This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted by
DPM-MVS90.70 390.52 891.24 189.68 15476.68 297.29 195.35 1582.87 2191.58 1297.22 379.93 599.10 983.12 9997.64 297.94 1
SED-MVS89.94 990.36 1088.70 1896.45 1269.38 5496.89 694.44 4671.65 21592.11 697.21 476.79 999.11 692.34 2195.36 1397.62 2
OPU-MVS89.97 397.52 373.15 1496.89 697.00 983.82 299.15 295.72 597.63 397.62 2
DVP-MVS++90.53 491.09 588.87 1697.31 469.91 4393.96 7394.37 5272.48 18592.07 896.85 1683.82 299.15 291.53 2997.42 497.55 4
PC_three_145280.91 4794.07 296.83 1883.57 499.12 595.70 797.42 497.55 4
DeepPCF-MVS81.17 189.72 1091.38 484.72 13393.00 7558.16 30696.72 994.41 4886.50 890.25 2497.83 175.46 1498.67 2592.78 1895.49 1297.32 6
LFMVS84.34 8382.73 10989.18 1494.76 3373.25 1194.99 4491.89 14771.90 20382.16 8893.49 11147.98 27097.05 9282.55 10384.82 14197.25 7
bld_raw_dy_0_6489.23 1589.56 1588.21 2893.91 4970.09 3797.16 293.13 9782.64 2490.75 1796.28 3068.30 5097.37 7189.84 3994.07 3997.17 8
sasdasda86.85 3986.25 4888.66 2091.80 10971.92 1693.54 9891.71 15780.26 5787.55 4095.25 5963.59 10296.93 10988.18 5284.34 14597.11 9
canonicalmvs86.85 3986.25 4888.66 2091.80 10971.92 1693.54 9891.71 15780.26 5787.55 4095.25 5963.59 10296.93 10988.18 5284.34 14597.11 9
MCST-MVS91.08 191.46 389.94 497.66 273.37 1097.13 395.58 1189.33 185.77 5696.26 3172.84 2699.38 192.64 1995.93 997.08 11
DELS-MVS90.05 790.09 1189.94 493.14 7173.88 997.01 594.40 5088.32 385.71 5794.91 7174.11 1998.91 1787.26 6395.94 897.03 12
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
MGCFI-Net85.59 6585.73 6085.17 11791.41 12262.44 23492.87 12291.31 17479.65 6886.99 4795.14 6562.90 11596.12 13687.13 6584.13 15296.96 13
CSCG86.87 3886.26 4788.72 1795.05 3170.79 3093.83 8595.33 1668.48 26977.63 14294.35 8973.04 2498.45 3084.92 8593.71 4896.92 14
mamv488.66 1988.41 2189.39 1294.02 4674.04 794.94 4692.69 11580.90 4890.32 2390.30 17568.33 4997.28 8289.47 4094.74 3096.84 15
MM90.87 291.52 288.92 1592.12 9771.10 2797.02 496.04 688.70 291.57 1396.19 3470.12 3998.91 1796.83 195.06 1696.76 16
MVS84.66 7882.86 10790.06 290.93 13074.56 687.91 27895.54 1368.55 26772.35 20294.71 7659.78 14698.90 1981.29 11494.69 3296.74 17
alignmvs87.28 3486.97 3988.24 2791.30 12471.14 2695.61 2693.56 7879.30 7587.07 4595.25 5968.43 4796.93 10987.87 5584.33 14796.65 18
DeepC-MVS_fast79.48 287.95 2488.00 2787.79 3295.86 2768.32 7995.74 2294.11 6083.82 1683.49 7896.19 3464.53 8898.44 3183.42 9894.88 2496.61 19
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
test_241102_TWO94.41 4871.65 21592.07 897.21 474.58 1799.11 692.34 2195.36 1396.59 20
TSAR-MVS + GP.87.96 2388.37 2386.70 6493.51 6265.32 15795.15 3793.84 6578.17 9485.93 5594.80 7475.80 1398.21 3489.38 4388.78 10596.59 20
CANet89.61 1289.99 1288.46 2494.39 3969.71 5096.53 1393.78 6686.89 689.68 3095.78 4165.94 7099.10 992.99 1693.91 4396.58 22
WTY-MVS86.32 4885.81 5787.85 3092.82 8069.37 5695.20 3595.25 1782.71 2281.91 8994.73 7567.93 5697.63 5679.55 12582.25 16596.54 23
VNet86.20 5085.65 6187.84 3193.92 4869.99 3995.73 2495.94 778.43 9186.00 5493.07 11758.22 16297.00 9785.22 7984.33 14796.52 24
MSC_two_6792asdad89.60 897.31 473.22 1295.05 2699.07 1392.01 2494.77 2596.51 25
No_MVS89.60 897.31 473.22 1295.05 2699.07 1392.01 2494.77 2596.51 25
test_0728_SECOND88.70 1896.45 1270.43 3496.64 1094.37 5299.15 291.91 2794.90 2196.51 25
ET-MVSNet_ETH3D84.01 9383.15 10286.58 6990.78 13570.89 2994.74 5194.62 4081.44 3958.19 33093.64 10773.64 2392.35 28382.66 10178.66 20096.50 28
MVSMamba_pp88.94 1788.82 1889.29 1394.04 4574.01 894.81 4992.74 11285.13 1090.37 2290.13 18268.40 4897.38 7089.42 4194.34 3696.47 29
IU-MVS96.46 1169.91 4395.18 2080.75 5095.28 192.34 2195.36 1396.47 29
test_0728_THIRD72.48 18590.55 2096.93 1176.24 1199.08 1191.53 2994.99 1796.43 31
MSP-MVS90.38 591.87 185.88 8992.83 7864.03 19293.06 11494.33 5482.19 2993.65 396.15 3685.89 197.19 8591.02 3397.75 196.43 31
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
HY-MVS76.49 584.28 8483.36 9887.02 5592.22 9467.74 9684.65 30494.50 4379.15 7982.23 8787.93 21466.88 6296.94 10780.53 11882.20 16796.39 33
DPE-MVScopyleft88.77 1889.21 1787.45 4496.26 2067.56 10194.17 6194.15 5968.77 26590.74 1897.27 276.09 1298.49 2990.58 3794.91 2096.30 34
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
DVP-MVScopyleft89.41 1389.73 1488.45 2596.40 1569.99 3996.64 1094.52 4271.92 20190.55 2096.93 1173.77 2199.08 1191.91 2794.90 2196.29 35
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
MSLP-MVS++86.27 4985.91 5687.35 4692.01 10168.97 6595.04 4292.70 11379.04 8481.50 9296.50 2558.98 15696.78 11583.49 9793.93 4296.29 35
patch_mono-289.71 1190.99 685.85 9296.04 2463.70 20295.04 4295.19 1986.74 791.53 1495.15 6473.86 2097.58 5993.38 1492.00 7196.28 37
test_yl84.28 8483.16 10087.64 3594.52 3769.24 5895.78 1995.09 2369.19 25981.09 9792.88 12357.00 17597.44 6681.11 11581.76 17296.23 38
DCV-MVSNet84.28 8483.16 10087.64 3594.52 3769.24 5895.78 1995.09 2369.19 25981.09 9792.88 12357.00 17597.44 6681.11 11581.76 17296.23 38
CNVR-MVS90.32 690.89 788.61 2296.76 870.65 3196.47 1494.83 3084.83 1289.07 3496.80 1970.86 3599.06 1592.64 1995.71 1096.12 40
HPM-MVS++copyleft89.37 1489.95 1387.64 3595.10 3068.23 8595.24 3494.49 4482.43 2688.90 3596.35 2771.89 3398.63 2688.76 5096.40 696.06 41
SD-MVS87.49 3087.49 3387.50 4393.60 5768.82 6893.90 7792.63 12076.86 11387.90 3895.76 4266.17 6797.63 5689.06 4891.48 8096.05 42
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
PHI-MVS86.83 4186.85 4386.78 6293.47 6365.55 15395.39 3195.10 2271.77 21185.69 5896.52 2362.07 12298.77 2286.06 7595.60 1196.03 43
APDe-MVScopyleft87.54 2987.84 2886.65 6596.07 2366.30 13594.84 4893.78 6669.35 25688.39 3696.34 2867.74 5797.66 5490.62 3693.44 5296.01 44
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
lupinMVS87.74 2787.77 2987.63 3989.24 16971.18 2496.57 1292.90 10782.70 2387.13 4395.27 5764.99 7995.80 14989.34 4491.80 7495.93 45
NCCC89.07 1689.46 1687.91 2996.60 1069.05 6296.38 1694.64 3984.42 1386.74 4896.20 3366.56 6698.76 2389.03 4994.56 3395.92 46
MVS_030490.01 890.50 988.53 2390.14 14570.94 2896.47 1495.72 1087.33 489.60 3196.26 3168.44 4698.74 2495.82 494.72 3195.90 47
SMA-MVScopyleft88.14 2088.29 2487.67 3493.21 6868.72 7093.85 8094.03 6274.18 14891.74 1196.67 2165.61 7498.42 3389.24 4696.08 795.88 48
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
dcpmvs_287.37 3387.55 3286.85 5795.04 3268.20 8690.36 22890.66 20079.37 7481.20 9593.67 10674.73 1596.55 12390.88 3492.00 7195.82 49
Anonymous20240521177.96 20175.33 22085.87 9093.73 5564.52 17294.85 4785.36 33062.52 31576.11 15790.18 17929.43 36597.29 7868.51 21677.24 21595.81 50
mvs_anonymous81.36 13779.99 14885.46 10490.39 14168.40 7786.88 29490.61 20274.41 14370.31 22584.67 25363.79 9692.32 28473.13 16985.70 13695.67 51
MG-MVS87.11 3686.27 4689.62 797.79 176.27 494.96 4594.49 4478.74 8983.87 7792.94 12064.34 8996.94 10775.19 15694.09 3895.66 52
PAPR85.15 7184.47 7687.18 4996.02 2568.29 8091.85 17093.00 10476.59 12079.03 12595.00 6661.59 12797.61 5878.16 13889.00 10495.63 53
VDD-MVS83.06 11181.81 12286.81 6090.86 13367.70 9795.40 3091.50 16875.46 13181.78 9092.34 13640.09 31297.13 9086.85 6982.04 16995.60 54
casdiffmvs_mvgpermissive85.66 6385.18 6787.09 5288.22 19669.35 5793.74 8991.89 14781.47 3680.10 11191.45 15464.80 8496.35 12987.23 6487.69 11595.58 55
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
Effi-MVS+83.82 9782.76 10886.99 5689.56 15769.40 5391.35 19486.12 32372.59 18283.22 8092.81 12659.60 14896.01 14681.76 10787.80 11495.56 56
TSAR-MVS + MP.88.11 2288.64 1986.54 7191.73 11168.04 8990.36 22893.55 7982.89 2091.29 1592.89 12272.27 3096.03 14487.99 5494.77 2595.54 57
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
SteuartSystems-ACMMP86.82 4286.90 4186.58 6990.42 13966.38 13296.09 1893.87 6477.73 10184.01 7695.66 4463.39 10597.94 4087.40 6193.55 5195.42 58
Skip Steuart: Steuart Systems R&D Blog.
CS-MVS-test86.14 5287.01 3883.52 17192.63 8659.36 29495.49 2891.92 14480.09 6185.46 6195.53 4861.82 12695.77 15286.77 7093.37 5395.41 59
casdiffmvspermissive85.37 6784.87 7386.84 5888.25 19469.07 6193.04 11691.76 15481.27 4380.84 10292.07 14264.23 9096.06 14284.98 8487.43 11995.39 60
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
EIA-MVS84.84 7584.88 7284.69 13591.30 12462.36 23793.85 8092.04 13979.45 7179.33 12294.28 9362.42 11896.35 12980.05 12191.25 8595.38 61
testing9185.93 5685.31 6587.78 3393.59 5871.47 1993.50 10195.08 2580.26 5780.53 10691.93 14570.43 3796.51 12580.32 12082.13 16895.37 62
CS-MVS85.80 5986.65 4483.27 17992.00 10258.92 29995.31 3291.86 14979.97 6284.82 6795.40 5062.26 12095.51 17086.11 7492.08 7095.37 62
GG-mvs-BLEND86.53 7291.91 10669.67 5275.02 36894.75 3378.67 13390.85 16477.91 794.56 20372.25 18093.74 4695.36 64
agg_prior286.41 7194.75 2995.33 65
3Dnovator+73.60 782.10 12880.60 14086.60 6790.89 13266.80 12295.20 3593.44 8574.05 15067.42 26592.49 13149.46 25597.65 5570.80 19391.68 7695.33 65
baseline85.01 7384.44 7786.71 6388.33 19168.73 6990.24 23391.82 15381.05 4681.18 9692.50 12963.69 9896.08 14184.45 8986.71 12995.32 67
ab-mvs80.18 15978.31 17385.80 9488.44 18665.49 15683.00 32192.67 11671.82 20977.36 14685.01 24954.50 20696.59 11976.35 14875.63 22595.32 67
test9_res89.41 4294.96 1895.29 69
EPNet87.84 2688.38 2286.23 8193.30 6566.05 13995.26 3394.84 2987.09 588.06 3794.53 8066.79 6397.34 7583.89 9591.68 7695.29 69
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
SF-MVS87.03 3787.09 3786.84 5892.70 8467.45 10693.64 9393.76 6970.78 24086.25 5096.44 2666.98 6197.79 4788.68 5194.56 3395.28 71
VDDNet80.50 15278.26 17487.21 4886.19 23969.79 4794.48 5491.31 17460.42 33079.34 12190.91 16338.48 32096.56 12282.16 10481.05 17895.27 72
MVSFormer83.75 10082.88 10686.37 7789.24 16971.18 2489.07 26090.69 19765.80 28787.13 4394.34 9064.99 7992.67 27072.83 17291.80 7495.27 72
jason86.40 4686.17 5087.11 5186.16 24270.54 3395.71 2592.19 13582.00 3184.58 6994.34 9061.86 12495.53 16987.76 5690.89 8895.27 72
jason: jason.
train_agg87.21 3587.42 3486.60 6794.18 4167.28 10894.16 6293.51 8071.87 20685.52 5995.33 5268.19 5297.27 8389.09 4794.90 2195.25 75
MVS_Test84.16 9083.20 9987.05 5491.56 11669.82 4689.99 24292.05 13877.77 10082.84 8286.57 23363.93 9496.09 13874.91 16189.18 10395.25 75
3Dnovator73.91 682.69 11980.82 13488.31 2689.57 15671.26 2292.60 13694.39 5178.84 8667.89 25992.48 13248.42 26598.52 2868.80 21494.40 3595.15 77
testing9986.01 5485.47 6287.63 3993.62 5671.25 2393.47 10495.23 1880.42 5580.60 10591.95 14471.73 3496.50 12680.02 12282.22 16695.13 78
Patchmatch-test65.86 32160.94 33580.62 24483.75 28258.83 30058.91 39575.26 37244.50 38550.95 36177.09 33858.81 15787.90 33535.13 37664.03 30995.12 79
APD-MVScopyleft85.93 5685.99 5485.76 9695.98 2665.21 16093.59 9692.58 12266.54 28286.17 5295.88 4063.83 9597.00 9786.39 7292.94 5895.06 80
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
gg-mvs-nofinetune77.18 21274.31 23385.80 9491.42 12068.36 7871.78 37194.72 3449.61 37277.12 14945.92 39577.41 893.98 23267.62 22493.16 5695.05 81
test_prior86.42 7594.71 3567.35 10793.10 10096.84 11395.05 81
Patchmatch-RL test68.17 30764.49 31779.19 27771.22 37453.93 33870.07 37671.54 38269.22 25856.79 33962.89 38256.58 18488.61 32869.53 20452.61 36395.03 83
CHOSEN 1792x268884.98 7483.45 9089.57 1089.94 14975.14 592.07 15792.32 12781.87 3275.68 16188.27 20560.18 14098.60 2780.46 11990.27 9594.96 84
test_fmvsmconf_n86.58 4587.17 3684.82 12685.28 25762.55 23394.26 6089.78 23583.81 1787.78 3996.33 2965.33 7696.98 10194.40 1187.55 11794.95 85
ACMMP_NAP86.05 5385.80 5886.80 6191.58 11567.53 10391.79 17293.49 8374.93 13984.61 6895.30 5459.42 15097.92 4186.13 7394.92 1994.94 86
iter_conf05_1184.06 9283.37 9786.15 8393.04 7466.63 12687.84 28090.21 22071.10 23281.47 9389.48 19068.80 4496.96 10475.97 15092.39 6594.87 87
test250683.29 10782.92 10584.37 14988.39 18963.18 21992.01 16091.35 17377.66 10378.49 13491.42 15564.58 8795.09 18273.19 16889.23 10194.85 88
ECVR-MVScopyleft81.29 13880.38 14484.01 16088.39 18961.96 24692.56 14186.79 31677.66 10376.63 15391.42 15546.34 28395.24 17874.36 16589.23 10194.85 88
PAPM_NR82.97 11381.84 12186.37 7794.10 4466.76 12387.66 28392.84 10869.96 24974.07 18093.57 10963.10 11297.50 6470.66 19690.58 9294.85 88
ETVMVS84.22 8883.71 8385.76 9692.58 8868.25 8492.45 14395.53 1479.54 7079.46 11991.64 15270.29 3894.18 21969.16 20982.76 16294.84 91
CDPH-MVS85.71 6185.46 6386.46 7394.75 3467.19 11093.89 7892.83 10970.90 23683.09 8195.28 5563.62 10097.36 7380.63 11794.18 3794.84 91
test1287.09 5294.60 3668.86 6692.91 10682.67 8665.44 7597.55 6293.69 4994.84 91
testing1186.71 4486.44 4587.55 4193.54 6071.35 2193.65 9295.58 1181.36 4280.69 10392.21 14072.30 2996.46 12885.18 8183.43 15494.82 94
testing22285.18 7084.69 7586.63 6692.91 7769.91 4392.61 13595.80 980.31 5680.38 10892.27 13768.73 4595.19 18075.94 15183.27 15694.81 95
PatchmatchNetpermissive77.46 20874.63 22685.96 8789.55 15870.35 3579.97 34789.55 24572.23 19470.94 21576.91 34057.03 17392.79 26554.27 30781.17 17794.74 96
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
EPMVS78.49 19375.98 21086.02 8591.21 12669.68 5180.23 34291.20 17975.25 13572.48 19878.11 32954.65 20593.69 24157.66 29683.04 15794.69 97
GSMVS94.68 98
sam_mvs157.85 16594.68 98
SCA75.82 23772.76 25385.01 12186.63 23170.08 3881.06 33589.19 25971.60 22070.01 22877.09 33845.53 29090.25 31460.43 28273.27 24094.68 98
fmvsm_l_conf0.5_n87.49 3088.19 2585.39 10786.95 22664.37 18294.30 5888.45 29080.51 5292.70 496.86 1569.98 4097.15 8995.83 388.08 11294.65 101
Vis-MVSNetpermissive80.92 14679.98 14983.74 16488.48 18461.80 24893.44 10588.26 29873.96 15477.73 14091.76 14849.94 25194.76 19165.84 24490.37 9494.65 101
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
test_fmvsmconf0.1_n85.71 6186.08 5384.62 14080.83 31062.33 23893.84 8388.81 27883.50 1987.00 4696.01 3863.36 10696.93 10994.04 1287.29 12094.61 103
fmvsm_l_conf0.5_n_a87.44 3288.15 2685.30 11187.10 22364.19 18994.41 5688.14 29980.24 6092.54 596.97 1069.52 4297.17 8695.89 288.51 10894.56 104
旧先验191.94 10360.74 27191.50 16894.36 8565.23 7791.84 7394.55 105
sss82.71 11882.38 11583.73 16689.25 16659.58 28992.24 14894.89 2877.96 9679.86 11492.38 13456.70 18197.05 9277.26 14380.86 18094.55 105
xiu_mvs_v2_base87.92 2587.38 3589.55 1191.41 12276.43 395.74 2293.12 9983.53 1889.55 3295.95 3953.45 22397.68 5091.07 3292.62 6194.54 107
PS-MVSNAJ88.14 2087.61 3189.71 692.06 9876.72 195.75 2193.26 9083.86 1589.55 3296.06 3753.55 21997.89 4391.10 3193.31 5494.54 107
test111180.84 14780.02 14683.33 17787.87 20560.76 26992.62 13486.86 31577.86 9975.73 16091.39 15746.35 28294.70 19772.79 17488.68 10794.52 109
ZNCC-MVS85.33 6885.08 6986.06 8493.09 7365.65 14993.89 7893.41 8773.75 15979.94 11394.68 7760.61 13798.03 3882.63 10293.72 4794.52 109
MAR-MVS84.18 8983.43 9286.44 7496.25 2165.93 14494.28 5994.27 5674.41 14379.16 12495.61 4653.99 21498.88 2169.62 20393.26 5594.50 111
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
HFP-MVS84.73 7784.40 7885.72 9893.75 5465.01 16693.50 10193.19 9472.19 19579.22 12394.93 6959.04 15597.67 5181.55 10892.21 6694.49 112
ETV-MVS86.01 5486.11 5185.70 9990.21 14467.02 11793.43 10691.92 14481.21 4484.13 7594.07 9960.93 13495.63 16089.28 4589.81 9794.46 113
diffmvspermissive84.28 8483.83 8285.61 10187.40 21668.02 9090.88 21289.24 25680.54 5181.64 9192.52 12859.83 14594.52 20687.32 6285.11 13994.29 114
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
test_fmvsm_n_192087.69 2888.50 2085.27 11387.05 22563.55 20993.69 9091.08 18884.18 1490.17 2697.04 867.58 5897.99 3995.72 590.03 9694.26 115
region2R84.36 8284.03 8185.36 10993.54 6064.31 18593.43 10692.95 10572.16 19878.86 13094.84 7356.97 17797.53 6381.38 11292.11 6994.24 116
test_fmvsmconf0.01_n83.70 10283.52 8584.25 15575.26 36261.72 25292.17 15087.24 31282.36 2784.91 6695.41 4955.60 19596.83 11492.85 1785.87 13594.21 117
MTAPA83.91 9583.38 9685.50 10391.89 10765.16 16281.75 32792.23 13075.32 13480.53 10695.21 6256.06 19197.16 8884.86 8692.55 6394.18 118
PMMVS81.98 13082.04 11881.78 21689.76 15356.17 32591.13 20590.69 19777.96 9680.09 11293.57 10946.33 28494.99 18581.41 11187.46 11894.17 119
CostFormer82.33 12281.15 12785.86 9189.01 17468.46 7682.39 32493.01 10275.59 12980.25 11081.57 28972.03 3294.96 18679.06 13077.48 21194.16 120
MVS_111021_HR86.19 5185.80 5887.37 4593.17 7069.79 4793.99 7293.76 6979.08 8278.88 12993.99 10062.25 12198.15 3685.93 7691.15 8694.15 121
PVSNet_Blended86.73 4386.86 4286.31 8093.76 5267.53 10396.33 1793.61 7682.34 2881.00 10093.08 11663.19 10997.29 7887.08 6691.38 8294.13 122
1112_ss80.56 15179.83 15182.77 18788.65 18160.78 26792.29 14688.36 29272.58 18372.46 19994.95 6765.09 7893.42 24766.38 23877.71 20594.10 123
IB-MVS77.80 482.18 12480.46 14387.35 4689.14 17170.28 3695.59 2795.17 2178.85 8570.19 22685.82 24370.66 3697.67 5172.19 18366.52 28894.09 124
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
PAPM85.89 5885.46 6387.18 4988.20 19772.42 1592.41 14492.77 11082.11 3080.34 10993.07 11768.27 5195.02 18378.39 13793.59 5094.09 124
MP-MVS-pluss85.24 6985.13 6885.56 10291.42 12065.59 15191.54 18292.51 12474.56 14280.62 10495.64 4559.15 15497.00 9786.94 6893.80 4494.07 126
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
MP-MVScopyleft85.02 7284.97 7185.17 11792.60 8764.27 18793.24 10992.27 12973.13 17079.63 11794.43 8361.90 12397.17 8685.00 8392.56 6294.06 127
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
DeepC-MVS77.85 385.52 6685.24 6686.37 7788.80 17966.64 12592.15 15193.68 7481.07 4576.91 15293.64 10762.59 11798.44 3185.50 7792.84 6094.03 128
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
ACMMPR84.37 8184.06 8085.28 11293.56 5964.37 18293.50 10193.15 9672.19 19578.85 13194.86 7256.69 18297.45 6581.55 10892.20 6794.02 129
无先验92.71 12892.61 12162.03 31997.01 9666.63 23393.97 130
XVS83.87 9683.47 8985.05 11993.22 6663.78 19692.92 12092.66 11773.99 15178.18 13594.31 9255.25 19797.41 6879.16 12891.58 7893.95 131
X-MVStestdata76.86 21774.13 23785.05 11993.22 6663.78 19692.92 12092.66 11773.99 15178.18 13510.19 41055.25 19797.41 6879.16 12891.58 7893.95 131
h-mvs3383.01 11282.56 11284.35 15089.34 16162.02 24492.72 12793.76 6981.45 3782.73 8492.25 13960.11 14197.13 9087.69 5762.96 31493.91 133
CP-MVS83.71 10183.40 9584.65 13793.14 7163.84 19494.59 5392.28 12871.03 23477.41 14594.92 7055.21 20096.19 13381.32 11390.70 9093.91 133
PVSNet73.49 880.05 16278.63 16984.31 15190.92 13164.97 16792.47 14291.05 19179.18 7872.43 20090.51 16937.05 33794.06 22568.06 21886.00 13493.90 135
GST-MVS84.63 7984.29 7985.66 10092.82 8065.27 15893.04 11693.13 9773.20 16878.89 12694.18 9659.41 15197.85 4581.45 11092.48 6493.86 136
Test_1112_low_res79.56 17078.60 17082.43 19588.24 19560.39 27892.09 15587.99 30372.10 19971.84 20687.42 22264.62 8693.04 25165.80 24577.30 21393.85 137
GeoE78.90 18277.43 18783.29 17888.95 17562.02 24492.31 14586.23 32170.24 24671.34 21489.27 19354.43 21094.04 22863.31 26480.81 18293.81 138
thisisatest051583.41 10582.49 11386.16 8289.46 16068.26 8293.54 9894.70 3674.31 14675.75 15990.92 16272.62 2796.52 12469.64 20181.50 17593.71 139
HyFIR lowres test81.03 14479.56 15585.43 10587.81 20868.11 8890.18 23490.01 22970.65 24272.95 18986.06 24163.61 10194.50 20775.01 15979.75 18993.67 140
CANet_DTU84.09 9183.52 8585.81 9390.30 14266.82 12091.87 16889.01 27085.27 986.09 5393.74 10447.71 27496.98 10177.90 14089.78 9993.65 141
mPP-MVS82.96 11482.44 11484.52 14392.83 7862.92 22692.76 12591.85 15171.52 22375.61 16494.24 9453.48 22296.99 10078.97 13190.73 8993.64 142
tpmrst80.57 15079.14 16584.84 12590.10 14668.28 8181.70 32889.72 24277.63 10575.96 15879.54 32164.94 8192.71 26775.43 15477.28 21493.55 143
tpm279.80 16777.95 18085.34 11088.28 19268.26 8281.56 33091.42 17170.11 24777.59 14480.50 30767.40 5994.26 21667.34 22677.35 21293.51 144
SR-MVS82.81 11582.58 11183.50 17493.35 6461.16 26192.23 14991.28 17864.48 29681.27 9495.28 5553.71 21895.86 14882.87 10088.77 10693.49 145
FA-MVS(test-final)79.12 17777.23 19384.81 12990.54 13763.98 19381.35 33391.71 15771.09 23374.85 17282.94 27052.85 22697.05 9267.97 21981.73 17493.41 146
PGM-MVS83.25 10882.70 11084.92 12292.81 8264.07 19190.44 22492.20 13471.28 22777.23 14894.43 8355.17 20197.31 7779.33 12791.38 8293.37 147
新几何184.73 13292.32 9164.28 18691.46 17059.56 33779.77 11592.90 12156.95 17896.57 12163.40 26292.91 5993.34 148
HPM-MVScopyleft83.25 10882.95 10484.17 15692.25 9362.88 22890.91 20991.86 14970.30 24577.12 14993.96 10156.75 18096.28 13182.04 10591.34 8493.34 148
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
TESTMET0.1,182.41 12181.98 12083.72 16788.08 19863.74 19892.70 12993.77 6879.30 7577.61 14387.57 22058.19 16394.08 22373.91 16786.68 13093.33 150
IS-MVSNet80.14 16079.41 15982.33 19987.91 20360.08 28391.97 16488.27 29672.90 17871.44 21391.73 15061.44 12893.66 24262.47 27286.53 13193.24 151
131480.70 14978.95 16685.94 8887.77 21067.56 10187.91 27892.55 12372.17 19767.44 26493.09 11550.27 24897.04 9571.68 18887.64 11693.23 152
CDS-MVSNet81.43 13680.74 13583.52 17186.26 23864.45 17692.09 15590.65 20175.83 12773.95 18289.81 18763.97 9392.91 26071.27 18982.82 15993.20 153
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
Fast-Effi-MVS+81.14 14080.01 14784.51 14490.24 14365.86 14594.12 6589.15 26273.81 15875.37 16788.26 20657.26 17094.53 20566.97 23284.92 14093.15 154
API-MVS82.28 12380.53 14187.54 4296.13 2270.59 3293.63 9491.04 19265.72 28975.45 16692.83 12556.11 19098.89 2064.10 25889.75 10093.15 154
test22289.77 15261.60 25489.55 24889.42 25056.83 35177.28 14792.43 13352.76 22791.14 8793.09 156
TAMVS80.37 15579.45 15883.13 18285.14 26063.37 21391.23 20090.76 19674.81 14172.65 19388.49 20060.63 13692.95 25569.41 20581.95 17193.08 157
fmvsm_s_conf0.5_n86.39 4786.91 4084.82 12687.36 21863.54 21094.74 5190.02 22882.52 2590.14 2796.92 1362.93 11497.84 4695.28 882.26 16493.07 158
testdata81.34 22689.02 17357.72 31089.84 23358.65 34185.32 6394.09 9757.03 17393.28 24869.34 20690.56 9393.03 159
tpm78.58 19177.03 19583.22 18085.94 24764.56 17183.21 31891.14 18478.31 9273.67 18379.68 31964.01 9292.09 28966.07 24271.26 25893.03 159
test_fmvsmvis_n_192083.80 9883.48 8884.77 13082.51 29663.72 20091.37 19283.99 34581.42 4077.68 14195.74 4358.37 16097.58 5993.38 1486.87 12393.00 161
GA-MVS78.33 19676.23 20684.65 13783.65 28466.30 13591.44 18390.14 22276.01 12570.32 22484.02 26042.50 30494.72 19470.98 19177.00 21792.94 162
BH-RMVSNet79.46 17377.65 18384.89 12391.68 11365.66 14893.55 9788.09 30172.93 17573.37 18591.12 16146.20 28696.12 13656.28 30085.61 13892.91 163
fmvsm_s_conf0.5_n_a85.75 6086.09 5284.72 13385.73 25163.58 20793.79 8689.32 25381.42 4090.21 2596.91 1462.41 11997.67 5194.48 1080.56 18392.90 164
APD-MVS_3200maxsize81.64 13481.32 12682.59 19392.36 9058.74 30191.39 18991.01 19363.35 30579.72 11694.62 7951.82 23396.14 13579.71 12387.93 11392.89 165
fmvsm_s_conf0.1_n85.61 6485.93 5584.68 13682.95 29463.48 21294.03 7189.46 24781.69 3489.86 2896.74 2061.85 12597.75 4994.74 982.01 17092.81 166
DP-MVS Recon82.73 11681.65 12385.98 8697.31 467.06 11495.15 3791.99 14169.08 26276.50 15693.89 10254.48 20998.20 3570.76 19485.66 13792.69 167
UGNet79.87 16678.68 16883.45 17689.96 14861.51 25592.13 15290.79 19576.83 11578.85 13186.33 23738.16 32396.17 13467.93 22187.17 12192.67 168
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
EPP-MVSNet81.79 13281.52 12482.61 19288.77 18060.21 28193.02 11893.66 7568.52 26872.90 19090.39 17372.19 3194.96 18674.93 16079.29 19492.67 168
PVSNet_Blended_VisFu83.97 9483.50 8785.39 10790.02 14766.59 12993.77 8791.73 15577.43 10977.08 15189.81 18763.77 9796.97 10379.67 12488.21 11092.60 170
MDTV_nov1_ep13_2view59.90 28580.13 34467.65 27472.79 19154.33 21259.83 28692.58 171
QAPM79.95 16577.39 19187.64 3589.63 15571.41 2093.30 10893.70 7365.34 29267.39 26791.75 14947.83 27298.96 1657.71 29589.81 9792.54 172
fmvsm_s_conf0.1_n_a84.76 7684.84 7484.53 14280.23 32063.50 21192.79 12488.73 28180.46 5389.84 2996.65 2260.96 13397.57 6193.80 1380.14 18592.53 173
dp75.01 24872.09 26383.76 16389.28 16566.22 13879.96 34889.75 23771.16 22967.80 26177.19 33751.81 23492.54 27550.39 31871.44 25792.51 174
EPNet_dtu78.80 18579.26 16377.43 29788.06 19949.71 35791.96 16591.95 14377.67 10276.56 15591.28 15958.51 15890.20 31956.37 29980.95 17992.39 175
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
Anonymous2024052976.84 22074.15 23684.88 12491.02 12864.95 16893.84 8391.09 18653.57 36073.00 18787.42 22235.91 34197.32 7669.14 21072.41 25092.36 176
Vis-MVSNet (Re-imp)79.24 17579.57 15478.24 28988.46 18552.29 34490.41 22689.12 26474.24 14769.13 23691.91 14665.77 7290.09 32159.00 29188.09 11192.33 177
原ACMM184.42 14693.21 6864.27 18793.40 8865.39 29079.51 11892.50 12958.11 16496.69 11765.27 25293.96 4192.32 178
TR-MVS78.77 18777.37 19282.95 18490.49 13860.88 26593.67 9190.07 22470.08 24874.51 17491.37 15845.69 28995.70 15960.12 28580.32 18492.29 179
SR-MVS-dyc-post81.06 14380.70 13682.15 20792.02 9958.56 30390.90 21090.45 20462.76 31278.89 12694.46 8151.26 24195.61 16278.77 13486.77 12792.28 180
RE-MVS-def80.48 14292.02 9958.56 30390.90 21090.45 20462.76 31278.89 12694.46 8149.30 25778.77 13486.77 12792.28 180
LCM-MVSNet-Re72.93 26771.84 26676.18 31188.49 18348.02 36480.07 34570.17 38373.96 15452.25 35480.09 31549.98 25088.24 33367.35 22584.23 15092.28 180
EC-MVSNet84.53 8085.04 7083.01 18389.34 16161.37 25894.42 5591.09 18677.91 9883.24 7994.20 9558.37 16095.40 17185.35 7891.41 8192.27 183
MVS_111021_LR82.02 12981.52 12483.51 17388.42 18762.88 22889.77 24588.93 27476.78 11675.55 16593.10 11450.31 24795.38 17383.82 9687.02 12292.26 184
FE-MVS75.97 23473.02 25084.82 12689.78 15165.56 15277.44 35891.07 18964.55 29572.66 19279.85 31746.05 28896.69 11754.97 30480.82 18192.21 185
BH-w/o80.49 15379.30 16284.05 15990.83 13464.36 18493.60 9589.42 25074.35 14569.09 23790.15 18155.23 19995.61 16264.61 25586.43 13392.17 186
test_vis1_n_192081.66 13382.01 11980.64 24382.24 29855.09 33394.76 5086.87 31481.67 3584.40 7194.63 7838.17 32294.67 19891.98 2683.34 15592.16 187
UWE-MVS80.81 14881.01 13380.20 25389.33 16357.05 31991.91 16694.71 3575.67 12875.01 17089.37 19263.13 11191.44 30667.19 22982.80 16192.12 188
CVMVSNet74.04 25674.27 23473.33 33085.33 25543.94 38189.53 25088.39 29154.33 35970.37 22390.13 18249.17 26084.05 36061.83 27679.36 19291.99 189
tpm cat175.30 24472.21 26284.58 14188.52 18267.77 9578.16 35688.02 30261.88 32268.45 25176.37 34460.65 13594.03 23053.77 31074.11 23491.93 190
ACMMPcopyleft81.49 13580.67 13783.93 16191.71 11262.90 22792.13 15292.22 13371.79 21071.68 21093.49 11150.32 24696.96 10478.47 13684.22 15191.93 190
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
test-LLR80.10 16179.56 15581.72 21886.93 22961.17 25992.70 12991.54 16571.51 22475.62 16286.94 22953.83 21592.38 28072.21 18184.76 14391.60 192
test-mter79.96 16479.38 16181.72 21886.93 22961.17 25992.70 12991.54 16573.85 15675.62 16286.94 22949.84 25392.38 28072.21 18184.76 14391.60 192
thisisatest053081.15 13980.07 14584.39 14888.26 19365.63 15091.40 18794.62 4071.27 22870.93 21689.18 19472.47 2896.04 14365.62 24776.89 21891.49 194
AUN-MVS78.37 19477.43 18781.17 22986.60 23257.45 31589.46 25291.16 18174.11 14974.40 17590.49 17055.52 19694.57 20174.73 16460.43 34091.48 195
MIMVSNet71.64 27968.44 29281.23 22881.97 30264.44 17773.05 37088.80 27969.67 25364.59 28774.79 35232.79 35187.82 33753.99 30876.35 22191.42 196
hse-mvs281.12 14281.11 13181.16 23086.52 23357.48 31489.40 25391.16 18181.45 3782.73 8490.49 17060.11 14194.58 19987.69 5760.41 34191.41 197
xiu_mvs_v1_base_debu82.16 12581.12 12885.26 11486.42 23468.72 7092.59 13890.44 20773.12 17184.20 7294.36 8538.04 32595.73 15484.12 9286.81 12491.33 198
xiu_mvs_v1_base82.16 12581.12 12885.26 11486.42 23468.72 7092.59 13890.44 20773.12 17184.20 7294.36 8538.04 32595.73 15484.12 9286.81 12491.33 198
xiu_mvs_v1_base_debi82.16 12581.12 12885.26 11486.42 23468.72 7092.59 13890.44 20773.12 17184.20 7294.36 8538.04 32595.73 15484.12 9286.81 12491.33 198
BH-untuned78.68 18877.08 19483.48 17589.84 15063.74 19892.70 12988.59 28771.57 22166.83 27488.65 19951.75 23595.39 17259.03 29084.77 14291.32 201
HPM-MVS_fast80.25 15879.55 15782.33 19991.55 11759.95 28491.32 19689.16 26165.23 29374.71 17393.07 11747.81 27395.74 15374.87 16388.23 10991.31 202
baseline181.84 13181.03 13284.28 15391.60 11466.62 12791.08 20691.66 16281.87 3274.86 17191.67 15169.98 4094.92 18971.76 18664.75 30291.29 203
test_cas_vis1_n_192080.45 15480.61 13979.97 26278.25 34657.01 32194.04 7088.33 29379.06 8382.81 8393.70 10538.65 31791.63 29890.82 3579.81 18791.27 204
baseline283.68 10383.42 9484.48 14587.37 21766.00 14190.06 23795.93 879.71 6769.08 23890.39 17377.92 696.28 13178.91 13281.38 17691.16 205
TAPA-MVS70.22 1274.94 24973.53 24579.17 27890.40 14052.07 34589.19 25889.61 24462.69 31470.07 22792.67 12748.89 26494.32 21038.26 37079.97 18691.12 206
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
AdaColmapbinary78.94 18177.00 19784.76 13196.34 1765.86 14592.66 13387.97 30562.18 31770.56 21992.37 13543.53 30097.35 7464.50 25682.86 15891.05 207
OMC-MVS78.67 19077.91 18180.95 23985.76 25057.40 31688.49 26988.67 28473.85 15672.43 20092.10 14149.29 25894.55 20472.73 17577.89 20490.91 208
EI-MVSNet-Vis-set83.77 9983.67 8484.06 15892.79 8363.56 20891.76 17594.81 3179.65 6877.87 13994.09 9763.35 10797.90 4279.35 12679.36 19290.74 209
cascas78.18 19775.77 21385.41 10687.14 22269.11 6092.96 11991.15 18366.71 28170.47 22086.07 24037.49 33196.48 12770.15 19979.80 18890.65 210
CR-MVSNet73.79 26070.82 27582.70 18983.15 28967.96 9170.25 37484.00 34373.67 16369.97 23072.41 35857.82 16689.48 32552.99 31373.13 24190.64 211
RPMNet70.42 28765.68 30684.63 13983.15 28967.96 9170.25 37490.45 20446.83 38069.97 23065.10 37856.48 18795.30 17735.79 37573.13 24190.64 211
test_fmvs174.07 25573.69 24375.22 31578.91 33847.34 36989.06 26274.69 37363.68 30279.41 12091.59 15324.36 37487.77 33985.22 7976.26 22290.55 213
PCF-MVS73.15 979.29 17477.63 18484.29 15286.06 24365.96 14387.03 29091.10 18569.86 25169.79 23390.64 16557.54 16996.59 11964.37 25782.29 16390.32 214
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
PVSNet_068.08 1571.81 27868.32 29482.27 20184.68 26662.31 24088.68 26690.31 21375.84 12657.93 33580.65 30637.85 32894.19 21869.94 20029.05 39990.31 215
tttt051779.50 17178.53 17182.41 19887.22 22061.43 25789.75 24694.76 3269.29 25767.91 25788.06 21372.92 2595.63 16062.91 26873.90 23890.16 216
CPTT-MVS79.59 16979.16 16480.89 24191.54 11859.80 28692.10 15488.54 28960.42 33072.96 18893.28 11348.27 26692.80 26478.89 13386.50 13290.06 217
EI-MVSNet-UG-set83.14 11082.96 10383.67 16992.28 9263.19 21891.38 19194.68 3779.22 7776.60 15493.75 10362.64 11697.76 4878.07 13978.01 20390.05 218
test_fmvs1_n72.69 27471.92 26574.99 31871.15 37547.08 37187.34 28875.67 36863.48 30478.08 13791.17 16020.16 38587.87 33684.65 8775.57 22690.01 219
test_vis1_n71.63 28070.73 27674.31 32569.63 38147.29 37086.91 29272.11 37863.21 30875.18 16890.17 18020.40 38385.76 35184.59 8874.42 23289.87 220
dmvs_re76.93 21675.36 21981.61 22087.78 20960.71 27280.00 34687.99 30379.42 7269.02 24089.47 19146.77 27794.32 21063.38 26374.45 23189.81 221
XVG-OURS-SEG-HR74.70 25173.08 24979.57 27278.25 34657.33 31780.49 33887.32 30963.22 30768.76 24690.12 18544.89 29691.59 29970.55 19774.09 23589.79 222
114514_t79.17 17677.67 18283.68 16895.32 2965.53 15492.85 12391.60 16463.49 30367.92 25690.63 16746.65 27995.72 15867.01 23183.54 15389.79 222
UA-Net80.02 16379.65 15381.11 23289.33 16357.72 31086.33 29789.00 27377.44 10881.01 9989.15 19559.33 15295.90 14761.01 27984.28 14989.73 224
XVG-OURS74.25 25472.46 26079.63 27078.45 34457.59 31380.33 34087.39 30863.86 30068.76 24689.62 18940.50 31191.72 29669.00 21174.25 23389.58 225
UniMVSNet_ETH3D72.74 27170.53 27879.36 27578.62 34356.64 32385.01 30289.20 25863.77 30164.84 28684.44 25734.05 34891.86 29363.94 25970.89 26089.57 226
thres20079.66 16878.33 17283.66 17092.54 8965.82 14793.06 11496.31 374.90 14073.30 18688.66 19859.67 14795.61 16247.84 33378.67 19989.56 227
SDMVSNet80.26 15778.88 16784.40 14789.25 16667.63 10085.35 30093.02 10176.77 11770.84 21787.12 22747.95 27196.09 13885.04 8274.55 22889.48 228
sd_testset77.08 21575.37 21882.20 20589.25 16662.11 24382.06 32589.09 26676.77 11770.84 21787.12 22741.43 30895.01 18467.23 22874.55 22889.48 228
OpenMVScopyleft70.45 1178.54 19275.92 21186.41 7685.93 24871.68 1892.74 12692.51 12466.49 28364.56 28891.96 14343.88 29998.10 3754.61 30590.65 9189.44 230
iter_conf0583.65 10483.44 9184.28 15386.17 24168.61 7495.08 4089.82 23480.90 4878.08 13790.49 17069.08 4395.22 17984.29 9077.07 21689.02 231
CHOSEN 280x42077.35 21076.95 19878.55 28487.07 22462.68 23269.71 37782.95 35268.80 26471.48 21287.27 22666.03 6984.00 36276.47 14782.81 16088.95 232
thres100view90078.37 19477.01 19682.46 19491.89 10763.21 21791.19 20496.33 172.28 19370.45 22287.89 21560.31 13895.32 17445.16 34477.58 20888.83 233
tfpn200view978.79 18677.43 18782.88 18592.21 9564.49 17392.05 15896.28 473.48 16571.75 20888.26 20660.07 14395.32 17445.16 34477.58 20888.83 233
nrg03080.93 14579.86 15084.13 15783.69 28368.83 6793.23 11091.20 17975.55 13075.06 16988.22 20963.04 11394.74 19381.88 10666.88 28588.82 235
PatchT69.11 29865.37 31080.32 24782.07 30163.68 20467.96 38387.62 30750.86 36969.37 23465.18 37757.09 17288.53 33141.59 35966.60 28788.74 236
HQP4-MVS74.18 17695.61 16288.63 237
HQP-MVS81.14 14080.64 13882.64 19187.54 21263.66 20594.06 6691.70 16079.80 6474.18 17690.30 17551.63 23795.61 16277.63 14178.90 19688.63 237
tt080573.07 26470.73 27680.07 25678.37 34557.05 31987.78 28192.18 13661.23 32667.04 27086.49 23431.35 35994.58 19965.06 25367.12 28388.57 239
VPNet78.82 18477.53 18682.70 18984.52 27066.44 13193.93 7592.23 13080.46 5372.60 19488.38 20349.18 25993.13 25072.47 17963.97 31188.55 240
Effi-MVS+-dtu76.14 22775.28 22178.72 28383.22 28855.17 33289.87 24387.78 30675.42 13267.98 25481.43 29145.08 29592.52 27675.08 15871.63 25388.48 241
CNLPA74.31 25372.30 26180.32 24791.49 11961.66 25390.85 21380.72 35856.67 35263.85 29690.64 16546.75 27890.84 30953.79 30975.99 22488.47 242
HQP_MVS80.34 15679.75 15282.12 20986.94 22762.42 23593.13 11291.31 17478.81 8772.53 19689.14 19650.66 24495.55 16776.74 14478.53 20188.39 243
plane_prior591.31 17495.55 16776.74 14478.53 20188.39 243
VPA-MVSNet79.03 17878.00 17882.11 21285.95 24564.48 17593.22 11194.66 3875.05 13874.04 18184.95 25052.17 23293.52 24474.90 16267.04 28488.32 245
CLD-MVS82.73 11682.35 11683.86 16287.90 20467.65 9995.45 2992.18 13685.06 1172.58 19592.27 13752.46 23095.78 15084.18 9179.06 19588.16 246
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
XXY-MVS77.94 20276.44 20382.43 19582.60 29564.44 17792.01 16091.83 15273.59 16470.00 22985.82 24354.43 21094.76 19169.63 20268.02 27888.10 247
FIs79.47 17279.41 15979.67 26985.95 24559.40 29191.68 17993.94 6378.06 9568.96 24288.28 20466.61 6591.77 29566.20 24174.99 22787.82 248
Fast-Effi-MVS+-dtu75.04 24773.37 24780.07 25680.86 30959.52 29091.20 20385.38 32971.90 20365.20 28284.84 25141.46 30792.97 25466.50 23772.96 24387.73 249
UniMVSNet_NR-MVSNet78.15 19877.55 18579.98 26084.46 27260.26 27992.25 14793.20 9377.50 10768.88 24386.61 23266.10 6892.13 28766.38 23862.55 31887.54 250
MVSTER82.47 12082.05 11783.74 16492.68 8569.01 6391.90 16793.21 9179.83 6372.14 20385.71 24574.72 1694.72 19475.72 15272.49 24887.50 251
thres600view778.00 19976.66 20182.03 21491.93 10463.69 20391.30 19796.33 172.43 18870.46 22187.89 21560.31 13894.92 18942.64 35676.64 21987.48 252
thres40078.68 18877.43 18782.43 19592.21 9564.49 17392.05 15896.28 473.48 16571.75 20888.26 20660.07 14395.32 17445.16 34477.58 20887.48 252
TranMVSNet+NR-MVSNet75.86 23674.52 23079.89 26482.44 29760.64 27591.37 19291.37 17276.63 11967.65 26286.21 23952.37 23191.55 30061.84 27560.81 33687.48 252
FC-MVSNet-test77.99 20078.08 17777.70 29284.89 26555.51 33090.27 23193.75 7276.87 11266.80 27587.59 21965.71 7390.23 31862.89 26973.94 23687.37 255
mvsmamba76.85 21975.71 21580.25 25183.07 29159.16 29691.44 18380.64 35976.84 11467.95 25586.33 23746.17 28794.24 21776.06 14972.92 24487.36 256
DU-MVS76.86 21775.84 21279.91 26382.96 29260.26 27991.26 19891.54 16576.46 12268.88 24386.35 23556.16 18892.13 28766.38 23862.55 31887.35 257
NR-MVSNet76.05 23174.59 22780.44 24582.96 29262.18 24290.83 21491.73 15577.12 11160.96 31586.35 23559.28 15391.80 29460.74 28061.34 33387.35 257
FMVSNet377.73 20576.04 20982.80 18691.20 12768.99 6491.87 16891.99 14173.35 16767.04 27083.19 26956.62 18392.14 28659.80 28769.34 26587.28 259
PS-MVSNAJss77.26 21176.31 20580.13 25580.64 31459.16 29690.63 22391.06 19072.80 17968.58 24984.57 25553.55 21993.96 23372.97 17071.96 25287.27 260
mvsany_test168.77 30168.56 29069.39 35173.57 36845.88 37780.93 33660.88 39659.65 33671.56 21190.26 17843.22 30275.05 38574.26 16662.70 31787.25 261
FMVSNet276.07 22874.01 23982.26 20388.85 17667.66 9891.33 19591.61 16370.84 23765.98 27782.25 27848.03 26792.00 29158.46 29268.73 27387.10 262
ADS-MVSNet266.90 31663.44 32377.26 30188.06 19960.70 27368.01 38175.56 37057.57 34464.48 28969.87 36838.68 31584.10 35940.87 36167.89 27986.97 263
ADS-MVSNet68.54 30464.38 31981.03 23788.06 19966.90 11968.01 38184.02 34257.57 34464.48 28969.87 36838.68 31589.21 32740.87 36167.89 27986.97 263
WR-MVS76.76 22275.74 21479.82 26684.60 26862.27 24192.60 13692.51 12476.06 12467.87 26085.34 24656.76 17990.24 31762.20 27363.69 31386.94 265
DSMNet-mixed56.78 35054.44 35463.79 36463.21 39029.44 40564.43 38764.10 39242.12 39051.32 35871.60 36331.76 35675.04 38636.23 37265.20 29786.87 266
UniMVSNet (Re)77.58 20776.78 19979.98 26084.11 27860.80 26691.76 17593.17 9576.56 12169.93 23284.78 25263.32 10892.36 28264.89 25462.51 32086.78 267
GBi-Net75.65 23973.83 24181.10 23388.85 17665.11 16390.01 23990.32 21070.84 23767.04 27080.25 31248.03 26791.54 30159.80 28769.34 26586.64 268
test175.65 23973.83 24181.10 23388.85 17665.11 16390.01 23990.32 21070.84 23767.04 27080.25 31248.03 26791.54 30159.80 28769.34 26586.64 268
FMVSNet172.71 27269.91 28381.10 23383.60 28565.11 16390.01 23990.32 21063.92 29963.56 29880.25 31236.35 34091.54 30154.46 30666.75 28686.64 268
v2v48277.42 20975.65 21682.73 18880.38 31667.13 11391.85 17090.23 21875.09 13769.37 23483.39 26753.79 21794.44 20871.77 18565.00 29986.63 271
miper_enhance_ethall78.86 18377.97 17981.54 22288.00 20265.17 16191.41 18589.15 26275.19 13668.79 24583.98 26167.17 6092.82 26272.73 17565.30 29386.62 272
cl2277.94 20276.78 19981.42 22487.57 21164.93 16990.67 21988.86 27772.45 18767.63 26382.68 27464.07 9192.91 26071.79 18465.30 29386.44 273
PLCcopyleft68.80 1475.23 24573.68 24479.86 26592.93 7658.68 30290.64 22188.30 29460.90 32764.43 29290.53 16842.38 30594.57 20156.52 29876.54 22086.33 274
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
EI-MVSNet78.97 18078.22 17581.25 22785.33 25562.73 23189.53 25093.21 9172.39 19072.14 20390.13 18260.99 13194.72 19467.73 22372.49 24886.29 275
IterMVS-LS76.49 22475.18 22280.43 24684.49 27162.74 23090.64 22188.80 27972.40 18965.16 28381.72 28560.98 13292.27 28567.74 22264.65 30486.29 275
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
miper_ehance_all_eth77.60 20676.44 20381.09 23685.70 25264.41 18090.65 22088.64 28672.31 19167.37 26882.52 27564.77 8592.64 27370.67 19565.30 29386.24 277
OPM-MVS79.00 17978.09 17681.73 21783.52 28663.83 19591.64 18190.30 21476.36 12371.97 20589.93 18646.30 28595.17 18175.10 15777.70 20686.19 278
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
DIV-MVS_self_test76.07 22874.67 22480.28 24985.14 26061.75 25190.12 23588.73 28171.16 22965.42 28181.60 28861.15 12992.94 25966.54 23562.16 32486.14 279
eth_miper_zixun_eth75.96 23574.40 23280.66 24284.66 26763.02 22189.28 25588.27 29671.88 20565.73 27881.65 28659.45 14992.81 26368.13 21760.53 33886.14 279
cl____76.07 22874.67 22480.28 24985.15 25961.76 25090.12 23588.73 28171.16 22965.43 28081.57 28961.15 12992.95 25566.54 23562.17 32286.13 281
PatchMatch-RL72.06 27769.98 28078.28 28789.51 15955.70 32983.49 31183.39 35061.24 32563.72 29782.76 27234.77 34593.03 25253.37 31277.59 20786.12 282
c3_l76.83 22175.47 21780.93 24085.02 26364.18 19090.39 22788.11 30071.66 21466.65 27681.64 28763.58 10492.56 27469.31 20762.86 31586.04 283
RPSCF64.24 33061.98 33271.01 34776.10 35945.00 37875.83 36575.94 36746.94 37958.96 32784.59 25431.40 35882.00 37647.76 33460.33 34286.04 283
Anonymous2023121173.08 26370.39 27981.13 23190.62 13663.33 21491.40 18790.06 22651.84 36564.46 29180.67 30536.49 33994.07 22463.83 26064.17 30785.98 285
v119275.98 23373.92 24082.15 20779.73 32466.24 13791.22 20189.75 23772.67 18168.49 25081.42 29249.86 25294.27 21467.08 23065.02 29885.95 286
JIA-IIPM66.06 32062.45 32976.88 30681.42 30754.45 33757.49 39688.67 28449.36 37363.86 29546.86 39456.06 19190.25 31449.53 32368.83 27185.95 286
v192192075.63 24173.49 24682.06 21379.38 32966.35 13391.07 20889.48 24671.98 20067.99 25381.22 29749.16 26193.90 23666.56 23464.56 30585.92 288
v114476.73 22374.88 22382.27 20180.23 32066.60 12891.68 17990.21 22073.69 16169.06 23981.89 28252.73 22894.40 20969.21 20865.23 29685.80 289
v14419276.05 23174.03 23882.12 20979.50 32866.55 13091.39 18989.71 24372.30 19268.17 25281.33 29451.75 23594.03 23067.94 22064.19 30685.77 290
v124075.21 24672.98 25181.88 21579.20 33166.00 14190.75 21789.11 26571.63 21967.41 26681.22 29747.36 27593.87 23765.46 25064.72 30385.77 290
v14876.19 22674.47 23181.36 22580.05 32264.44 17791.75 17790.23 21873.68 16267.13 26980.84 30255.92 19393.86 23968.95 21261.73 32985.76 292
test0.0.03 172.76 27072.71 25672.88 33480.25 31947.99 36591.22 20189.45 24871.51 22462.51 31087.66 21853.83 21585.06 35650.16 32067.84 28185.58 293
test_djsdf73.76 26172.56 25877.39 29877.00 35553.93 33889.07 26090.69 19765.80 28763.92 29482.03 28143.14 30392.67 27072.83 17268.53 27485.57 294
dmvs_testset65.55 32466.45 30062.86 36579.87 32322.35 41076.55 36071.74 38077.42 11055.85 34187.77 21751.39 23980.69 38031.51 39065.92 29185.55 295
ACMM69.62 1374.34 25272.73 25579.17 27884.25 27757.87 30890.36 22889.93 23063.17 30965.64 27986.04 24237.79 32994.10 22165.89 24371.52 25585.55 295
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
pmmvs573.35 26271.52 26978.86 28278.64 34260.61 27691.08 20686.90 31367.69 27263.32 30083.64 26344.33 29890.53 31162.04 27466.02 29085.46 297
jajsoiax73.05 26571.51 27077.67 29377.46 35254.83 33488.81 26490.04 22769.13 26162.85 30783.51 26531.16 36092.75 26670.83 19269.80 26185.43 298
ACMP71.68 1075.58 24274.23 23579.62 27184.97 26459.64 28790.80 21589.07 26870.39 24462.95 30587.30 22438.28 32193.87 23772.89 17171.45 25685.36 299
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
mvs_tets72.71 27271.11 27177.52 29477.41 35354.52 33688.45 27089.76 23668.76 26662.70 30883.26 26829.49 36492.71 26770.51 19869.62 26385.34 300
tpmvs72.88 26969.76 28582.22 20490.98 12967.05 11578.22 35588.30 29463.10 31064.35 29374.98 35155.09 20294.27 21443.25 35069.57 26485.34 300
miper_lstm_enhance73.05 26571.73 26877.03 30283.80 28158.32 30581.76 32688.88 27569.80 25261.01 31478.23 32857.19 17187.51 34365.34 25159.53 34385.27 302
LPG-MVS_test75.82 23774.58 22879.56 27384.31 27559.37 29290.44 22489.73 24069.49 25464.86 28488.42 20138.65 31794.30 21272.56 17772.76 24585.01 303
LGP-MVS_train79.56 27384.31 27559.37 29289.73 24069.49 25464.86 28488.42 20138.65 31794.30 21272.56 17772.76 24585.01 303
PVSNet_BlendedMVS83.38 10683.43 9283.22 18093.76 5267.53 10394.06 6693.61 7679.13 8081.00 10085.14 24863.19 10997.29 7887.08 6673.91 23784.83 305
V4276.46 22574.55 22982.19 20679.14 33467.82 9490.26 23289.42 25073.75 15968.63 24881.89 28251.31 24094.09 22271.69 18764.84 30084.66 306
IterMVS72.65 27570.83 27378.09 29082.17 29962.96 22387.64 28486.28 31971.56 22260.44 31778.85 32445.42 29286.66 34763.30 26561.83 32684.65 307
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
IterMVS-SCA-FT71.55 28169.97 28176.32 30981.48 30560.67 27487.64 28485.99 32466.17 28559.50 32278.88 32345.53 29083.65 36462.58 27161.93 32584.63 308
pm-mvs172.89 26871.09 27278.26 28879.10 33557.62 31290.80 21589.30 25467.66 27362.91 30681.78 28449.11 26292.95 25560.29 28458.89 34684.22 309
pmmvs473.92 25871.81 26780.25 25179.17 33265.24 15987.43 28687.26 31167.64 27563.46 29983.91 26248.96 26391.53 30462.94 26765.49 29283.96 310
v875.35 24373.26 24881.61 22080.67 31366.82 12089.54 24989.27 25571.65 21563.30 30180.30 31154.99 20394.06 22567.33 22762.33 32183.94 311
UnsupCasMVSNet_eth65.79 32263.10 32473.88 32670.71 37750.29 35581.09 33489.88 23272.58 18349.25 36774.77 35332.57 35387.43 34455.96 30141.04 38383.90 312
WB-MVSnew77.14 21376.18 20880.01 25986.18 24063.24 21691.26 19894.11 6071.72 21373.52 18487.29 22545.14 29493.00 25356.98 29779.42 19083.80 313
v1074.77 25072.54 25981.46 22380.33 31866.71 12489.15 25989.08 26770.94 23563.08 30479.86 31652.52 22994.04 22865.70 24662.17 32283.64 314
F-COLMAP70.66 28468.44 29277.32 29986.37 23755.91 32788.00 27686.32 31856.94 35057.28 33888.07 21233.58 34992.49 27751.02 31668.37 27583.55 315
lessismore_v073.72 32872.93 37147.83 36661.72 39545.86 37673.76 35428.63 36889.81 32247.75 33531.37 39683.53 316
v7n71.31 28268.65 28979.28 27676.40 35760.77 26886.71 29589.45 24864.17 29858.77 32978.24 32744.59 29793.54 24357.76 29461.75 32883.52 317
Anonymous2023120667.53 31365.78 30472.79 33574.95 36347.59 36788.23 27287.32 30961.75 32458.07 33277.29 33537.79 32987.29 34542.91 35263.71 31283.48 318
CP-MVSNet70.50 28669.91 28372.26 33980.71 31251.00 35187.23 28990.30 21467.84 27159.64 32182.69 27350.23 24982.30 37451.28 31559.28 34483.46 319
K. test v363.09 33559.61 34073.53 32976.26 35849.38 36183.27 31577.15 36564.35 29747.77 37272.32 36028.73 36687.79 33849.93 32236.69 38983.41 320
PS-CasMVS69.86 29369.13 28872.07 34380.35 31750.57 35387.02 29189.75 23767.27 27759.19 32582.28 27746.58 28082.24 37550.69 31759.02 34583.39 321
PEN-MVS69.46 29668.56 29072.17 34179.27 33049.71 35786.90 29389.24 25667.24 28059.08 32682.51 27647.23 27683.54 36548.42 32857.12 34983.25 322
anonymousdsp71.14 28369.37 28776.45 30872.95 37054.71 33584.19 30688.88 27561.92 32162.15 31179.77 31838.14 32491.44 30668.90 21367.45 28283.21 323
XVG-ACMP-BASELINE68.04 30865.53 30875.56 31374.06 36752.37 34378.43 35285.88 32562.03 31958.91 32881.21 29920.38 38491.15 30860.69 28168.18 27683.16 324
MSDG69.54 29565.73 30580.96 23885.11 26263.71 20184.19 30683.28 35156.95 34954.50 34584.03 25931.50 35796.03 14442.87 35469.13 27083.14 325
test_fmvs265.78 32364.84 31168.60 35566.54 38641.71 38583.27 31569.81 38454.38 35867.91 25784.54 25615.35 39081.22 37975.65 15366.16 28982.88 326
SixPastTwentyTwo64.92 32661.78 33374.34 32478.74 34049.76 35683.42 31479.51 36362.86 31150.27 36277.35 33330.92 36290.49 31245.89 34247.06 37382.78 327
testgi64.48 32962.87 32769.31 35271.24 37340.62 38885.49 29979.92 36165.36 29154.18 34783.49 26623.74 37784.55 35741.60 35860.79 33782.77 328
DTE-MVSNet68.46 30567.33 29871.87 34577.94 35049.00 36286.16 29888.58 28866.36 28458.19 33082.21 27946.36 28183.87 36344.97 34755.17 35682.73 329
WR-MVS_H70.59 28569.94 28272.53 33681.03 30851.43 34887.35 28792.03 14067.38 27660.23 31980.70 30355.84 19483.45 36646.33 34058.58 34882.72 330
ppachtmachnet_test67.72 31063.70 32179.77 26878.92 33666.04 14088.68 26682.90 35360.11 33455.45 34275.96 34739.19 31490.55 31039.53 36552.55 36482.71 331
CL-MVSNet_self_test69.92 29168.09 29575.41 31473.25 36955.90 32890.05 23889.90 23169.96 24961.96 31376.54 34151.05 24287.64 34049.51 32450.59 36882.70 332
LS3D69.17 29766.40 30177.50 29591.92 10556.12 32685.12 30180.37 36046.96 37856.50 34087.51 22137.25 33293.71 24032.52 38679.40 19182.68 333
our_test_368.29 30664.69 31479.11 28178.92 33664.85 17088.40 27185.06 33260.32 33252.68 35276.12 34640.81 31089.80 32444.25 34955.65 35482.67 334
FMVSNet568.04 30865.66 30775.18 31784.43 27357.89 30783.54 31086.26 32061.83 32353.64 35073.30 35537.15 33585.08 35548.99 32561.77 32782.56 335
KD-MVS_2432*160069.03 29966.37 30277.01 30385.56 25361.06 26281.44 33190.25 21667.27 27758.00 33376.53 34254.49 20787.63 34148.04 33035.77 39182.34 336
miper_refine_blended69.03 29966.37 30277.01 30385.56 25361.06 26281.44 33190.25 21667.27 27758.00 33376.53 34254.49 20787.63 34148.04 33035.77 39182.34 336
pmmvs667.57 31264.76 31376.00 31272.82 37253.37 34088.71 26586.78 31753.19 36157.58 33778.03 33035.33 34492.41 27955.56 30254.88 35882.21 338
EU-MVSNet64.01 33163.01 32567.02 36174.40 36638.86 39383.27 31586.19 32245.11 38354.27 34681.15 30036.91 33880.01 38248.79 32757.02 35082.19 339
ACMH63.93 1768.62 30264.81 31280.03 25885.22 25863.25 21587.72 28284.66 33660.83 32851.57 35779.43 32227.29 37094.96 18641.76 35764.84 30081.88 340
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
D2MVS73.80 25972.02 26479.15 28079.15 33362.97 22288.58 26890.07 22472.94 17459.22 32478.30 32642.31 30692.70 26965.59 24872.00 25181.79 341
DP-MVS69.90 29266.48 29980.14 25495.36 2862.93 22489.56 24776.11 36650.27 37157.69 33685.23 24739.68 31395.73 15433.35 38071.05 25981.78 342
Patchmtry67.53 31363.93 32078.34 28582.12 30064.38 18168.72 37884.00 34348.23 37759.24 32372.41 35857.82 16689.27 32646.10 34156.68 35381.36 343
Syy-MVS69.65 29469.52 28670.03 34987.87 20543.21 38388.07 27489.01 27072.91 17663.11 30288.10 21045.28 29385.54 35222.07 39669.23 26881.32 344
myMVS_eth3d72.58 27672.74 25472.10 34287.87 20549.45 35988.07 27489.01 27072.91 17663.11 30288.10 21063.63 9985.54 35232.73 38469.23 26881.32 344
Baseline_NR-MVSNet73.99 25772.83 25277.48 29680.78 31159.29 29591.79 17284.55 33868.85 26368.99 24180.70 30356.16 18892.04 29062.67 27060.98 33581.11 346
CMPMVSbinary48.56 2166.77 31764.41 31873.84 32770.65 37850.31 35477.79 35785.73 32845.54 38244.76 38082.14 28035.40 34390.14 32063.18 26674.54 23081.07 347
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
TransMVSNet (Re)70.07 29067.66 29677.31 30080.62 31559.13 29891.78 17484.94 33465.97 28660.08 32080.44 30850.78 24391.87 29248.84 32645.46 37680.94 348
ACMH+65.35 1667.65 31164.55 31576.96 30584.59 26957.10 31888.08 27380.79 35758.59 34253.00 35181.09 30126.63 37292.95 25546.51 33861.69 33180.82 349
USDC67.43 31564.51 31676.19 31077.94 35055.29 33178.38 35385.00 33373.17 16948.36 37080.37 30921.23 38192.48 27852.15 31464.02 31080.81 350
OurMVSNet-221017-064.68 32762.17 33172.21 34076.08 36047.35 36880.67 33781.02 35656.19 35351.60 35679.66 32027.05 37188.56 33053.60 31153.63 36180.71 351
MS-PatchMatch77.90 20476.50 20282.12 20985.99 24469.95 4291.75 17792.70 11373.97 15362.58 30984.44 25741.11 30995.78 15063.76 26192.17 6880.62 352
tfpnnormal70.10 28967.36 29778.32 28683.45 28760.97 26488.85 26392.77 11064.85 29460.83 31678.53 32543.52 30193.48 24531.73 38761.70 33080.52 353
MIMVSNet160.16 34557.33 34668.67 35469.71 38044.13 38078.92 35084.21 33955.05 35744.63 38171.85 36223.91 37681.54 37832.63 38555.03 35780.35 354
YYNet163.76 33460.14 33874.62 32178.06 34960.19 28283.46 31383.99 34556.18 35439.25 38971.56 36537.18 33483.34 36742.90 35348.70 37180.32 355
MDA-MVSNet_test_wron63.78 33360.16 33774.64 32078.15 34860.41 27783.49 31184.03 34156.17 35539.17 39071.59 36437.22 33383.24 36942.87 35448.73 37080.26 356
KD-MVS_self_test60.87 34158.60 34267.68 35866.13 38739.93 39075.63 36784.70 33557.32 34749.57 36568.45 37229.55 36382.87 37048.09 32947.94 37280.25 357
ITE_SJBPF70.43 34874.44 36547.06 37277.32 36460.16 33354.04 34883.53 26423.30 37884.01 36143.07 35161.58 33280.21 358
test20.0363.83 33262.65 32867.38 36070.58 37939.94 38986.57 29684.17 34063.29 30651.86 35577.30 33437.09 33682.47 37238.87 36954.13 36079.73 359
UnsupCasMVSNet_bld61.60 33957.71 34473.29 33168.73 38351.64 34678.61 35189.05 26957.20 34846.11 37361.96 38528.70 36788.60 32950.08 32138.90 38779.63 360
AllTest61.66 33858.06 34372.46 33779.57 32551.42 34980.17 34368.61 38651.25 36745.88 37481.23 29519.86 38686.58 34838.98 36757.01 35179.39 361
TestCases72.46 33779.57 32551.42 34968.61 38651.25 36745.88 37481.23 29519.86 38686.58 34838.98 36757.01 35179.39 361
ambc69.61 35061.38 39441.35 38649.07 40185.86 32750.18 36466.40 37510.16 39888.14 33445.73 34344.20 37779.32 363
Anonymous2024052162.09 33759.08 34171.10 34667.19 38548.72 36383.91 30885.23 33150.38 37047.84 37171.22 36720.74 38285.51 35446.47 33958.75 34779.06 364
testing370.38 28870.83 27369.03 35385.82 24943.93 38290.72 21890.56 20368.06 27060.24 31886.82 23164.83 8384.12 35826.33 39264.10 30879.04 365
MVP-Stereo77.12 21476.23 20679.79 26781.72 30366.34 13489.29 25490.88 19470.56 24362.01 31282.88 27149.34 25694.13 22065.55 24993.80 4478.88 366
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
pmmvs-eth3d65.53 32562.32 33075.19 31669.39 38259.59 28882.80 32283.43 34862.52 31551.30 35972.49 35632.86 35087.16 34655.32 30350.73 36778.83 367
OpenMVS_ROBcopyleft61.12 1866.39 31862.92 32676.80 30776.51 35657.77 30989.22 25683.41 34955.48 35653.86 34977.84 33126.28 37393.95 23434.90 37768.76 27278.68 368
LTVRE_ROB59.60 1966.27 31963.54 32274.45 32284.00 28051.55 34767.08 38483.53 34758.78 34054.94 34480.31 31034.54 34693.23 24940.64 36368.03 27778.58 369
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
PM-MVS59.40 34656.59 34867.84 35663.63 38941.86 38476.76 35963.22 39359.01 33951.07 36072.27 36111.72 39683.25 36861.34 27750.28 36978.39 370
test_fmvs356.82 34954.86 35362.69 36753.59 39935.47 39675.87 36465.64 39143.91 38655.10 34371.43 3666.91 40474.40 38868.64 21552.63 36278.20 371
N_pmnet50.55 35549.11 35854.88 37477.17 3544.02 41884.36 3052.00 41648.59 37445.86 37668.82 37132.22 35482.80 37131.58 38851.38 36677.81 372
new-patchmatchnet59.30 34756.48 34967.79 35765.86 38844.19 37982.47 32381.77 35459.94 33543.65 38466.20 37627.67 36981.68 37739.34 36641.40 38277.50 373
EG-PatchMatch MVS68.55 30365.41 30977.96 29178.69 34162.93 22489.86 24489.17 26060.55 32950.27 36277.73 33222.60 37994.06 22547.18 33672.65 24776.88 374
MVS-HIRNet60.25 34455.55 35174.35 32384.37 27456.57 32471.64 37274.11 37434.44 39345.54 37842.24 40031.11 36189.81 32240.36 36476.10 22376.67 375
MDA-MVSNet-bldmvs61.54 34057.70 34573.05 33279.53 32757.00 32283.08 31981.23 35557.57 34434.91 39372.45 35732.79 35186.26 35035.81 37441.95 38175.89 376
COLMAP_ROBcopyleft57.96 2062.98 33659.65 33972.98 33381.44 30653.00 34283.75 30975.53 37148.34 37648.81 36981.40 29324.14 37590.30 31332.95 38260.52 33975.65 377
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
TinyColmap60.32 34356.42 35072.00 34478.78 33953.18 34178.36 35475.64 36952.30 36241.59 38875.82 34914.76 39388.35 33235.84 37354.71 35974.46 378
mvsany_test348.86 35746.35 36056.41 37046.00 40531.67 40162.26 38947.25 40643.71 38745.54 37868.15 37310.84 39764.44 40357.95 29335.44 39373.13 379
pmmvs355.51 35151.50 35767.53 35957.90 39750.93 35280.37 33973.66 37540.63 39144.15 38364.75 37916.30 38878.97 38344.77 34840.98 38572.69 380
test_method38.59 36735.16 37048.89 38154.33 39821.35 41145.32 40253.71 4007.41 40828.74 39651.62 3928.70 40152.87 40633.73 37832.89 39572.47 381
test_040264.54 32861.09 33474.92 31984.10 27960.75 27087.95 27779.71 36252.03 36352.41 35377.20 33632.21 35591.64 29723.14 39461.03 33472.36 382
LF4IMVS54.01 35452.12 35559.69 36862.41 39239.91 39168.59 37968.28 38842.96 38944.55 38275.18 35014.09 39568.39 39441.36 36051.68 36570.78 383
TDRefinement55.28 35251.58 35666.39 36259.53 39646.15 37576.23 36272.80 37644.60 38442.49 38676.28 34515.29 39182.39 37333.20 38143.75 37870.62 384
test_f46.58 35843.45 36255.96 37145.18 40632.05 40061.18 39049.49 40433.39 39442.05 38762.48 3847.00 40365.56 39947.08 33743.21 38070.27 385
LCM-MVSNet40.54 36335.79 36854.76 37536.92 41230.81 40251.41 39969.02 38522.07 39924.63 39945.37 3964.56 40865.81 39833.67 37934.50 39467.67 386
ANet_high40.27 36635.20 36955.47 37234.74 41334.47 39863.84 38871.56 38148.42 37518.80 40241.08 4019.52 40064.45 40220.18 3978.66 40967.49 387
test_vis1_rt59.09 34857.31 34764.43 36368.44 38446.02 37683.05 32048.63 40551.96 36449.57 36563.86 38116.30 38880.20 38171.21 19062.79 31667.07 388
kuosan60.86 34260.24 33662.71 36681.57 30446.43 37475.70 36685.88 32557.98 34348.95 36869.53 37058.42 15976.53 38428.25 39135.87 39065.15 389
PMMVS237.93 36833.61 37150.92 37846.31 40424.76 40860.55 39350.05 40228.94 39820.93 40047.59 3934.41 41065.13 40025.14 39318.55 40462.87 390
new_pmnet49.31 35646.44 35957.93 36962.84 39140.74 38768.47 38062.96 39436.48 39235.09 39257.81 38914.97 39272.18 39032.86 38346.44 37460.88 391
dongtai55.18 35355.46 35254.34 37676.03 36136.88 39476.07 36384.61 33751.28 36643.41 38564.61 38056.56 18567.81 39518.09 39928.50 40058.32 392
FPMVS45.64 36043.10 36453.23 37751.42 40236.46 39564.97 38671.91 37929.13 39727.53 39761.55 3869.83 39965.01 40116.00 40355.58 35558.22 393
WB-MVS46.23 35944.94 36150.11 37962.13 39321.23 41276.48 36155.49 39845.89 38135.78 39161.44 38735.54 34272.83 3899.96 40621.75 40156.27 394
SSC-MVS44.51 36143.35 36347.99 38361.01 39518.90 41474.12 36954.36 39943.42 38834.10 39460.02 38834.42 34770.39 3929.14 40819.57 40254.68 395
APD_test140.50 36437.31 36750.09 38051.88 40035.27 39759.45 39452.59 40121.64 40026.12 39857.80 3904.56 40866.56 39722.64 39539.09 38648.43 396
EGC-MVSNET42.35 36238.09 36555.11 37374.57 36446.62 37371.63 37355.77 3970.04 4110.24 41262.70 38314.24 39474.91 38717.59 40046.06 37543.80 397
test_vis3_rt40.46 36537.79 36648.47 38244.49 40733.35 39966.56 38532.84 41332.39 39529.65 39539.13 4033.91 41168.65 39350.17 31940.99 38443.40 398
testf132.77 37029.47 37342.67 38641.89 40930.81 40252.07 39743.45 40715.45 40318.52 40344.82 3972.12 41258.38 40416.05 40130.87 39738.83 399
APD_test232.77 37029.47 37342.67 38641.89 40930.81 40252.07 39743.45 40715.45 40318.52 40344.82 3972.12 41258.38 40416.05 40130.87 39738.83 399
MVEpermissive24.84 2324.35 37419.77 38038.09 38834.56 41426.92 40726.57 40438.87 41111.73 40711.37 40827.44 4041.37 41550.42 40711.41 40514.60 40536.93 401
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
DeepMVS_CXcopyleft34.71 38951.45 40124.73 40928.48 41531.46 39617.49 40552.75 3915.80 40642.60 41018.18 39819.42 40336.81 402
PMVScopyleft26.43 2231.84 37228.16 37542.89 38525.87 41527.58 40650.92 40049.78 40321.37 40114.17 40740.81 4022.01 41466.62 3969.61 40738.88 38834.49 403
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
Gipumacopyleft34.91 36931.44 37245.30 38470.99 37639.64 39219.85 40672.56 37720.10 40216.16 40621.47 4075.08 40771.16 39113.07 40443.70 37925.08 404
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
tmp_tt22.26 37623.75 37817.80 3925.23 41612.06 41735.26 40339.48 4102.82 41018.94 40144.20 39922.23 38024.64 41136.30 3719.31 40816.69 405
E-PMN24.61 37324.00 37726.45 39043.74 40818.44 41560.86 39139.66 40915.11 4059.53 40922.10 4066.52 40546.94 4088.31 40910.14 40613.98 406
EMVS23.76 37523.20 37925.46 39141.52 41116.90 41660.56 39238.79 41214.62 4068.99 41020.24 4097.35 40245.82 4097.25 4109.46 40713.64 407
wuyk23d11.30 37810.95 38112.33 39348.05 40319.89 41325.89 4051.92 4173.58 4093.12 4111.37 4110.64 41615.77 4126.23 4117.77 4101.35 408
test1236.92 3819.21 3840.08 3940.03 4180.05 41981.65 3290.01 4190.02 4130.14 4140.85 4130.03 4170.02 4130.12 4130.00 4120.16 409
testmvs7.23 3809.62 3830.06 3950.04 4170.02 42084.98 3030.02 4180.03 4120.18 4131.21 4120.01 4180.02 4130.14 4120.01 4110.13 410
test_blank0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4120.00 411
uanet_test0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4120.00 411
DCPMVS0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4120.00 411
cdsmvs_eth3d_5k19.86 37726.47 3760.00 3960.00 4190.00 4210.00 40793.45 840.00 4140.00 41595.27 5749.56 2540.00 4150.00 4140.00 4120.00 411
pcd_1.5k_mvsjas4.46 3825.95 3850.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 41453.55 2190.00 4150.00 4140.00 4120.00 411
sosnet-low-res0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4120.00 411
sosnet0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4120.00 411
uncertanet0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4120.00 411
Regformer0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4120.00 411
ab-mvs-re7.91 37910.55 3820.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 41594.95 670.00 4190.00 4150.00 4140.00 4120.00 411
uanet0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4120.00 411
WAC-MVS49.45 35931.56 389
FOURS193.95 4761.77 24993.96 7391.92 14462.14 31886.57 49
test_one_060196.32 1869.74 4994.18 5771.42 22690.67 1996.85 1674.45 18
eth-test20.00 419
eth-test0.00 419
ZD-MVS96.63 965.50 15593.50 8270.74 24185.26 6495.19 6364.92 8297.29 7887.51 5993.01 57
test_241102_ONE96.45 1269.38 5494.44 4671.65 21592.11 697.05 776.79 999.11 6
9.1487.63 3093.86 5094.41 5694.18 5772.76 18086.21 5196.51 2466.64 6497.88 4490.08 3894.04 40
save fliter93.84 5167.89 9395.05 4192.66 11778.19 93
test072696.40 1569.99 3996.76 894.33 5471.92 20191.89 1097.11 673.77 21
test_part296.29 1968.16 8790.78 16
sam_mvs54.91 204
MTGPAbinary92.23 130
test_post178.95 34920.70 40853.05 22491.50 30560.43 282
test_post23.01 40556.49 18692.67 270
patchmatchnet-post67.62 37457.62 16890.25 314
MTMP93.77 8732.52 414
gm-plane-assit88.42 18767.04 11678.62 9091.83 14797.37 7176.57 146
TEST994.18 4167.28 10894.16 6293.51 8071.75 21285.52 5995.33 5268.01 5497.27 83
test_894.19 4067.19 11094.15 6493.42 8671.87 20685.38 6295.35 5168.19 5296.95 106
agg_prior94.16 4366.97 11893.31 8984.49 7096.75 116
test_prior467.18 11293.92 76
test_prior295.10 3975.40 13385.25 6595.61 4667.94 5587.47 6094.77 25
旧先验292.00 16359.37 33887.54 4293.47 24675.39 155
新几何291.41 185
原ACMM292.01 160
testdata296.09 13861.26 278
segment_acmp65.94 70
testdata189.21 25777.55 106
plane_prior786.94 22761.51 255
plane_prior687.23 21962.32 23950.66 244
plane_prior489.14 196
plane_prior361.95 24779.09 8172.53 196
plane_prior293.13 11278.81 87
plane_prior187.15 221
plane_prior62.42 23593.85 8079.38 7378.80 198
n20.00 420
nn0.00 420
door-mid66.01 390
test1193.01 102
door66.57 389
HQP5-MVS63.66 205
HQP-NCC87.54 21294.06 6679.80 6474.18 176
ACMP_Plane87.54 21294.06 6679.80 6474.18 176
BP-MVS77.63 141
HQP3-MVS91.70 16078.90 196
HQP2-MVS51.63 237
NP-MVS87.41 21563.04 22090.30 175
MDTV_nov1_ep1372.61 25789.06 17268.48 7580.33 34090.11 22371.84 20871.81 20775.92 34853.01 22593.92 23548.04 33073.38 239
ACMMP++_ref71.63 253
ACMMP++69.72 262
Test By Simon54.21 213