SMA-MVS | | | 98.66 6 | 98.89 6 | 98.39 9 | 99.60 1 | 99.41 8 | 99.00 20 | 97.63 12 | 97.78 17 | 95.83 19 | 98.33 10 | 99.83 3 | 98.85 10 | 98.93 7 | 98.56 6 | 99.41 43 | 99.40 14 |
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
APDe-MVS | | | 98.87 2 | 98.96 3 | 98.77 1 | 99.58 2 | 99.53 5 | 99.44 1 | 97.81 1 | 98.22 9 | 97.33 4 | 98.70 4 | 99.33 9 | 98.86 8 | 98.96 5 | 98.40 13 | 99.63 3 | 99.57 8 |
|
PGM-MVS | | | 97.81 25 | 98.11 28 | 97.46 30 | 99.55 3 | 99.34 15 | 99.32 8 | 94.51 46 | 96.21 60 | 93.07 37 | 98.05 14 | 97.95 42 | 98.82 12 | 98.22 30 | 97.89 32 | 99.48 22 | 99.09 53 |
|
ACMMP_NAP | | | 98.20 18 | 98.49 12 | 97.85 26 | 99.50 4 | 99.40 9 | 99.26 11 | 97.64 11 | 97.47 33 | 92.62 46 | 97.59 20 | 99.09 21 | 98.71 16 | 98.82 11 | 97.86 33 | 99.40 46 | 99.19 39 |
|
zzz-MVS | | | 98.43 11 | 98.31 23 | 98.57 4 | 99.48 5 | 99.40 9 | 99.32 8 | 97.62 13 | 97.70 22 | 96.67 11 | 96.59 32 | 99.09 21 | 98.86 8 | 98.65 12 | 97.56 43 | 99.45 30 | 99.17 45 |
|
APD-MVS | | | 98.36 15 | 98.32 22 | 98.41 8 | 99.47 6 | 99.26 21 | 99.12 15 | 97.77 6 | 96.73 49 | 96.12 17 | 97.27 28 | 98.88 24 | 98.46 25 | 98.47 17 | 98.39 14 | 99.52 14 | 99.22 35 |
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
CSCG | | | 97.44 32 | 97.18 40 | 97.75 28 | 99.47 6 | 99.52 6 | 98.55 31 | 95.41 41 | 97.69 24 | 95.72 20 | 94.29 53 | 95.53 62 | 98.10 31 | 96.20 100 | 97.38 51 | 99.24 72 | 99.62 3 |
|
HPM-MVS++ | | | 98.34 16 | 98.47 14 | 98.18 17 | 99.46 8 | 99.15 29 | 99.10 16 | 97.69 7 | 97.67 25 | 94.93 27 | 97.62 19 | 99.70 6 | 98.60 20 | 98.45 18 | 97.46 46 | 99.31 61 | 99.26 29 |
|
xxxxxxxxxxxxxcwj | | | 97.07 38 | 95.99 60 | 98.33 10 | 99.45 9 | 99.05 32 | 98.27 37 | 97.65 8 | 97.73 18 | 97.02 7 | 98.18 11 | 81.99 142 | 98.11 29 | 98.15 32 | 97.62 39 | 99.45 30 | 99.19 39 |
|
SF-MVS | | | 98.39 13 | 98.45 16 | 98.33 10 | 99.45 9 | 99.05 32 | 98.27 37 | 97.65 8 | 97.73 18 | 97.02 7 | 98.18 11 | 99.25 14 | 98.11 29 | 98.15 32 | 97.62 39 | 99.45 30 | 99.19 39 |
|
SR-MVS | | | | | | 99.45 9 | | | 97.61 15 | | | | 99.20 15 | | | | | |
|
MSP-MVS | | | 98.73 5 | 98.93 4 | 98.50 6 | 99.44 12 | 99.57 3 | 99.36 3 | 97.65 8 | 98.14 11 | 96.51 15 | 98.49 6 | 99.65 7 | 98.67 18 | 98.60 13 | 98.42 11 | 99.40 46 | 99.63 1 |
|
DVP-MVS | | | 98.86 3 | 98.97 2 | 98.75 2 | 99.43 13 | 99.63 1 | 99.25 12 | 97.81 1 | 98.62 1 | 97.69 1 | 97.59 20 | 99.90 1 | 98.93 5 | 98.99 3 | 98.42 11 | 99.37 52 | 99.62 3 |
|
ACMMPR | | | 98.40 12 | 98.49 12 | 98.28 14 | 99.41 14 | 99.40 9 | 99.36 3 | 97.35 22 | 98.30 5 | 95.02 26 | 97.79 17 | 98.39 37 | 99.04 2 | 98.26 27 | 98.10 22 | 99.50 21 | 99.22 35 |
|
X-MVS | | | 97.84 24 | 98.19 27 | 97.42 31 | 99.40 15 | 99.35 12 | 99.06 17 | 97.25 26 | 97.38 34 | 90.85 57 | 96.06 36 | 98.72 29 | 98.53 24 | 98.41 22 | 98.15 21 | 99.46 26 | 99.28 24 |
|
MCST-MVS | | | 98.20 18 | 98.36 18 | 98.01 23 | 99.40 15 | 99.05 32 | 99.00 20 | 97.62 13 | 97.59 29 | 93.70 34 | 97.42 27 | 99.30 10 | 98.77 14 | 98.39 23 | 97.48 45 | 99.59 4 | 99.31 23 |
|
CNVR-MVS | | | 98.47 10 | 98.46 15 | 98.48 7 | 99.40 15 | 99.05 32 | 99.02 19 | 97.54 17 | 97.73 18 | 96.65 12 | 97.20 29 | 99.13 19 | 98.85 10 | 98.91 8 | 98.10 22 | 99.41 43 | 99.08 54 |
|
HFP-MVS | | | 98.48 9 | 98.62 10 | 98.32 12 | 99.39 18 | 99.33 16 | 99.27 10 | 97.42 19 | 98.27 6 | 95.25 24 | 98.34 9 | 98.83 26 | 99.08 1 | 98.26 27 | 98.08 24 | 99.48 22 | 99.26 29 |
|
SED-MVS | | | 98.90 1 | 99.07 1 | 98.69 3 | 99.38 19 | 99.61 2 | 99.33 7 | 97.80 3 | 98.25 7 | 97.60 2 | 98.87 3 | 99.89 2 | 98.67 18 | 99.02 2 | 98.26 17 | 99.36 54 | 99.61 5 |
|
NCCC | | | 98.10 21 | 98.05 30 | 98.17 19 | 99.38 19 | 99.05 32 | 99.00 20 | 97.53 18 | 98.04 13 | 95.12 25 | 94.80 50 | 99.18 17 | 98.58 22 | 98.49 16 | 97.78 36 | 99.39 48 | 98.98 71 |
|
MP-MVS | | | 98.09 22 | 98.30 24 | 97.84 27 | 99.34 21 | 99.19 27 | 99.23 13 | 97.40 20 | 97.09 42 | 93.03 40 | 97.58 22 | 98.85 25 | 98.57 23 | 98.44 20 | 97.69 37 | 99.48 22 | 99.23 33 |
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
CP-MVS | | | 98.32 17 | 98.34 21 | 98.29 13 | 99.34 21 | 99.30 17 | 99.15 14 | 97.35 22 | 97.49 31 | 95.58 22 | 97.72 18 | 98.62 33 | 98.82 12 | 98.29 25 | 97.67 38 | 99.51 19 | 99.28 24 |
|
SteuartSystems-ACMMP | | | 98.38 14 | 98.71 9 | 97.99 24 | 99.34 21 | 99.46 7 | 99.34 5 | 97.33 25 | 97.31 35 | 94.25 30 | 98.06 13 | 99.17 18 | 98.13 28 | 98.98 4 | 98.46 9 | 99.55 11 | 99.54 9 |
Skip Steuart: Steuart Systems R&D Blog. |
DPE-MVS | | | 98.75 4 | 98.91 5 | 98.57 4 | 99.21 24 | 99.54 4 | 99.42 2 | 97.78 5 | 97.49 31 | 96.84 9 | 98.94 1 | 99.82 4 | 98.59 21 | 98.90 9 | 98.22 18 | 99.56 10 | 99.48 11 |
|
mPP-MVS | | | | | | 99.21 24 | | | | | | | 98.29 38 | | | | | |
|
AdaColmap | | | 97.53 30 | 96.93 45 | 98.24 15 | 99.21 24 | 98.77 62 | 98.47 34 | 97.34 24 | 96.68 51 | 96.52 14 | 95.11 47 | 96.12 58 | 98.72 15 | 97.19 63 | 96.24 78 | 99.17 86 | 98.39 111 |
|
DeepC-MVS_fast | | 96.13 1 | 98.13 20 | 98.27 25 | 97.97 25 | 99.16 27 | 99.03 39 | 99.05 18 | 97.24 27 | 98.22 9 | 94.17 32 | 95.82 38 | 98.07 39 | 98.69 17 | 98.83 10 | 98.80 2 | 99.52 14 | 99.10 51 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
MSLP-MVS++ | | | 98.04 23 | 97.93 32 | 98.18 17 | 99.10 28 | 99.09 31 | 98.34 36 | 96.99 33 | 97.54 30 | 96.60 13 | 94.82 49 | 98.45 35 | 98.89 6 | 97.46 55 | 98.77 4 | 99.17 86 | 99.37 16 |
|
3Dnovator | | 93.79 8 | 97.08 37 | 97.20 38 | 96.95 38 | 99.09 29 | 99.03 39 | 98.20 40 | 93.33 54 | 97.99 14 | 93.82 33 | 90.61 90 | 96.80 49 | 97.82 35 | 97.90 44 | 98.78 3 | 99.47 25 | 99.26 29 |
|
QAPM | | | 96.78 46 | 97.14 42 | 96.36 44 | 99.05 30 | 99.14 30 | 98.02 43 | 93.26 56 | 97.27 37 | 90.84 60 | 91.16 82 | 97.31 44 | 97.64 40 | 97.70 49 | 98.20 19 | 99.33 56 | 99.18 43 |
|
OpenMVS | | 92.33 11 | 95.50 55 | 95.22 72 | 95.82 52 | 98.98 31 | 98.97 46 | 97.67 51 | 93.04 64 | 94.64 99 | 89.18 88 | 84.44 135 | 94.79 64 | 96.79 60 | 97.23 60 | 97.61 41 | 99.24 72 | 98.88 82 |
|
PLC | | 94.95 3 | 97.37 33 | 96.77 49 | 98.07 21 | 98.97 32 | 98.21 84 | 97.94 46 | 96.85 36 | 97.66 26 | 97.58 3 | 93.33 58 | 96.84 48 | 98.01 34 | 97.13 65 | 96.20 80 | 99.09 98 | 98.01 123 |
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
train_agg | | | 97.65 29 | 98.06 29 | 97.18 34 | 98.94 33 | 98.91 53 | 98.98 24 | 97.07 32 | 96.71 50 | 90.66 62 | 97.43 26 | 99.08 23 | 98.20 26 | 97.96 42 | 97.14 57 | 99.22 78 | 99.19 39 |
|
CDPH-MVS | | | 96.84 44 | 97.49 34 | 96.09 48 | 98.92 34 | 98.85 58 | 98.61 28 | 95.09 42 | 96.00 68 | 87.29 101 | 95.45 44 | 97.42 43 | 97.16 50 | 97.83 46 | 97.94 29 | 99.44 38 | 98.92 77 |
|
CPTT-MVS | | | 97.78 26 | 97.54 33 | 98.05 22 | 98.91 35 | 99.05 32 | 99.00 20 | 96.96 34 | 97.14 40 | 95.92 18 | 95.50 42 | 98.78 28 | 98.99 4 | 97.20 61 | 96.07 82 | 98.54 151 | 99.04 63 |
|
3Dnovator+ | | 93.91 7 | 97.23 35 | 97.22 37 | 97.24 33 | 98.89 36 | 98.85 58 | 98.26 39 | 93.25 58 | 97.99 14 | 95.56 23 | 90.01 96 | 98.03 41 | 98.05 32 | 97.91 43 | 98.43 10 | 99.44 38 | 99.35 18 |
|
ACMMP | | | 97.37 33 | 97.48 35 | 97.25 32 | 98.88 37 | 99.28 19 | 98.47 34 | 96.86 35 | 97.04 44 | 92.15 47 | 97.57 23 | 96.05 60 | 97.67 38 | 97.27 59 | 95.99 87 | 99.46 26 | 99.14 50 |
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
PHI-MVS | | | 97.78 26 | 98.44 17 | 97.02 37 | 98.73 38 | 99.25 23 | 98.11 41 | 95.54 40 | 96.66 52 | 92.79 43 | 98.52 5 | 99.38 8 | 97.50 42 | 97.84 45 | 98.39 14 | 99.45 30 | 99.03 64 |
|
OMC-MVS | | | 97.00 40 | 96.92 46 | 97.09 35 | 98.69 39 | 98.66 69 | 97.85 47 | 95.02 43 | 98.09 12 | 94.47 28 | 93.15 59 | 96.90 46 | 97.38 44 | 97.16 64 | 96.82 67 | 99.13 93 | 97.65 136 |
|
MAR-MVS | | | 95.50 55 | 95.60 64 | 95.39 59 | 98.67 40 | 98.18 87 | 95.89 94 | 89.81 104 | 94.55 101 | 91.97 49 | 92.99 61 | 90.21 88 | 97.30 46 | 96.79 74 | 97.49 44 | 98.72 137 | 98.99 69 |
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
TSAR-MVS + ACMM | | | 97.71 28 | 98.60 11 | 96.66 41 | 98.64 41 | 99.05 32 | 98.85 25 | 97.23 28 | 98.45 3 | 89.40 84 | 97.51 24 | 99.27 13 | 96.88 59 | 98.53 14 | 97.81 35 | 98.96 114 | 99.59 7 |
|
abl_6 | | | | | 96.82 40 | 98.60 42 | 98.74 63 | 97.74 49 | 93.73 50 | 96.25 58 | 94.37 29 | 94.55 52 | 98.60 34 | 97.25 47 | | | 99.27 67 | 98.61 96 |
|
CNLPA | | | 96.90 42 | 96.28 55 | 97.64 29 | 98.56 43 | 98.63 74 | 96.85 64 | 96.60 37 | 97.73 18 | 97.08 6 | 89.78 98 | 96.28 56 | 97.80 37 | 96.73 77 | 96.63 69 | 98.94 116 | 98.14 122 |
|
EPNet | | | 96.27 51 | 96.97 44 | 95.46 57 | 98.47 44 | 98.28 81 | 97.41 54 | 93.67 51 | 95.86 74 | 92.86 42 | 97.51 24 | 93.79 68 | 91.76 134 | 97.03 68 | 97.03 59 | 98.61 147 | 99.28 24 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
MVS_111021_LR | | | 97.16 36 | 98.01 31 | 96.16 47 | 98.47 44 | 98.98 44 | 96.94 61 | 93.89 49 | 97.64 27 | 91.44 51 | 98.89 2 | 96.41 52 | 97.20 49 | 98.02 40 | 97.29 56 | 99.04 109 | 98.85 86 |
|
MVS_111021_HR | | | 97.04 39 | 98.20 26 | 95.69 53 | 98.44 46 | 99.29 18 | 96.59 74 | 93.20 59 | 97.70 22 | 89.94 76 | 98.46 7 | 96.89 47 | 96.71 63 | 98.11 37 | 97.95 28 | 99.27 67 | 99.01 67 |
|
MSDG | | | 94.82 68 | 93.73 100 | 96.09 48 | 98.34 47 | 97.43 102 | 97.06 58 | 96.05 38 | 95.84 75 | 90.56 63 | 86.30 124 | 89.10 98 | 95.55 82 | 96.13 103 | 95.61 97 | 99.00 110 | 95.73 171 |
|
TAPA-MVS | | 94.18 5 | 96.38 48 | 96.49 53 | 96.25 45 | 98.26 48 | 98.66 69 | 98.00 44 | 94.96 44 | 97.17 39 | 89.48 81 | 92.91 63 | 96.35 53 | 97.53 41 | 96.59 82 | 95.90 90 | 99.28 65 | 97.82 127 |
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
DeepC-MVS | | 94.87 4 | 96.76 47 | 96.50 52 | 97.05 36 | 98.21 49 | 99.28 19 | 98.67 27 | 97.38 21 | 97.31 35 | 90.36 69 | 89.19 100 | 93.58 69 | 98.19 27 | 98.31 24 | 98.50 7 | 99.51 19 | 99.36 17 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
SD-MVS | | | 98.52 7 | 98.77 8 | 98.23 16 | 98.15 50 | 99.26 21 | 98.79 26 | 97.59 16 | 98.52 2 | 96.25 16 | 97.99 15 | 99.75 5 | 99.01 3 | 98.27 26 | 97.97 27 | 99.59 4 | 99.63 1 |
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
TSAR-MVS + MP. | | | 98.49 8 | 98.78 7 | 98.15 20 | 98.14 51 | 99.17 28 | 99.34 5 | 97.18 30 | 98.44 4 | 95.72 20 | 97.84 16 | 99.28 11 | 98.87 7 | 99.05 1 | 98.05 25 | 99.66 1 | 99.60 6 |
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
DPM-MVS | | | 96.86 43 | 96.82 48 | 96.91 39 | 98.08 52 | 98.20 85 | 98.52 33 | 97.20 29 | 97.24 38 | 91.42 52 | 91.84 75 | 98.45 35 | 97.25 47 | 97.07 66 | 97.40 50 | 98.95 115 | 97.55 139 |
|
EPNet_dtu | | | 92.45 110 | 95.02 77 | 89.46 139 | 98.02 53 | 95.47 160 | 94.79 113 | 92.62 65 | 94.97 94 | 70.11 185 | 94.76 51 | 92.61 75 | 84.07 194 | 95.94 106 | 95.56 98 | 97.15 181 | 95.82 170 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
CANet | | | 96.84 44 | 97.20 38 | 96.42 42 | 97.92 54 | 99.24 25 | 98.60 29 | 93.51 53 | 97.11 41 | 93.07 37 | 91.16 82 | 97.24 45 | 96.21 71 | 98.24 29 | 98.05 25 | 99.22 78 | 99.35 18 |
|
LS3D | | | 95.46 58 | 95.14 73 | 95.84 51 | 97.91 55 | 98.90 55 | 98.58 30 | 97.79 4 | 97.07 43 | 83.65 115 | 88.71 103 | 88.64 101 | 97.82 35 | 97.49 54 | 97.42 48 | 99.26 71 | 97.72 135 |
|
DELS-MVS | | | 96.06 53 | 96.04 59 | 96.07 50 | 97.77 56 | 99.25 23 | 98.10 42 | 93.26 56 | 94.42 103 | 92.79 43 | 88.52 107 | 93.48 70 | 95.06 88 | 98.51 15 | 98.83 1 | 99.45 30 | 99.28 24 |
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
COLMAP_ROB | | 90.49 14 | 93.27 103 | 92.71 112 | 93.93 86 | 97.75 57 | 97.44 101 | 96.07 88 | 93.17 60 | 95.40 84 | 83.86 113 | 83.76 139 | 88.72 100 | 93.87 107 | 94.25 144 | 94.11 139 | 98.87 122 | 95.28 177 |
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
PCF-MVS | | 93.95 6 | 95.65 54 | 95.14 73 | 96.25 45 | 97.73 58 | 98.73 65 | 97.59 52 | 97.13 31 | 92.50 131 | 89.09 90 | 89.85 97 | 96.65 50 | 96.90 58 | 94.97 132 | 94.89 116 | 99.08 99 | 98.38 112 |
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
PatchMatch-RL | | | 94.69 74 | 94.41 84 | 95.02 64 | 97.63 59 | 98.15 88 | 94.50 119 | 91.99 73 | 95.32 86 | 91.31 53 | 95.47 43 | 83.44 134 | 96.02 74 | 96.56 83 | 95.23 108 | 98.69 140 | 96.67 163 |
|
PVSNet_BlendedMVS | | | 95.41 60 | 95.28 70 | 95.57 55 | 97.42 60 | 99.02 41 | 95.89 94 | 93.10 61 | 96.16 61 | 93.12 35 | 91.99 71 | 85.27 120 | 94.66 93 | 98.09 38 | 97.34 52 | 99.24 72 | 99.08 54 |
|
PVSNet_Blended | | | 95.41 60 | 95.28 70 | 95.57 55 | 97.42 60 | 99.02 41 | 95.89 94 | 93.10 61 | 96.16 61 | 93.12 35 | 91.99 71 | 85.27 120 | 94.66 93 | 98.09 38 | 97.34 52 | 99.24 72 | 99.08 54 |
|
DeepPCF-MVS | | 95.28 2 | 97.00 40 | 98.35 20 | 95.42 58 | 97.30 62 | 98.94 48 | 94.82 112 | 96.03 39 | 98.24 8 | 92.11 48 | 95.80 39 | 98.64 32 | 95.51 83 | 98.95 6 | 98.66 5 | 96.78 184 | 99.20 38 |
|
CHOSEN 280x420 | | | 95.46 58 | 97.01 43 | 93.66 91 | 97.28 63 | 97.98 92 | 96.40 80 | 85.39 153 | 96.10 65 | 91.07 55 | 96.53 33 | 96.34 55 | 95.61 80 | 97.65 50 | 96.95 62 | 96.21 185 | 97.49 140 |
|
MVS_0304 | | | 96.31 49 | 96.91 47 | 95.62 54 | 97.21 64 | 99.20 26 | 98.55 31 | 93.10 61 | 97.04 44 | 89.73 78 | 90.30 92 | 96.35 53 | 95.71 77 | 98.14 34 | 97.93 31 | 99.38 49 | 99.40 14 |
|
CHOSEN 1792x2688 | | | 92.66 108 | 92.49 117 | 92.85 102 | 97.13 65 | 98.89 56 | 95.90 92 | 88.50 120 | 95.32 86 | 83.31 116 | 71.99 189 | 88.96 99 | 94.10 104 | 96.69 78 | 96.49 71 | 98.15 164 | 99.10 51 |
|
HyFIR lowres test | | | 92.03 111 | 91.55 135 | 92.58 103 | 97.13 65 | 98.72 66 | 94.65 116 | 86.54 139 | 93.58 117 | 82.56 119 | 67.75 200 | 90.47 86 | 95.67 78 | 95.87 108 | 95.54 99 | 98.91 119 | 98.93 76 |
|
OPM-MVS | | | 93.61 96 | 92.43 121 | 95.00 65 | 96.94 67 | 97.34 103 | 97.78 48 | 94.23 47 | 89.64 162 | 85.53 108 | 88.70 104 | 82.81 138 | 96.28 70 | 96.28 97 | 95.00 115 | 99.24 72 | 97.22 148 |
|
XVS | | | | | | 96.60 68 | 99.35 12 | 96.82 65 | | | 90.85 57 | | 98.72 29 | | | | 99.46 26 | |
|
X-MVStestdata | | | | | | 96.60 68 | 99.35 12 | 96.82 65 | | | 90.85 57 | | 98.72 29 | | | | 99.46 26 | |
|
TSAR-MVS + COLMAP | | | 94.79 70 | 94.51 82 | 95.11 62 | 96.50 70 | 97.54 97 | 97.99 45 | 94.54 45 | 97.81 16 | 85.88 107 | 96.73 31 | 81.28 146 | 96.99 56 | 96.29 96 | 95.21 109 | 98.76 136 | 96.73 162 |
|
PVSNet_Blended_VisFu | | | 94.77 72 | 95.54 66 | 93.87 87 | 96.48 71 | 98.97 46 | 94.33 121 | 91.84 76 | 94.93 95 | 90.37 68 | 85.04 130 | 94.99 63 | 90.87 149 | 98.12 36 | 97.30 54 | 99.30 63 | 99.45 13 |
|
LGP-MVS_train | | | 94.12 85 | 94.62 80 | 93.53 92 | 96.44 72 | 97.54 97 | 97.40 55 | 91.84 76 | 94.66 98 | 81.09 128 | 95.70 41 | 83.36 135 | 95.10 87 | 96.36 94 | 95.71 95 | 99.32 58 | 99.03 64 |
|
HQP-MVS | | | 94.43 80 | 94.57 81 | 94.27 82 | 96.41 73 | 97.23 106 | 96.89 62 | 93.98 48 | 95.94 71 | 83.68 114 | 95.01 48 | 84.46 126 | 95.58 81 | 95.47 120 | 94.85 120 | 99.07 101 | 99.00 68 |
|
ACMM | | 92.75 10 | 94.41 82 | 93.84 98 | 95.09 63 | 96.41 73 | 96.80 115 | 94.88 111 | 93.54 52 | 96.41 55 | 90.16 70 | 92.31 69 | 83.11 136 | 96.32 69 | 96.22 99 | 94.65 122 | 99.22 78 | 97.35 145 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
RPSCF | | | 94.05 86 | 94.00 94 | 94.12 84 | 96.20 75 | 96.41 129 | 96.61 73 | 91.54 81 | 95.83 76 | 89.73 78 | 96.94 30 | 92.80 73 | 95.35 86 | 91.63 182 | 90.44 185 | 95.27 196 | 93.94 187 |
|
UA-Net | | | 93.96 88 | 95.95 61 | 91.64 111 | 96.06 76 | 98.59 76 | 95.29 102 | 90.00 99 | 91.06 150 | 82.87 117 | 90.64 89 | 98.06 40 | 86.06 181 | 98.14 34 | 98.20 19 | 99.58 6 | 96.96 156 |
|
UGNet | | | 94.92 65 | 96.63 50 | 92.93 101 | 96.03 77 | 98.63 74 | 94.53 118 | 91.52 82 | 96.23 59 | 90.03 73 | 92.87 64 | 96.10 59 | 86.28 180 | 96.68 79 | 96.60 70 | 99.16 89 | 99.32 22 |
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
ACMP | | 92.88 9 | 94.43 80 | 94.38 85 | 94.50 78 | 96.01 78 | 97.69 95 | 95.85 97 | 92.09 72 | 95.74 77 | 89.12 89 | 95.14 46 | 82.62 140 | 94.77 89 | 95.73 114 | 94.67 121 | 99.14 92 | 99.06 58 |
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
IB-MVS | | 89.56 15 | 91.71 116 | 92.50 116 | 90.79 123 | 95.94 79 | 98.44 78 | 87.05 193 | 91.38 85 | 93.15 120 | 92.98 41 | 84.78 131 | 85.14 123 | 78.27 199 | 92.47 171 | 94.44 134 | 99.10 97 | 99.08 54 |
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
MS-PatchMatch | | | 91.82 114 | 92.51 115 | 91.02 117 | 95.83 80 | 96.88 111 | 95.05 106 | 84.55 166 | 93.85 112 | 82.01 121 | 82.51 145 | 91.71 77 | 90.52 156 | 95.07 130 | 93.03 161 | 98.13 165 | 94.52 179 |
|
CANet_DTU | | | 93.92 89 | 96.57 51 | 90.83 121 | 95.63 81 | 98.39 79 | 96.99 60 | 87.38 131 | 96.26 57 | 71.97 174 | 96.31 34 | 93.02 71 | 94.53 96 | 97.38 57 | 96.83 66 | 98.49 154 | 97.79 128 |
|
ACMH | | 90.77 13 | 91.51 121 | 91.63 134 | 91.38 114 | 95.62 82 | 96.87 113 | 91.76 166 | 89.66 106 | 91.58 145 | 78.67 137 | 86.73 115 | 78.12 154 | 93.77 110 | 94.59 135 | 94.54 130 | 98.78 134 | 98.98 71 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
TSAR-MVS + GP. | | | 97.45 31 | 98.36 18 | 96.39 43 | 95.56 83 | 98.93 50 | 97.74 49 | 93.31 55 | 97.61 28 | 94.24 31 | 98.44 8 | 99.19 16 | 98.03 33 | 97.60 51 | 97.41 49 | 99.44 38 | 99.33 20 |
|
thres600view7 | | | 93.49 99 | 92.37 124 | 94.79 73 | 95.42 84 | 98.93 50 | 96.58 75 | 92.31 67 | 93.04 121 | 87.88 97 | 86.62 117 | 76.94 161 | 97.09 54 | 96.82 71 | 95.63 96 | 99.45 30 | 98.63 95 |
|
thres400 | | | 93.56 97 | 92.43 121 | 94.87 70 | 95.40 85 | 98.91 53 | 96.70 71 | 92.38 66 | 92.93 123 | 88.19 96 | 86.69 116 | 77.35 159 | 97.13 51 | 96.75 76 | 95.85 92 | 99.42 42 | 98.56 98 |
|
thres200 | | | 93.62 95 | 92.54 114 | 94.88 69 | 95.36 86 | 98.93 50 | 96.75 69 | 92.31 67 | 92.84 124 | 88.28 94 | 86.99 113 | 77.81 158 | 97.13 51 | 96.82 71 | 95.92 88 | 99.45 30 | 98.49 104 |
|
thres100view900 | | | 93.55 98 | 92.47 120 | 94.81 72 | 95.33 87 | 98.74 63 | 96.78 68 | 92.30 70 | 92.63 127 | 88.29 92 | 87.21 111 | 78.01 156 | 96.78 61 | 96.38 91 | 95.92 88 | 99.38 49 | 98.40 110 |
|
tfpn200view9 | | | 93.64 94 | 92.57 113 | 94.89 68 | 95.33 87 | 98.94 48 | 96.82 65 | 92.31 67 | 92.63 127 | 88.29 92 | 87.21 111 | 78.01 156 | 97.12 53 | 96.82 71 | 95.85 92 | 99.45 30 | 98.56 98 |
|
IS_MVSNet | | | 95.28 62 | 96.43 54 | 93.94 85 | 95.30 89 | 99.01 43 | 95.90 92 | 91.12 87 | 94.13 108 | 87.50 100 | 91.23 81 | 94.45 66 | 94.17 102 | 98.45 18 | 98.50 7 | 99.65 2 | 99.23 33 |
|
CMPMVS | | 65.18 17 | 84.76 190 | 83.10 196 | 86.69 180 | 95.29 90 | 95.05 173 | 88.37 188 | 85.51 152 | 80.27 204 | 71.31 178 | 68.37 198 | 73.85 173 | 85.25 185 | 87.72 197 | 87.75 195 | 94.38 204 | 88.70 203 |
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
canonicalmvs | | | 95.25 64 | 95.45 68 | 95.00 65 | 95.27 91 | 98.72 66 | 96.89 62 | 89.82 103 | 96.51 53 | 90.84 60 | 93.72 57 | 86.01 115 | 97.66 39 | 95.78 112 | 97.94 29 | 99.54 13 | 99.50 10 |
|
Vis-MVSNet (Re-imp) | | | 94.46 79 | 96.24 56 | 92.40 104 | 95.23 92 | 98.64 72 | 95.56 100 | 90.99 88 | 94.42 103 | 85.02 110 | 90.88 88 | 94.65 65 | 88.01 171 | 98.17 31 | 98.37 16 | 99.57 8 | 98.53 101 |
|
CLD-MVS | | | 94.79 70 | 94.36 86 | 95.30 60 | 95.21 93 | 97.46 100 | 97.23 56 | 92.24 71 | 96.43 54 | 91.77 50 | 92.69 65 | 84.31 127 | 96.06 72 | 95.52 118 | 95.03 112 | 99.31 61 | 99.06 58 |
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
baseline1 | | | 94.59 76 | 94.47 83 | 94.72 74 | 95.16 94 | 97.97 93 | 96.07 88 | 91.94 74 | 94.86 96 | 89.98 74 | 91.60 79 | 85.87 117 | 95.64 79 | 97.07 66 | 96.90 63 | 99.52 14 | 97.06 155 |
|
TDRefinement | | | 89.07 154 | 88.15 163 | 90.14 132 | 95.16 94 | 96.88 111 | 95.55 101 | 90.20 97 | 89.68 161 | 76.42 150 | 76.67 162 | 74.30 171 | 84.85 188 | 93.11 161 | 91.91 179 | 98.64 146 | 94.47 180 |
|
ACMH+ | | 90.88 12 | 91.41 122 | 91.13 138 | 91.74 110 | 95.11 96 | 96.95 110 | 93.13 138 | 89.48 110 | 92.42 133 | 79.93 132 | 85.13 129 | 78.02 155 | 93.82 109 | 93.49 155 | 93.88 145 | 98.94 116 | 97.99 124 |
|
DCV-MVSNet | | | 94.76 73 | 95.12 75 | 94.35 81 | 95.10 97 | 95.81 149 | 96.46 79 | 89.49 109 | 96.33 56 | 90.16 70 | 92.55 67 | 90.26 87 | 95.83 76 | 95.52 118 | 96.03 85 | 99.06 104 | 99.33 20 |
|
Anonymous202405211 | | | | 92.18 126 | | 95.04 98 | 98.20 85 | 96.14 85 | 91.79 78 | 93.93 109 | | 74.60 171 | 88.38 104 | 96.48 67 | 95.17 128 | 95.82 94 | 99.00 110 | 99.15 47 |
|
CS-MVS | | | 96.23 52 | 97.15 41 | 95.16 61 | 95.01 99 | 98.98 44 | 97.13 57 | 90.68 92 | 96.00 68 | 91.21 54 | 94.03 54 | 96.48 51 | 97.35 45 | 98.00 41 | 97.43 47 | 99.55 11 | 99.15 47 |
|
FC-MVSNet-train | | | 93.85 90 | 93.91 95 | 93.78 89 | 94.94 100 | 96.79 118 | 94.29 122 | 91.13 86 | 93.84 113 | 88.26 95 | 90.40 91 | 85.23 122 | 94.65 95 | 96.54 85 | 95.31 105 | 99.38 49 | 99.28 24 |
|
EPP-MVSNet | | | 95.27 63 | 96.18 58 | 94.20 83 | 94.88 101 | 98.64 72 | 94.97 108 | 90.70 91 | 95.34 85 | 89.67 80 | 91.66 78 | 93.84 67 | 95.42 85 | 97.32 58 | 97.00 60 | 99.58 6 | 99.47 12 |
|
EIA-MVS | | | 95.50 55 | 96.19 57 | 94.69 75 | 94.83 102 | 98.88 57 | 95.93 91 | 91.50 83 | 94.47 102 | 89.43 82 | 93.14 60 | 92.72 74 | 97.05 55 | 97.82 48 | 97.13 58 | 99.43 41 | 99.15 47 |
|
ETV-MVS | | | 96.31 49 | 97.47 36 | 94.96 67 | 94.79 103 | 98.78 61 | 96.08 87 | 91.41 84 | 96.16 61 | 90.50 64 | 95.76 40 | 96.20 57 | 97.39 43 | 98.42 21 | 97.82 34 | 99.57 8 | 99.18 43 |
|
MVS_Test | | | 94.82 68 | 95.66 63 | 93.84 88 | 94.79 103 | 98.35 80 | 96.49 78 | 89.10 114 | 96.12 64 | 87.09 103 | 92.58 66 | 90.61 85 | 96.48 67 | 96.51 89 | 96.89 64 | 99.11 96 | 98.54 100 |
|
Anonymous20231211 | | | 93.49 99 | 92.33 125 | 94.84 71 | 94.78 105 | 98.00 91 | 96.11 86 | 91.85 75 | 94.86 96 | 90.91 56 | 74.69 170 | 89.18 96 | 96.73 62 | 94.82 133 | 95.51 100 | 98.67 141 | 99.24 32 |
|
baseline | | | 94.83 67 | 95.82 62 | 93.68 90 | 94.75 106 | 97.80 94 | 96.51 77 | 88.53 119 | 97.02 46 | 89.34 86 | 92.93 62 | 92.18 76 | 94.69 92 | 95.78 112 | 96.08 81 | 98.27 162 | 98.97 75 |
|
MVSTER | | | 94.89 66 | 95.07 76 | 94.68 76 | 94.71 107 | 96.68 121 | 97.00 59 | 90.57 94 | 95.18 92 | 93.05 39 | 95.21 45 | 86.41 112 | 93.72 111 | 97.59 52 | 95.88 91 | 99.00 110 | 98.50 103 |
|
EPMVS | | | 90.88 128 | 92.12 127 | 89.44 140 | 94.71 107 | 97.24 105 | 93.55 129 | 76.81 192 | 95.89 72 | 81.77 123 | 91.49 80 | 86.47 111 | 93.87 107 | 90.21 189 | 90.07 187 | 95.92 187 | 93.49 193 |
|
casdiffmvs | | | 94.38 83 | 94.15 93 | 94.64 77 | 94.70 109 | 98.51 77 | 96.03 90 | 91.66 79 | 95.70 78 | 89.36 85 | 86.48 119 | 85.03 125 | 96.60 66 | 97.40 56 | 97.30 54 | 99.52 14 | 98.67 93 |
|
diffmvs | | | 94.31 84 | 94.21 88 | 94.42 80 | 94.64 110 | 98.28 81 | 96.36 81 | 91.56 80 | 96.77 48 | 88.89 91 | 88.97 101 | 84.23 128 | 96.01 75 | 96.05 104 | 96.41 73 | 99.05 108 | 98.79 90 |
|
DI_MVS_plusplus_trai | | | 94.01 87 | 93.63 102 | 94.44 79 | 94.54 111 | 98.26 83 | 97.51 53 | 90.63 93 | 95.88 73 | 89.34 86 | 80.54 152 | 89.36 93 | 95.48 84 | 96.33 95 | 96.27 77 | 99.17 86 | 98.78 91 |
|
thisisatest0530 | | | 94.54 77 | 95.47 67 | 93.46 94 | 94.51 112 | 98.65 71 | 94.66 115 | 90.72 89 | 95.69 80 | 86.90 104 | 93.80 55 | 89.44 92 | 94.74 90 | 96.98 70 | 94.86 117 | 99.19 85 | 98.85 86 |
|
tttt0517 | | | 94.52 78 | 95.44 69 | 93.44 95 | 94.51 112 | 98.68 68 | 94.61 117 | 90.72 89 | 95.61 82 | 86.84 105 | 93.78 56 | 89.26 95 | 94.74 90 | 97.02 69 | 94.86 117 | 99.20 84 | 98.87 84 |
|
ADS-MVSNet | | | 89.80 143 | 91.33 137 | 88.00 161 | 94.43 114 | 96.71 120 | 92.29 154 | 74.95 202 | 96.07 66 | 77.39 142 | 88.67 105 | 86.09 114 | 93.26 119 | 88.44 195 | 89.57 190 | 95.68 190 | 93.81 190 |
|
tpmrst | | | 88.86 158 | 89.62 149 | 87.97 162 | 94.33 115 | 95.98 139 | 92.62 146 | 76.36 195 | 94.62 100 | 76.94 146 | 85.98 125 | 82.80 139 | 92.80 124 | 86.90 200 | 87.15 198 | 94.77 201 | 93.93 188 |
|
PMMVS | | | 94.61 75 | 95.56 65 | 93.50 93 | 94.30 116 | 96.74 119 | 94.91 110 | 89.56 108 | 95.58 83 | 87.72 98 | 96.15 35 | 92.86 72 | 96.06 72 | 95.47 120 | 95.02 113 | 98.43 159 | 97.09 151 |
|
test_part1 | | | 91.21 123 | 89.47 151 | 93.24 99 | 94.26 117 | 95.45 161 | 95.26 103 | 88.36 121 | 88.49 172 | 90.04 72 | 72.61 186 | 82.82 137 | 93.69 113 | 93.25 159 | 94.62 124 | 97.84 172 | 99.06 58 |
|
CostFormer | | | 90.69 129 | 90.48 146 | 90.93 119 | 94.18 118 | 96.08 137 | 94.03 124 | 78.20 188 | 93.47 118 | 89.96 75 | 90.97 87 | 80.30 147 | 93.72 111 | 87.66 199 | 88.75 192 | 95.51 193 | 96.12 167 |
|
USDC | | | 90.69 129 | 90.52 145 | 90.88 120 | 94.17 119 | 96.43 128 | 95.82 98 | 86.76 137 | 93.92 110 | 76.27 152 | 86.49 118 | 74.30 171 | 93.67 114 | 95.04 131 | 93.36 154 | 98.61 147 | 94.13 184 |
|
Vis-MVSNet | | | 92.77 106 | 95.00 78 | 90.16 130 | 94.10 120 | 98.79 60 | 94.76 114 | 88.26 122 | 92.37 136 | 79.95 131 | 88.19 109 | 91.58 78 | 84.38 191 | 97.59 52 | 97.58 42 | 99.52 14 | 98.91 80 |
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
Effi-MVS+ | | | 92.93 105 | 93.86 97 | 91.86 107 | 94.07 121 | 98.09 90 | 95.59 99 | 85.98 146 | 94.27 106 | 79.54 135 | 91.12 85 | 81.81 143 | 96.71 63 | 96.67 80 | 96.06 83 | 99.27 67 | 98.98 71 |
|
IterMVS-LS | | | 92.56 109 | 93.18 109 | 91.84 108 | 93.90 122 | 94.97 175 | 94.99 107 | 86.20 143 | 94.18 107 | 82.68 118 | 85.81 126 | 87.36 108 | 94.43 97 | 95.31 124 | 96.02 86 | 98.87 122 | 98.60 97 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
dps | | | 90.11 141 | 89.37 154 | 90.98 118 | 93.89 123 | 96.21 134 | 93.49 131 | 77.61 190 | 91.95 142 | 92.74 45 | 88.85 102 | 78.77 153 | 92.37 127 | 87.71 198 | 87.71 196 | 95.80 189 | 94.38 182 |
|
tpm cat1 | | | 88.90 156 | 87.78 172 | 90.22 129 | 93.88 124 | 95.39 164 | 93.79 127 | 78.11 189 | 92.55 130 | 89.43 82 | 81.31 148 | 79.84 149 | 91.40 137 | 84.95 201 | 86.34 201 | 94.68 203 | 94.09 185 |
|
PatchmatchNet | | | 90.56 131 | 92.49 117 | 88.31 152 | 93.83 125 | 96.86 114 | 92.42 150 | 76.50 194 | 95.96 70 | 78.31 138 | 91.96 73 | 89.66 91 | 93.48 116 | 90.04 191 | 89.20 191 | 95.32 194 | 93.73 191 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
TinyColmap | | | 89.42 146 | 88.58 158 | 90.40 127 | 93.80 126 | 95.45 161 | 93.96 126 | 86.54 139 | 92.24 139 | 76.49 149 | 80.83 150 | 70.44 188 | 93.37 117 | 94.45 139 | 93.30 157 | 98.26 163 | 93.37 194 |
|
SCA | | | 90.92 127 | 93.04 111 | 88.45 149 | 93.72 127 | 97.33 104 | 92.77 142 | 76.08 197 | 96.02 67 | 78.26 139 | 91.96 73 | 90.86 82 | 93.99 106 | 90.98 186 | 90.04 188 | 95.88 188 | 94.06 186 |
|
RPMNet | | | 90.19 138 | 92.03 130 | 88.05 158 | 93.46 128 | 95.95 142 | 93.41 132 | 74.59 203 | 92.40 134 | 75.91 154 | 84.22 136 | 86.41 112 | 92.49 125 | 94.42 140 | 93.85 147 | 98.44 157 | 96.96 156 |
|
gg-mvs-nofinetune | | | 86.17 185 | 88.57 159 | 83.36 192 | 93.44 129 | 98.15 88 | 96.58 75 | 72.05 206 | 74.12 209 | 49.23 213 | 64.81 204 | 90.85 83 | 89.90 164 | 97.83 46 | 96.84 65 | 98.97 113 | 97.41 143 |
|
MDTV_nov1_ep13 | | | 91.57 119 | 93.18 109 | 89.70 136 | 93.39 130 | 96.97 109 | 93.53 130 | 80.91 183 | 95.70 78 | 81.86 122 | 92.40 68 | 89.93 89 | 93.25 120 | 91.97 180 | 90.80 183 | 95.25 197 | 94.46 181 |
|
CR-MVSNet | | | 90.16 139 | 91.96 131 | 88.06 157 | 93.32 131 | 95.95 142 | 93.36 134 | 75.99 198 | 92.40 134 | 75.19 160 | 83.18 141 | 85.37 119 | 92.05 129 | 95.21 126 | 94.56 128 | 98.47 156 | 97.08 153 |
|
test-LLR | | | 91.62 118 | 93.56 105 | 89.35 142 | 93.31 132 | 96.57 124 | 92.02 162 | 87.06 135 | 92.34 137 | 75.05 163 | 90.20 93 | 88.64 101 | 90.93 145 | 96.19 101 | 94.07 140 | 97.75 175 | 96.90 159 |
|
test0.0.03 1 | | | 91.97 112 | 93.91 95 | 89.72 135 | 93.31 132 | 96.40 130 | 91.34 171 | 87.06 135 | 93.86 111 | 81.67 124 | 91.15 84 | 89.16 97 | 86.02 182 | 95.08 129 | 95.09 110 | 98.91 119 | 96.64 165 |
|
CVMVSNet | | | 89.77 144 | 91.66 133 | 87.56 171 | 93.21 134 | 95.45 161 | 91.94 165 | 89.22 112 | 89.62 163 | 69.34 191 | 83.99 138 | 85.90 116 | 84.81 189 | 94.30 143 | 95.28 106 | 96.85 183 | 97.09 151 |
|
PatchT | | | 89.13 153 | 91.71 132 | 86.11 185 | 92.92 135 | 95.59 156 | 83.64 200 | 75.09 201 | 91.87 143 | 75.19 160 | 82.63 144 | 85.06 124 | 92.05 129 | 95.21 126 | 94.56 128 | 97.76 174 | 97.08 153 |
|
Fast-Effi-MVS+ | | | 91.87 113 | 92.08 128 | 91.62 113 | 92.91 136 | 97.21 107 | 94.93 109 | 84.60 164 | 93.61 116 | 81.49 126 | 83.50 140 | 78.95 151 | 96.62 65 | 96.55 84 | 96.22 79 | 99.16 89 | 98.51 102 |
|
IterMVS-SCA-FT | | | 90.24 136 | 92.48 119 | 87.63 168 | 92.85 137 | 94.30 191 | 93.79 127 | 81.47 182 | 92.66 126 | 69.95 186 | 84.66 133 | 88.38 104 | 89.99 162 | 95.39 123 | 94.34 135 | 97.74 177 | 97.63 137 |
|
baseline2 | | | 93.01 104 | 94.17 91 | 91.64 111 | 92.83 138 | 97.49 99 | 93.40 133 | 87.53 129 | 93.67 115 | 86.07 106 | 91.83 76 | 86.58 109 | 91.36 138 | 96.38 91 | 95.06 111 | 98.67 141 | 98.20 120 |
|
IterMVS | | | 90.20 137 | 92.43 121 | 87.61 169 | 92.82 139 | 94.31 190 | 94.11 123 | 81.54 180 | 92.97 122 | 69.90 187 | 84.71 132 | 88.16 107 | 89.96 163 | 95.25 125 | 94.17 138 | 97.31 179 | 97.46 141 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
CDS-MVSNet | | | 92.77 106 | 93.60 103 | 91.80 109 | 92.63 140 | 96.80 115 | 95.24 104 | 89.14 113 | 90.30 159 | 84.58 111 | 86.76 114 | 90.65 84 | 90.42 157 | 95.89 107 | 96.49 71 | 98.79 133 | 98.32 116 |
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
tpm | | | 87.95 166 | 89.44 153 | 86.21 184 | 92.53 141 | 94.62 185 | 91.40 169 | 76.36 195 | 91.46 146 | 69.80 189 | 87.43 110 | 75.14 166 | 91.55 136 | 89.85 193 | 90.60 184 | 95.61 191 | 96.96 156 |
|
Effi-MVS+-dtu | | | 91.78 115 | 93.59 104 | 89.68 138 | 92.44 142 | 97.11 108 | 94.40 120 | 84.94 160 | 92.43 132 | 75.48 156 | 91.09 86 | 83.75 132 | 93.55 115 | 96.61 81 | 95.47 101 | 97.24 180 | 98.67 93 |
|
testgi | | | 89.42 146 | 91.50 136 | 87.00 178 | 92.40 143 | 95.59 156 | 89.15 187 | 85.27 157 | 92.78 125 | 72.42 172 | 91.75 77 | 76.00 164 | 84.09 193 | 94.38 141 | 93.82 149 | 98.65 145 | 96.15 166 |
|
Fast-Effi-MVS+-dtu | | | 91.19 124 | 93.64 101 | 88.33 151 | 92.19 144 | 96.46 127 | 93.99 125 | 81.52 181 | 92.59 129 | 71.82 175 | 92.17 70 | 85.54 118 | 91.68 135 | 95.73 114 | 94.64 123 | 98.80 131 | 98.34 113 |
|
FC-MVSNet-test | | | 91.63 117 | 93.82 99 | 89.08 143 | 92.02 145 | 96.40 130 | 93.26 136 | 87.26 132 | 93.72 114 | 77.26 143 | 88.61 106 | 89.86 90 | 85.50 184 | 95.72 116 | 95.02 113 | 99.16 89 | 97.44 142 |
|
GA-MVS | | | 89.28 149 | 90.75 144 | 87.57 170 | 91.77 146 | 96.48 126 | 92.29 154 | 87.58 128 | 90.61 156 | 65.77 196 | 84.48 134 | 76.84 162 | 89.46 165 | 95.84 109 | 93.68 150 | 98.52 152 | 97.34 146 |
|
UniMVSNet_ETH3D | | | 88.47 160 | 86.00 189 | 91.35 115 | 91.55 147 | 96.29 132 | 92.53 147 | 88.81 115 | 85.58 192 | 82.33 120 | 67.63 201 | 66.87 201 | 94.04 105 | 91.49 183 | 95.24 107 | 98.84 125 | 98.92 77 |
|
TAMVS | | | 90.54 133 | 90.87 143 | 90.16 130 | 91.48 148 | 96.61 123 | 93.26 136 | 86.08 144 | 87.71 178 | 81.66 125 | 83.11 143 | 84.04 129 | 90.42 157 | 94.54 136 | 94.60 125 | 98.04 169 | 95.48 175 |
|
tfpnnormal | | | 88.50 159 | 87.01 180 | 90.23 128 | 91.36 149 | 95.78 151 | 92.74 143 | 90.09 98 | 83.65 197 | 76.33 151 | 71.46 192 | 69.58 193 | 91.84 132 | 95.54 117 | 94.02 142 | 99.06 104 | 99.03 64 |
|
GBi-Net | | | 93.81 91 | 94.18 89 | 93.38 96 | 91.34 150 | 95.86 145 | 96.22 82 | 88.68 116 | 95.23 89 | 90.40 65 | 86.39 120 | 91.16 79 | 94.40 99 | 96.52 86 | 96.30 74 | 99.21 81 | 97.79 128 |
|
test1 | | | 93.81 91 | 94.18 89 | 93.38 96 | 91.34 150 | 95.86 145 | 96.22 82 | 88.68 116 | 95.23 89 | 90.40 65 | 86.39 120 | 91.16 79 | 94.40 99 | 96.52 86 | 96.30 74 | 99.21 81 | 97.79 128 |
|
FMVSNet2 | | | 93.30 102 | 93.36 108 | 93.22 100 | 91.34 150 | 95.86 145 | 96.22 82 | 88.24 123 | 95.15 93 | 89.92 77 | 81.64 147 | 89.36 93 | 94.40 99 | 96.77 75 | 96.98 61 | 99.21 81 | 97.79 128 |
|
FMVSNet3 | | | 93.79 93 | 94.17 91 | 93.35 98 | 91.21 153 | 95.99 138 | 96.62 72 | 88.68 116 | 95.23 89 | 90.40 65 | 86.39 120 | 91.16 79 | 94.11 103 | 95.96 105 | 96.67 68 | 99.07 101 | 97.79 128 |
|
TransMVSNet (Re) | | | 87.73 172 | 86.79 182 | 88.83 145 | 90.76 154 | 94.40 188 | 91.33 172 | 89.62 107 | 84.73 194 | 75.41 158 | 72.73 184 | 71.41 184 | 86.80 177 | 94.53 137 | 93.93 144 | 99.06 104 | 95.83 169 |
|
LTVRE_ROB | | 87.32 16 | 87.55 173 | 88.25 162 | 86.73 179 | 90.66 155 | 95.80 150 | 93.05 139 | 84.77 161 | 83.35 198 | 60.32 206 | 83.12 142 | 67.39 199 | 93.32 118 | 94.36 142 | 94.86 117 | 98.28 161 | 98.87 84 |
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
EG-PatchMatch MVS | | | 86.68 181 | 87.24 177 | 86.02 186 | 90.58 156 | 96.26 133 | 91.08 175 | 81.59 179 | 84.96 193 | 69.80 189 | 71.35 193 | 75.08 168 | 84.23 192 | 94.24 145 | 93.35 155 | 98.82 126 | 95.46 176 |
|
TESTMET0.1,1 | | | 91.07 125 | 93.56 105 | 88.17 153 | 90.43 157 | 96.57 124 | 92.02 162 | 82.83 175 | 92.34 137 | 75.05 163 | 90.20 93 | 88.64 101 | 90.93 145 | 96.19 101 | 94.07 140 | 97.75 175 | 96.90 159 |
|
pm-mvs1 | | | 89.19 152 | 89.02 155 | 89.38 141 | 90.40 158 | 95.74 152 | 92.05 160 | 88.10 125 | 86.13 188 | 77.70 140 | 73.72 179 | 79.44 150 | 88.97 168 | 95.81 111 | 94.51 132 | 99.08 99 | 97.78 133 |
|
NR-MVSNet | | | 89.34 148 | 88.66 157 | 90.13 133 | 90.40 158 | 95.61 154 | 93.04 140 | 89.91 100 | 91.22 148 | 78.96 136 | 77.72 160 | 68.90 196 | 89.16 167 | 94.24 145 | 93.95 143 | 99.32 58 | 98.99 69 |
|
FMVSNet1 | | | 91.54 120 | 90.93 141 | 92.26 105 | 90.35 160 | 95.27 168 | 95.22 105 | 87.16 134 | 91.37 147 | 87.62 99 | 75.45 165 | 83.84 131 | 94.43 97 | 96.52 86 | 96.30 74 | 98.82 126 | 97.74 134 |
|
test-mter | | | 90.95 126 | 93.54 107 | 87.93 163 | 90.28 161 | 96.80 115 | 91.44 168 | 82.68 176 | 92.15 141 | 74.37 167 | 89.57 99 | 88.23 106 | 90.88 148 | 96.37 93 | 94.31 136 | 97.93 171 | 97.37 144 |
|
pmmvs4 | | | 90.55 132 | 89.91 148 | 91.30 116 | 90.26 162 | 94.95 176 | 92.73 144 | 87.94 126 | 93.44 119 | 85.35 109 | 82.28 146 | 76.09 163 | 93.02 123 | 93.56 153 | 92.26 177 | 98.51 153 | 96.77 161 |
|
MVS-HIRNet | | | 85.36 188 | 86.89 181 | 83.57 191 | 90.13 163 | 94.51 186 | 83.57 201 | 72.61 205 | 88.27 175 | 71.22 179 | 68.97 196 | 81.81 143 | 88.91 169 | 93.08 162 | 91.94 178 | 94.97 200 | 89.64 202 |
|
thisisatest0515 | | | 90.12 140 | 92.06 129 | 87.85 164 | 90.03 164 | 96.17 135 | 87.83 190 | 87.45 130 | 91.71 144 | 77.15 144 | 85.40 128 | 84.01 130 | 85.74 183 | 95.41 122 | 93.30 157 | 98.88 121 | 98.43 106 |
|
SixPastTwentyTwo | | | 88.37 161 | 89.47 151 | 87.08 176 | 90.01 165 | 95.93 144 | 87.41 191 | 85.32 154 | 90.26 160 | 70.26 183 | 86.34 123 | 71.95 181 | 90.93 145 | 92.89 166 | 91.72 180 | 98.55 150 | 97.22 148 |
|
UniMVSNet (Re) | | | 90.03 142 | 89.61 150 | 90.51 126 | 89.97 166 | 96.12 136 | 92.32 152 | 89.26 111 | 90.99 151 | 80.95 129 | 78.25 159 | 75.08 168 | 91.14 141 | 93.78 148 | 93.87 146 | 99.41 43 | 99.21 37 |
|
our_test_3 | | | | | | 89.78 167 | 93.84 193 | 85.59 196 | | | | | | | | | | |
|
UniMVSNet_NR-MVSNet | | | 90.35 135 | 89.96 147 | 90.80 122 | 89.66 168 | 95.83 148 | 92.48 148 | 90.53 95 | 90.96 152 | 79.57 133 | 79.33 156 | 77.14 160 | 93.21 121 | 92.91 165 | 94.50 133 | 99.37 52 | 99.05 61 |
|
v8 | | | 88.21 164 | 87.94 169 | 88.51 148 | 89.62 169 | 95.01 174 | 92.31 153 | 84.99 159 | 88.94 165 | 74.70 165 | 75.03 167 | 73.51 175 | 90.67 153 | 92.11 176 | 92.74 169 | 98.80 131 | 98.24 118 |
|
WR-MVS_H | | | 87.93 167 | 87.85 170 | 88.03 160 | 89.62 169 | 95.58 158 | 90.47 180 | 85.55 151 | 87.20 183 | 76.83 147 | 74.42 174 | 72.67 179 | 86.37 179 | 93.22 160 | 93.04 160 | 99.33 56 | 98.83 88 |
|
pmmvs5 | | | 87.83 171 | 88.09 164 | 87.51 173 | 89.59 171 | 95.48 159 | 89.75 185 | 84.73 162 | 86.07 190 | 71.44 177 | 80.57 151 | 70.09 191 | 90.74 152 | 94.47 138 | 92.87 165 | 98.82 126 | 97.10 150 |
|
gm-plane-assit | | | 83.26 194 | 85.29 191 | 80.89 195 | 89.52 172 | 89.89 205 | 70.26 210 | 78.24 187 | 77.11 207 | 58.01 210 | 74.16 176 | 66.90 200 | 90.63 155 | 97.20 61 | 96.05 84 | 98.66 144 | 95.68 172 |
|
v10 | | | 88.00 165 | 87.96 167 | 88.05 158 | 89.44 173 | 94.68 182 | 92.36 151 | 83.35 171 | 89.37 164 | 72.96 171 | 73.98 177 | 72.79 178 | 91.35 139 | 93.59 150 | 92.88 164 | 98.81 129 | 98.42 108 |
|
V42 | | | 88.31 162 | 87.95 168 | 88.73 146 | 89.44 173 | 95.34 165 | 92.23 156 | 87.21 133 | 88.83 167 | 74.49 166 | 74.89 169 | 73.43 176 | 90.41 159 | 92.08 178 | 92.77 168 | 98.60 149 | 98.33 114 |
|
v148 | | | 87.51 174 | 86.79 182 | 88.36 150 | 89.39 175 | 95.21 170 | 89.84 184 | 88.20 124 | 87.61 180 | 77.56 141 | 73.38 182 | 70.32 190 | 86.80 177 | 90.70 187 | 92.31 175 | 98.37 160 | 97.98 126 |
|
CP-MVSNet | | | 87.89 170 | 87.27 176 | 88.62 147 | 89.30 176 | 95.06 172 | 90.60 179 | 85.78 148 | 87.43 182 | 75.98 153 | 74.60 171 | 68.14 198 | 90.76 150 | 93.07 163 | 93.60 151 | 99.30 63 | 98.98 71 |
|
v1144 | | | 87.92 169 | 87.79 171 | 88.07 155 | 89.27 177 | 95.15 171 | 92.17 157 | 85.62 150 | 88.52 171 | 71.52 176 | 73.80 178 | 72.40 180 | 91.06 143 | 93.54 154 | 92.80 166 | 98.81 129 | 98.33 114 |
|
DU-MVS | | | 89.67 145 | 88.84 156 | 90.63 125 | 89.26 178 | 95.61 154 | 92.48 148 | 89.91 100 | 91.22 148 | 79.57 133 | 77.72 160 | 71.18 185 | 93.21 121 | 92.53 169 | 94.57 127 | 99.35 55 | 99.05 61 |
|
WR-MVS | | | 87.93 167 | 88.09 164 | 87.75 165 | 89.26 178 | 95.28 166 | 90.81 177 | 86.69 138 | 88.90 166 | 75.29 159 | 74.31 175 | 73.72 174 | 85.19 187 | 92.26 172 | 93.32 156 | 99.27 67 | 98.81 89 |
|
Baseline_NR-MVSNet | | | 89.27 150 | 88.01 166 | 90.73 124 | 89.26 178 | 93.71 194 | 92.71 145 | 89.78 105 | 90.73 153 | 81.28 127 | 73.53 180 | 72.85 177 | 92.30 128 | 92.53 169 | 93.84 148 | 99.07 101 | 98.88 82 |
|
N_pmnet | | | 84.80 189 | 85.10 193 | 84.45 189 | 89.25 181 | 92.86 197 | 84.04 199 | 86.21 141 | 88.78 168 | 66.73 195 | 72.41 188 | 74.87 170 | 85.21 186 | 88.32 196 | 86.45 199 | 95.30 195 | 92.04 196 |
|
v2v482 | | | 88.25 163 | 87.71 173 | 88.88 144 | 89.23 182 | 95.28 166 | 92.10 158 | 87.89 127 | 88.69 170 | 73.31 170 | 75.32 166 | 71.64 182 | 91.89 131 | 92.10 177 | 92.92 163 | 98.86 124 | 97.99 124 |
|
PS-CasMVS | | | 87.33 177 | 86.68 185 | 88.10 154 | 89.22 183 | 94.93 177 | 90.35 182 | 85.70 149 | 86.44 187 | 74.01 168 | 73.43 181 | 66.59 204 | 90.04 161 | 92.92 164 | 93.52 152 | 99.28 65 | 98.91 80 |
|
TranMVSNet+NR-MVSNet | | | 89.23 151 | 88.48 160 | 90.11 134 | 89.07 184 | 95.25 169 | 92.91 141 | 90.43 96 | 90.31 158 | 77.10 145 | 76.62 163 | 71.57 183 | 91.83 133 | 92.12 175 | 94.59 126 | 99.32 58 | 98.92 77 |
|
v1192 | | | 87.51 174 | 87.31 175 | 87.74 166 | 89.04 185 | 94.87 180 | 92.07 159 | 85.03 158 | 88.49 172 | 70.32 182 | 72.65 185 | 70.35 189 | 91.21 140 | 93.59 150 | 92.80 166 | 98.78 134 | 98.42 108 |
|
v144192 | | | 87.40 176 | 87.20 178 | 87.64 167 | 88.89 186 | 94.88 179 | 91.65 167 | 84.70 163 | 87.80 177 | 71.17 180 | 73.20 183 | 70.91 186 | 90.75 151 | 92.69 167 | 92.49 172 | 98.71 138 | 98.43 106 |
|
PEN-MVS | | | 87.22 179 | 86.50 187 | 88.07 155 | 88.88 187 | 94.44 187 | 90.99 176 | 86.21 141 | 86.53 186 | 73.66 169 | 74.97 168 | 66.56 205 | 89.42 166 | 91.20 185 | 93.48 153 | 99.24 72 | 98.31 117 |
|
v1921920 | | | 87.31 178 | 87.13 179 | 87.52 172 | 88.87 188 | 94.72 181 | 91.96 164 | 84.59 165 | 88.28 174 | 69.86 188 | 72.50 187 | 70.03 192 | 91.10 142 | 93.33 157 | 92.61 171 | 98.71 138 | 98.44 105 |
|
pmmvs6 | | | 85.98 186 | 84.89 194 | 87.25 175 | 88.83 189 | 94.35 189 | 89.36 186 | 85.30 156 | 78.51 206 | 75.44 157 | 62.71 205 | 75.41 165 | 87.65 173 | 93.58 152 | 92.40 174 | 96.89 182 | 97.29 147 |
|
v1240 | | | 86.89 180 | 86.75 184 | 87.06 177 | 88.75 190 | 94.65 184 | 91.30 173 | 84.05 167 | 87.49 181 | 68.94 192 | 71.96 190 | 68.86 197 | 90.65 154 | 93.33 157 | 92.72 170 | 98.67 141 | 98.24 118 |
|
anonymousdsp | | | 88.90 156 | 91.00 140 | 86.44 182 | 88.74 191 | 95.97 140 | 90.40 181 | 82.86 174 | 88.77 169 | 67.33 194 | 81.18 149 | 81.44 145 | 90.22 160 | 96.23 98 | 94.27 137 | 99.12 95 | 99.16 46 |
|
EU-MVSNet | | | 85.62 187 | 87.65 174 | 83.24 193 | 88.54 192 | 92.77 198 | 87.12 192 | 85.32 154 | 86.71 184 | 64.54 198 | 78.52 158 | 75.11 167 | 78.35 198 | 92.25 173 | 92.28 176 | 95.58 192 | 95.93 168 |
|
DTE-MVSNet | | | 86.67 182 | 86.09 188 | 87.35 174 | 88.45 193 | 94.08 192 | 90.65 178 | 86.05 145 | 86.13 188 | 72.19 173 | 74.58 173 | 66.77 203 | 87.61 174 | 90.31 188 | 93.12 159 | 99.13 93 | 97.62 138 |
|
FMVSNet5 | | | 90.36 134 | 90.93 141 | 89.70 136 | 87.99 194 | 92.25 199 | 92.03 161 | 83.51 170 | 92.20 140 | 84.13 112 | 85.59 127 | 86.48 110 | 92.43 126 | 94.61 134 | 94.52 131 | 98.13 165 | 90.85 199 |
|
v7n | | | 86.43 183 | 86.52 186 | 86.33 183 | 87.91 195 | 94.93 177 | 90.15 183 | 83.05 172 | 86.57 185 | 70.21 184 | 71.48 191 | 66.78 202 | 87.72 172 | 94.19 147 | 92.96 162 | 98.92 118 | 98.76 92 |
|
test20.03 | | | 82.92 195 | 85.52 190 | 79.90 198 | 87.75 196 | 91.84 200 | 82.80 202 | 82.99 173 | 82.65 202 | 60.32 206 | 78.90 157 | 70.50 187 | 67.10 205 | 92.05 179 | 90.89 182 | 98.44 157 | 91.80 197 |
|
MDTV_nov1_ep13_2view | | | 86.30 184 | 88.27 161 | 84.01 190 | 87.71 197 | 94.67 183 | 88.08 189 | 76.78 193 | 90.59 157 | 68.66 193 | 80.46 153 | 80.12 148 | 87.58 175 | 89.95 192 | 88.20 194 | 95.25 197 | 93.90 189 |
|
Anonymous20231206 | | | 83.84 193 | 85.19 192 | 82.26 194 | 87.38 198 | 92.87 196 | 85.49 197 | 83.65 169 | 86.07 190 | 63.44 202 | 68.42 197 | 69.01 195 | 75.45 202 | 93.34 156 | 92.44 173 | 98.12 167 | 94.20 183 |
|
FPMVS | | | 75.84 201 | 74.59 203 | 77.29 202 | 86.92 199 | 83.89 210 | 85.01 198 | 80.05 185 | 82.91 200 | 60.61 205 | 65.25 203 | 60.41 208 | 63.86 206 | 75.60 206 | 73.60 208 | 87.29 210 | 80.47 207 |
|
MIMVSNet | | | 88.99 155 | 91.07 139 | 86.57 181 | 86.78 200 | 95.62 153 | 91.20 174 | 75.40 200 | 90.65 155 | 76.57 148 | 84.05 137 | 82.44 141 | 91.01 144 | 95.84 109 | 95.38 103 | 98.48 155 | 93.50 192 |
|
tmp_tt | | | | | 66.88 205 | 86.07 201 | 73.86 212 | 68.22 211 | 33.38 213 | 96.88 47 | 80.67 130 | 88.23 108 | 78.82 152 | 49.78 210 | 82.68 204 | 77.47 206 | 83.19 212 | |
|
PM-MVS | | | 84.72 191 | 84.47 195 | 85.03 188 | 84.67 202 | 91.57 201 | 86.27 195 | 82.31 178 | 87.65 179 | 70.62 181 | 76.54 164 | 56.41 212 | 88.75 170 | 92.59 168 | 89.85 189 | 97.54 178 | 96.66 164 |
|
pmmvs-eth3d | | | 84.33 192 | 82.94 197 | 85.96 187 | 84.16 203 | 90.94 202 | 86.55 194 | 83.79 168 | 84.25 195 | 75.85 155 | 70.64 194 | 56.43 211 | 87.44 176 | 92.20 174 | 90.41 186 | 97.97 170 | 95.68 172 |
|
new-patchmatchnet | | | 78.49 200 | 78.19 202 | 78.84 200 | 84.13 204 | 90.06 204 | 77.11 209 | 80.39 184 | 79.57 205 | 59.64 209 | 66.01 202 | 55.65 213 | 75.62 201 | 84.55 202 | 80.70 204 | 96.14 186 | 90.77 200 |
|
new_pmnet | | | 81.53 196 | 82.68 198 | 80.20 196 | 83.47 205 | 89.47 206 | 82.21 204 | 78.36 186 | 87.86 176 | 60.14 208 | 67.90 199 | 69.43 194 | 82.03 196 | 89.22 194 | 87.47 197 | 94.99 199 | 87.39 204 |
|
ET-MVSNet_ETH3D | | | 93.34 101 | 94.33 87 | 92.18 106 | 83.26 206 | 97.66 96 | 96.72 70 | 89.89 102 | 95.62 81 | 87.17 102 | 96.00 37 | 83.69 133 | 96.99 56 | 93.78 148 | 95.34 104 | 99.06 104 | 98.18 121 |
|
pmmvs3 | | | 79.16 199 | 80.12 201 | 78.05 201 | 79.36 207 | 86.59 208 | 78.13 208 | 73.87 204 | 76.42 208 | 57.51 211 | 70.59 195 | 57.02 210 | 84.66 190 | 90.10 190 | 88.32 193 | 94.75 202 | 91.77 198 |
|
PMVS | | 63.12 18 | 67.27 203 | 66.39 206 | 68.30 204 | 77.98 208 | 60.24 214 | 59.53 214 | 76.82 191 | 66.65 210 | 60.74 204 | 54.39 207 | 59.82 209 | 51.24 209 | 73.92 209 | 70.52 209 | 83.48 211 | 79.17 209 |
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
MDA-MVSNet-bldmvs | | | 80.11 197 | 80.24 200 | 79.94 197 | 77.01 209 | 93.21 195 | 78.86 207 | 85.94 147 | 82.71 201 | 60.86 203 | 79.71 155 | 51.77 214 | 83.71 195 | 75.60 206 | 86.37 200 | 93.28 205 | 92.35 195 |
|
ambc | | | | 73.83 204 | | 76.23 210 | 85.13 209 | 82.27 203 | | 84.16 196 | 65.58 197 | 52.82 208 | 23.31 219 | 73.55 203 | 91.41 184 | 85.26 203 | 92.97 206 | 94.70 178 |
|
Gipuma | | | 68.35 202 | 66.71 205 | 70.27 203 | 74.16 211 | 68.78 213 | 63.93 213 | 71.77 207 | 83.34 199 | 54.57 212 | 34.37 210 | 31.88 216 | 68.69 204 | 83.30 203 | 85.53 202 | 88.48 209 | 79.78 208 |
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
MIMVSNet1 | | | 80.03 198 | 80.93 199 | 78.97 199 | 72.46 212 | 90.73 203 | 80.81 205 | 82.44 177 | 80.39 203 | 63.64 200 | 57.57 206 | 64.93 206 | 76.37 200 | 91.66 181 | 91.55 181 | 98.07 168 | 89.70 201 |
|
PMMVS2 | | | 64.36 205 | 65.94 207 | 62.52 206 | 67.37 213 | 77.44 211 | 64.39 212 | 69.32 211 | 61.47 211 | 34.59 214 | 46.09 209 | 41.03 215 | 48.02 212 | 74.56 208 | 78.23 205 | 91.43 207 | 82.76 206 |
|
EMVS | | | 49.98 207 | 46.76 210 | 53.74 208 | 64.96 214 | 51.29 216 | 37.81 216 | 69.35 210 | 51.83 212 | 22.69 217 | 29.57 212 | 25.06 217 | 57.28 207 | 44.81 212 | 56.11 211 | 70.32 214 | 68.64 212 |
|
E-PMN | | | 50.67 206 | 47.85 209 | 53.96 207 | 64.13 215 | 50.98 217 | 38.06 215 | 69.51 209 | 51.40 213 | 24.60 216 | 29.46 213 | 24.39 218 | 56.07 208 | 48.17 211 | 59.70 210 | 71.40 213 | 70.84 211 |
|
MVE | | 50.86 19 | 49.54 208 | 51.43 208 | 47.33 209 | 44.14 216 | 59.20 215 | 36.45 217 | 60.59 212 | 41.47 214 | 31.14 215 | 29.58 211 | 17.06 220 | 48.52 211 | 62.22 210 | 74.63 207 | 63.12 215 | 75.87 210 |
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
testmvs | | | 12.09 209 | 16.94 211 | 6.42 211 | 3.15 217 | 6.08 218 | 9.51 219 | 3.84 214 | 21.46 215 | 5.31 218 | 27.49 214 | 6.76 221 | 10.89 213 | 17.06 213 | 15.01 212 | 5.84 216 | 24.75 213 |
|
GG-mvs-BLEND | | | 66.17 204 | 94.91 79 | 32.63 210 | 1.32 218 | 96.64 122 | 91.40 169 | 0.85 216 | 94.39 105 | 2.20 219 | 90.15 95 | 95.70 61 | 2.27 215 | 96.39 90 | 95.44 102 | 97.78 173 | 95.68 172 |
|
test123 | | | 9.58 210 | 13.53 212 | 4.97 212 | 1.31 219 | 5.47 219 | 8.32 220 | 2.95 215 | 18.14 216 | 2.03 220 | 20.82 215 | 2.34 222 | 10.60 214 | 10.00 214 | 14.16 213 | 4.60 217 | 23.77 214 |
|
uanet_test | | | 0.00 211 | 0.00 213 | 0.00 213 | 0.00 220 | 0.00 220 | 0.00 221 | 0.00 217 | 0.00 217 | 0.00 221 | 0.00 216 | 0.00 223 | 0.00 216 | 0.00 215 | 0.00 214 | 0.00 218 | 0.00 215 |
|
sosnet-low-res | | | 0.00 211 | 0.00 213 | 0.00 213 | 0.00 220 | 0.00 220 | 0.00 221 | 0.00 217 | 0.00 217 | 0.00 221 | 0.00 216 | 0.00 223 | 0.00 216 | 0.00 215 | 0.00 214 | 0.00 218 | 0.00 215 |
|
sosnet | | | 0.00 211 | 0.00 213 | 0.00 213 | 0.00 220 | 0.00 220 | 0.00 221 | 0.00 217 | 0.00 217 | 0.00 221 | 0.00 216 | 0.00 223 | 0.00 216 | 0.00 215 | 0.00 214 | 0.00 218 | 0.00 215 |
|
RE-MVS-def | | | | | | | | | | | 63.50 201 | | | | | | | |
|
9.14 | | | | | | | | | | | | | 99.28 11 | | | | | |
|
MTAPA | | | | | | | | | | | 96.83 10 | | 99.12 20 | | | | | |
|
MTMP | | | | | | | | | | | 97.18 5 | | 98.83 26 | | | | | |
|
Patchmatch-RL test | | | | | | | | 34.61 218 | | | | | | | | | | |
|
NP-MVS | | | | | | | | | | 95.32 86 | | | | | | | | |
|
Patchmtry | | | | | | | 95.96 141 | 93.36 134 | 75.99 198 | | 75.19 160 | | | | | | | |
|
DeepMVS_CX | | | | | | | 86.86 207 | 79.50 206 | 70.43 208 | 90.73 153 | 63.66 199 | 80.36 154 | 60.83 207 | 79.68 197 | 76.23 205 | | 89.46 208 | 86.53 205 |
|