This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
MG-MVS87.11 3686.27 4689.62 797.79 176.27 494.96 4594.49 4478.74 8983.87 7792.94 12064.34 8996.94 10775.19 15694.09 3895.66 52
MCST-MVS91.08 191.46 389.94 497.66 273.37 1097.13 395.58 1189.33 185.77 5696.26 3172.84 2699.38 192.64 1995.93 997.08 11
OPU-MVS89.97 397.52 373.15 1496.89 697.00 983.82 299.15 295.72 597.63 397.62 2
DVP-MVS++90.53 491.09 588.87 1697.31 469.91 4393.96 7394.37 5272.48 18592.07 896.85 1683.82 299.15 291.53 2997.42 497.55 4
MSC_two_6792asdad89.60 897.31 473.22 1295.05 2699.07 1392.01 2494.77 2596.51 25
No_MVS89.60 897.31 473.22 1295.05 2699.07 1392.01 2494.77 2596.51 25
DP-MVS Recon82.73 11681.65 12385.98 8697.31 467.06 11495.15 3791.99 14169.08 26276.50 15693.89 10254.48 20998.20 3570.76 19485.66 13792.69 167
CNVR-MVS90.32 690.89 788.61 2296.76 870.65 3196.47 1494.83 3084.83 1289.07 3496.80 1970.86 3599.06 1592.64 1995.71 1096.12 40
ZD-MVS96.63 965.50 15593.50 8270.74 24185.26 6495.19 6364.92 8297.29 7887.51 5993.01 57
NCCC89.07 1689.46 1687.91 2996.60 1069.05 6296.38 1694.64 3984.42 1386.74 4896.20 3366.56 6698.76 2389.03 4994.56 3395.92 46
IU-MVS96.46 1169.91 4395.18 2080.75 5095.28 192.34 2195.36 1396.47 29
SED-MVS89.94 990.36 1088.70 1896.45 1269.38 5496.89 694.44 4671.65 21592.11 697.21 476.79 999.11 692.34 2195.36 1397.62 2
test_241102_ONE96.45 1269.38 5494.44 4671.65 21592.11 697.05 776.79 999.11 6
test_0728_SECOND88.70 1896.45 1270.43 3496.64 1094.37 5299.15 291.91 2794.90 2196.51 25
DVP-MVScopyleft89.41 1389.73 1488.45 2596.40 1569.99 3996.64 1094.52 4271.92 20190.55 2096.93 1173.77 2199.08 1191.91 2794.90 2196.29 35
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test072696.40 1569.99 3996.76 894.33 5471.92 20191.89 1097.11 673.77 21
AdaColmapbinary78.94 18177.00 19784.76 13196.34 1765.86 14592.66 13387.97 30562.18 31770.56 21992.37 13543.53 30097.35 7464.50 25682.86 15891.05 207
test_one_060196.32 1869.74 4994.18 5771.42 22690.67 1996.85 1674.45 18
test_part296.29 1968.16 8790.78 16
DPE-MVScopyleft88.77 1889.21 1787.45 4496.26 2067.56 10194.17 6194.15 5968.77 26590.74 1897.27 276.09 1298.49 2990.58 3794.91 2096.30 34
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
MAR-MVS84.18 8983.43 9286.44 7496.25 2165.93 14494.28 5994.27 5674.41 14379.16 12495.61 4653.99 21498.88 2169.62 20393.26 5594.50 111
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
API-MVS82.28 12380.53 14187.54 4296.13 2270.59 3293.63 9491.04 19265.72 28975.45 16692.83 12556.11 19098.89 2064.10 25889.75 10093.15 154
APDe-MVScopyleft87.54 2987.84 2886.65 6596.07 2366.30 13594.84 4893.78 6669.35 25688.39 3696.34 2867.74 5797.66 5490.62 3693.44 5296.01 44
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
patch_mono-289.71 1190.99 685.85 9296.04 2463.70 20295.04 4295.19 1986.74 791.53 1495.15 6473.86 2097.58 5993.38 1492.00 7196.28 37
PAPR85.15 7184.47 7687.18 4996.02 2568.29 8091.85 17093.00 10476.59 12079.03 12595.00 6661.59 12797.61 5878.16 13889.00 10495.63 53
APD-MVScopyleft85.93 5685.99 5485.76 9695.98 2665.21 16093.59 9692.58 12266.54 28286.17 5295.88 4063.83 9597.00 9786.39 7292.94 5895.06 80
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
DeepC-MVS_fast79.48 287.95 2488.00 2787.79 3295.86 2768.32 7995.74 2294.11 6083.82 1683.49 7896.19 3464.53 8898.44 3183.42 9894.88 2496.61 19
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
DP-MVS69.90 29266.48 29980.14 25495.36 2862.93 22489.56 24776.11 36650.27 37157.69 33685.23 24739.68 31395.73 15433.35 38071.05 25981.78 342
114514_t79.17 17677.67 18283.68 16895.32 2965.53 15492.85 12391.60 16463.49 30367.92 25690.63 16746.65 27995.72 15867.01 23183.54 15389.79 222
HPM-MVS++copyleft89.37 1489.95 1387.64 3595.10 3068.23 8595.24 3494.49 4482.43 2688.90 3596.35 2771.89 3398.63 2688.76 5096.40 696.06 41
CSCG86.87 3886.26 4788.72 1795.05 3170.79 3093.83 8595.33 1668.48 26977.63 14294.35 8973.04 2498.45 3084.92 8593.71 4896.92 14
dcpmvs_287.37 3387.55 3286.85 5795.04 3268.20 8690.36 22890.66 20079.37 7481.20 9593.67 10674.73 1596.55 12390.88 3492.00 7195.82 49
LFMVS84.34 8382.73 10989.18 1494.76 3373.25 1194.99 4491.89 14771.90 20382.16 8893.49 11147.98 27097.05 9282.55 10384.82 14197.25 7
CDPH-MVS85.71 6185.46 6386.46 7394.75 3467.19 11093.89 7892.83 10970.90 23683.09 8195.28 5563.62 10097.36 7380.63 11794.18 3794.84 91
test_prior86.42 7594.71 3567.35 10793.10 10096.84 11395.05 81
test1287.09 5294.60 3668.86 6692.91 10682.67 8665.44 7597.55 6293.69 4994.84 91
test_yl84.28 8483.16 10087.64 3594.52 3769.24 5895.78 1995.09 2369.19 25981.09 9792.88 12357.00 17597.44 6681.11 11581.76 17296.23 38
DCV-MVSNet84.28 8483.16 10087.64 3594.52 3769.24 5895.78 1995.09 2369.19 25981.09 9792.88 12357.00 17597.44 6681.11 11581.76 17296.23 38
CANet89.61 1289.99 1288.46 2494.39 3969.71 5096.53 1393.78 6686.89 689.68 3095.78 4165.94 7099.10 992.99 1693.91 4396.58 22
test_894.19 4067.19 11094.15 6493.42 8671.87 20685.38 6295.35 5168.19 5296.95 106
TEST994.18 4167.28 10894.16 6293.51 8071.75 21285.52 5995.33 5268.01 5497.27 83
train_agg87.21 3587.42 3486.60 6794.18 4167.28 10894.16 6293.51 8071.87 20685.52 5995.33 5268.19 5297.27 8389.09 4794.90 2195.25 75
agg_prior94.16 4366.97 11893.31 8984.49 7096.75 116
PAPM_NR82.97 11381.84 12186.37 7794.10 4466.76 12387.66 28392.84 10869.96 24974.07 18093.57 10963.10 11297.50 6470.66 19690.58 9294.85 88
MVSMamba_pp88.94 1788.82 1889.29 1394.04 4574.01 894.81 4992.74 11285.13 1090.37 2290.13 18268.40 4897.38 7089.42 4194.34 3696.47 29
mamv488.66 1988.41 2189.39 1294.02 4674.04 794.94 4692.69 11580.90 4890.32 2390.30 17568.33 4997.28 8289.47 4094.74 3096.84 15
FOURS193.95 4761.77 24993.96 7391.92 14462.14 31886.57 49
VNet86.20 5085.65 6187.84 3193.92 4869.99 3995.73 2495.94 778.43 9186.00 5493.07 11758.22 16297.00 9785.22 7984.33 14796.52 24
bld_raw_dy_0_6489.23 1589.56 1588.21 2893.91 4970.09 3797.16 293.13 9782.64 2490.75 1796.28 3068.30 5097.37 7189.84 3994.07 3997.17 8
9.1487.63 3093.86 5094.41 5694.18 5772.76 18086.21 5196.51 2466.64 6497.88 4490.08 3894.04 40
save fliter93.84 5167.89 9395.05 4192.66 11778.19 93
PVSNet_BlendedMVS83.38 10683.43 9283.22 18093.76 5267.53 10394.06 6693.61 7679.13 8081.00 10085.14 24863.19 10997.29 7887.08 6673.91 23784.83 305
PVSNet_Blended86.73 4386.86 4286.31 8093.76 5267.53 10396.33 1793.61 7682.34 2881.00 10093.08 11663.19 10997.29 7887.08 6691.38 8294.13 122
HFP-MVS84.73 7784.40 7885.72 9893.75 5465.01 16693.50 10193.19 9472.19 19579.22 12394.93 6959.04 15597.67 5181.55 10892.21 6694.49 112
Anonymous20240521177.96 20175.33 22085.87 9093.73 5564.52 17294.85 4785.36 33062.52 31576.11 15790.18 17929.43 36597.29 7868.51 21677.24 21595.81 50
testing9986.01 5485.47 6287.63 3993.62 5671.25 2393.47 10495.23 1880.42 5580.60 10591.95 14471.73 3496.50 12680.02 12282.22 16695.13 78
SD-MVS87.49 3087.49 3387.50 4393.60 5768.82 6893.90 7792.63 12076.86 11387.90 3895.76 4266.17 6797.63 5689.06 4891.48 8096.05 42
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
testing9185.93 5685.31 6587.78 3393.59 5871.47 1993.50 10195.08 2580.26 5780.53 10691.93 14570.43 3796.51 12580.32 12082.13 16895.37 62
ACMMPR84.37 8184.06 8085.28 11293.56 5964.37 18293.50 10193.15 9672.19 19578.85 13194.86 7256.69 18297.45 6581.55 10892.20 6794.02 129
testing1186.71 4486.44 4587.55 4193.54 6071.35 2193.65 9295.58 1181.36 4280.69 10392.21 14072.30 2996.46 12885.18 8183.43 15494.82 94
region2R84.36 8284.03 8185.36 10993.54 6064.31 18593.43 10692.95 10572.16 19878.86 13094.84 7356.97 17797.53 6381.38 11292.11 6994.24 116
TSAR-MVS + GP.87.96 2388.37 2386.70 6493.51 6265.32 15795.15 3793.84 6578.17 9485.93 5594.80 7475.80 1398.21 3489.38 4388.78 10596.59 20
PHI-MVS86.83 4186.85 4386.78 6293.47 6365.55 15395.39 3195.10 2271.77 21185.69 5896.52 2362.07 12298.77 2286.06 7595.60 1196.03 43
SR-MVS82.81 11582.58 11183.50 17493.35 6461.16 26192.23 14991.28 17864.48 29681.27 9495.28 5553.71 21895.86 14882.87 10088.77 10693.49 145
EPNet87.84 2688.38 2286.23 8193.30 6566.05 13995.26 3394.84 2987.09 588.06 3794.53 8066.79 6397.34 7583.89 9591.68 7695.29 69
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
XVS83.87 9683.47 8985.05 11993.22 6663.78 19692.92 12092.66 11773.99 15178.18 13594.31 9255.25 19797.41 6879.16 12891.58 7893.95 131
X-MVStestdata76.86 21774.13 23785.05 11993.22 6663.78 19692.92 12092.66 11773.99 15178.18 13510.19 41055.25 19797.41 6879.16 12891.58 7893.95 131
SMA-MVScopyleft88.14 2088.29 2487.67 3493.21 6868.72 7093.85 8094.03 6274.18 14891.74 1196.67 2165.61 7498.42 3389.24 4696.08 795.88 48
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
原ACMM184.42 14693.21 6864.27 18793.40 8865.39 29079.51 11892.50 12958.11 16496.69 11765.27 25293.96 4192.32 178
MVS_111021_HR86.19 5185.80 5887.37 4593.17 7069.79 4793.99 7293.76 6979.08 8278.88 12993.99 10062.25 12198.15 3685.93 7691.15 8694.15 121
CP-MVS83.71 10183.40 9584.65 13793.14 7163.84 19494.59 5392.28 12871.03 23477.41 14594.92 7055.21 20096.19 13381.32 11390.70 9093.91 133
DELS-MVS90.05 790.09 1189.94 493.14 7173.88 997.01 594.40 5088.32 385.71 5794.91 7174.11 1998.91 1787.26 6395.94 897.03 12
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
ZNCC-MVS85.33 6885.08 6986.06 8493.09 7365.65 14993.89 7893.41 8773.75 15979.94 11394.68 7760.61 13798.03 3882.63 10293.72 4794.52 109
iter_conf05_1184.06 9283.37 9786.15 8393.04 7466.63 12687.84 28090.21 22071.10 23281.47 9389.48 19068.80 4496.96 10475.97 15092.39 6594.87 87
DeepPCF-MVS81.17 189.72 1091.38 484.72 13393.00 7558.16 30696.72 994.41 4886.50 890.25 2497.83 175.46 1498.67 2592.78 1895.49 1297.32 6
PLCcopyleft68.80 1475.23 24573.68 24479.86 26592.93 7658.68 30290.64 22188.30 29460.90 32764.43 29290.53 16842.38 30594.57 20156.52 29876.54 22086.33 274
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
testing22285.18 7084.69 7586.63 6692.91 7769.91 4392.61 13595.80 980.31 5680.38 10892.27 13768.73 4595.19 18075.94 15183.27 15694.81 95
MSP-MVS90.38 591.87 185.88 8992.83 7864.03 19293.06 11494.33 5482.19 2993.65 396.15 3685.89 197.19 8591.02 3397.75 196.43 31
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
mPP-MVS82.96 11482.44 11484.52 14392.83 7862.92 22692.76 12591.85 15171.52 22375.61 16494.24 9453.48 22296.99 10078.97 13190.73 8993.64 142
GST-MVS84.63 7984.29 7985.66 10092.82 8065.27 15893.04 11693.13 9773.20 16878.89 12694.18 9659.41 15197.85 4581.45 11092.48 6493.86 136
WTY-MVS86.32 4885.81 5787.85 3092.82 8069.37 5695.20 3595.25 1782.71 2281.91 8994.73 7567.93 5697.63 5679.55 12582.25 16596.54 23
PGM-MVS83.25 10882.70 11084.92 12292.81 8264.07 19190.44 22492.20 13471.28 22777.23 14894.43 8355.17 20197.31 7779.33 12791.38 8293.37 147
EI-MVSNet-Vis-set83.77 9983.67 8484.06 15892.79 8363.56 20891.76 17594.81 3179.65 6877.87 13994.09 9763.35 10797.90 4279.35 12679.36 19290.74 209
SF-MVS87.03 3787.09 3786.84 5892.70 8467.45 10693.64 9393.76 6970.78 24086.25 5096.44 2666.98 6197.79 4788.68 5194.56 3395.28 71
MVSTER82.47 12082.05 11783.74 16492.68 8569.01 6391.90 16793.21 9179.83 6372.14 20385.71 24574.72 1694.72 19475.72 15272.49 24887.50 251
CS-MVS-test86.14 5287.01 3883.52 17192.63 8659.36 29495.49 2891.92 14480.09 6185.46 6195.53 4861.82 12695.77 15286.77 7093.37 5395.41 59
MP-MVScopyleft85.02 7284.97 7185.17 11792.60 8764.27 18793.24 10992.27 12973.13 17079.63 11794.43 8361.90 12397.17 8685.00 8392.56 6294.06 127
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
ETVMVS84.22 8883.71 8385.76 9692.58 8868.25 8492.45 14395.53 1479.54 7079.46 11991.64 15270.29 3894.18 21969.16 20982.76 16294.84 91
thres20079.66 16878.33 17283.66 17092.54 8965.82 14793.06 11496.31 374.90 14073.30 18688.66 19859.67 14795.61 16247.84 33378.67 19989.56 227
APD-MVS_3200maxsize81.64 13481.32 12682.59 19392.36 9058.74 30191.39 18991.01 19363.35 30579.72 11694.62 7951.82 23396.14 13579.71 12387.93 11392.89 165
新几何184.73 13292.32 9164.28 18691.46 17059.56 33779.77 11592.90 12156.95 17896.57 12163.40 26292.91 5993.34 148
EI-MVSNet-UG-set83.14 11082.96 10383.67 16992.28 9263.19 21891.38 19194.68 3779.22 7776.60 15493.75 10362.64 11697.76 4878.07 13978.01 20390.05 218
HPM-MVScopyleft83.25 10882.95 10484.17 15692.25 9362.88 22890.91 20991.86 14970.30 24577.12 14993.96 10156.75 18096.28 13182.04 10591.34 8493.34 148
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
HY-MVS76.49 584.28 8483.36 9887.02 5592.22 9467.74 9684.65 30494.50 4379.15 7982.23 8787.93 21466.88 6296.94 10780.53 11882.20 16796.39 33
tfpn200view978.79 18677.43 18782.88 18592.21 9564.49 17392.05 15896.28 473.48 16571.75 20888.26 20660.07 14395.32 17445.16 34477.58 20888.83 233
thres40078.68 18877.43 18782.43 19592.21 9564.49 17392.05 15896.28 473.48 16571.75 20888.26 20660.07 14395.32 17445.16 34477.58 20887.48 252
MM90.87 291.52 288.92 1592.12 9771.10 2797.02 496.04 688.70 291.57 1396.19 3470.12 3998.91 1796.83 195.06 1696.76 16
PS-MVSNAJ88.14 2087.61 3189.71 692.06 9876.72 195.75 2193.26 9083.86 1589.55 3296.06 3753.55 21997.89 4391.10 3193.31 5494.54 107
SR-MVS-dyc-post81.06 14380.70 13682.15 20792.02 9958.56 30390.90 21090.45 20462.76 31278.89 12694.46 8151.26 24195.61 16278.77 13486.77 12792.28 180
RE-MVS-def80.48 14292.02 9958.56 30390.90 21090.45 20462.76 31278.89 12694.46 8149.30 25778.77 13486.77 12792.28 180
MSLP-MVS++86.27 4985.91 5687.35 4692.01 10168.97 6595.04 4292.70 11379.04 8481.50 9296.50 2558.98 15696.78 11583.49 9793.93 4296.29 35
CS-MVS85.80 5986.65 4483.27 17992.00 10258.92 29995.31 3291.86 14979.97 6284.82 6795.40 5062.26 12095.51 17086.11 7492.08 7095.37 62
旧先验191.94 10360.74 27191.50 16894.36 8565.23 7791.84 7394.55 105
thres600view778.00 19976.66 20182.03 21491.93 10463.69 20391.30 19796.33 172.43 18870.46 22187.89 21560.31 13894.92 18942.64 35676.64 21987.48 252
LS3D69.17 29766.40 30177.50 29591.92 10556.12 32685.12 30180.37 36046.96 37856.50 34087.51 22137.25 33293.71 24032.52 38679.40 19182.68 333
GG-mvs-BLEND86.53 7291.91 10669.67 5275.02 36894.75 3378.67 13390.85 16477.91 794.56 20372.25 18093.74 4695.36 64
thres100view90078.37 19477.01 19682.46 19491.89 10763.21 21791.19 20496.33 172.28 19370.45 22287.89 21560.31 13895.32 17445.16 34477.58 20888.83 233
MTAPA83.91 9583.38 9685.50 10391.89 10765.16 16281.75 32792.23 13075.32 13480.53 10695.21 6256.06 19197.16 8884.86 8692.55 6394.18 118
sasdasda86.85 3986.25 4888.66 2091.80 10971.92 1693.54 9891.71 15780.26 5787.55 4095.25 5963.59 10296.93 10988.18 5284.34 14597.11 9
canonicalmvs86.85 3986.25 4888.66 2091.80 10971.92 1693.54 9891.71 15780.26 5787.55 4095.25 5963.59 10296.93 10988.18 5284.34 14597.11 9
TSAR-MVS + MP.88.11 2288.64 1986.54 7191.73 11168.04 8990.36 22893.55 7982.89 2091.29 1592.89 12272.27 3096.03 14487.99 5494.77 2595.54 57
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
ACMMPcopyleft81.49 13580.67 13783.93 16191.71 11262.90 22792.13 15292.22 13371.79 21071.68 21093.49 11150.32 24696.96 10478.47 13684.22 15191.93 190
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
BH-RMVSNet79.46 17377.65 18384.89 12391.68 11365.66 14893.55 9788.09 30172.93 17573.37 18591.12 16146.20 28696.12 13656.28 30085.61 13892.91 163
baseline181.84 13181.03 13284.28 15391.60 11466.62 12791.08 20691.66 16281.87 3274.86 17191.67 15169.98 4094.92 18971.76 18664.75 30291.29 203
ACMMP_NAP86.05 5385.80 5886.80 6191.58 11567.53 10391.79 17293.49 8374.93 13984.61 6895.30 5459.42 15097.92 4186.13 7394.92 1994.94 86
MVS_Test84.16 9083.20 9987.05 5491.56 11669.82 4689.99 24292.05 13877.77 10082.84 8286.57 23363.93 9496.09 13874.91 16189.18 10395.25 75
HPM-MVS_fast80.25 15879.55 15782.33 19991.55 11759.95 28491.32 19689.16 26165.23 29374.71 17393.07 11747.81 27395.74 15374.87 16388.23 10991.31 202
CPTT-MVS79.59 16979.16 16480.89 24191.54 11859.80 28692.10 15488.54 28960.42 33072.96 18893.28 11348.27 26692.80 26478.89 13386.50 13290.06 217
CNLPA74.31 25372.30 26180.32 24791.49 11961.66 25390.85 21380.72 35856.67 35263.85 29690.64 16546.75 27890.84 30953.79 30975.99 22488.47 242
MP-MVS-pluss85.24 6985.13 6885.56 10291.42 12065.59 15191.54 18292.51 12474.56 14280.62 10495.64 4559.15 15497.00 9786.94 6893.80 4494.07 126
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
gg-mvs-nofinetune77.18 21274.31 23385.80 9491.42 12068.36 7871.78 37194.72 3449.61 37277.12 14945.92 39577.41 893.98 23267.62 22493.16 5695.05 81
MGCFI-Net85.59 6585.73 6085.17 11791.41 12262.44 23492.87 12291.31 17479.65 6886.99 4795.14 6562.90 11596.12 13687.13 6584.13 15296.96 13
xiu_mvs_v2_base87.92 2587.38 3589.55 1191.41 12276.43 395.74 2293.12 9983.53 1889.55 3295.95 3953.45 22397.68 5091.07 3292.62 6194.54 107
EIA-MVS84.84 7584.88 7284.69 13591.30 12462.36 23793.85 8092.04 13979.45 7179.33 12294.28 9362.42 11896.35 12980.05 12191.25 8595.38 61
alignmvs87.28 3486.97 3988.24 2791.30 12471.14 2695.61 2693.56 7879.30 7587.07 4595.25 5968.43 4796.93 10987.87 5584.33 14796.65 18
EPMVS78.49 19375.98 21086.02 8591.21 12669.68 5180.23 34291.20 17975.25 13572.48 19878.11 32954.65 20593.69 24157.66 29683.04 15794.69 97
FMVSNet377.73 20576.04 20982.80 18691.20 12768.99 6491.87 16891.99 14173.35 16767.04 27083.19 26956.62 18392.14 28659.80 28769.34 26587.28 259
Anonymous2024052976.84 22074.15 23684.88 12491.02 12864.95 16893.84 8391.09 18653.57 36073.00 18787.42 22235.91 34197.32 7669.14 21072.41 25092.36 176
tpmvs72.88 26969.76 28582.22 20490.98 12967.05 11578.22 35588.30 29463.10 31064.35 29374.98 35155.09 20294.27 21443.25 35069.57 26485.34 300
MVS84.66 7882.86 10790.06 290.93 13074.56 687.91 27895.54 1368.55 26772.35 20294.71 7659.78 14698.90 1981.29 11494.69 3296.74 17
PVSNet73.49 880.05 16278.63 16984.31 15190.92 13164.97 16792.47 14291.05 19179.18 7872.43 20090.51 16937.05 33794.06 22568.06 21886.00 13493.90 135
3Dnovator+73.60 782.10 12880.60 14086.60 6790.89 13266.80 12295.20 3593.44 8574.05 15067.42 26592.49 13149.46 25597.65 5570.80 19391.68 7695.33 65
VDD-MVS83.06 11181.81 12286.81 6090.86 13367.70 9795.40 3091.50 16875.46 13181.78 9092.34 13640.09 31297.13 9086.85 6982.04 16995.60 54
BH-w/o80.49 15379.30 16284.05 15990.83 13464.36 18493.60 9589.42 25074.35 14569.09 23790.15 18155.23 19995.61 16264.61 25586.43 13392.17 186
ET-MVSNet_ETH3D84.01 9383.15 10286.58 6990.78 13570.89 2994.74 5194.62 4081.44 3958.19 33093.64 10773.64 2392.35 28382.66 10178.66 20096.50 28
Anonymous2023121173.08 26370.39 27981.13 23190.62 13663.33 21491.40 18790.06 22651.84 36564.46 29180.67 30536.49 33994.07 22463.83 26064.17 30785.98 285
FA-MVS(test-final)79.12 17777.23 19384.81 12990.54 13763.98 19381.35 33391.71 15771.09 23374.85 17282.94 27052.85 22697.05 9267.97 21981.73 17493.41 146
TR-MVS78.77 18777.37 19282.95 18490.49 13860.88 26593.67 9190.07 22470.08 24874.51 17491.37 15845.69 28995.70 15960.12 28580.32 18492.29 179
SteuartSystems-ACMMP86.82 4286.90 4186.58 6990.42 13966.38 13296.09 1893.87 6477.73 10184.01 7695.66 4463.39 10597.94 4087.40 6193.55 5195.42 58
Skip Steuart: Steuart Systems R&D Blog.
TAPA-MVS70.22 1274.94 24973.53 24579.17 27890.40 14052.07 34589.19 25889.61 24462.69 31470.07 22792.67 12748.89 26494.32 21038.26 37079.97 18691.12 206
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
mvs_anonymous81.36 13779.99 14885.46 10490.39 14168.40 7786.88 29490.61 20274.41 14370.31 22584.67 25363.79 9692.32 28473.13 16985.70 13695.67 51
CANet_DTU84.09 9183.52 8585.81 9390.30 14266.82 12091.87 16889.01 27085.27 986.09 5393.74 10447.71 27496.98 10177.90 14089.78 9993.65 141
Fast-Effi-MVS+81.14 14080.01 14784.51 14490.24 14365.86 14594.12 6589.15 26273.81 15875.37 16788.26 20657.26 17094.53 20566.97 23284.92 14093.15 154
ETV-MVS86.01 5486.11 5185.70 9990.21 14467.02 11793.43 10691.92 14481.21 4484.13 7594.07 9960.93 13495.63 16089.28 4589.81 9794.46 113
MVS_030490.01 890.50 988.53 2390.14 14570.94 2896.47 1495.72 1087.33 489.60 3196.26 3168.44 4698.74 2495.82 494.72 3195.90 47
tpmrst80.57 15079.14 16584.84 12590.10 14668.28 8181.70 32889.72 24277.63 10575.96 15879.54 32164.94 8192.71 26775.43 15477.28 21493.55 143
PVSNet_Blended_VisFu83.97 9483.50 8785.39 10790.02 14766.59 12993.77 8791.73 15577.43 10977.08 15189.81 18763.77 9796.97 10379.67 12488.21 11092.60 170
UGNet79.87 16678.68 16883.45 17689.96 14861.51 25592.13 15290.79 19576.83 11578.85 13186.33 23738.16 32396.17 13467.93 22187.17 12192.67 168
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
CHOSEN 1792x268884.98 7483.45 9089.57 1089.94 14975.14 592.07 15792.32 12781.87 3275.68 16188.27 20560.18 14098.60 2780.46 11990.27 9594.96 84
BH-untuned78.68 18877.08 19483.48 17589.84 15063.74 19892.70 12988.59 28771.57 22166.83 27488.65 19951.75 23595.39 17259.03 29084.77 14291.32 201
FE-MVS75.97 23473.02 25084.82 12689.78 15165.56 15277.44 35891.07 18964.55 29572.66 19279.85 31746.05 28896.69 11754.97 30480.82 18192.21 185
test22289.77 15261.60 25489.55 24889.42 25056.83 35177.28 14792.43 13352.76 22791.14 8793.09 156
PMMVS81.98 13082.04 11881.78 21689.76 15356.17 32591.13 20590.69 19777.96 9680.09 11293.57 10946.33 28494.99 18581.41 11187.46 11894.17 119
DPM-MVS90.70 390.52 891.24 189.68 15476.68 297.29 195.35 1582.87 2191.58 1297.22 379.93 599.10 983.12 9997.64 297.94 1
QAPM79.95 16577.39 19187.64 3589.63 15571.41 2093.30 10893.70 7365.34 29267.39 26791.75 14947.83 27298.96 1657.71 29589.81 9792.54 172
3Dnovator73.91 682.69 11980.82 13488.31 2689.57 15671.26 2292.60 13694.39 5178.84 8667.89 25992.48 13248.42 26598.52 2868.80 21494.40 3595.15 77
Effi-MVS+83.82 9782.76 10886.99 5689.56 15769.40 5391.35 19486.12 32372.59 18283.22 8092.81 12659.60 14896.01 14681.76 10787.80 11495.56 56
PatchmatchNetpermissive77.46 20874.63 22685.96 8789.55 15870.35 3579.97 34789.55 24572.23 19470.94 21576.91 34057.03 17392.79 26554.27 30781.17 17794.74 96
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
PatchMatch-RL72.06 27769.98 28078.28 28789.51 15955.70 32983.49 31183.39 35061.24 32563.72 29782.76 27234.77 34593.03 25253.37 31277.59 20786.12 282
thisisatest051583.41 10582.49 11386.16 8289.46 16068.26 8293.54 9894.70 3674.31 14675.75 15990.92 16272.62 2796.52 12469.64 20181.50 17593.71 139
h-mvs3383.01 11282.56 11284.35 15089.34 16162.02 24492.72 12793.76 6981.45 3782.73 8492.25 13960.11 14197.13 9087.69 5762.96 31493.91 133
EC-MVSNet84.53 8085.04 7083.01 18389.34 16161.37 25894.42 5591.09 18677.91 9883.24 7994.20 9558.37 16095.40 17185.35 7891.41 8192.27 183
UWE-MVS80.81 14881.01 13380.20 25389.33 16357.05 31991.91 16694.71 3575.67 12875.01 17089.37 19263.13 11191.44 30667.19 22982.80 16192.12 188
UA-Net80.02 16379.65 15381.11 23289.33 16357.72 31086.33 29789.00 27377.44 10881.01 9989.15 19559.33 15295.90 14761.01 27984.28 14989.73 224
dp75.01 24872.09 26383.76 16389.28 16566.22 13879.96 34889.75 23771.16 22967.80 26177.19 33751.81 23492.54 27550.39 31871.44 25792.51 174
SDMVSNet80.26 15778.88 16784.40 14789.25 16667.63 10085.35 30093.02 10176.77 11770.84 21787.12 22747.95 27196.09 13885.04 8274.55 22889.48 228
sd_testset77.08 21575.37 21882.20 20589.25 16662.11 24382.06 32589.09 26676.77 11770.84 21787.12 22741.43 30895.01 18467.23 22874.55 22889.48 228
sss82.71 11882.38 11583.73 16689.25 16659.58 28992.24 14894.89 2877.96 9679.86 11492.38 13456.70 18197.05 9277.26 14380.86 18094.55 105
MVSFormer83.75 10082.88 10686.37 7789.24 16971.18 2489.07 26090.69 19765.80 28787.13 4394.34 9064.99 7992.67 27072.83 17291.80 7495.27 72
lupinMVS87.74 2787.77 2987.63 3989.24 16971.18 2496.57 1292.90 10782.70 2387.13 4395.27 5764.99 7995.80 14989.34 4491.80 7495.93 45
IB-MVS77.80 482.18 12480.46 14387.35 4689.14 17170.28 3695.59 2795.17 2178.85 8570.19 22685.82 24370.66 3697.67 5172.19 18366.52 28894.09 124
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
MDTV_nov1_ep1372.61 25789.06 17268.48 7580.33 34090.11 22371.84 20871.81 20775.92 34853.01 22593.92 23548.04 33073.38 239
testdata81.34 22689.02 17357.72 31089.84 23358.65 34185.32 6394.09 9757.03 17393.28 24869.34 20690.56 9393.03 159
CostFormer82.33 12281.15 12785.86 9189.01 17468.46 7682.39 32493.01 10275.59 12980.25 11081.57 28972.03 3294.96 18679.06 13077.48 21194.16 120
GeoE78.90 18277.43 18783.29 17888.95 17562.02 24492.31 14586.23 32170.24 24671.34 21489.27 19354.43 21094.04 22863.31 26480.81 18293.81 138
GBi-Net75.65 23973.83 24181.10 23388.85 17665.11 16390.01 23990.32 21070.84 23767.04 27080.25 31248.03 26791.54 30159.80 28769.34 26586.64 268
test175.65 23973.83 24181.10 23388.85 17665.11 16390.01 23990.32 21070.84 23767.04 27080.25 31248.03 26791.54 30159.80 28769.34 26586.64 268
FMVSNet276.07 22874.01 23982.26 20388.85 17667.66 9891.33 19591.61 16370.84 23765.98 27782.25 27848.03 26792.00 29158.46 29268.73 27387.10 262
DeepC-MVS77.85 385.52 6685.24 6686.37 7788.80 17966.64 12592.15 15193.68 7481.07 4576.91 15293.64 10762.59 11798.44 3185.50 7792.84 6094.03 128
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
EPP-MVSNet81.79 13281.52 12482.61 19288.77 18060.21 28193.02 11893.66 7568.52 26872.90 19090.39 17372.19 3194.96 18674.93 16079.29 19492.67 168
1112_ss80.56 15179.83 15182.77 18788.65 18160.78 26792.29 14688.36 29272.58 18372.46 19994.95 6765.09 7893.42 24766.38 23877.71 20594.10 123
tpm cat175.30 24472.21 26284.58 14188.52 18267.77 9578.16 35688.02 30261.88 32268.45 25176.37 34460.65 13594.03 23053.77 31074.11 23491.93 190
LCM-MVSNet-Re72.93 26771.84 26676.18 31188.49 18348.02 36480.07 34570.17 38373.96 15452.25 35480.09 31549.98 25088.24 33367.35 22584.23 15092.28 180
Vis-MVSNetpermissive80.92 14679.98 14983.74 16488.48 18461.80 24893.44 10588.26 29873.96 15477.73 14091.76 14849.94 25194.76 19165.84 24490.37 9494.65 101
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
Vis-MVSNet (Re-imp)79.24 17579.57 15478.24 28988.46 18552.29 34490.41 22689.12 26474.24 14769.13 23691.91 14665.77 7290.09 32159.00 29188.09 11192.33 177
ab-mvs80.18 15978.31 17385.80 9488.44 18665.49 15683.00 32192.67 11671.82 20977.36 14685.01 24954.50 20696.59 11976.35 14875.63 22595.32 67
gm-plane-assit88.42 18767.04 11678.62 9091.83 14797.37 7176.57 146
MVS_111021_LR82.02 12981.52 12483.51 17388.42 18762.88 22889.77 24588.93 27476.78 11675.55 16593.10 11450.31 24795.38 17383.82 9687.02 12292.26 184
test250683.29 10782.92 10584.37 14988.39 18963.18 21992.01 16091.35 17377.66 10378.49 13491.42 15564.58 8795.09 18273.19 16889.23 10194.85 88
ECVR-MVScopyleft81.29 13880.38 14484.01 16088.39 18961.96 24692.56 14186.79 31677.66 10376.63 15391.42 15546.34 28395.24 17874.36 16589.23 10194.85 88
baseline85.01 7384.44 7786.71 6388.33 19168.73 6990.24 23391.82 15381.05 4681.18 9692.50 12963.69 9896.08 14184.45 8986.71 12995.32 67
tpm279.80 16777.95 18085.34 11088.28 19268.26 8281.56 33091.42 17170.11 24777.59 14480.50 30767.40 5994.26 21667.34 22677.35 21293.51 144
thisisatest053081.15 13980.07 14584.39 14888.26 19365.63 15091.40 18794.62 4071.27 22870.93 21689.18 19472.47 2896.04 14365.62 24776.89 21891.49 194
casdiffmvspermissive85.37 6784.87 7386.84 5888.25 19469.07 6193.04 11691.76 15481.27 4380.84 10292.07 14264.23 9096.06 14284.98 8487.43 11995.39 60
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
Test_1112_low_res79.56 17078.60 17082.43 19588.24 19560.39 27892.09 15587.99 30372.10 19971.84 20687.42 22264.62 8693.04 25165.80 24577.30 21393.85 137
casdiffmvs_mvgpermissive85.66 6385.18 6787.09 5288.22 19669.35 5793.74 8991.89 14781.47 3680.10 11191.45 15464.80 8496.35 12987.23 6487.69 11595.58 55
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
PAPM85.89 5885.46 6387.18 4988.20 19772.42 1592.41 14492.77 11082.11 3080.34 10993.07 11768.27 5195.02 18378.39 13793.59 5094.09 124
TESTMET0.1,182.41 12181.98 12083.72 16788.08 19863.74 19892.70 12993.77 6879.30 7577.61 14387.57 22058.19 16394.08 22373.91 16786.68 13093.33 150
ADS-MVSNet266.90 31663.44 32377.26 30188.06 19960.70 27368.01 38175.56 37057.57 34464.48 28969.87 36838.68 31584.10 35940.87 36167.89 27986.97 263
ADS-MVSNet68.54 30464.38 31981.03 23788.06 19966.90 11968.01 38184.02 34257.57 34464.48 28969.87 36838.68 31589.21 32740.87 36167.89 27986.97 263
EPNet_dtu78.80 18579.26 16377.43 29788.06 19949.71 35791.96 16591.95 14377.67 10276.56 15591.28 15958.51 15890.20 31956.37 29980.95 17992.39 175
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
miper_enhance_ethall78.86 18377.97 17981.54 22288.00 20265.17 16191.41 18589.15 26275.19 13668.79 24583.98 26167.17 6092.82 26272.73 17565.30 29386.62 272
IS-MVSNet80.14 16079.41 15982.33 19987.91 20360.08 28391.97 16488.27 29672.90 17871.44 21391.73 15061.44 12893.66 24262.47 27286.53 13193.24 151
CLD-MVS82.73 11682.35 11683.86 16287.90 20467.65 9995.45 2992.18 13685.06 1172.58 19592.27 13752.46 23095.78 15084.18 9179.06 19588.16 246
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
Syy-MVS69.65 29469.52 28670.03 34987.87 20543.21 38388.07 27489.01 27072.91 17663.11 30288.10 21045.28 29385.54 35222.07 39669.23 26881.32 344
myMVS_eth3d72.58 27672.74 25472.10 34287.87 20549.45 35988.07 27489.01 27072.91 17663.11 30288.10 21063.63 9985.54 35232.73 38469.23 26881.32 344
test111180.84 14780.02 14683.33 17787.87 20560.76 26992.62 13486.86 31577.86 9975.73 16091.39 15746.35 28294.70 19772.79 17488.68 10794.52 109
HyFIR lowres test81.03 14479.56 15585.43 10587.81 20868.11 8890.18 23490.01 22970.65 24272.95 18986.06 24163.61 10194.50 20775.01 15979.75 18993.67 140
dmvs_re76.93 21675.36 21981.61 22087.78 20960.71 27280.00 34687.99 30379.42 7269.02 24089.47 19146.77 27794.32 21063.38 26374.45 23189.81 221
131480.70 14978.95 16685.94 8887.77 21067.56 10187.91 27892.55 12372.17 19767.44 26493.09 11550.27 24897.04 9571.68 18887.64 11693.23 152
cl2277.94 20276.78 19981.42 22487.57 21164.93 16990.67 21988.86 27772.45 18767.63 26382.68 27464.07 9192.91 26071.79 18465.30 29386.44 273
HQP-NCC87.54 21294.06 6679.80 6474.18 176
ACMP_Plane87.54 21294.06 6679.80 6474.18 176
HQP-MVS81.14 14080.64 13882.64 19187.54 21263.66 20594.06 6691.70 16079.80 6474.18 17690.30 17551.63 23795.61 16277.63 14178.90 19688.63 237
NP-MVS87.41 21563.04 22090.30 175
diffmvspermissive84.28 8483.83 8285.61 10187.40 21668.02 9090.88 21289.24 25680.54 5181.64 9192.52 12859.83 14594.52 20687.32 6285.11 13994.29 114
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
baseline283.68 10383.42 9484.48 14587.37 21766.00 14190.06 23795.93 879.71 6769.08 23890.39 17377.92 696.28 13178.91 13281.38 17691.16 205
fmvsm_s_conf0.5_n86.39 4786.91 4084.82 12687.36 21863.54 21094.74 5190.02 22882.52 2590.14 2796.92 1362.93 11497.84 4695.28 882.26 16493.07 158
plane_prior687.23 21962.32 23950.66 244
tttt051779.50 17178.53 17182.41 19887.22 22061.43 25789.75 24694.76 3269.29 25767.91 25788.06 21372.92 2595.63 16062.91 26873.90 23890.16 216
plane_prior187.15 221
cascas78.18 19775.77 21385.41 10687.14 22269.11 6092.96 11991.15 18366.71 28170.47 22086.07 24037.49 33196.48 12770.15 19979.80 18890.65 210
fmvsm_l_conf0.5_n_a87.44 3288.15 2685.30 11187.10 22364.19 18994.41 5688.14 29980.24 6092.54 596.97 1069.52 4297.17 8695.89 288.51 10894.56 104
CHOSEN 280x42077.35 21076.95 19878.55 28487.07 22462.68 23269.71 37782.95 35268.80 26471.48 21287.27 22666.03 6984.00 36276.47 14782.81 16088.95 232
test_fmvsm_n_192087.69 2888.50 2085.27 11387.05 22563.55 20993.69 9091.08 18884.18 1490.17 2697.04 867.58 5897.99 3995.72 590.03 9694.26 115
fmvsm_l_conf0.5_n87.49 3088.19 2585.39 10786.95 22664.37 18294.30 5888.45 29080.51 5292.70 496.86 1569.98 4097.15 8995.83 388.08 11294.65 101
HQP_MVS80.34 15679.75 15282.12 20986.94 22762.42 23593.13 11291.31 17478.81 8772.53 19689.14 19650.66 24495.55 16776.74 14478.53 20188.39 243
plane_prior786.94 22761.51 255
test-LLR80.10 16179.56 15581.72 21886.93 22961.17 25992.70 12991.54 16571.51 22475.62 16286.94 22953.83 21592.38 28072.21 18184.76 14391.60 192
test-mter79.96 16479.38 16181.72 21886.93 22961.17 25992.70 12991.54 16573.85 15675.62 16286.94 22949.84 25392.38 28072.21 18184.76 14391.60 192
SCA75.82 23772.76 25385.01 12186.63 23170.08 3881.06 33589.19 25971.60 22070.01 22877.09 33845.53 29090.25 31460.43 28273.27 24094.68 98
AUN-MVS78.37 19477.43 18781.17 22986.60 23257.45 31589.46 25291.16 18174.11 14974.40 17590.49 17055.52 19694.57 20174.73 16460.43 34091.48 195
hse-mvs281.12 14281.11 13181.16 23086.52 23357.48 31489.40 25391.16 18181.45 3782.73 8490.49 17060.11 14194.58 19987.69 5760.41 34191.41 197
xiu_mvs_v1_base_debu82.16 12581.12 12885.26 11486.42 23468.72 7092.59 13890.44 20773.12 17184.20 7294.36 8538.04 32595.73 15484.12 9286.81 12491.33 198
xiu_mvs_v1_base82.16 12581.12 12885.26 11486.42 23468.72 7092.59 13890.44 20773.12 17184.20 7294.36 8538.04 32595.73 15484.12 9286.81 12491.33 198
xiu_mvs_v1_base_debi82.16 12581.12 12885.26 11486.42 23468.72 7092.59 13890.44 20773.12 17184.20 7294.36 8538.04 32595.73 15484.12 9286.81 12491.33 198
F-COLMAP70.66 28468.44 29277.32 29986.37 23755.91 32788.00 27686.32 31856.94 35057.28 33888.07 21233.58 34992.49 27751.02 31668.37 27583.55 315
CDS-MVSNet81.43 13680.74 13583.52 17186.26 23864.45 17692.09 15590.65 20175.83 12773.95 18289.81 18763.97 9392.91 26071.27 18982.82 15993.20 153
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
VDDNet80.50 15278.26 17487.21 4886.19 23969.79 4794.48 5491.31 17460.42 33079.34 12190.91 16338.48 32096.56 12282.16 10481.05 17895.27 72
WB-MVSnew77.14 21376.18 20880.01 25986.18 24063.24 21691.26 19894.11 6071.72 21373.52 18487.29 22545.14 29493.00 25356.98 29779.42 19083.80 313
iter_conf0583.65 10483.44 9184.28 15386.17 24168.61 7495.08 4089.82 23480.90 4878.08 13790.49 17069.08 4395.22 17984.29 9077.07 21689.02 231
jason86.40 4686.17 5087.11 5186.16 24270.54 3395.71 2592.19 13582.00 3184.58 6994.34 9061.86 12495.53 16987.76 5690.89 8895.27 72
jason: jason.
PCF-MVS73.15 979.29 17477.63 18484.29 15286.06 24365.96 14387.03 29091.10 18569.86 25169.79 23390.64 16557.54 16996.59 11964.37 25782.29 16390.32 214
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
MS-PatchMatch77.90 20476.50 20282.12 20985.99 24469.95 4291.75 17792.70 11373.97 15362.58 30984.44 25741.11 30995.78 15063.76 26192.17 6880.62 352
FIs79.47 17279.41 15979.67 26985.95 24559.40 29191.68 17993.94 6378.06 9568.96 24288.28 20466.61 6591.77 29566.20 24174.99 22787.82 248
VPA-MVSNet79.03 17878.00 17882.11 21285.95 24564.48 17593.22 11194.66 3875.05 13874.04 18184.95 25052.17 23293.52 24474.90 16267.04 28488.32 245
tpm78.58 19177.03 19583.22 18085.94 24764.56 17183.21 31891.14 18478.31 9273.67 18379.68 31964.01 9292.09 28966.07 24271.26 25893.03 159
OpenMVScopyleft70.45 1178.54 19275.92 21186.41 7685.93 24871.68 1892.74 12692.51 12466.49 28364.56 28891.96 14343.88 29998.10 3754.61 30590.65 9189.44 230
testing370.38 28870.83 27369.03 35385.82 24943.93 38290.72 21890.56 20368.06 27060.24 31886.82 23164.83 8384.12 35826.33 39264.10 30879.04 365
OMC-MVS78.67 19077.91 18180.95 23985.76 25057.40 31688.49 26988.67 28473.85 15672.43 20092.10 14149.29 25894.55 20472.73 17577.89 20490.91 208
fmvsm_s_conf0.5_n_a85.75 6086.09 5284.72 13385.73 25163.58 20793.79 8689.32 25381.42 4090.21 2596.91 1462.41 11997.67 5194.48 1080.56 18392.90 164
miper_ehance_all_eth77.60 20676.44 20381.09 23685.70 25264.41 18090.65 22088.64 28672.31 19167.37 26882.52 27564.77 8592.64 27370.67 19565.30 29386.24 277
KD-MVS_2432*160069.03 29966.37 30277.01 30385.56 25361.06 26281.44 33190.25 21667.27 27758.00 33376.53 34254.49 20787.63 34148.04 33035.77 39182.34 336
miper_refine_blended69.03 29966.37 30277.01 30385.56 25361.06 26281.44 33190.25 21667.27 27758.00 33376.53 34254.49 20787.63 34148.04 33035.77 39182.34 336
EI-MVSNet78.97 18078.22 17581.25 22785.33 25562.73 23189.53 25093.21 9172.39 19072.14 20390.13 18260.99 13194.72 19467.73 22372.49 24886.29 275
CVMVSNet74.04 25674.27 23473.33 33085.33 25543.94 38189.53 25088.39 29154.33 35970.37 22390.13 18249.17 26084.05 36061.83 27679.36 19291.99 189
test_fmvsmconf_n86.58 4587.17 3684.82 12685.28 25762.55 23394.26 6089.78 23583.81 1787.78 3996.33 2965.33 7696.98 10194.40 1187.55 11794.95 85
ACMH63.93 1768.62 30264.81 31280.03 25885.22 25863.25 21587.72 28284.66 33660.83 32851.57 35779.43 32227.29 37094.96 18641.76 35764.84 30081.88 340
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
cl____76.07 22874.67 22480.28 24985.15 25961.76 25090.12 23588.73 28171.16 22965.43 28081.57 28961.15 12992.95 25566.54 23562.17 32286.13 281
DIV-MVS_self_test76.07 22874.67 22480.28 24985.14 26061.75 25190.12 23588.73 28171.16 22965.42 28181.60 28861.15 12992.94 25966.54 23562.16 32486.14 279
TAMVS80.37 15579.45 15883.13 18285.14 26063.37 21391.23 20090.76 19674.81 14172.65 19388.49 20060.63 13692.95 25569.41 20581.95 17193.08 157
MSDG69.54 29565.73 30580.96 23885.11 26263.71 20184.19 30683.28 35156.95 34954.50 34584.03 25931.50 35796.03 14442.87 35469.13 27083.14 325
c3_l76.83 22175.47 21780.93 24085.02 26364.18 19090.39 22788.11 30071.66 21466.65 27681.64 28763.58 10492.56 27469.31 20762.86 31586.04 283
ACMP71.68 1075.58 24274.23 23579.62 27184.97 26459.64 28790.80 21589.07 26870.39 24462.95 30587.30 22438.28 32193.87 23772.89 17171.45 25685.36 299
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
FC-MVSNet-test77.99 20078.08 17777.70 29284.89 26555.51 33090.27 23193.75 7276.87 11266.80 27587.59 21965.71 7390.23 31862.89 26973.94 23687.37 255
PVSNet_068.08 1571.81 27868.32 29482.27 20184.68 26662.31 24088.68 26690.31 21375.84 12657.93 33580.65 30637.85 32894.19 21869.94 20029.05 39990.31 215
eth_miper_zixun_eth75.96 23574.40 23280.66 24284.66 26763.02 22189.28 25588.27 29671.88 20565.73 27881.65 28659.45 14992.81 26368.13 21760.53 33886.14 279
WR-MVS76.76 22275.74 21479.82 26684.60 26862.27 24192.60 13692.51 12476.06 12467.87 26085.34 24656.76 17990.24 31762.20 27363.69 31386.94 265
ACMH+65.35 1667.65 31164.55 31576.96 30584.59 26957.10 31888.08 27380.79 35758.59 34253.00 35181.09 30126.63 37292.95 25546.51 33861.69 33180.82 349
VPNet78.82 18477.53 18682.70 18984.52 27066.44 13193.93 7592.23 13080.46 5372.60 19488.38 20349.18 25993.13 25072.47 17963.97 31188.55 240
IterMVS-LS76.49 22475.18 22280.43 24684.49 27162.74 23090.64 22188.80 27972.40 18965.16 28381.72 28560.98 13292.27 28567.74 22264.65 30486.29 275
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
UniMVSNet_NR-MVSNet78.15 19877.55 18579.98 26084.46 27260.26 27992.25 14793.20 9377.50 10768.88 24386.61 23266.10 6892.13 28766.38 23862.55 31887.54 250
FMVSNet568.04 30865.66 30775.18 31784.43 27357.89 30783.54 31086.26 32061.83 32353.64 35073.30 35537.15 33585.08 35548.99 32561.77 32782.56 335
MVS-HIRNet60.25 34455.55 35174.35 32384.37 27456.57 32471.64 37274.11 37434.44 39345.54 37842.24 40031.11 36189.81 32240.36 36476.10 22376.67 375
LPG-MVS_test75.82 23774.58 22879.56 27384.31 27559.37 29290.44 22489.73 24069.49 25464.86 28488.42 20138.65 31794.30 21272.56 17772.76 24585.01 303
LGP-MVS_train79.56 27384.31 27559.37 29289.73 24069.49 25464.86 28488.42 20138.65 31794.30 21272.56 17772.76 24585.01 303
ACMM69.62 1374.34 25272.73 25579.17 27884.25 27757.87 30890.36 22889.93 23063.17 30965.64 27986.04 24237.79 32994.10 22165.89 24371.52 25585.55 295
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
UniMVSNet (Re)77.58 20776.78 19979.98 26084.11 27860.80 26691.76 17593.17 9576.56 12169.93 23284.78 25263.32 10892.36 28264.89 25462.51 32086.78 267
test_040264.54 32861.09 33474.92 31984.10 27960.75 27087.95 27779.71 36252.03 36352.41 35377.20 33632.21 35591.64 29723.14 39461.03 33472.36 382
LTVRE_ROB59.60 1966.27 31963.54 32274.45 32284.00 28051.55 34767.08 38483.53 34758.78 34054.94 34480.31 31034.54 34693.23 24940.64 36368.03 27778.58 369
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
miper_lstm_enhance73.05 26571.73 26877.03 30283.80 28158.32 30581.76 32688.88 27569.80 25261.01 31478.23 32857.19 17187.51 34365.34 25159.53 34385.27 302
Patchmatch-test65.86 32160.94 33580.62 24483.75 28258.83 30058.91 39575.26 37244.50 38550.95 36177.09 33858.81 15787.90 33535.13 37664.03 30995.12 79
nrg03080.93 14579.86 15084.13 15783.69 28368.83 6793.23 11091.20 17975.55 13075.06 16988.22 20963.04 11394.74 19381.88 10666.88 28588.82 235
GA-MVS78.33 19676.23 20684.65 13783.65 28466.30 13591.44 18390.14 22276.01 12570.32 22484.02 26042.50 30494.72 19470.98 19177.00 21792.94 162
FMVSNet172.71 27269.91 28381.10 23383.60 28565.11 16390.01 23990.32 21063.92 29963.56 29880.25 31236.35 34091.54 30154.46 30666.75 28686.64 268
OPM-MVS79.00 17978.09 17681.73 21783.52 28663.83 19591.64 18190.30 21476.36 12371.97 20589.93 18646.30 28595.17 18175.10 15777.70 20686.19 278
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
tfpnnormal70.10 28967.36 29778.32 28683.45 28760.97 26488.85 26392.77 11064.85 29460.83 31678.53 32543.52 30193.48 24531.73 38761.70 33080.52 353
Effi-MVS+-dtu76.14 22775.28 22178.72 28383.22 28855.17 33289.87 24387.78 30675.42 13267.98 25481.43 29145.08 29592.52 27675.08 15871.63 25388.48 241
CR-MVSNet73.79 26070.82 27582.70 18983.15 28967.96 9170.25 37484.00 34373.67 16369.97 23072.41 35857.82 16689.48 32552.99 31373.13 24190.64 211
RPMNet70.42 28765.68 30684.63 13983.15 28967.96 9170.25 37490.45 20446.83 38069.97 23065.10 37856.48 18795.30 17735.79 37573.13 24190.64 211
mvsmamba76.85 21975.71 21580.25 25183.07 29159.16 29691.44 18380.64 35976.84 11467.95 25586.33 23746.17 28794.24 21776.06 14972.92 24487.36 256
DU-MVS76.86 21775.84 21279.91 26382.96 29260.26 27991.26 19891.54 16576.46 12268.88 24386.35 23556.16 18892.13 28766.38 23862.55 31887.35 257
NR-MVSNet76.05 23174.59 22780.44 24582.96 29262.18 24290.83 21491.73 15577.12 11160.96 31586.35 23559.28 15391.80 29460.74 28061.34 33387.35 257
fmvsm_s_conf0.1_n85.61 6485.93 5584.68 13682.95 29463.48 21294.03 7189.46 24781.69 3489.86 2896.74 2061.85 12597.75 4994.74 982.01 17092.81 166
XXY-MVS77.94 20276.44 20382.43 19582.60 29564.44 17792.01 16091.83 15273.59 16470.00 22985.82 24354.43 21094.76 19169.63 20268.02 27888.10 247
test_fmvsmvis_n_192083.80 9883.48 8884.77 13082.51 29663.72 20091.37 19283.99 34581.42 4077.68 14195.74 4358.37 16097.58 5993.38 1486.87 12393.00 161
TranMVSNet+NR-MVSNet75.86 23674.52 23079.89 26482.44 29760.64 27591.37 19291.37 17276.63 11967.65 26286.21 23952.37 23191.55 30061.84 27560.81 33687.48 252
test_vis1_n_192081.66 13382.01 11980.64 24382.24 29855.09 33394.76 5086.87 31481.67 3584.40 7194.63 7838.17 32294.67 19891.98 2683.34 15592.16 187
IterMVS72.65 27570.83 27378.09 29082.17 29962.96 22387.64 28486.28 31971.56 22260.44 31778.85 32445.42 29286.66 34763.30 26561.83 32684.65 307
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
Patchmtry67.53 31363.93 32078.34 28582.12 30064.38 18168.72 37884.00 34348.23 37759.24 32372.41 35857.82 16689.27 32646.10 34156.68 35381.36 343
PatchT69.11 29865.37 31080.32 24782.07 30163.68 20467.96 38387.62 30750.86 36969.37 23465.18 37757.09 17288.53 33141.59 35966.60 28788.74 236
MIMVSNet71.64 27968.44 29281.23 22881.97 30264.44 17773.05 37088.80 27969.67 25364.59 28774.79 35232.79 35187.82 33753.99 30876.35 22191.42 196
MVP-Stereo77.12 21476.23 20679.79 26781.72 30366.34 13489.29 25490.88 19470.56 24362.01 31282.88 27149.34 25694.13 22065.55 24993.80 4478.88 366
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
kuosan60.86 34260.24 33662.71 36681.57 30446.43 37475.70 36685.88 32557.98 34348.95 36869.53 37058.42 15976.53 38428.25 39135.87 39065.15 389
IterMVS-SCA-FT71.55 28169.97 28176.32 30981.48 30560.67 27487.64 28485.99 32466.17 28559.50 32278.88 32345.53 29083.65 36462.58 27161.93 32584.63 308
COLMAP_ROBcopyleft57.96 2062.98 33659.65 33972.98 33381.44 30653.00 34283.75 30975.53 37148.34 37648.81 36981.40 29324.14 37590.30 31332.95 38260.52 33975.65 377
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
JIA-IIPM66.06 32062.45 32976.88 30681.42 30754.45 33757.49 39688.67 28449.36 37363.86 29546.86 39456.06 19190.25 31449.53 32368.83 27185.95 286
WR-MVS_H70.59 28569.94 28272.53 33681.03 30851.43 34887.35 28792.03 14067.38 27660.23 31980.70 30355.84 19483.45 36646.33 34058.58 34882.72 330
Fast-Effi-MVS+-dtu75.04 24773.37 24780.07 25680.86 30959.52 29091.20 20385.38 32971.90 20365.20 28284.84 25141.46 30792.97 25466.50 23772.96 24387.73 249
test_fmvsmconf0.1_n85.71 6186.08 5384.62 14080.83 31062.33 23893.84 8388.81 27883.50 1987.00 4696.01 3863.36 10696.93 10994.04 1287.29 12094.61 103
Baseline_NR-MVSNet73.99 25772.83 25277.48 29680.78 31159.29 29591.79 17284.55 33868.85 26368.99 24180.70 30356.16 18892.04 29062.67 27060.98 33581.11 346
CP-MVSNet70.50 28669.91 28372.26 33980.71 31251.00 35187.23 28990.30 21467.84 27159.64 32182.69 27350.23 24982.30 37451.28 31559.28 34483.46 319
v875.35 24373.26 24881.61 22080.67 31366.82 12089.54 24989.27 25571.65 21563.30 30180.30 31154.99 20394.06 22567.33 22762.33 32183.94 311
PS-MVSNAJss77.26 21176.31 20580.13 25580.64 31459.16 29690.63 22391.06 19072.80 17968.58 24984.57 25553.55 21993.96 23372.97 17071.96 25287.27 260
TransMVSNet (Re)70.07 29067.66 29677.31 30080.62 31559.13 29891.78 17484.94 33465.97 28660.08 32080.44 30850.78 24391.87 29248.84 32645.46 37680.94 348
v2v48277.42 20975.65 21682.73 18880.38 31667.13 11391.85 17090.23 21875.09 13769.37 23483.39 26753.79 21794.44 20871.77 18565.00 29986.63 271
PS-CasMVS69.86 29369.13 28872.07 34380.35 31750.57 35387.02 29189.75 23767.27 27759.19 32582.28 27746.58 28082.24 37550.69 31759.02 34583.39 321
v1074.77 25072.54 25981.46 22380.33 31866.71 12489.15 25989.08 26770.94 23563.08 30479.86 31652.52 22994.04 22865.70 24662.17 32283.64 314
test0.0.03 172.76 27072.71 25672.88 33480.25 31947.99 36591.22 20189.45 24871.51 22462.51 31087.66 21853.83 21585.06 35650.16 32067.84 28185.58 293
fmvsm_s_conf0.1_n_a84.76 7684.84 7484.53 14280.23 32063.50 21192.79 12488.73 28180.46 5389.84 2996.65 2260.96 13397.57 6193.80 1380.14 18592.53 173
v114476.73 22374.88 22382.27 20180.23 32066.60 12891.68 17990.21 22073.69 16169.06 23981.89 28252.73 22894.40 20969.21 20865.23 29685.80 289
v14876.19 22674.47 23181.36 22580.05 32264.44 17791.75 17790.23 21873.68 16267.13 26980.84 30255.92 19393.86 23968.95 21261.73 32985.76 292
dmvs_testset65.55 32466.45 30062.86 36579.87 32322.35 41076.55 36071.74 38077.42 11055.85 34187.77 21751.39 23980.69 38031.51 39065.92 29185.55 295
v119275.98 23373.92 24082.15 20779.73 32466.24 13791.22 20189.75 23772.67 18168.49 25081.42 29249.86 25294.27 21467.08 23065.02 29885.95 286
AllTest61.66 33858.06 34372.46 33779.57 32551.42 34980.17 34368.61 38651.25 36745.88 37481.23 29519.86 38686.58 34838.98 36757.01 35179.39 361
TestCases72.46 33779.57 32551.42 34968.61 38651.25 36745.88 37481.23 29519.86 38686.58 34838.98 36757.01 35179.39 361
MDA-MVSNet-bldmvs61.54 34057.70 34573.05 33279.53 32757.00 32283.08 31981.23 35557.57 34434.91 39372.45 35732.79 35186.26 35035.81 37441.95 38175.89 376
v14419276.05 23174.03 23882.12 20979.50 32866.55 13091.39 18989.71 24372.30 19268.17 25281.33 29451.75 23594.03 23067.94 22064.19 30685.77 290
v192192075.63 24173.49 24682.06 21379.38 32966.35 13391.07 20889.48 24671.98 20067.99 25381.22 29749.16 26193.90 23666.56 23464.56 30585.92 288
PEN-MVS69.46 29668.56 29072.17 34179.27 33049.71 35786.90 29389.24 25667.24 28059.08 32682.51 27647.23 27683.54 36548.42 32857.12 34983.25 322
v124075.21 24672.98 25181.88 21579.20 33166.00 14190.75 21789.11 26571.63 21967.41 26681.22 29747.36 27593.87 23765.46 25064.72 30385.77 290
pmmvs473.92 25871.81 26780.25 25179.17 33265.24 15987.43 28687.26 31167.64 27563.46 29983.91 26248.96 26391.53 30462.94 26765.49 29283.96 310
D2MVS73.80 25972.02 26479.15 28079.15 33362.97 22288.58 26890.07 22472.94 17459.22 32478.30 32642.31 30692.70 26965.59 24872.00 25181.79 341
V4276.46 22574.55 22982.19 20679.14 33467.82 9490.26 23289.42 25073.75 15968.63 24881.89 28251.31 24094.09 22271.69 18764.84 30084.66 306
pm-mvs172.89 26871.09 27278.26 28879.10 33557.62 31290.80 21589.30 25467.66 27362.91 30681.78 28449.11 26292.95 25560.29 28458.89 34684.22 309
our_test_368.29 30664.69 31479.11 28178.92 33664.85 17088.40 27185.06 33260.32 33252.68 35276.12 34640.81 31089.80 32444.25 34955.65 35482.67 334
ppachtmachnet_test67.72 31063.70 32179.77 26878.92 33666.04 14088.68 26682.90 35360.11 33455.45 34275.96 34739.19 31490.55 31039.53 36552.55 36482.71 331
test_fmvs174.07 25573.69 24375.22 31578.91 33847.34 36989.06 26274.69 37363.68 30279.41 12091.59 15324.36 37487.77 33985.22 7976.26 22290.55 213
TinyColmap60.32 34356.42 35072.00 34478.78 33953.18 34178.36 35475.64 36952.30 36241.59 38875.82 34914.76 39388.35 33235.84 37354.71 35974.46 378
SixPastTwentyTwo64.92 32661.78 33374.34 32478.74 34049.76 35683.42 31479.51 36362.86 31150.27 36277.35 33330.92 36290.49 31245.89 34247.06 37382.78 327
EG-PatchMatch MVS68.55 30365.41 30977.96 29178.69 34162.93 22489.86 24489.17 26060.55 32950.27 36277.73 33222.60 37994.06 22547.18 33672.65 24776.88 374
pmmvs573.35 26271.52 26978.86 28278.64 34260.61 27691.08 20686.90 31367.69 27263.32 30083.64 26344.33 29890.53 31162.04 27466.02 29085.46 297
UniMVSNet_ETH3D72.74 27170.53 27879.36 27578.62 34356.64 32385.01 30289.20 25863.77 30164.84 28684.44 25734.05 34891.86 29363.94 25970.89 26089.57 226
XVG-OURS74.25 25472.46 26079.63 27078.45 34457.59 31380.33 34087.39 30863.86 30068.76 24689.62 18940.50 31191.72 29669.00 21174.25 23389.58 225
tt080573.07 26470.73 27680.07 25678.37 34557.05 31987.78 28192.18 13661.23 32667.04 27086.49 23431.35 35994.58 19965.06 25367.12 28388.57 239
test_cas_vis1_n_192080.45 15480.61 13979.97 26278.25 34657.01 32194.04 7088.33 29379.06 8382.81 8393.70 10538.65 31791.63 29890.82 3579.81 18791.27 204
XVG-OURS-SEG-HR74.70 25173.08 24979.57 27278.25 34657.33 31780.49 33887.32 30963.22 30768.76 24690.12 18544.89 29691.59 29970.55 19774.09 23589.79 222
MDA-MVSNet_test_wron63.78 33360.16 33774.64 32078.15 34860.41 27783.49 31184.03 34156.17 35539.17 39071.59 36437.22 33383.24 36942.87 35448.73 37080.26 356
YYNet163.76 33460.14 33874.62 32178.06 34960.19 28283.46 31383.99 34556.18 35439.25 38971.56 36537.18 33483.34 36742.90 35348.70 37180.32 355
DTE-MVSNet68.46 30567.33 29871.87 34577.94 35049.00 36286.16 29888.58 28866.36 28458.19 33082.21 27946.36 28183.87 36344.97 34755.17 35682.73 329
USDC67.43 31564.51 31676.19 31077.94 35055.29 33178.38 35385.00 33373.17 16948.36 37080.37 30921.23 38192.48 27852.15 31464.02 31080.81 350
jajsoiax73.05 26571.51 27077.67 29377.46 35254.83 33488.81 26490.04 22769.13 26162.85 30783.51 26531.16 36092.75 26670.83 19269.80 26185.43 298
mvs_tets72.71 27271.11 27177.52 29477.41 35354.52 33688.45 27089.76 23668.76 26662.70 30883.26 26829.49 36492.71 26770.51 19869.62 26385.34 300
N_pmnet50.55 35549.11 35854.88 37477.17 3544.02 41884.36 3052.00 41648.59 37445.86 37668.82 37132.22 35482.80 37131.58 38851.38 36677.81 372
test_djsdf73.76 26172.56 25877.39 29877.00 35553.93 33889.07 26090.69 19765.80 28763.92 29482.03 28143.14 30392.67 27072.83 17268.53 27485.57 294
OpenMVS_ROBcopyleft61.12 1866.39 31862.92 32676.80 30776.51 35657.77 30989.22 25683.41 34955.48 35653.86 34977.84 33126.28 37393.95 23434.90 37768.76 27278.68 368
v7n71.31 28268.65 28979.28 27676.40 35760.77 26886.71 29589.45 24864.17 29858.77 32978.24 32744.59 29793.54 24357.76 29461.75 32883.52 317
K. test v363.09 33559.61 34073.53 32976.26 35849.38 36183.27 31577.15 36564.35 29747.77 37272.32 36028.73 36687.79 33849.93 32236.69 38983.41 320
RPSCF64.24 33061.98 33271.01 34776.10 35945.00 37875.83 36575.94 36746.94 37958.96 32784.59 25431.40 35882.00 37647.76 33460.33 34286.04 283
OurMVSNet-221017-064.68 32762.17 33172.21 34076.08 36047.35 36880.67 33781.02 35656.19 35351.60 35679.66 32027.05 37188.56 33053.60 31153.63 36180.71 351
dongtai55.18 35355.46 35254.34 37676.03 36136.88 39476.07 36384.61 33751.28 36643.41 38564.61 38056.56 18567.81 39518.09 39928.50 40058.32 392
test_fmvsmconf0.01_n83.70 10283.52 8584.25 15575.26 36261.72 25292.17 15087.24 31282.36 2784.91 6695.41 4955.60 19596.83 11492.85 1785.87 13594.21 117
Anonymous2023120667.53 31365.78 30472.79 33574.95 36347.59 36788.23 27287.32 30961.75 32458.07 33277.29 33537.79 32987.29 34542.91 35263.71 31283.48 318
EGC-MVSNET42.35 36238.09 36555.11 37374.57 36446.62 37371.63 37355.77 3970.04 4110.24 41262.70 38314.24 39474.91 38717.59 40046.06 37543.80 397
ITE_SJBPF70.43 34874.44 36547.06 37277.32 36460.16 33354.04 34883.53 26423.30 37884.01 36143.07 35161.58 33280.21 358
EU-MVSNet64.01 33163.01 32567.02 36174.40 36638.86 39383.27 31586.19 32245.11 38354.27 34681.15 30036.91 33880.01 38248.79 32757.02 35082.19 339
XVG-ACMP-BASELINE68.04 30865.53 30875.56 31374.06 36752.37 34378.43 35285.88 32562.03 31958.91 32881.21 29920.38 38491.15 30860.69 28168.18 27683.16 324
mvsany_test168.77 30168.56 29069.39 35173.57 36845.88 37780.93 33660.88 39659.65 33671.56 21190.26 17843.22 30275.05 38574.26 16662.70 31787.25 261
CL-MVSNet_self_test69.92 29168.09 29575.41 31473.25 36955.90 32890.05 23889.90 23169.96 24961.96 31376.54 34151.05 24287.64 34049.51 32450.59 36882.70 332
anonymousdsp71.14 28369.37 28776.45 30872.95 37054.71 33584.19 30688.88 27561.92 32162.15 31179.77 31838.14 32491.44 30668.90 21367.45 28283.21 323
lessismore_v073.72 32872.93 37147.83 36661.72 39545.86 37673.76 35428.63 36889.81 32247.75 33531.37 39683.53 316
pmmvs667.57 31264.76 31376.00 31272.82 37253.37 34088.71 26586.78 31753.19 36157.58 33778.03 33035.33 34492.41 27955.56 30254.88 35882.21 338
testgi64.48 32962.87 32769.31 35271.24 37340.62 38885.49 29979.92 36165.36 29154.18 34783.49 26623.74 37784.55 35741.60 35860.79 33782.77 328
Patchmatch-RL test68.17 30764.49 31779.19 27771.22 37453.93 33870.07 37671.54 38269.22 25856.79 33962.89 38256.58 18488.61 32869.53 20452.61 36395.03 83
test_fmvs1_n72.69 27471.92 26574.99 31871.15 37547.08 37187.34 28875.67 36863.48 30478.08 13791.17 16020.16 38587.87 33684.65 8775.57 22690.01 219
Gipumacopyleft34.91 36931.44 37245.30 38470.99 37639.64 39219.85 40672.56 37720.10 40216.16 40621.47 4075.08 40771.16 39113.07 40443.70 37925.08 404
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
UnsupCasMVSNet_eth65.79 32263.10 32473.88 32670.71 37750.29 35581.09 33489.88 23272.58 18349.25 36774.77 35332.57 35387.43 34455.96 30141.04 38383.90 312
CMPMVSbinary48.56 2166.77 31764.41 31873.84 32770.65 37850.31 35477.79 35785.73 32845.54 38244.76 38082.14 28035.40 34390.14 32063.18 26674.54 23081.07 347
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
test20.0363.83 33262.65 32867.38 36070.58 37939.94 38986.57 29684.17 34063.29 30651.86 35577.30 33437.09 33682.47 37238.87 36954.13 36079.73 359
MIMVSNet160.16 34557.33 34668.67 35469.71 38044.13 38078.92 35084.21 33955.05 35744.63 38171.85 36223.91 37681.54 37832.63 38555.03 35780.35 354
test_vis1_n71.63 28070.73 27674.31 32569.63 38147.29 37086.91 29272.11 37863.21 30875.18 16890.17 18020.40 38385.76 35184.59 8874.42 23289.87 220
pmmvs-eth3d65.53 32562.32 33075.19 31669.39 38259.59 28882.80 32283.43 34862.52 31551.30 35972.49 35632.86 35087.16 34655.32 30350.73 36778.83 367
UnsupCasMVSNet_bld61.60 33957.71 34473.29 33168.73 38351.64 34678.61 35189.05 26957.20 34846.11 37361.96 38528.70 36788.60 32950.08 32138.90 38779.63 360
test_vis1_rt59.09 34857.31 34764.43 36368.44 38446.02 37683.05 32048.63 40551.96 36449.57 36563.86 38116.30 38880.20 38171.21 19062.79 31667.07 388
Anonymous2024052162.09 33759.08 34171.10 34667.19 38548.72 36383.91 30885.23 33150.38 37047.84 37171.22 36720.74 38285.51 35446.47 33958.75 34779.06 364
test_fmvs265.78 32364.84 31168.60 35566.54 38641.71 38583.27 31569.81 38454.38 35867.91 25784.54 25615.35 39081.22 37975.65 15366.16 28982.88 326
KD-MVS_self_test60.87 34158.60 34267.68 35866.13 38739.93 39075.63 36784.70 33557.32 34749.57 36568.45 37229.55 36382.87 37048.09 32947.94 37280.25 357
new-patchmatchnet59.30 34756.48 34967.79 35765.86 38844.19 37982.47 32381.77 35459.94 33543.65 38466.20 37627.67 36981.68 37739.34 36641.40 38277.50 373
PM-MVS59.40 34656.59 34867.84 35663.63 38941.86 38476.76 35963.22 39359.01 33951.07 36072.27 36111.72 39683.25 36861.34 27750.28 36978.39 370
DSMNet-mixed56.78 35054.44 35463.79 36463.21 39029.44 40564.43 38764.10 39242.12 39051.32 35871.60 36331.76 35675.04 38636.23 37265.20 29786.87 266
new_pmnet49.31 35646.44 35957.93 36962.84 39140.74 38768.47 38062.96 39436.48 39235.09 39257.81 38914.97 39272.18 39032.86 38346.44 37460.88 391
LF4IMVS54.01 35452.12 35559.69 36862.41 39239.91 39168.59 37968.28 38842.96 38944.55 38275.18 35014.09 39568.39 39441.36 36051.68 36570.78 383
WB-MVS46.23 35944.94 36150.11 37962.13 39321.23 41276.48 36155.49 39845.89 38135.78 39161.44 38735.54 34272.83 3899.96 40621.75 40156.27 394
ambc69.61 35061.38 39441.35 38649.07 40185.86 32750.18 36466.40 37510.16 39888.14 33445.73 34344.20 37779.32 363
SSC-MVS44.51 36143.35 36347.99 38361.01 39518.90 41474.12 36954.36 39943.42 38834.10 39460.02 38834.42 34770.39 3929.14 40819.57 40254.68 395
TDRefinement55.28 35251.58 35666.39 36259.53 39646.15 37576.23 36272.80 37644.60 38442.49 38676.28 34515.29 39182.39 37333.20 38143.75 37870.62 384
pmmvs355.51 35151.50 35767.53 35957.90 39750.93 35280.37 33973.66 37540.63 39144.15 38364.75 37916.30 38878.97 38344.77 34840.98 38572.69 380
test_method38.59 36735.16 37048.89 38154.33 39821.35 41145.32 40253.71 4007.41 40828.74 39651.62 3928.70 40152.87 40633.73 37832.89 39572.47 381
test_fmvs356.82 34954.86 35362.69 36753.59 39935.47 39675.87 36465.64 39143.91 38655.10 34371.43 3666.91 40474.40 38868.64 21552.63 36278.20 371
APD_test140.50 36437.31 36750.09 38051.88 40035.27 39759.45 39452.59 40121.64 40026.12 39857.80 3904.56 40866.56 39722.64 39539.09 38648.43 396
DeepMVS_CXcopyleft34.71 38951.45 40124.73 40928.48 41531.46 39617.49 40552.75 3915.80 40642.60 41018.18 39819.42 40336.81 402
FPMVS45.64 36043.10 36453.23 37751.42 40236.46 39564.97 38671.91 37929.13 39727.53 39761.55 3869.83 39965.01 40116.00 40355.58 35558.22 393
wuyk23d11.30 37810.95 38112.33 39348.05 40319.89 41325.89 4051.92 4173.58 4093.12 4111.37 4110.64 41615.77 4126.23 4117.77 4101.35 408
PMMVS237.93 36833.61 37150.92 37846.31 40424.76 40860.55 39350.05 40228.94 39820.93 40047.59 3934.41 41065.13 40025.14 39318.55 40462.87 390
mvsany_test348.86 35746.35 36056.41 37046.00 40531.67 40162.26 38947.25 40643.71 38745.54 37868.15 37310.84 39764.44 40357.95 29335.44 39373.13 379
test_f46.58 35843.45 36255.96 37145.18 40632.05 40061.18 39049.49 40433.39 39442.05 38762.48 3847.00 40365.56 39947.08 33743.21 38070.27 385
test_vis3_rt40.46 36537.79 36648.47 38244.49 40733.35 39966.56 38532.84 41332.39 39529.65 39539.13 4033.91 41168.65 39350.17 31940.99 38443.40 398
E-PMN24.61 37324.00 37726.45 39043.74 40818.44 41560.86 39139.66 40915.11 4059.53 40922.10 4066.52 40546.94 4088.31 40910.14 40613.98 406
testf132.77 37029.47 37342.67 38641.89 40930.81 40252.07 39743.45 40715.45 40318.52 40344.82 3972.12 41258.38 40416.05 40130.87 39738.83 399
APD_test232.77 37029.47 37342.67 38641.89 40930.81 40252.07 39743.45 40715.45 40318.52 40344.82 3972.12 41258.38 40416.05 40130.87 39738.83 399
EMVS23.76 37523.20 37925.46 39141.52 41116.90 41660.56 39238.79 41214.62 4068.99 41020.24 4097.35 40245.82 4097.25 4109.46 40713.64 407
LCM-MVSNet40.54 36335.79 36854.76 37536.92 41230.81 40251.41 39969.02 38522.07 39924.63 39945.37 3964.56 40865.81 39833.67 37934.50 39467.67 386
ANet_high40.27 36635.20 36955.47 37234.74 41334.47 39863.84 38871.56 38148.42 37518.80 40241.08 4019.52 40064.45 40220.18 3978.66 40967.49 387
MVEpermissive24.84 2324.35 37419.77 38038.09 38834.56 41426.92 40726.57 40438.87 41111.73 40711.37 40827.44 4041.37 41550.42 40711.41 40514.60 40536.93 401
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
PMVScopyleft26.43 2231.84 37228.16 37542.89 38525.87 41527.58 40650.92 40049.78 40321.37 40114.17 40740.81 4022.01 41466.62 3969.61 40738.88 38834.49 403
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
tmp_tt22.26 37623.75 37817.80 3925.23 41612.06 41735.26 40339.48 4102.82 41018.94 40144.20 39922.23 38024.64 41136.30 3719.31 40816.69 405
testmvs7.23 3809.62 3830.06 3950.04 4170.02 42084.98 3030.02 4180.03 4120.18 4131.21 4120.01 4180.02 4130.14 4120.01 4110.13 410
test1236.92 3819.21 3840.08 3940.03 4180.05 41981.65 3290.01 4190.02 4130.14 4140.85 4130.03 4170.02 4130.12 4130.00 4120.16 409
test_blank0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4120.00 411
eth-test20.00 419
eth-test0.00 419
uanet_test0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4120.00 411
DCPMVS0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4120.00 411
cdsmvs_eth3d_5k19.86 37726.47 3760.00 3960.00 4190.00 4210.00 40793.45 840.00 4140.00 41595.27 5749.56 2540.00 4150.00 4140.00 4120.00 411
pcd_1.5k_mvsjas4.46 3825.95 3850.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 41453.55 2190.00 4150.00 4140.00 4120.00 411
sosnet-low-res0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4120.00 411
sosnet0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4120.00 411
uncertanet0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4120.00 411
Regformer0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4120.00 411
ab-mvs-re7.91 37910.55 3820.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 41594.95 670.00 4190.00 4150.00 4140.00 4120.00 411
uanet0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4120.00 411
WAC-MVS49.45 35931.56 389
PC_three_145280.91 4794.07 296.83 1883.57 499.12 595.70 797.42 497.55 4
test_241102_TWO94.41 4871.65 21592.07 897.21 474.58 1799.11 692.34 2195.36 1396.59 20
test_0728_THIRD72.48 18590.55 2096.93 1176.24 1199.08 1191.53 2994.99 1796.43 31
GSMVS94.68 98
sam_mvs157.85 16594.68 98
sam_mvs54.91 204
MTGPAbinary92.23 130
test_post178.95 34920.70 40853.05 22491.50 30560.43 282
test_post23.01 40556.49 18692.67 270
patchmatchnet-post67.62 37457.62 16890.25 314
MTMP93.77 8732.52 414
test9_res89.41 4294.96 1895.29 69
agg_prior286.41 7194.75 2995.33 65
test_prior467.18 11293.92 76
test_prior295.10 3975.40 13385.25 6595.61 4667.94 5587.47 6094.77 25
旧先验292.00 16359.37 33887.54 4293.47 24675.39 155
新几何291.41 185
无先验92.71 12892.61 12162.03 31997.01 9666.63 23393.97 130
原ACMM292.01 160
testdata296.09 13861.26 278
segment_acmp65.94 70
testdata189.21 25777.55 106
plane_prior591.31 17495.55 16776.74 14478.53 20188.39 243
plane_prior489.14 196
plane_prior361.95 24779.09 8172.53 196
plane_prior293.13 11278.81 87
plane_prior62.42 23593.85 8079.38 7378.80 198
n20.00 420
nn0.00 420
door-mid66.01 390
test1193.01 102
door66.57 389
HQP5-MVS63.66 205
BP-MVS77.63 141
HQP4-MVS74.18 17695.61 16288.63 237
HQP3-MVS91.70 16078.90 196
HQP2-MVS51.63 237
MDTV_nov1_ep13_2view59.90 28580.13 34467.65 27472.79 19154.33 21259.83 28692.58 171
ACMMP++_ref71.63 253
ACMMP++69.72 262
Test By Simon54.21 213