xxxxxxxxxxxxxcwj | | | 84.33 14 | 83.20 26 | 85.64 2 | 94.57 1 | 94.55 3 | 91.01 1 | 79.94 1 | 89.15 11 | 79.85 6 | 92.37 3 | 44.71 144 | 79.75 7 | 83.52 26 | 82.72 32 | 88.75 19 | 95.37 24 |
|
SF-MVS | | | 87.30 5 | 88.71 5 | 85.64 2 | 94.57 1 | 94.55 3 | 91.01 1 | 79.94 1 | 89.15 11 | 79.85 6 | 92.37 3 | 83.29 9 | 79.75 7 | 83.52 26 | 82.72 32 | 88.75 19 | 95.37 24 |
|
MCST-MVS | | | 85.75 8 | 86.99 12 | 84.31 6 | 94.07 3 | 92.80 7 | 88.15 8 | 79.10 3 | 85.66 23 | 70.72 30 | 76.50 32 | 80.45 20 | 82.17 3 | 88.35 2 | 87.49 3 | 91.63 2 | 97.65 4 |
|
HPM-MVS++ |  | | 85.64 9 | 88.43 6 | 82.39 12 | 92.65 4 | 90.24 26 | 85.83 16 | 74.21 11 | 90.68 8 | 75.63 18 | 86.77 13 | 84.15 7 | 78.68 16 | 86.33 8 | 85.26 9 | 87.32 53 | 95.60 19 |
|
CNVR-MVS | | | 85.96 7 | 87.58 10 | 84.06 8 | 92.58 5 | 92.40 10 | 87.62 10 | 77.77 5 | 88.44 14 | 75.93 17 | 79.49 25 | 81.97 16 | 81.65 4 | 87.04 6 | 86.58 4 | 88.79 17 | 97.18 7 |
|
SED-MVS | | | 88.94 1 | 90.98 1 | 86.56 1 | 92.53 6 | 95.09 1 | 88.55 5 | 76.83 7 | 94.16 1 | 86.57 1 | 90.85 6 | 87.07 1 | 86.18 1 | 86.36 7 | 85.08 12 | 88.67 21 | 98.21 3 |
|
NCCC | | | 84.16 16 | 85.46 20 | 82.64 11 | 92.34 7 | 90.57 23 | 86.57 13 | 76.51 8 | 86.85 20 | 72.91 23 | 77.20 31 | 78.69 26 | 79.09 14 | 84.64 19 | 84.88 15 | 88.44 29 | 95.41 22 |
|
DPE-MVS |  | | 87.60 4 | 90.44 4 | 84.29 7 | 92.09 8 | 93.44 5 | 88.69 4 | 75.11 9 | 93.06 5 | 80.80 5 | 94.23 2 | 86.70 3 | 81.44 5 | 84.84 17 | 83.52 26 | 87.64 46 | 97.28 5 |
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025 |
DVP-MVS | | | 88.07 2 | 90.73 2 | 84.97 4 | 91.98 9 | 95.01 2 | 87.86 9 | 76.88 6 | 93.90 2 | 85.15 2 | 90.11 8 | 86.90 2 | 79.46 11 | 86.26 10 | 84.67 17 | 88.50 28 | 98.25 2 |
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025 |
CSCG | | | 82.90 20 | 84.52 22 | 81.02 18 | 91.85 10 | 93.43 6 | 87.14 11 | 74.01 14 | 81.96 33 | 76.14 15 | 70.84 38 | 82.49 12 | 69.71 62 | 82.32 41 | 85.18 11 | 87.26 56 | 95.40 23 |
|
SMA-MVS |  | | 85.24 11 | 88.27 8 | 81.72 15 | 91.74 11 | 90.71 20 | 86.71 12 | 73.16 19 | 90.56 9 | 74.33 19 | 83.07 18 | 85.88 4 | 77.16 20 | 86.28 9 | 85.58 6 | 87.23 57 | 95.77 15 |
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
DPM-MVS | | | 85.41 10 | 86.72 15 | 83.89 10 | 91.66 12 | 91.92 14 | 90.49 3 | 78.09 4 | 86.90 18 | 73.95 20 | 74.52 34 | 82.01 15 | 79.29 12 | 90.24 1 | 90.65 1 | 89.86 6 | 90.78 72 |
|
QAPM | | | 77.50 46 | 77.43 50 | 77.59 36 | 91.52 13 | 92.00 13 | 81.41 40 | 70.63 27 | 66.22 73 | 58.05 71 | 54.70 80 | 71.79 44 | 74.49 33 | 82.46 37 | 82.04 37 | 89.46 10 | 92.79 53 |
|
APDe-MVS | | | 86.37 6 | 88.41 7 | 84.00 9 | 91.43 14 | 91.83 15 | 88.34 6 | 74.67 10 | 91.19 6 | 81.76 4 | 91.13 5 | 81.94 17 | 80.07 6 | 83.38 28 | 82.58 35 | 87.69 44 | 96.78 10 |
|
3Dnovator | | 70.49 5 | 78.42 39 | 76.77 56 | 80.35 20 | 91.43 14 | 90.27 25 | 81.84 36 | 70.79 26 | 72.10 58 | 71.95 24 | 50.02 98 | 67.86 57 | 77.47 19 | 82.89 32 | 84.24 19 | 88.61 24 | 89.99 81 |
|
DeepC-MVS_fast | | 75.41 2 | 81.69 24 | 82.10 33 | 81.20 17 | 91.04 16 | 87.81 52 | 83.42 27 | 74.04 13 | 83.77 27 | 71.09 28 | 66.88 47 | 72.44 38 | 79.48 10 | 85.08 14 | 84.97 14 | 88.12 39 | 93.78 42 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
SteuartSystems-ACMMP | | | 82.51 21 | 85.35 21 | 79.20 26 | 90.25 17 | 89.39 33 | 84.79 21 | 70.95 25 | 82.86 29 | 68.32 38 | 86.44 14 | 77.19 27 | 73.07 41 | 83.63 25 | 83.64 23 | 87.82 40 | 94.34 33 |
Skip Steuart: Steuart Systems R&D Blog. |
HFP-MVS | | | 82.48 22 | 84.12 23 | 80.56 19 | 90.15 18 | 87.55 54 | 84.28 23 | 69.67 34 | 85.22 24 | 77.95 13 | 84.69 16 | 75.94 30 | 75.04 28 | 81.85 47 | 81.17 52 | 86.30 76 | 92.40 55 |
|
DeepPCF-MVS | | 76.94 1 | 83.08 19 | 87.77 9 | 77.60 35 | 90.11 19 | 90.96 19 | 78.48 54 | 72.63 22 | 93.10 4 | 65.84 42 | 80.67 23 | 81.55 18 | 74.80 30 | 85.94 12 | 85.39 8 | 83.75 140 | 96.77 11 |
|
OpenMVS |  | 67.62 8 | 74.92 59 | 73.91 70 | 76.09 44 | 90.10 20 | 90.38 24 | 78.01 58 | 66.35 54 | 66.09 75 | 62.80 49 | 46.33 122 | 64.55 66 | 71.77 50 | 79.92 64 | 80.88 59 | 87.52 49 | 89.20 90 |
|
MAR-MVS | | | 77.19 49 | 78.37 48 | 75.81 46 | 89.87 21 | 90.58 22 | 79.33 53 | 65.56 60 | 77.62 50 | 58.33 70 | 59.24 71 | 67.98 55 | 74.83 29 | 82.37 40 | 83.12 28 | 86.95 63 | 87.67 106 |
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
TSAR-MVS + ACMM | | | 81.59 26 | 85.84 19 | 76.63 39 | 89.82 22 | 86.53 63 | 86.32 15 | 66.72 52 | 85.96 22 | 65.43 43 | 88.98 11 | 82.29 13 | 67.57 80 | 82.06 45 | 81.33 49 | 83.93 138 | 93.75 43 |
|
train_agg | | | 83.35 18 | 86.93 14 | 79.17 27 | 89.70 23 | 88.41 41 | 85.60 19 | 72.89 21 | 86.31 21 | 66.58 41 | 90.48 7 | 82.24 14 | 73.06 42 | 83.10 31 | 82.64 34 | 87.21 61 | 95.30 26 |
|
abl_6 | | | | | 79.06 29 | 89.68 24 | 92.14 12 | 77.70 62 | 69.68 33 | 86.87 19 | 71.88 25 | 74.29 35 | 80.06 22 | 76.56 23 | | | 88.84 16 | 95.82 14 |
|
APD-MVS |  | | 84.83 12 | 87.00 11 | 82.30 13 | 89.61 25 | 89.21 34 | 86.51 14 | 73.64 16 | 90.98 7 | 77.99 12 | 89.89 9 | 80.04 23 | 79.18 13 | 82.00 46 | 81.37 48 | 86.88 65 | 95.49 21 |
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
ACMMP_NAP | | | 83.54 17 | 86.37 17 | 80.25 21 | 89.57 26 | 90.10 28 | 85.27 20 | 71.66 23 | 87.38 15 | 73.08 22 | 84.23 17 | 80.16 21 | 75.31 26 | 84.85 16 | 83.64 23 | 86.57 70 | 94.21 37 |
|
MSP-MVS | | | 87.87 3 | 90.57 3 | 84.73 5 | 89.38 27 | 91.60 17 | 88.24 7 | 74.15 12 | 93.55 3 | 82.28 3 | 94.99 1 | 83.21 10 | 85.96 2 | 87.67 4 | 84.67 17 | 88.32 32 | 98.29 1 |
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025 |
AdaColmap |  | | 76.23 54 | 73.55 72 | 79.35 25 | 89.38 27 | 85.00 75 | 79.99 50 | 73.04 20 | 76.60 53 | 71.17 27 | 55.18 79 | 57.99 99 | 77.87 17 | 76.82 88 | 76.82 89 | 84.67 125 | 86.45 115 |
|
3Dnovator+ | | 70.16 6 | 77.87 42 | 77.29 52 | 78.55 30 | 89.25 29 | 88.32 43 | 80.09 48 | 67.95 44 | 74.89 57 | 71.83 26 | 52.05 92 | 70.68 48 | 76.27 25 | 82.27 42 | 82.04 37 | 85.92 86 | 90.77 73 |
|
CDPH-MVS | | | 79.39 36 | 82.13 32 | 76.19 43 | 89.22 30 | 88.34 42 | 84.20 24 | 71.00 24 | 79.67 43 | 56.97 76 | 77.77 28 | 72.24 42 | 68.50 75 | 81.33 51 | 82.74 30 | 87.23 57 | 92.84 51 |
|
SD-MVS | | | 84.31 15 | 86.96 13 | 81.22 16 | 88.98 31 | 88.68 38 | 85.65 17 | 73.85 15 | 89.09 13 | 79.63 8 | 87.34 12 | 84.84 5 | 73.71 35 | 82.66 35 | 81.60 45 | 85.48 103 | 94.51 31 |
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
MP-MVS |  | | 80.94 27 | 83.49 25 | 77.96 32 | 88.48 32 | 88.16 45 | 82.82 32 | 69.34 36 | 80.79 39 | 69.67 34 | 82.35 20 | 77.13 28 | 71.60 52 | 80.97 57 | 80.96 57 | 85.87 89 | 94.06 39 |
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
ACMMPR | | | 80.62 29 | 82.98 28 | 77.87 34 | 88.41 33 | 87.05 59 | 83.02 29 | 69.18 37 | 83.91 26 | 68.35 37 | 82.89 19 | 73.64 35 | 72.16 47 | 80.78 58 | 81.13 54 | 86.10 82 | 91.43 62 |
|
MSLP-MVS++ | | | 78.57 38 | 77.33 51 | 80.02 22 | 88.39 34 | 84.79 76 | 84.62 22 | 66.17 56 | 75.96 54 | 78.40 10 | 61.59 60 | 71.47 45 | 73.54 39 | 78.43 75 | 78.88 72 | 88.97 14 | 90.18 80 |
|
PGM-MVS | | | 79.42 35 | 81.84 34 | 76.60 40 | 88.38 35 | 86.69 61 | 82.97 31 | 65.75 58 | 80.39 40 | 64.94 44 | 81.95 22 | 72.11 43 | 71.41 53 | 80.45 59 | 80.55 62 | 86.18 78 | 90.76 74 |
|
EPNet | | | 79.28 37 | 82.25 30 | 75.83 45 | 88.31 36 | 90.14 27 | 79.43 52 | 68.07 43 | 81.76 35 | 61.26 58 | 77.26 30 | 70.08 50 | 70.06 60 | 82.43 39 | 82.00 39 | 87.82 40 | 92.09 57 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
DELS-MVS | | | 79.49 31 | 79.84 42 | 79.08 28 | 88.26 37 | 92.49 8 | 84.12 25 | 70.63 27 | 65.27 80 | 69.60 36 | 61.29 62 | 66.50 60 | 72.75 43 | 88.07 3 | 88.03 2 | 89.13 12 | 97.22 6 |
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
zzz-MVS | | | 81.65 25 | 83.10 27 | 79.97 23 | 88.14 38 | 87.62 53 | 83.96 26 | 69.90 31 | 86.92 17 | 77.67 14 | 72.47 36 | 78.74 25 | 74.13 34 | 81.59 50 | 81.15 53 | 86.01 85 | 93.19 48 |
|
TSAR-MVS + MP. | | | 84.39 13 | 86.58 16 | 81.83 14 | 88.09 39 | 86.47 64 | 85.63 18 | 73.62 17 | 90.13 10 | 79.24 9 | 89.67 10 | 82.99 11 | 77.72 18 | 81.22 52 | 80.92 58 | 86.68 69 | 94.66 30 |
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
X-MVS | | | 78.16 41 | 80.55 39 | 75.38 48 | 87.99 40 | 86.27 66 | 81.05 44 | 68.98 38 | 78.33 46 | 61.07 60 | 75.25 33 | 72.27 39 | 67.52 81 | 80.03 62 | 80.52 63 | 85.66 100 | 91.20 66 |
|
DeepC-MVS | | 74.46 3 | 80.30 30 | 81.05 36 | 79.42 24 | 87.42 41 | 88.50 40 | 83.23 28 | 73.27 18 | 82.78 30 | 71.01 29 | 62.86 57 | 69.93 51 | 74.80 30 | 84.30 20 | 84.20 20 | 86.79 68 | 94.77 28 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
mPP-MVS | | | | | | 86.96 42 | | | | | | | 70.61 49 | | | | | |
|
CP-MVS | | | 79.44 32 | 81.51 35 | 77.02 38 | 86.95 43 | 85.96 70 | 82.00 34 | 68.44 42 | 81.82 34 | 67.39 39 | 77.43 29 | 73.68 34 | 71.62 51 | 79.56 67 | 79.58 65 | 85.73 93 | 92.51 54 |
|
MVS_111021_HR | | | 77.42 47 | 78.40 47 | 76.28 41 | 86.95 43 | 90.68 21 | 77.41 64 | 70.56 30 | 66.21 74 | 62.48 52 | 66.17 50 | 63.98 67 | 72.08 48 | 82.87 33 | 83.15 27 | 88.24 35 | 95.71 17 |
|
CANet | | | 80.90 28 | 82.93 29 | 78.53 31 | 86.83 45 | 92.26 11 | 81.19 42 | 66.95 49 | 81.60 36 | 69.90 33 | 66.93 46 | 74.80 32 | 76.79 21 | 84.68 18 | 84.77 16 | 89.50 9 | 95.50 20 |
|
CHOSEN 1792x2688 | | | 72.55 69 | 71.98 79 | 73.22 61 | 86.57 46 | 92.41 9 | 75.63 72 | 66.77 51 | 62.08 87 | 52.32 88 | 30.27 190 | 50.74 130 | 66.14 84 | 86.22 11 | 85.41 7 | 91.90 1 | 96.75 12 |
|
SR-MVS | | | | | | 86.33 47 | | | 67.54 46 | | | | 80.78 19 | | | | | |
|
PHI-MVS | | | 79.43 33 | 84.06 24 | 74.04 56 | 86.15 48 | 91.57 18 | 80.85 46 | 68.90 40 | 82.22 32 | 51.81 91 | 78.10 27 | 74.28 33 | 70.39 59 | 84.01 23 | 84.00 21 | 86.14 80 | 94.24 35 |
|
ACMMP |  | | 77.61 45 | 79.59 43 | 75.30 49 | 85.87 49 | 85.58 71 | 81.42 39 | 67.38 48 | 79.38 44 | 62.61 50 | 78.53 26 | 65.79 62 | 68.80 74 | 78.56 74 | 78.50 76 | 85.75 90 | 90.80 71 |
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
HQP-MVS | | | 78.26 40 | 80.91 38 | 75.17 50 | 85.67 50 | 84.33 83 | 83.01 30 | 69.38 35 | 79.88 42 | 55.83 77 | 79.85 24 | 64.90 65 | 70.81 55 | 82.46 37 | 81.78 41 | 86.30 76 | 93.18 49 |
|
OPM-MVS | | | 72.74 68 | 70.93 88 | 74.85 53 | 85.30 51 | 84.34 82 | 82.82 32 | 69.79 32 | 49.96 135 | 55.39 82 | 54.09 87 | 60.14 87 | 70.04 61 | 80.38 61 | 79.43 66 | 85.74 92 | 88.20 102 |
|
MS-PatchMatch | | | 70.34 84 | 69.00 98 | 71.91 69 | 85.20 52 | 85.35 72 | 77.84 61 | 61.77 92 | 58.01 103 | 55.40 81 | 41.26 141 | 58.34 96 | 61.69 108 | 81.70 49 | 78.29 77 | 89.56 8 | 80.02 158 |
|
MVS_0304 | | | 79.43 33 | 82.20 31 | 76.20 42 | 84.22 53 | 91.79 16 | 81.82 37 | 63.81 70 | 76.83 52 | 61.71 56 | 66.37 49 | 75.52 31 | 76.38 24 | 85.54 13 | 85.03 13 | 89.28 11 | 94.32 34 |
|
PCF-MVS | | 70.85 4 | 75.73 55 | 76.55 59 | 74.78 54 | 83.67 54 | 88.04 50 | 81.47 38 | 70.62 29 | 69.24 69 | 57.52 74 | 60.59 67 | 69.18 53 | 70.65 57 | 77.11 85 | 77.65 83 | 84.75 123 | 94.01 40 |
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
ACMM | | 66.70 10 | 70.42 80 | 68.49 102 | 72.67 64 | 82.85 55 | 77.76 141 | 77.70 62 | 64.76 65 | 64.61 81 | 60.74 64 | 49.29 99 | 53.97 119 | 65.86 85 | 74.97 105 | 75.57 106 | 84.13 137 | 83.29 140 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
XVS | | | | | | 82.43 56 | 86.27 66 | 75.70 70 | | | 61.07 60 | | 72.27 39 | | | | 85.67 97 | |
|
X-MVStestdata | | | | | | 82.43 56 | 86.27 66 | 75.70 70 | | | 61.07 60 | | 72.27 39 | | | | 85.67 97 | |
|
PVSNet_BlendedMVS | | | 76.84 51 | 78.47 45 | 74.95 51 | 82.37 58 | 89.90 30 | 75.45 76 | 65.45 61 | 74.99 55 | 70.66 31 | 63.07 55 | 58.27 97 | 67.60 78 | 84.24 21 | 81.70 43 | 88.18 36 | 97.10 8 |
|
PVSNet_Blended | | | 76.84 51 | 78.47 45 | 74.95 51 | 82.37 58 | 89.90 30 | 75.45 76 | 65.45 61 | 74.99 55 | 70.66 31 | 63.07 55 | 58.27 97 | 67.60 78 | 84.24 21 | 81.70 43 | 88.18 36 | 97.10 8 |
|
CLD-MVS | | | 77.36 48 | 77.29 52 | 77.45 37 | 82.21 60 | 88.11 46 | 81.92 35 | 68.96 39 | 77.97 48 | 69.62 35 | 62.08 58 | 59.44 90 | 73.57 38 | 81.75 48 | 81.27 50 | 88.41 30 | 90.39 77 |
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
LGP-MVS_train | | | 72.02 73 | 73.18 75 | 70.67 75 | 82.13 61 | 80.26 118 | 79.58 51 | 63.04 77 | 70.09 63 | 51.98 89 | 65.06 51 | 55.62 110 | 62.49 104 | 75.97 97 | 76.32 97 | 84.80 122 | 88.93 93 |
|
MSDG | | | 65.57 113 | 61.57 150 | 70.24 77 | 82.02 62 | 76.47 150 | 74.46 89 | 68.73 41 | 56.52 108 | 50.33 101 | 38.47 154 | 41.10 154 | 62.42 105 | 72.12 140 | 72.94 141 | 83.47 143 | 73.37 180 |
|
IB-MVS | | 64.48 11 | 69.02 88 | 68.97 99 | 69.09 87 | 81.75 63 | 89.01 36 | 64.50 148 | 64.91 64 | 56.65 107 | 62.59 51 | 47.89 105 | 45.23 142 | 51.99 152 | 69.18 167 | 81.88 40 | 88.77 18 | 92.93 50 |
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
canonicalmvs | | | 77.65 44 | 79.59 43 | 75.39 47 | 81.52 64 | 89.83 32 | 81.32 41 | 60.74 103 | 80.05 41 | 66.72 40 | 68.43 42 | 65.09 63 | 74.72 32 | 78.87 71 | 82.73 31 | 87.32 53 | 92.16 56 |
|
CPTT-MVS | | | 75.43 56 | 77.13 54 | 73.44 59 | 81.43 65 | 82.55 95 | 80.96 45 | 64.35 66 | 77.95 49 | 61.39 57 | 69.20 41 | 70.94 47 | 69.38 69 | 73.89 119 | 73.32 134 | 83.14 150 | 92.06 58 |
|
EPNet_dtu | | | 66.17 109 | 70.13 93 | 61.54 140 | 81.04 66 | 77.39 145 | 68.87 126 | 62.50 85 | 69.78 64 | 33.51 176 | 63.77 54 | 56.22 105 | 37.65 189 | 72.20 138 | 72.18 149 | 85.69 96 | 79.38 160 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
ACMP | | 68.86 7 | 72.15 72 | 72.25 77 | 72.03 67 | 80.96 67 | 80.87 112 | 77.93 59 | 64.13 68 | 69.29 67 | 60.79 63 | 64.04 53 | 53.54 122 | 63.91 94 | 73.74 122 | 75.27 109 | 84.45 130 | 88.98 92 |
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
HyFIR lowres test | | | 68.39 93 | 68.28 104 | 68.52 91 | 80.85 68 | 88.11 46 | 71.08 112 | 58.09 116 | 54.87 122 | 47.80 111 | 27.55 196 | 55.80 108 | 64.97 88 | 79.11 69 | 79.14 70 | 88.31 33 | 93.35 45 |
|
LS3D | | | 64.54 122 | 62.14 146 | 67.34 101 | 80.85 68 | 75.79 156 | 69.99 118 | 65.87 57 | 60.77 91 | 44.35 123 | 42.43 135 | 45.95 141 | 65.01 87 | 69.88 162 | 68.69 172 | 77.97 189 | 71.43 187 |
|
CNLPA | | | 71.37 78 | 70.27 92 | 72.66 65 | 80.79 70 | 81.33 105 | 71.07 113 | 65.75 58 | 82.36 31 | 64.80 45 | 42.46 134 | 56.49 104 | 72.70 44 | 73.00 130 | 70.52 165 | 80.84 174 | 85.76 123 |
|
TSAR-MVS + GP. | | | 82.27 23 | 85.98 18 | 77.94 33 | 80.72 71 | 88.25 44 | 81.12 43 | 67.71 45 | 87.10 16 | 73.31 21 | 85.23 15 | 83.68 8 | 76.64 22 | 80.43 60 | 81.47 47 | 88.15 38 | 95.66 18 |
|
baseline1 | | | 71.47 75 | 72.02 78 | 70.82 73 | 80.56 72 | 84.51 79 | 76.61 68 | 66.93 50 | 56.22 111 | 48.66 106 | 55.40 78 | 60.43 84 | 62.55 103 | 83.35 29 | 80.99 55 | 89.60 7 | 83.28 141 |
|
PLC |  | 64.00 12 | 68.54 91 | 66.66 114 | 70.74 74 | 80.28 73 | 74.88 162 | 72.64 94 | 63.70 72 | 69.26 68 | 55.71 78 | 47.24 112 | 55.31 112 | 70.42 58 | 72.05 142 | 70.67 163 | 81.66 168 | 77.19 166 |
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
OMC-MVS | | | 74.03 62 | 75.82 62 | 71.95 68 | 79.56 74 | 80.98 110 | 75.35 78 | 63.21 75 | 84.48 25 | 61.83 55 | 61.54 61 | 66.89 58 | 69.41 68 | 76.60 89 | 74.07 124 | 82.34 161 | 86.15 118 |
|
CostFormer | | | 72.18 71 | 73.90 71 | 70.18 78 | 79.47 75 | 86.19 69 | 76.94 67 | 48.62 178 | 66.07 76 | 60.40 66 | 54.14 86 | 65.82 61 | 67.98 76 | 75.84 98 | 76.41 95 | 87.67 45 | 92.83 52 |
|
MVS_111021_LR | | | 74.26 61 | 75.95 61 | 72.27 66 | 79.43 76 | 85.04 74 | 72.71 93 | 65.27 63 | 70.92 61 | 63.58 48 | 69.32 40 | 60.31 86 | 69.43 67 | 77.01 86 | 77.15 86 | 83.22 147 | 91.93 60 |
|
MVS_Test | | | 75.22 57 | 76.69 57 | 73.51 58 | 79.30 77 | 88.82 37 | 80.06 49 | 58.74 111 | 69.77 65 | 57.50 75 | 59.78 70 | 61.35 79 | 75.31 26 | 82.07 44 | 83.60 25 | 90.13 5 | 91.41 64 |
|
casdiffmvs | | | 75.20 58 | 75.69 63 | 74.63 55 | 79.26 78 | 89.07 35 | 78.47 55 | 63.59 73 | 67.05 71 | 63.79 47 | 55.72 77 | 60.32 85 | 73.58 37 | 82.16 43 | 81.78 41 | 89.08 13 | 93.72 44 |
|
PVSNet_Blended_VisFu | | | 71.76 74 | 73.54 73 | 69.69 80 | 79.01 79 | 87.16 58 | 72.05 96 | 61.80 91 | 56.46 109 | 59.66 67 | 53.88 88 | 62.48 71 | 59.08 127 | 81.17 53 | 78.90 71 | 86.53 72 | 94.74 29 |
|
ACMH | | 59.42 14 | 61.59 147 | 59.22 166 | 64.36 117 | 78.92 80 | 78.26 135 | 67.65 132 | 67.48 47 | 39.81 177 | 30.98 183 | 38.25 156 | 34.59 186 | 61.37 112 | 70.55 156 | 73.47 130 | 79.74 181 | 79.59 159 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
CS-MVS | | | 77.66 43 | 80.94 37 | 73.84 57 | 78.43 81 | 88.10 48 | 76.40 69 | 60.03 109 | 78.66 45 | 60.73 65 | 67.38 44 | 69.53 52 | 79.03 15 | 83.80 24 | 82.94 29 | 88.41 30 | 96.18 13 |
|
FC-MVSNet-train | | | 68.83 90 | 68.29 103 | 69.47 81 | 78.35 82 | 79.94 119 | 64.72 147 | 66.38 53 | 54.96 119 | 54.51 85 | 56.75 74 | 47.91 136 | 66.91 82 | 75.57 102 | 75.75 102 | 85.92 86 | 87.12 108 |
|
ETV-MVS | | | 76.25 53 | 80.22 40 | 71.63 70 | 78.23 83 | 87.95 51 | 72.75 92 | 60.27 107 | 77.50 51 | 57.73 72 | 71.53 37 | 66.60 59 | 73.16 40 | 80.99 56 | 81.23 51 | 87.63 47 | 95.73 16 |
|
EIA-MVS | | | 73.48 64 | 76.05 60 | 70.47 76 | 78.12 84 | 87.21 57 | 71.78 99 | 60.63 104 | 69.66 66 | 55.56 80 | 64.86 52 | 60.69 82 | 69.53 65 | 77.35 84 | 78.59 73 | 87.22 59 | 94.01 40 |
|
Effi-MVS+ | | | 70.42 80 | 71.23 85 | 69.47 81 | 78.04 85 | 85.24 73 | 75.57 74 | 58.88 110 | 59.56 96 | 48.47 107 | 52.73 91 | 54.94 113 | 69.69 63 | 78.34 77 | 77.06 87 | 86.18 78 | 90.73 75 |
|
Anonymous202405211 | | | | 66.35 118 | | 78.00 86 | 84.41 81 | 74.85 80 | 63.18 76 | 51.00 131 | | 31.37 187 | 53.73 121 | 69.67 64 | 76.28 91 | 76.84 88 | 83.21 149 | 90.85 70 |
|
thres100view900 | | | 67.14 106 | 66.09 120 | 68.38 93 | 77.70 87 | 83.84 87 | 74.52 86 | 66.33 55 | 49.16 139 | 43.40 128 | 43.24 126 | 41.34 150 | 62.59 102 | 79.31 68 | 75.92 101 | 85.73 93 | 89.81 82 |
|
tfpn200view9 | | | 65.90 111 | 64.96 124 | 67.00 102 | 77.70 87 | 81.58 101 | 71.71 102 | 62.94 81 | 49.16 139 | 43.40 128 | 43.24 126 | 41.34 150 | 61.42 110 | 76.24 92 | 74.63 116 | 84.84 118 | 88.52 99 |
|
DCV-MVSNet | | | 69.13 87 | 69.07 97 | 69.21 83 | 77.65 89 | 77.52 143 | 74.68 81 | 57.85 121 | 54.92 120 | 55.34 83 | 55.74 76 | 55.56 111 | 66.35 83 | 75.05 104 | 76.56 92 | 83.35 144 | 88.13 103 |
|
Anonymous20231211 | | | 68.44 92 | 66.37 117 | 70.86 72 | 77.58 90 | 83.49 88 | 75.15 79 | 61.89 89 | 52.54 128 | 58.50 69 | 28.89 192 | 56.78 103 | 69.29 70 | 74.96 107 | 76.61 90 | 82.73 153 | 91.36 65 |
|
UA-Net | | | 64.62 119 | 68.23 105 | 60.42 145 | 77.53 91 | 81.38 104 | 60.08 172 | 57.47 127 | 47.01 146 | 44.75 121 | 60.68 64 | 71.32 46 | 41.84 183 | 73.27 125 | 72.25 148 | 80.83 175 | 71.68 185 |
|
thres200 | | | 65.58 112 | 64.74 126 | 66.56 103 | 77.52 92 | 81.61 99 | 73.44 91 | 62.95 79 | 46.23 151 | 42.45 135 | 42.76 128 | 41.18 152 | 58.12 131 | 76.24 92 | 75.59 105 | 84.89 116 | 89.58 85 |
|
test_part1 | | | 66.32 107 | 63.35 133 | 69.77 79 | 77.40 93 | 78.35 134 | 77.85 60 | 56.25 137 | 44.52 158 | 62.15 53 | 33.05 181 | 53.91 120 | 62.38 106 | 72.19 139 | 74.65 114 | 82.59 156 | 86.81 110 |
|
ACMH+ | | 60.36 13 | 61.16 148 | 58.38 168 | 64.42 116 | 77.37 94 | 74.35 167 | 68.45 127 | 62.81 83 | 45.86 153 | 38.48 152 | 35.71 172 | 37.35 170 | 59.81 120 | 67.24 172 | 69.80 169 | 79.58 182 | 78.32 164 |
|
TAPA-MVS | | 67.10 9 | 71.45 76 | 73.47 74 | 69.10 86 | 77.04 95 | 80.78 113 | 73.81 90 | 62.10 86 | 80.80 38 | 51.28 92 | 60.91 63 | 63.80 70 | 67.98 76 | 74.59 109 | 72.42 146 | 82.37 160 | 80.97 155 |
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
IS_MVSNet | | | 67.29 104 | 71.98 79 | 61.82 138 | 76.92 96 | 84.32 84 | 65.90 146 | 58.22 114 | 55.75 115 | 39.22 148 | 54.51 83 | 62.47 72 | 45.99 173 | 78.83 72 | 78.52 75 | 84.70 124 | 89.47 87 |
|
CANet_DTU | | | 72.84 67 | 76.63 58 | 68.43 92 | 76.81 97 | 86.62 62 | 75.54 75 | 54.71 159 | 72.06 59 | 43.54 126 | 67.11 45 | 58.46 94 | 72.40 45 | 81.13 55 | 80.82 60 | 87.57 48 | 90.21 79 |
|
tpm cat1 | | | 67.47 102 | 67.05 112 | 67.98 94 | 76.63 98 | 81.51 103 | 74.49 88 | 47.65 183 | 61.18 89 | 61.12 59 | 42.51 133 | 53.02 125 | 64.74 91 | 70.11 161 | 71.50 152 | 83.22 147 | 89.49 86 |
|
GeoE | | | 68.96 89 | 69.32 95 | 68.54 90 | 76.61 99 | 83.12 90 | 71.78 99 | 56.87 133 | 60.21 94 | 54.86 84 | 45.95 123 | 54.79 115 | 64.27 92 | 74.59 109 | 75.54 107 | 86.84 67 | 91.01 69 |
|
DI_MVS_plusplus_trai | | | 73.94 63 | 74.85 67 | 72.88 63 | 76.57 100 | 86.80 60 | 80.41 47 | 61.47 94 | 62.35 86 | 59.44 68 | 47.91 104 | 68.12 54 | 72.24 46 | 82.84 34 | 81.50 46 | 87.15 62 | 94.42 32 |
|
thres400 | | | 65.18 117 | 64.44 128 | 66.04 104 | 76.40 101 | 82.63 93 | 71.52 104 | 64.27 67 | 44.93 157 | 40.69 143 | 41.86 138 | 40.79 156 | 58.12 131 | 77.67 79 | 74.64 115 | 85.26 106 | 88.56 98 |
|
tpmrst | | | 67.15 105 | 68.12 106 | 66.03 105 | 76.21 102 | 80.98 110 | 71.27 106 | 45.05 189 | 60.69 92 | 50.63 98 | 46.95 117 | 54.15 118 | 65.30 86 | 71.80 144 | 71.77 150 | 87.72 43 | 90.48 76 |
|
gg-mvs-nofinetune | | | 62.34 136 | 66.19 119 | 57.86 161 | 76.15 103 | 88.61 39 | 71.18 109 | 41.24 206 | 25.74 209 | 13.16 211 | 22.91 203 | 63.97 68 | 54.52 147 | 85.06 15 | 85.25 10 | 90.92 3 | 91.78 61 |
|
baseline | | | 72.89 66 | 74.46 69 | 71.07 71 | 75.99 104 | 87.50 55 | 74.57 82 | 60.49 105 | 70.72 62 | 57.60 73 | 60.63 65 | 60.97 81 | 70.79 56 | 75.27 103 | 76.33 96 | 86.94 64 | 89.79 84 |
|
EPMVS | | | 66.21 108 | 67.49 110 | 64.73 112 | 75.81 105 | 84.20 85 | 68.94 125 | 44.37 193 | 61.55 88 | 48.07 110 | 49.21 101 | 54.87 114 | 62.88 100 | 71.82 143 | 71.40 156 | 88.28 34 | 79.37 161 |
|
baseline2 | | | 71.22 79 | 73.01 76 | 69.13 85 | 75.76 106 | 86.34 65 | 71.23 107 | 62.78 84 | 62.62 84 | 52.85 87 | 57.32 73 | 54.31 116 | 63.27 99 | 79.74 65 | 79.31 67 | 88.89 15 | 91.43 62 |
|
EPP-MVSNet | | | 67.58 100 | 71.10 86 | 63.48 124 | 75.71 107 | 83.35 89 | 66.85 139 | 57.83 122 | 53.02 127 | 41.15 140 | 55.82 75 | 67.89 56 | 56.01 142 | 74.40 112 | 72.92 142 | 83.33 145 | 90.30 78 |
|
diffmvs | | | 74.32 60 | 75.42 64 | 73.04 62 | 75.60 108 | 87.27 56 | 78.20 56 | 62.96 78 | 68.66 70 | 61.89 54 | 59.79 69 | 59.84 88 | 71.80 49 | 78.30 78 | 79.87 64 | 87.80 42 | 94.23 36 |
|
thres600view7 | | | 63.77 127 | 63.14 135 | 64.51 114 | 75.49 109 | 81.61 99 | 69.59 121 | 62.95 79 | 43.96 161 | 38.90 150 | 41.09 142 | 40.24 161 | 55.25 145 | 76.24 92 | 71.54 151 | 84.89 116 | 87.30 107 |
|
CS-MVS-test | | | 72.41 70 | 75.21 65 | 69.14 84 | 75.29 110 | 84.73 77 | 72.34 95 | 56.21 139 | 63.84 82 | 51.19 93 | 60.60 66 | 63.96 69 | 73.68 36 | 79.93 63 | 79.24 69 | 86.11 81 | 94.20 38 |
|
dps | | | 64.08 124 | 63.22 134 | 65.08 109 | 75.27 111 | 79.65 122 | 66.68 141 | 46.63 187 | 56.94 105 | 55.67 79 | 43.96 125 | 43.63 147 | 64.00 93 | 69.50 166 | 69.82 167 | 82.25 162 | 79.02 162 |
|
MVSTER | | | 76.92 50 | 79.92 41 | 73.42 60 | 74.98 112 | 82.97 91 | 78.15 57 | 63.41 74 | 78.02 47 | 64.41 46 | 67.54 43 | 72.80 37 | 71.05 54 | 83.29 30 | 83.73 22 | 88.53 27 | 91.12 67 |
|
TSAR-MVS + COLMAP | | | 73.09 65 | 76.86 55 | 68.71 88 | 74.97 113 | 82.49 96 | 74.51 87 | 61.83 90 | 83.16 28 | 49.31 105 | 82.22 21 | 51.62 127 | 68.94 73 | 78.76 73 | 75.52 108 | 82.67 155 | 84.23 133 |
|
tpm | | | 64.85 118 | 66.02 121 | 63.48 124 | 74.52 114 | 78.38 133 | 70.98 114 | 44.99 191 | 51.61 130 | 43.28 130 | 47.66 107 | 53.18 123 | 60.57 114 | 70.58 155 | 71.30 159 | 86.54 71 | 89.45 88 |
|
SCA | | | 63.90 126 | 66.67 113 | 60.66 143 | 73.75 115 | 71.78 177 | 59.87 173 | 43.66 194 | 61.13 90 | 45.03 119 | 51.64 93 | 59.45 89 | 57.92 133 | 70.96 150 | 70.80 161 | 83.71 141 | 80.92 156 |
|
Vis-MVSNet (Re-imp) | | | 62.25 139 | 68.74 100 | 54.68 176 | 73.70 116 | 78.74 129 | 56.51 181 | 57.49 126 | 55.22 117 | 26.86 189 | 54.56 82 | 61.35 79 | 31.06 191 | 73.10 127 | 74.90 111 | 82.49 158 | 83.31 139 |
|
Fast-Effi-MVS+ | | | 67.59 98 | 67.56 108 | 67.62 97 | 73.67 117 | 81.14 108 | 71.12 110 | 54.79 157 | 58.88 98 | 50.61 99 | 46.70 119 | 47.05 137 | 69.12 71 | 76.06 95 | 76.44 93 | 86.43 73 | 86.65 112 |
|
DROMVSNet | | | 67.59 98 | 67.56 108 | 67.62 97 | 73.67 117 | 81.14 108 | 71.12 110 | 54.79 157 | 58.88 98 | 50.61 99 | 46.70 119 | 47.05 137 | 69.12 71 | 76.06 95 | 76.44 93 | 86.43 73 | 86.65 112 |
|
IterMVS-LS | | | 66.08 110 | 66.56 116 | 65.51 106 | 73.67 117 | 74.88 162 | 70.89 115 | 53.55 165 | 50.42 133 | 48.32 109 | 50.59 96 | 55.66 109 | 61.83 107 | 73.93 118 | 74.42 120 | 84.82 121 | 86.01 120 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
PatchmatchNet |  | | 65.43 115 | 67.71 107 | 62.78 130 | 73.49 120 | 82.83 92 | 66.42 144 | 45.40 188 | 60.40 93 | 45.27 117 | 49.22 100 | 57.60 101 | 60.01 119 | 70.61 153 | 71.38 157 | 86.08 83 | 81.91 152 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
COLMAP_ROB |  | 51.17 15 | 55.13 174 | 52.90 187 | 57.73 163 | 73.47 121 | 67.21 190 | 62.13 164 | 55.82 142 | 47.83 143 | 34.39 172 | 31.60 186 | 34.24 187 | 44.90 177 | 63.88 186 | 62.52 194 | 75.67 194 | 63.02 203 |
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
Effi-MVS+-dtu | | | 64.58 120 | 64.08 129 | 65.16 108 | 73.04 122 | 75.17 161 | 70.68 117 | 56.23 138 | 54.12 125 | 44.71 122 | 47.42 108 | 51.10 128 | 63.82 95 | 68.08 170 | 66.32 181 | 82.47 159 | 86.38 116 |
|
thisisatest0530 | | | 68.38 94 | 70.98 87 | 65.35 107 | 72.61 123 | 84.42 80 | 68.21 129 | 57.98 117 | 59.77 95 | 50.80 97 | 54.63 81 | 58.48 93 | 57.92 133 | 76.99 87 | 77.47 84 | 84.60 126 | 85.07 126 |
|
EG-PatchMatch MVS | | | 58.73 164 | 58.03 171 | 59.55 150 | 72.32 124 | 80.49 115 | 63.44 159 | 55.55 147 | 32.49 198 | 38.31 153 | 28.87 193 | 37.22 171 | 42.84 181 | 74.30 116 | 75.70 103 | 84.84 118 | 77.14 167 |
|
TransMVSNet (Re) | | | 57.83 167 | 56.90 174 | 58.91 156 | 72.26 125 | 74.69 165 | 63.57 158 | 61.42 95 | 32.30 199 | 32.65 177 | 33.97 179 | 35.96 180 | 39.17 187 | 73.84 121 | 72.84 143 | 84.37 131 | 74.69 173 |
|
CMPMVS |  | 43.63 17 | 57.67 170 | 55.43 178 | 60.28 146 | 72.01 126 | 79.00 127 | 62.77 163 | 53.23 167 | 41.77 168 | 45.42 116 | 30.74 189 | 39.03 163 | 53.01 150 | 64.81 181 | 64.65 187 | 75.26 196 | 68.03 194 |
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
NR-MVSNet | | | 61.08 150 | 62.09 147 | 59.90 147 | 71.96 127 | 75.87 154 | 63.60 157 | 61.96 87 | 49.31 137 | 27.95 186 | 42.76 128 | 33.85 190 | 48.82 162 | 74.35 114 | 74.05 125 | 85.13 108 | 84.45 130 |
|
tttt0517 | | | 67.99 97 | 70.61 89 | 64.94 110 | 71.94 128 | 83.96 86 | 67.62 133 | 57.98 117 | 59.30 97 | 49.90 103 | 54.50 84 | 57.98 100 | 57.92 133 | 76.48 90 | 77.47 84 | 84.24 133 | 84.58 129 |
|
PMMVS | | | 70.37 83 | 75.06 66 | 64.90 111 | 71.46 129 | 81.88 97 | 64.10 150 | 55.64 145 | 71.31 60 | 46.69 112 | 70.69 39 | 58.56 91 | 69.53 65 | 79.03 70 | 75.63 104 | 81.96 165 | 88.32 101 |
|
test-LLR | | | 68.23 95 | 71.61 83 | 64.28 118 | 71.37 130 | 81.32 106 | 63.98 153 | 61.03 97 | 58.62 100 | 42.96 131 | 52.74 89 | 61.65 77 | 57.74 136 | 75.64 100 | 78.09 81 | 88.61 24 | 93.21 46 |
|
test0.0.03 1 | | | 57.35 171 | 59.89 163 | 54.38 179 | 71.37 130 | 73.45 170 | 52.71 187 | 61.03 97 | 46.11 152 | 26.33 190 | 41.73 139 | 44.08 145 | 29.72 193 | 71.43 148 | 70.90 160 | 85.10 109 | 71.56 186 |
|
tfpnnormal | | | 58.97 161 | 56.48 176 | 61.89 137 | 71.27 132 | 76.21 153 | 66.65 142 | 61.76 93 | 32.90 197 | 36.41 163 | 27.83 195 | 29.14 203 | 50.64 159 | 73.06 128 | 73.05 140 | 84.58 128 | 83.15 144 |
|
Fast-Effi-MVS+-dtu | | | 63.05 132 | 64.72 127 | 61.11 141 | 71.21 133 | 76.81 149 | 70.72 116 | 43.13 198 | 52.51 129 | 35.34 169 | 46.55 121 | 46.36 139 | 61.40 111 | 71.57 147 | 71.44 154 | 84.84 118 | 87.79 105 |
|
MDTV_nov1_ep13 | | | 65.21 116 | 67.28 111 | 62.79 129 | 70.91 134 | 81.72 98 | 69.28 124 | 49.50 177 | 58.08 102 | 43.94 125 | 50.50 97 | 56.02 106 | 58.86 128 | 70.72 152 | 73.37 132 | 84.24 133 | 80.52 157 |
|
FMVSNet3 | | | 70.41 82 | 71.89 81 | 68.68 89 | 70.89 135 | 79.42 125 | 75.63 72 | 60.97 99 | 65.32 77 | 51.06 94 | 47.37 109 | 62.05 73 | 64.90 89 | 82.49 36 | 82.27 36 | 88.64 23 | 84.34 132 |
|
Vis-MVSNet |  | | 65.53 114 | 69.83 94 | 60.52 144 | 70.80 136 | 84.59 78 | 66.37 145 | 55.47 149 | 48.40 142 | 40.62 144 | 57.67 72 | 58.43 95 | 45.37 176 | 77.49 80 | 76.24 98 | 84.47 129 | 85.99 121 |
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
CDS-MVSNet | | | 64.22 123 | 65.89 122 | 62.28 136 | 70.05 137 | 80.59 114 | 69.91 120 | 57.98 117 | 43.53 162 | 46.58 113 | 48.22 103 | 50.76 129 | 46.45 170 | 75.68 99 | 76.08 99 | 82.70 154 | 86.34 117 |
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
UGNet | | | 67.57 101 | 71.69 82 | 62.76 131 | 69.88 138 | 82.58 94 | 66.43 143 | 58.64 112 | 54.71 123 | 51.87 90 | 61.74 59 | 62.01 76 | 45.46 175 | 74.78 108 | 74.99 110 | 84.24 133 | 91.02 68 |
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
GA-MVS | | | 64.55 121 | 65.76 123 | 63.12 126 | 69.68 139 | 81.56 102 | 69.59 121 | 58.16 115 | 45.23 156 | 35.58 168 | 47.01 116 | 41.82 149 | 59.41 123 | 79.62 66 | 78.54 74 | 86.32 75 | 86.56 114 |
|
GBi-Net | | | 69.21 85 | 70.40 90 | 67.81 95 | 69.49 140 | 78.65 130 | 74.54 83 | 60.97 99 | 65.32 77 | 51.06 94 | 47.37 109 | 62.05 73 | 63.43 96 | 77.49 80 | 78.22 78 | 87.37 50 | 83.73 135 |
|
test1 | | | 69.21 85 | 70.40 90 | 67.81 95 | 69.49 140 | 78.65 130 | 74.54 83 | 60.97 99 | 65.32 77 | 51.06 94 | 47.37 109 | 62.05 73 | 63.43 96 | 77.49 80 | 78.22 78 | 87.37 50 | 83.73 135 |
|
FMVSNet2 | | | 68.06 96 | 68.57 101 | 67.45 100 | 69.49 140 | 78.65 130 | 74.54 83 | 60.23 108 | 56.29 110 | 49.64 104 | 42.13 137 | 57.08 102 | 63.43 96 | 81.15 54 | 80.99 55 | 87.37 50 | 83.73 135 |
|
UniMVSNet_NR-MVSNet | | | 62.30 138 | 63.51 132 | 60.89 142 | 69.48 143 | 77.83 139 | 64.07 151 | 63.94 69 | 50.03 134 | 31.17 181 | 44.82 124 | 41.12 153 | 51.37 155 | 71.02 149 | 74.81 113 | 85.30 105 | 84.95 127 |
|
gm-plane-assit | | | 54.99 176 | 57.99 172 | 51.49 185 | 69.27 144 | 54.42 209 | 32.32 212 | 42.59 199 | 21.18 213 | 13.71 209 | 23.61 200 | 43.84 146 | 60.21 118 | 87.09 5 | 86.55 5 | 90.81 4 | 89.28 89 |
|
PatchMatch-RL | | | 62.22 142 | 60.69 156 | 64.01 119 | 68.74 145 | 75.75 157 | 59.27 174 | 60.35 106 | 56.09 112 | 53.80 86 | 47.06 115 | 36.45 175 | 64.80 90 | 68.22 169 | 67.22 176 | 77.10 191 | 74.02 175 |
|
CR-MVSNet | | | 62.31 137 | 64.75 125 | 59.47 151 | 68.63 146 | 71.29 180 | 67.53 134 | 43.18 196 | 55.83 113 | 41.40 137 | 41.04 143 | 55.85 107 | 57.29 139 | 72.76 133 | 73.27 136 | 78.77 186 | 83.23 142 |
|
TranMVSNet+NR-MVSNet | | | 60.38 154 | 61.30 152 | 59.30 153 | 68.34 147 | 75.57 160 | 63.38 160 | 63.78 71 | 46.74 148 | 27.73 187 | 42.56 132 | 36.84 173 | 47.66 165 | 70.36 158 | 74.59 117 | 84.91 115 | 82.46 147 |
|
v8 | | | 63.44 130 | 62.58 142 | 64.43 115 | 68.28 148 | 78.07 136 | 71.82 98 | 54.85 155 | 46.70 149 | 45.20 118 | 39.40 151 | 40.91 155 | 60.54 115 | 72.85 132 | 74.39 121 | 85.92 86 | 85.76 123 |
|
v2v482 | | | 63.68 128 | 62.85 140 | 64.65 113 | 68.01 149 | 80.46 116 | 71.90 97 | 57.60 124 | 44.26 159 | 42.82 133 | 39.80 150 | 38.62 166 | 61.56 109 | 73.06 128 | 74.86 112 | 86.03 84 | 88.90 95 |
|
pm-mvs1 | | | 59.21 160 | 59.58 165 | 58.77 157 | 67.97 150 | 77.07 148 | 64.12 149 | 57.20 129 | 34.73 194 | 36.86 159 | 35.34 174 | 40.54 160 | 43.34 180 | 74.32 115 | 73.30 135 | 83.13 151 | 81.77 153 |
|
v10 | | | 63.00 133 | 62.22 145 | 63.90 122 | 67.88 151 | 77.78 140 | 71.59 103 | 54.34 160 | 45.37 155 | 42.76 134 | 38.53 153 | 38.93 164 | 61.05 113 | 74.39 113 | 74.52 119 | 85.75 90 | 86.04 119 |
|
v1144 | | | 63.00 133 | 62.39 144 | 63.70 123 | 67.72 152 | 80.27 117 | 71.23 107 | 56.40 134 | 42.51 164 | 40.81 142 | 38.12 158 | 37.73 167 | 60.42 117 | 74.46 111 | 74.55 118 | 85.64 101 | 89.12 91 |
|
UniMVSNet (Re) | | | 60.62 152 | 62.93 139 | 57.92 160 | 67.64 153 | 77.90 138 | 61.75 166 | 61.24 96 | 49.83 136 | 29.80 185 | 42.57 131 | 40.62 159 | 43.36 179 | 70.49 157 | 73.27 136 | 83.76 139 | 85.81 122 |
|
RPMNet | | | 58.63 165 | 62.80 141 | 53.76 181 | 67.59 154 | 71.29 180 | 54.60 184 | 38.13 208 | 55.83 113 | 35.70 167 | 41.58 140 | 53.04 124 | 47.89 164 | 66.10 174 | 67.38 174 | 78.65 188 | 84.40 131 |
|
v148 | | | 62.00 144 | 61.19 153 | 62.96 127 | 67.46 155 | 79.49 124 | 67.87 130 | 57.66 123 | 42.30 165 | 45.02 120 | 38.20 157 | 38.89 165 | 54.77 146 | 69.83 163 | 72.60 145 | 84.96 112 | 87.01 109 |
|
IterMVS | | | 61.87 145 | 63.55 131 | 59.90 147 | 67.29 156 | 72.20 174 | 67.34 137 | 48.56 179 | 47.48 145 | 37.86 157 | 47.07 114 | 48.27 133 | 54.08 148 | 72.12 140 | 73.71 127 | 84.30 132 | 83.99 134 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
v1192 | | | 62.25 139 | 61.64 149 | 62.96 127 | 66.88 157 | 79.72 121 | 69.96 119 | 55.77 143 | 41.58 169 | 39.42 146 | 37.05 163 | 35.96 180 | 60.50 116 | 74.30 116 | 74.09 123 | 85.24 107 | 88.76 96 |
|
DU-MVS | | | 60.87 151 | 61.82 148 | 59.76 149 | 66.69 158 | 75.87 154 | 64.07 151 | 61.96 87 | 49.31 137 | 31.17 181 | 42.76 128 | 36.95 172 | 51.37 155 | 69.67 164 | 73.20 139 | 83.30 146 | 84.95 127 |
|
Baseline_NR-MVSNet | | | 59.47 158 | 60.28 159 | 58.54 158 | 66.69 158 | 73.90 168 | 61.63 167 | 62.90 82 | 49.15 141 | 26.87 188 | 35.18 176 | 37.62 168 | 48.20 163 | 69.67 164 | 73.61 128 | 84.92 113 | 82.82 145 |
|
IterMVS-SCA-FT | | | 60.21 155 | 62.97 137 | 57.00 168 | 66.64 160 | 71.84 175 | 67.53 134 | 46.93 186 | 47.56 144 | 36.77 162 | 46.85 118 | 48.21 134 | 52.51 151 | 70.36 158 | 72.40 147 | 71.63 204 | 83.53 138 |
|
v144192 | | | 62.05 143 | 61.46 151 | 62.73 133 | 66.59 161 | 79.87 120 | 69.30 123 | 55.88 141 | 41.50 171 | 39.41 147 | 37.23 161 | 36.45 175 | 59.62 121 | 72.69 135 | 73.51 129 | 85.61 102 | 88.93 93 |
|
v1921920 | | | 61.66 146 | 61.10 154 | 62.31 135 | 66.32 162 | 79.57 123 | 68.41 128 | 55.49 148 | 41.03 172 | 38.69 151 | 36.64 169 | 35.27 183 | 59.60 122 | 73.23 126 | 73.41 131 | 85.37 104 | 88.51 100 |
|
TESTMET0.1,1 | | | 67.38 103 | 71.61 83 | 62.45 134 | 66.05 163 | 81.32 106 | 63.98 153 | 55.36 150 | 58.62 100 | 42.96 131 | 52.74 89 | 61.65 77 | 57.74 136 | 75.64 100 | 78.09 81 | 88.61 24 | 93.21 46 |
|
pmmvs4 | | | 63.14 131 | 62.46 143 | 63.94 121 | 66.03 164 | 76.40 151 | 66.82 140 | 57.60 124 | 56.74 106 | 50.26 102 | 40.81 145 | 37.51 169 | 59.26 125 | 71.75 145 | 71.48 153 | 83.68 142 | 82.53 146 |
|
PatchT | | | 60.46 153 | 63.85 130 | 56.51 170 | 65.95 165 | 75.68 158 | 47.34 195 | 41.39 203 | 53.89 126 | 41.40 137 | 37.84 159 | 50.30 131 | 57.29 139 | 72.76 133 | 73.27 136 | 85.67 97 | 83.23 142 |
|
v1240 | | | 61.09 149 | 60.55 158 | 61.72 139 | 65.92 166 | 79.28 126 | 67.16 138 | 54.91 154 | 39.79 178 | 38.10 154 | 36.08 171 | 34.64 185 | 59.15 126 | 72.86 131 | 73.36 133 | 85.10 109 | 87.84 104 |
|
ADS-MVSNet | | | 58.40 166 | 59.16 167 | 57.52 164 | 65.80 167 | 74.57 166 | 60.26 170 | 40.17 207 | 50.51 132 | 38.01 155 | 40.11 149 | 44.72 143 | 59.36 124 | 64.91 179 | 66.55 179 | 81.53 169 | 72.72 183 |
|
FMVSNet1 | | | 63.48 129 | 63.07 136 | 63.97 120 | 65.31 168 | 76.37 152 | 71.77 101 | 57.90 120 | 43.32 163 | 45.66 115 | 35.06 177 | 49.43 132 | 58.57 129 | 77.49 80 | 78.22 78 | 84.59 127 | 81.60 154 |
|
testgi | | | 48.51 196 | 50.53 194 | 46.16 197 | 64.78 169 | 67.15 191 | 41.54 205 | 54.81 156 | 29.12 204 | 17.03 201 | 32.07 185 | 31.98 193 | 20.15 207 | 65.26 178 | 67.00 178 | 78.67 187 | 61.10 207 |
|
LTVRE_ROB | | 47.26 16 | 49.41 194 | 49.91 197 | 48.82 189 | 64.76 170 | 69.79 183 | 49.05 191 | 47.12 185 | 20.36 215 | 16.52 203 | 36.65 168 | 26.96 206 | 50.76 158 | 60.47 190 | 63.16 192 | 64.73 207 | 72.00 184 |
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
Anonymous20231206 | | | 52.23 186 | 52.80 188 | 51.56 184 | 64.70 171 | 69.41 184 | 51.01 189 | 58.60 113 | 36.63 186 | 22.44 196 | 21.80 205 | 31.42 197 | 30.52 192 | 66.79 173 | 67.83 173 | 82.10 164 | 75.73 169 |
|
thisisatest0515 | | | 59.37 159 | 60.68 157 | 57.84 162 | 64.39 172 | 75.65 159 | 58.56 177 | 53.86 163 | 41.55 170 | 42.12 136 | 40.40 147 | 39.59 162 | 47.09 168 | 71.69 146 | 73.79 126 | 81.02 173 | 82.08 151 |
|
USDC | | | 59.69 157 | 60.03 162 | 59.28 154 | 64.04 173 | 71.84 175 | 63.15 162 | 55.36 150 | 54.90 121 | 35.02 170 | 48.34 102 | 29.79 202 | 58.16 130 | 70.60 154 | 71.33 158 | 79.99 179 | 73.42 179 |
|
WR-MVS | | | 51.02 188 | 54.56 180 | 46.90 195 | 63.84 174 | 69.23 185 | 44.78 202 | 56.38 135 | 38.19 182 | 14.19 207 | 37.38 160 | 36.82 174 | 22.39 203 | 60.14 191 | 66.20 183 | 79.81 180 | 73.95 177 |
|
our_test_3 | | | | | | 63.32 175 | 71.07 182 | 55.90 182 | | | | | | | | | | |
|
test20.03 | | | 47.23 199 | 48.69 199 | 45.53 199 | 63.28 176 | 64.39 197 | 41.01 206 | 56.93 132 | 29.16 203 | 15.21 206 | 23.90 199 | 30.76 200 | 17.51 210 | 64.63 182 | 65.26 184 | 79.21 185 | 62.71 204 |
|
UniMVSNet_ETH3D | | | 57.83 167 | 56.46 177 | 59.43 152 | 63.24 177 | 73.22 171 | 67.70 131 | 55.58 146 | 36.17 189 | 36.84 160 | 32.64 182 | 35.14 184 | 51.50 154 | 65.81 175 | 69.81 168 | 81.73 167 | 82.44 149 |
|
pmmvs6 | | | 54.20 181 | 53.54 183 | 54.97 174 | 63.22 178 | 72.98 172 | 60.17 171 | 52.32 172 | 26.77 208 | 34.30 173 | 23.29 202 | 36.23 177 | 40.33 186 | 68.77 168 | 68.76 171 | 79.47 184 | 78.00 165 |
|
v7n | | | 57.04 172 | 56.64 175 | 57.52 164 | 62.85 179 | 74.75 164 | 61.76 165 | 51.80 173 | 35.58 193 | 36.02 166 | 32.33 184 | 33.61 191 | 50.16 160 | 67.73 171 | 70.34 166 | 82.51 157 | 82.12 150 |
|
pmmvs5 | | | 59.72 156 | 60.24 160 | 59.11 155 | 62.77 180 | 77.33 146 | 63.17 161 | 54.00 162 | 40.21 176 | 37.23 158 | 40.41 146 | 35.99 179 | 51.75 153 | 72.55 137 | 72.74 144 | 85.72 95 | 82.45 148 |
|
CVMVSNet | | | 54.92 178 | 58.16 169 | 51.13 186 | 62.61 181 | 68.44 187 | 55.45 183 | 52.38 171 | 42.28 166 | 21.45 197 | 47.10 113 | 46.10 140 | 37.96 188 | 64.42 184 | 63.81 188 | 76.92 192 | 75.01 172 |
|
TAMVS | | | 58.86 162 | 60.91 155 | 56.47 171 | 62.38 182 | 77.57 142 | 58.97 176 | 52.98 168 | 38.76 181 | 36.17 164 | 42.26 136 | 47.94 135 | 46.45 170 | 70.23 160 | 70.79 162 | 81.86 166 | 78.82 163 |
|
pmnet_mix02 | | | 53.92 182 | 53.30 184 | 54.65 178 | 61.89 183 | 71.33 179 | 54.54 185 | 54.17 161 | 40.38 174 | 34.65 171 | 34.76 178 | 30.68 201 | 40.44 185 | 60.97 189 | 63.71 189 | 82.19 163 | 71.24 188 |
|
DTE-MVSNet | | | 49.82 192 | 51.92 192 | 47.37 194 | 61.75 184 | 64.38 198 | 45.89 201 | 57.33 128 | 36.11 190 | 12.79 212 | 36.87 165 | 31.93 195 | 25.73 200 | 58.01 193 | 65.22 185 | 80.75 176 | 70.93 190 |
|
PEN-MVS | | | 51.04 187 | 52.94 186 | 48.82 189 | 61.45 185 | 66.00 193 | 48.68 192 | 57.20 129 | 36.87 184 | 15.36 205 | 36.98 164 | 32.72 192 | 28.77 197 | 57.63 195 | 66.37 180 | 81.44 170 | 74.00 176 |
|
V42 | | | 62.86 135 | 62.97 137 | 62.74 132 | 60.84 186 | 78.99 128 | 71.46 105 | 57.13 131 | 46.85 147 | 44.28 124 | 38.87 152 | 40.73 158 | 57.63 138 | 72.60 136 | 74.14 122 | 85.09 111 | 88.63 97 |
|
MDTV_nov1_ep13_2view | | | 54.47 180 | 54.61 179 | 54.30 180 | 60.50 187 | 73.82 169 | 57.92 178 | 43.38 195 | 39.43 180 | 32.51 178 | 33.23 180 | 34.05 188 | 47.26 167 | 62.36 187 | 66.21 182 | 84.24 133 | 73.19 181 |
|
MVS-HIRNet | | | 53.86 183 | 53.02 185 | 54.85 175 | 60.30 188 | 72.36 173 | 44.63 203 | 42.20 201 | 39.45 179 | 43.47 127 | 21.66 206 | 34.00 189 | 55.47 143 | 65.42 177 | 67.16 177 | 83.02 152 | 71.08 189 |
|
CHOSEN 280x420 | | | 62.23 141 | 66.57 115 | 57.17 167 | 59.88 189 | 68.92 186 | 61.20 169 | 42.28 200 | 54.17 124 | 39.57 145 | 47.78 106 | 64.97 64 | 62.68 101 | 73.85 120 | 69.52 170 | 77.43 190 | 86.75 111 |
|
TinyColmap | | | 52.66 185 | 50.09 196 | 55.65 172 | 59.72 190 | 64.02 200 | 57.15 180 | 52.96 169 | 40.28 175 | 32.51 178 | 32.42 183 | 20.97 213 | 56.65 141 | 63.95 185 | 65.15 186 | 74.91 197 | 63.87 201 |
|
FC-MVSNet-test | | | 47.24 198 | 54.37 181 | 38.93 204 | 59.49 191 | 58.25 207 | 34.48 211 | 53.36 166 | 45.66 154 | 6.66 217 | 50.62 95 | 42.02 148 | 16.62 211 | 58.39 192 | 61.21 196 | 62.99 208 | 64.40 200 |
|
test-mter | | | 64.06 125 | 69.24 96 | 58.01 159 | 59.07 192 | 77.40 144 | 59.13 175 | 48.11 181 | 55.64 116 | 39.18 149 | 51.56 94 | 58.54 92 | 55.38 144 | 73.52 124 | 76.00 100 | 87.22 59 | 92.05 59 |
|
WR-MVS_H | | | 49.62 193 | 52.63 189 | 46.11 198 | 58.80 193 | 67.58 189 | 46.14 200 | 54.94 152 | 36.51 187 | 13.63 210 | 36.75 167 | 35.67 182 | 22.10 204 | 56.43 199 | 62.76 193 | 81.06 172 | 72.73 182 |
|
CP-MVSNet | | | 50.57 189 | 52.60 190 | 48.21 192 | 58.77 194 | 65.82 194 | 48.17 193 | 56.29 136 | 37.41 183 | 16.59 202 | 37.14 162 | 31.95 194 | 29.21 194 | 56.60 198 | 63.71 189 | 80.22 177 | 75.56 170 |
|
PS-CasMVS | | | 50.17 190 | 52.02 191 | 48.02 193 | 58.60 195 | 65.54 195 | 48.04 194 | 56.19 140 | 36.42 188 | 16.42 204 | 35.68 173 | 31.33 198 | 28.85 196 | 56.42 200 | 63.54 191 | 80.01 178 | 75.18 171 |
|
SixPastTwentyTwo | | | 49.11 195 | 49.22 198 | 48.99 188 | 58.54 196 | 64.14 199 | 47.18 196 | 47.75 182 | 31.15 201 | 24.42 192 | 41.01 144 | 26.55 207 | 44.04 178 | 54.76 203 | 58.70 200 | 71.99 203 | 68.21 192 |
|
TDRefinement | | | 52.70 184 | 51.02 193 | 54.66 177 | 57.41 197 | 65.06 196 | 61.47 168 | 54.94 152 | 44.03 160 | 33.93 174 | 30.13 191 | 27.57 205 | 46.17 172 | 61.86 188 | 62.48 195 | 74.01 200 | 66.06 197 |
|
pmmvs-eth3d | | | 55.20 173 | 53.95 182 | 56.65 169 | 57.34 198 | 67.77 188 | 57.54 179 | 53.74 164 | 40.93 173 | 41.09 141 | 31.19 188 | 29.10 204 | 49.07 161 | 65.54 176 | 67.28 175 | 81.14 171 | 75.81 168 |
|
FPMVS | | | 39.11 205 | 36.39 207 | 42.28 200 | 55.97 199 | 45.94 212 | 46.23 199 | 41.57 202 | 35.73 192 | 22.61 194 | 23.46 201 | 19.82 215 | 28.32 198 | 43.57 207 | 40.67 209 | 58.96 210 | 45.54 210 |
|
MIMVSNet | | | 57.78 169 | 59.71 164 | 55.53 173 | 54.79 200 | 77.10 147 | 63.89 155 | 45.02 190 | 46.59 150 | 36.79 161 | 28.36 194 | 40.77 157 | 45.84 174 | 74.97 105 | 76.58 91 | 86.87 66 | 73.60 178 |
|
N_pmnet | | | 47.67 197 | 47.00 201 | 48.45 191 | 54.72 201 | 62.78 201 | 46.95 197 | 51.25 174 | 36.01 191 | 26.09 191 | 26.59 198 | 25.93 210 | 35.50 190 | 55.67 202 | 59.01 198 | 76.22 193 | 63.04 202 |
|
anonymousdsp | | | 54.99 176 | 57.24 173 | 52.36 182 | 53.82 202 | 71.75 178 | 51.49 188 | 48.14 180 | 33.74 195 | 33.66 175 | 38.34 155 | 36.13 178 | 47.54 166 | 64.53 183 | 70.60 164 | 79.53 183 | 85.59 125 |
|
new-patchmatchnet | | | 42.21 202 | 42.97 203 | 41.33 202 | 53.05 203 | 59.89 204 | 39.38 207 | 49.61 176 | 28.26 206 | 12.10 213 | 22.17 204 | 21.54 212 | 19.22 208 | 50.96 205 | 56.04 203 | 74.61 199 | 61.92 205 |
|
FMVSNet5 | | | 58.86 162 | 60.24 160 | 57.25 166 | 52.66 204 | 66.25 192 | 63.77 156 | 52.86 170 | 57.85 104 | 37.92 156 | 36.12 170 | 52.22 126 | 51.37 155 | 70.88 151 | 71.43 155 | 84.92 113 | 66.91 196 |
|
ET-MVSNet_ETH3D | | | 71.38 77 | 74.70 68 | 67.51 99 | 51.61 205 | 88.06 49 | 77.29 65 | 60.95 102 | 63.61 83 | 48.36 108 | 66.60 48 | 60.67 83 | 79.55 9 | 73.56 123 | 80.58 61 | 87.30 55 | 89.80 83 |
|
ambc | | | | 42.30 204 | | 50.36 206 | 49.51 211 | 35.47 210 | | 32.04 200 | 23.53 193 | 17.36 209 | 8.95 220 | 29.06 195 | 64.88 180 | 56.26 202 | 61.29 209 | 67.12 195 |
|
EU-MVSNet | | | 44.84 200 | 47.85 200 | 41.32 203 | 49.26 207 | 56.59 208 | 43.07 204 | 47.64 184 | 33.03 196 | 13.82 208 | 36.78 166 | 30.99 199 | 24.37 201 | 53.80 204 | 55.57 204 | 69.78 205 | 68.21 192 |
|
RPSCF | | | 55.07 175 | 58.06 170 | 51.57 183 | 48.87 208 | 58.95 205 | 53.68 186 | 41.26 205 | 62.42 85 | 45.88 114 | 54.38 85 | 54.26 117 | 53.75 149 | 57.15 196 | 53.53 206 | 66.01 206 | 65.75 198 |
|
PMVS |  | 27.44 18 | 32.08 207 | 29.07 210 | 35.60 206 | 48.33 209 | 24.79 215 | 26.97 214 | 41.34 204 | 20.45 214 | 22.50 195 | 17.11 211 | 18.64 216 | 20.44 206 | 41.99 209 | 38.06 210 | 54.02 212 | 42.44 211 |
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
PM-MVS | | | 50.11 191 | 50.38 195 | 49.80 187 | 47.23 210 | 62.08 203 | 50.91 190 | 44.84 192 | 41.90 167 | 36.10 165 | 35.22 175 | 26.05 209 | 46.83 169 | 57.64 194 | 55.42 205 | 72.90 201 | 74.32 174 |
|
pmmvs3 | | | 41.86 203 | 42.29 205 | 41.36 201 | 39.80 211 | 52.66 210 | 38.93 209 | 35.85 212 | 23.40 212 | 20.22 199 | 19.30 207 | 20.84 214 | 40.56 184 | 55.98 201 | 58.79 199 | 72.80 202 | 65.03 199 |
|
MDA-MVSNet-bldmvs | | | 44.15 201 | 42.27 206 | 46.34 196 | 38.34 212 | 62.31 202 | 46.28 198 | 55.74 144 | 29.83 202 | 20.98 198 | 27.11 197 | 16.45 218 | 41.98 182 | 41.11 210 | 57.47 201 | 74.72 198 | 61.65 206 |
|
MIMVSNet1 | | | 40.84 204 | 43.46 202 | 37.79 205 | 32.14 213 | 58.92 206 | 39.24 208 | 50.83 175 | 27.00 207 | 11.29 214 | 16.76 212 | 26.53 208 | 17.75 209 | 57.14 197 | 61.12 197 | 75.46 195 | 56.78 208 |
|
Gipuma |  | | 24.91 209 | 24.61 211 | 25.26 209 | 31.47 214 | 21.59 216 | 18.06 216 | 37.53 209 | 25.43 210 | 10.03 215 | 4.18 218 | 4.25 222 | 14.85 212 | 43.20 208 | 47.03 207 | 39.62 214 | 26.55 215 |
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
E-PMN | | | 15.08 211 | 11.65 214 | 19.08 211 | 28.73 215 | 12.31 220 | 6.95 221 | 36.87 211 | 10.71 218 | 3.63 220 | 5.13 215 | 2.22 225 | 13.81 214 | 11.34 216 | 18.50 215 | 24.49 217 | 21.32 216 |
|
EMVS | | | 14.40 212 | 10.71 215 | 18.70 212 | 28.15 216 | 12.09 221 | 7.06 220 | 36.89 210 | 11.00 217 | 3.56 221 | 4.95 216 | 2.27 224 | 13.91 213 | 10.13 217 | 16.06 216 | 22.63 218 | 18.51 217 |
|
new_pmnet | | | 33.19 206 | 35.52 208 | 30.47 207 | 27.55 217 | 45.31 213 | 29.29 213 | 30.92 213 | 29.00 205 | 9.88 216 | 18.77 208 | 17.64 217 | 26.77 199 | 44.07 206 | 45.98 208 | 58.41 211 | 47.87 209 |
|
PMMVS2 | | | 20.45 210 | 22.31 212 | 18.27 213 | 20.52 218 | 26.73 214 | 14.85 218 | 28.43 215 | 13.69 216 | 0.79 222 | 10.35 214 | 9.10 219 | 3.83 217 | 27.64 213 | 32.87 211 | 41.17 213 | 35.81 212 |
|
tmp_tt | | | | | 16.09 214 | 13.07 219 | 8.12 222 | 13.61 219 | 2.08 218 | 55.09 118 | 30.10 184 | 40.26 148 | 22.83 211 | 5.35 216 | 29.91 212 | 25.25 214 | 32.33 216 | |
|
MVE |  | 15.98 19 | 14.37 213 | 16.36 213 | 12.04 215 | 7.72 220 | 20.24 218 | 5.90 222 | 29.05 214 | 8.28 219 | 3.92 219 | 4.72 217 | 2.42 223 | 9.57 215 | 18.89 215 | 31.46 212 | 16.07 220 | 28.53 214 |
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
test_method | | | 28.15 208 | 34.48 209 | 20.76 210 | 6.76 221 | 21.18 217 | 21.03 215 | 18.41 216 | 36.77 185 | 17.52 200 | 15.67 213 | 31.63 196 | 24.05 202 | 41.03 211 | 26.69 213 | 36.82 215 | 68.38 191 |
|
GG-mvs-BLEND | | | 54.54 179 | 77.58 49 | 27.67 208 | 0.03 222 | 90.09 29 | 77.20 66 | 0.02 219 | 66.83 72 | 0.05 223 | 59.90 68 | 73.33 36 | 0.04 218 | 78.40 76 | 79.30 68 | 88.65 22 | 95.20 27 |
|
uanet_test | | | 0.00 216 | 0.00 218 | 0.00 218 | 0.00 223 | 0.00 225 | 0.00 226 | 0.00 221 | 0.00 222 | 0.00 224 | 0.00 221 | 0.00 227 | 0.00 221 | 0.00 220 | 0.00 219 | 0.00 222 | 0.00 220 |
|
sosnet-low-res | | | 0.00 216 | 0.00 218 | 0.00 218 | 0.00 223 | 0.00 225 | 0.00 226 | 0.00 221 | 0.00 222 | 0.00 224 | 0.00 221 | 0.00 227 | 0.00 221 | 0.00 220 | 0.00 219 | 0.00 222 | 0.00 220 |
|
sosnet | | | 0.00 216 | 0.00 218 | 0.00 218 | 0.00 223 | 0.00 225 | 0.00 226 | 0.00 221 | 0.00 222 | 0.00 224 | 0.00 221 | 0.00 227 | 0.00 221 | 0.00 220 | 0.00 219 | 0.00 222 | 0.00 220 |
|
testmvs | | | 0.05 214 | 0.08 216 | 0.01 216 | 0.00 223 | 0.01 223 | 0.03 224 | 0.01 220 | 0.05 220 | 0.00 224 | 0.14 220 | 0.01 226 | 0.03 220 | 0.05 218 | 0.05 217 | 0.01 221 | 0.24 219 |
|
test123 | | | 0.05 214 | 0.08 216 | 0.01 216 | 0.00 223 | 0.01 223 | 0.01 225 | 0.00 221 | 0.05 220 | 0.00 224 | 0.16 219 | 0.00 227 | 0.04 218 | 0.02 219 | 0.05 217 | 0.00 222 | 0.26 218 |
|
RE-MVS-def | | | | | | | | | | | 31.47 180 | | | | | | | |
|
9.14 | | | | | | | | | | | | | 84.47 6 | | | | | |
|
MTAPA | | | | | | | | | | | 78.32 11 | | 79.42 24 | | | | | |
|
MTMP | | | | | | | | | | | 76.04 16 | | 76.65 29 | | | | | |
|
Patchmatch-RL test | | | | | | | | 2.17 223 | | | | | | | | | | |
|
NP-MVS | | | | | | | | | | 81.60 36 | | | | | | | | |
|
Patchmtry | | | | | | | 78.06 137 | 67.53 134 | 43.18 196 | | 41.40 137 | | | | | | | |
|
DeepMVS_CX |  | | | | | | 19.81 219 | 17.01 217 | 10.02 217 | 23.61 211 | 5.85 218 | 17.21 210 | 8.03 221 | 21.13 205 | 22.60 214 | | 21.42 219 | 30.01 213 |
|