 340 | 82.47 292 | 81.77 320 | 59.94 298 | 43.65 342 | 66.20 336 | 27.67 332 | 81.68 342 | 39.34 327 | 41.40 340 | 77.50 334 |
|
DSMNet-mixed | | | 56.78 312 | 54.44 315 | 63.79 327 | 63.21 347 | 29.44 355 | 64.43 343 | 64.10 351 | 42.12 345 | 51.32 320 | 71.60 327 | 31.76 320 | 75.04 346 | 36.23 333 | 65.20 262 | 86.87 232 |
|
pmmvs3 | | | 55.51 313 | 51.50 318 | 67.53 323 | 57.90 352 | 50.93 323 | 80.37 305 | 73.66 338 | 40.63 346 | 44.15 341 | 64.75 339 | 16.30 348 | 78.97 345 | 44.77 309 | 40.98 342 | 72.69 340 |
|
TDRefinement | | | 55.28 314 | 51.58 317 | 66.39 326 | 59.53 351 | 46.15 338 | 76.23 324 | 72.80 339 | 44.60 342 | 42.49 343 | 76.28 308 | 15.29 349 | 82.39 338 | 33.20 341 | 43.75 337 | 70.62 343 |
|
LF4IMVS | | | 54.01 315 | 52.12 316 | 59.69 328 | 62.41 349 | 39.91 349 | 68.59 336 | 68.28 348 | 42.96 344 | 44.55 340 | 75.18 313 | 14.09 352 | 68.39 349 | 41.36 321 | 51.68 325 | 70.78 342 |
|
N_pmnet | | | 50.55 316 | 49.11 319 | 54.88 331 | 77.17 319 | 4.02 364 | 84.36 277 | 2.00 363 | 48.59 333 | 45.86 335 | 68.82 332 | 32.22 318 | 82.80 336 | 31.58 347 | 51.38 326 | 77.81 333 |
|
new_pmnet | | | 49.31 317 | 46.44 320 | 57.93 329 | 62.84 348 | 40.74 345 | 68.47 337 | 62.96 353 | 36.48 347 | 35.09 347 | 57.81 343 | 14.97 350 | 72.18 347 | 32.86 343 | 46.44 334 | 60.88 347 |
|
FPMVS | | | 45.64 318 | 43.10 321 | 53.23 333 | 51.42 354 | 36.46 352 | 64.97 342 | 71.91 341 | 29.13 350 | 27.53 349 | 61.55 342 | 9.83 355 | 65.01 353 | 16.00 352 | 55.58 316 | 58.22 348 |
|
LCM-MVSNet | | | 40.54 319 | 35.79 322 | 54.76 332 | 36.92 359 | 30.81 354 | 51.41 350 | 69.02 345 | 22.07 352 | 24.63 350 | 45.37 348 | 4.56 361 | 65.81 351 | 33.67 339 | 34.50 348 | 67.67 344 |
|
ANet_high | | | 40.27 320 | 35.20 323 | 55.47 330 | 34.74 360 | 34.47 353 | 63.84 344 | 71.56 342 | 48.42 334 | 18.80 353 | 41.08 351 | 9.52 356 | 64.45 354 | 20.18 350 | 8.66 357 | 67.49 345 |
|
PMMVS2 | | | 37.93 321 | 33.61 324 | 50.92 334 | 46.31 356 | 24.76 358 | 60.55 347 | 50.05 355 | 28.94 351 | 20.93 351 | 47.59 345 | 4.41 362 | 65.13 352 | 25.14 348 | 18.55 352 | 62.87 346 |
|
Gipuma |  | | 34.91 322 | 31.44 325 | 45.30 335 | 70.99 337 | 39.64 350 | 19.85 356 | 72.56 340 | 20.10 354 | 16.16 355 | 21.47 356 | 5.08 360 | 71.16 348 | 13.07 353 | 43.70 338 | 25.08 352 |
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
PMVS |  | 26.43 22 | 31.84 323 | 28.16 326 | 42.89 336 | 25.87 362 | 27.58 356 | 50.92 351 | 49.78 356 | 21.37 353 | 14.17 356 | 40.81 352 | 2.01 363 | 66.62 350 | 9.61 355 | 38.88 344 | 34.49 351 |
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
E-PMN | | | 24.61 324 | 24.00 328 | 26.45 339 | 43.74 357 | 18.44 361 | 60.86 345 | 39.66 357 | 15.11 355 | 9.53 358 | 22.10 355 | 6.52 358 | 46.94 356 | 8.31 356 | 10.14 354 | 13.98 354 |
|
MVE |  | 24.84 23 | 24.35 325 | 19.77 331 | 38.09 337 | 34.56 361 | 26.92 357 | 26.57 354 | 38.87 359 | 11.73 357 | 11.37 357 | 27.44 353 | 1.37 364 | 50.42 355 | 11.41 354 | 14.60 353 | 36.93 349 |
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
EMVS | | | 23.76 326 | 23.20 330 | 25.46 340 | 41.52 358 | 16.90 362 | 60.56 346 | 38.79 360 | 14.62 356 | 8.99 359 | 20.24 358 | 7.35 357 | 45.82 357 | 7.25 357 | 9.46 355 | 13.64 355 |
|
tmp_tt | | | 22.26 327 | 23.75 329 | 17.80 341 | 5.23 363 | 12.06 363 | 35.26 353 | 39.48 358 | 2.82 359 | 18.94 352 | 44.20 349 | 22.23 343 | 24.64 359 | 36.30 332 | 9.31 356 | 16.69 353 |
|
cdsmvs_eth3d_5k | | | 19.86 328 | 26.47 327 | 0.00 345 | 0.00 366 | 0.00 367 | 0.00 357 | 93.45 78 | 0.00 362 | 0.00 363 | 95.27 47 | 49.56 228 | 0.00 363 | 0.00 361 | 0.00 360 | 0.00 359 |
|
wuyk23d | | | 11.30 329 | 10.95 332 | 12.33 342 | 48.05 355 | 19.89 360 | 25.89 355 | 1.92 364 | 3.58 358 | 3.12 360 | 1.37 360 | 0.64 365 | 15.77 360 | 6.23 358 | 7.77 358 | 1.35 356 |
|
ab-mvs-re | | | 7.91 330 | 10.55 333 | 0.00 345 | 0.00 366 | 0.00 367 | 0.00 357 | 0.00 367 | 0.00 362 | 0.00 363 | 94.95 58 | 0.00 368 | 0.00 363 | 0.00 361 | 0.00 360 | 0.00 359 |
|
testmvs | | | 7.23 331 | 9.62 334 | 0.06 344 | 0.04 364 | 0.02 366 | 84.98 275 | 0.02 365 | 0.03 360 | 0.18 361 | 1.21 361 | 0.01 367 | 0.02 361 | 0.14 359 | 0.01 359 | 0.13 358 |
|
test123 | | | 6.92 332 | 9.21 335 | 0.08 343 | 0.03 365 | 0.05 365 | 81.65 297 | 0.01 366 | 0.02 361 | 0.14 362 | 0.85 362 | 0.03 366 | 0.02 361 | 0.12 360 | 0.00 360 | 0.16 357 |
|
pcd_1.5k_mvsjas | | | 4.46 333 | 5.95 336 | 0.00 345 | 0.00 366 | 0.00 367 | 0.00 357 | 0.00 367 | 0.00 362 | 0.00 363 | 0.00 363 | 53.55 194 | 0.00 363 | 0.00 361 | 0.00 360 | 0.00 359 |
|
uanet_test | | | 0.00 334 | 0.00 337 | 0.00 345 | 0.00 366 | 0.00 367 | 0.00 357 | 0.00 367 | 0.00 362 | 0.00 363 | 0.00 363 | 0.00 368 | 0.00 363 | 0.00 361 | 0.00 360 | 0.00 359 |
|
sosnet-low-res | | | 0.00 334 | 0.00 337 | 0.00 345 | 0.00 366 | 0.00 367 | 0.00 357 | 0.00 367 | 0.00 362 | 0.00 363 | 0.00 363 | 0.00 368 | 0.00 363 | 0.00 361 | 0.00 360 | 0.00 359 |
|
sosnet | | | 0.00 334 | 0.00 337 | 0.00 345 | 0.00 366 | 0.00 367 | 0.00 357 | 0.00 367 | 0.00 362 | 0.00 363 | 0.00 363 | 0.00 368 | 0.00 363 | 0.00 361 | 0.00 360 | 0.00 359 |
|
uncertanet | | | 0.00 334 | 0.00 337 | 0.00 345 | 0.00 366 | 0.00 367 | 0.00 357 | 0.00 367 | 0.00 362 | 0.00 363 | 0.00 363 | 0.00 368 | 0.00 363 | 0.00 361 | 0.00 360 | 0.00 359 |
|
Regformer | | | 0.00 334 | 0.00 337 | 0.00 345 | 0.00 366 | 0.00 367 | 0.00 357 | 0.00 367 | 0.00 362 | 0.00 363 | 0.00 363 | 0.00 368 | 0.00 363 | 0.00 361 | 0.00 360 | 0.00 359 |
|
uanet | | | 0.00 334 | 0.00 337 | 0.00 345 | 0.00 366 | 0.00 367 | 0.00 357 | 0.00 367 | 0.00 362 | 0.00 363 | 0.00 363 | 0.00 368 | 0.00 363 | 0.00 361 | 0.00 360 | 0.00 359 |
|
ZD-MVS | | | | | | 96.63 8 | 65.50 146 | | 93.50 76 | 70.74 209 | 85.26 47 | 95.19 53 | 64.92 73 | 97.29 73 | 87.51 38 | 93.01 54 | |
|
RE-MVS-def | | | | 80.48 120 | | 92.02 96 | 58.56 275 | 90.90 188 | 90.45 189 | 62.76 276 | 78.89 104 | 94.46 73 | 49.30 231 | | 78.77 109 | 86.77 116 | 92.28 158 |
|
IU-MVS | | | | | | 96.46 10 | 69.91 35 | | 95.18 13 | 80.75 33 | 95.28 1 | | | | 92.34 6 | 95.36 12 | 96.47 20 |
|
OPU-MVS | | | | | 89.97 3 | 97.52 3 | 73.15 11 | 96.89 4 | | | | 97.00 9 | 83.82 2 | 99.15 2 | 95.72 1 | 97.63 3 | 97.62 2 |
|
test_241102_TWO | | | | | | | | | 94.41 43 | 71.65 185 | 92.07 5 | 97.21 5 | 74.58 14 | 99.11 4 | 92.34 6 | 95.36 12 | 96.59 13 |
|
test_241102_ONE | | | | | | 96.45 11 | 69.38 43 | | 94.44 40 | 71.65 185 | 92.11 3 | 97.05 8 | 76.79 7 | 99.11 4 | | | |
|
9.14 | | | | 87.63 23 | | 93.86 48 | | 94.41 48 | 94.18 52 | 72.76 149 | 86.21 33 | 96.51 16 | 66.64 54 | 97.88 45 | 90.08 19 | 94.04 37 | |
|
save fliter | | | | | | 93.84 49 | 67.89 78 | 95.05 38 | 92.66 111 | 78.19 64 | | | | | | | |
|
test_0728_THIRD | | | | | | | | | | 72.48 155 | 90.55 12 | 96.93 10 | 76.24 9 | 99.08 9 | 91.53 12 | 94.99 15 | 96.43 22 |
|
test_0728_SECOND | | | | | 88.70 13 | 96.45 11 | 70.43 26 | 96.64 8 | 94.37 47 | | | | | 99.15 2 | 91.91 10 | 94.90 19 | 96.51 18 |
|
test0726 | | | | | | 96.40 14 | 69.99 31 | 96.76 6 | 94.33 48 | 71.92 171 | 91.89 6 | 97.11 7 | 73.77 17 | | | | |
|
GSMVS | | | | | | | | | | | | | | | | | 94.68 81 |
|
test_part2 | | | | | | 96.29 17 | 68.16 72 | | | | 90.78 10 | | | | | | |
|
sam_mvs1 | | | | | | | | | | | | | 57.85 141 | | | | 94.68 81 |
|
sam_mvs | | | | | | | | | | | | | 54.91 180 | | | | |
|
ambc | | | | | 69.61 317 | 61.38 350 | 41.35 344 | 49.07 352 | 85.86 295 | | 50.18 326 | 66.40 335 | 10.16 354 | 88.14 305 | 45.73 304 | 44.20 336 | 79.32 327 |
|
MTGPA |  | | | | | | | | 92.23 125 | | | | | | | | |
|
test_post1 | | | | | | | | 78.95 314 | | | | 20.70 357 | 53.05 199 | 91.50 276 | 60.43 248 | | |
|
test_post | | | | | | | | | | | | 23.01 354 | 56.49 162 | 92.67 241 | | | |
|
patchmatchnet-post | | | | | | | | | | | | 67.62 334 | 57.62 144 | 90.25 284 | | | |
|
GG-mvs-BLEND | | | | | 86.53 62 | 91.91 103 | 69.67 41 | 75.02 327 | 94.75 28 | | 78.67 111 | 90.85 144 | 77.91 5 | 94.56 178 | 72.25 152 | 93.74 43 | 95.36 50 |
|
MTMP | | | | | | | | 93.77 78 | 32.52 361 | | | | | | | | |
|
gm-plane-assit | | | | | | 88.42 178 | 67.04 104 | | | 78.62 61 | | 91.83 133 | | 97.37 67 | 76.57 123 | | |
|
test9_res | | | | | | | | | | | | | | | 89.41 20 | 94.96 16 | 95.29 56 |
|
TEST9 | | | | | | 94.18 40 | 67.28 95 | 94.16 53 | 93.51 74 | 71.75 183 | 85.52 43 | 95.33 42 | 68.01 39 | 97.27 77 | | | |
|
test_8 | | | | | | 94.19 39 | 67.19 98 | 94.15 55 | 93.42 81 | 71.87 176 | 85.38 45 | 95.35 41 | 68.19 36 | 96.95 96 | | | |
|
agg_prior2 | | | | | | | | | | | | | | | 86.41 49 | 94.75 26 | 95.33 51 |
|
agg_prior | | | | | | 94.16 44 | 66.97 106 | | 93.31 84 | | 84.49 52 | | | 96.75 105 | | | |
|
TestCases | | | | | 72.46 307 | 79.57 293 | 51.42 320 | | 68.61 346 | 51.25 327 | 45.88 333 | 81.23 259 | 19.86 346 | 86.58 318 | 38.98 328 | 57.01 312 | 79.39 325 |
|
test_prior4 | | | | | | | 67.18 100 | 93.92 69 | | | | | | | | | |
|
test_prior2 | | | | | | | | 95.10 36 | | 75.40 99 | 85.25 48 | 95.61 37 | 67.94 40 | | 87.47 39 | 94.77 23 | |
|
test_prior | | | | | 86.42 66 | 94.71 33 | 67.35 93 | | 93.10 96 | | | | | 96.84 101 | | | 95.05 70 |
|
旧先验2 | | | | | | | | 92.00 142 | | 59.37 302 | 87.54 25 | | | 93.47 218 | 75.39 129 | | |
|
æ–°å‡ ä½•2 | | | | | | | | 91.41 164 | | | | | | | | | |
|
æ–°å‡ ä½•1 | | | | | 84.73 121 | 92.32 88 | 64.28 182 | | 91.46 159 | 59.56 300 | 79.77 94 | 92.90 112 | 56.95 155 | 96.57 110 | 63.40 230 | 92.91 56 | 93.34 127 |
|
旧先验1 | | | | | | 91.94 100 | 60.74 247 | | 91.50 157 | | | 94.36 77 | 65.23 67 | | | 91.84 70 | 94.55 86 |
|
æ— å…ˆéªŒ | | | | | | | | 92.71 114 | 92.61 115 | 62.03 283 | | | | 97.01 87 | 66.63 200 | | 93.97 112 |
|
原ACMM2 | | | | | | | | 92.01 140 | | | | | | | | | |
|
原ACMM1 | | | | | 84.42 132 | 93.21 67 | 64.27 183 | | 93.40 83 | 65.39 257 | 79.51 97 | 92.50 120 | 58.11 140 | 96.69 107 | 65.27 220 | 93.96 38 | 92.32 156 |
|
test222 | | | | | | 89.77 149 | 61.60 232 | 89.55 224 | 89.42 231 | 56.83 314 | 77.28 123 | 92.43 124 | 52.76 201 | | | 91.14 83 | 93.09 137 |
|
testdata2 | | | | | | | | | | | | | | 96.09 122 | 61.26 244 | | |
|
segment_acmp | | | | | | | | | | | | | 65.94 60 | | | | |
|
testdata | | | | | 81.34 202 | 89.02 165 | 57.72 283 | | 89.84 217 | 58.65 305 | 85.32 46 | 94.09 88 | 57.03 150 | 93.28 220 | 69.34 178 | 90.56 89 | 93.03 139 |
|
testdata1 | | | | | | | | 89.21 232 | | 77.55 74 | | | | | | | |
|
test12 | | | | | 87.09 42 | 94.60 35 | 68.86 54 | | 92.91 102 | | 82.67 67 | | 65.44 66 | 97.55 59 | | 93.69 46 | 94.84 77 |
|
plane_prior7 | | | | | | 86.94 207 | 61.51 233 | | | | | | | | | | |
|
plane_prior6 | | | | | | 87.23 202 | 62.32 223 | | | | | | 50.66 218 | | | | |
|
plane_prior5 | | | | | | | | | 91.31 163 | | | | | 95.55 151 | 76.74 121 | 78.53 175 | 88.39 210 |
|
plane_prior4 | | | | | | | | | | | | 89.14 167 | | | | | |
|
plane_prior3 | | | | | | | 61.95 227 | | | 79.09 53 | 72.53 166 | | | | | | |
|
plane_prior2 | | | | | | | | 93.13 98 | | 78.81 58 | | | | | | | |
|
plane_prior1 | | | | | | 87.15 204 | | | | | | | | | | | |
|
plane_prior | | | | | | | 62.42 220 | 93.85 73 | | 79.38 46 | | | | | | 78.80 172 | |
|
n2 | | | | | | | | | 0.00 367 | | | | | | | | |
|
nn | | | | | | | | | 0.00 367 | | | | | | | | |
|
door-mid | | | | | | | | | 66.01 350 | | | | | | | | |
|
lessismore_v0 | | | | | 73.72 298 | 72.93 333 | 47.83 334 | | 61.72 354 | | 45.86 335 | 73.76 317 | 28.63 331 | 89.81 292 | 47.75 298 | 31.37 349 | 83.53 282 |
|
LGP-MVS_train | | | | | 79.56 245 | 84.31 249 | 59.37 267 | | 89.73 222 | 69.49 221 | 64.86 251 | 88.42 172 | 38.65 285 | 94.30 187 | 72.56 149 | 72.76 212 | 85.01 270 |
|
test11 | | | | | | | | | 93.01 98 | | | | | | | | |
|
door | | | | | | | | | 66.57 349 | | | | | | | | |
|
HQP5-MVS | | | | | | | 63.66 197 | | | | | | | | | | |
|
HQP-NCC | | | | | | 87.54 196 | | 94.06 60 | | 79.80 40 | 74.18 147 | | | | | | |
|
ACMP_Plane | | | | | | 87.54 196 | | 94.06 60 | | 79.80 40 | 74.18 147 | | | | | | |
|
BP-MVS | | | | | | | | | | | | | | | 77.63 118 | | |
|
HQP4-MVS | | | | | | | | | | | 74.18 147 | | | 95.61 145 | | | 88.63 204 |
|
HQP3-MVS | | | | | | | | | 91.70 149 | | | | | | | 78.90 170 | |
|
HQP2-MVS | | | | | | | | | | | | | 51.63 211 | | | | |
|
NP-MVS | | | | | | 87.41 199 | 63.04 207 | | | | | 90.30 154 | | | | | |
|
MDTV_nov1_ep13_2view | | | | | | | 59.90 260 | 80.13 310 | | 67.65 241 | 72.79 161 | | 54.33 187 | | 59.83 252 | | 92.58 150 |
|
MDTV_nov1_ep13 | | | | 72.61 230 | | 89.06 164 | 68.48 62 | 80.33 306 | 90.11 207 | 71.84 179 | 71.81 178 | 75.92 311 | 53.01 200 | 93.92 207 | 48.04 293 | 73.38 207 | |
|
ACMMP++_ref | | | | | | | | | | | | | | | | 71.63 220 | |
|
ACMMP++ | | | | | | | | | | | | | | | | 69.72 230 | |
|
Test By Simon | | | | | | | | | | | | | 54.21 188 | | | | |
|
ITE_SJBPF | | | | | 70.43 316 | 74.44 328 | 47.06 337 | | 77.32 329 | 60.16 296 | 54.04 310 | 83.53 228 | 23.30 341 | 84.01 326 | 43.07 312 | 61.58 295 | 80.21 322 |
|
DeepMVS_CX |  | | | | 34.71 338 | 51.45 353 | 24.73 359 | | 28.48 362 | 31.46 349 | 17.49 354 | 52.75 344 | 5.80 359 | 42.60 358 | 18.18 351 | 19.42 351 | 36.81 350 |
|