xxxxxxxxxxxxxcwj | | | 74.63 16 | 77.07 27 | 71.79 2 | 79.32 1 | 80.76 4 | 82.96 2 | 57.49 10 | 82.82 8 | 64.79 5 | 83.69 9 | 52.03 116 | 62.83 13 | 77.13 26 | 75.21 31 | 83.35 7 | 87.85 16 |
|
SF-MVS | | | 77.13 7 | 81.70 7 | 71.79 2 | 79.32 1 | 80.76 4 | 82.96 2 | 57.49 10 | 82.82 8 | 64.79 5 | 83.69 9 | 84.46 4 | 62.83 13 | 77.13 26 | 75.21 31 | 83.35 7 | 87.85 16 |
|
SED-MVS | | | 79.21 1 | 84.74 2 | 72.75 1 | 78.66 3 | 81.96 2 | 82.94 5 | 58.16 4 | 86.82 2 | 67.66 1 | 88.29 4 | 86.15 2 | 66.42 1 | 80.41 3 | 78.65 6 | 82.65 17 | 90.92 2 |
|
DVP-MVS | | | 78.77 2 | 84.89 1 | 71.62 4 | 78.04 4 | 82.05 1 | 81.64 10 | 57.96 6 | 87.53 1 | 66.64 2 | 88.77 1 | 86.31 1 | 63.16 9 | 79.99 6 | 78.56 7 | 82.31 22 | 91.03 1 |
|
APDe-MVS | | | 77.58 5 | 82.93 5 | 71.35 6 | 77.86 5 | 80.55 6 | 83.38 1 | 57.61 9 | 85.57 4 | 61.11 21 | 86.10 6 | 82.98 7 | 64.76 3 | 78.29 14 | 76.78 22 | 83.40 6 | 90.20 5 |
|
DPE-MVS | | | 78.11 3 | 83.84 3 | 71.42 5 | 77.82 6 | 81.32 3 | 82.92 6 | 57.81 8 | 84.04 7 | 63.19 13 | 88.63 2 | 86.00 3 | 64.52 4 | 78.71 10 | 77.63 15 | 82.26 23 | 90.57 4 |
|
SteuartSystems-ACMMP | | | 75.23 12 | 79.60 14 | 70.13 13 | 76.81 7 | 78.92 12 | 81.74 8 | 57.99 5 | 75.30 30 | 59.83 26 | 75.69 18 | 78.45 24 | 60.48 29 | 80.58 2 | 79.77 2 | 83.94 3 | 88.52 10 |
Skip Steuart: Steuart Systems R&D Blog. |
HPM-MVS++ | | | 76.01 9 | 80.47 11 | 70.81 9 | 76.60 8 | 74.96 36 | 80.18 17 | 58.36 2 | 81.96 10 | 63.50 12 | 78.80 14 | 82.53 10 | 64.40 5 | 78.74 9 | 78.84 5 | 81.81 32 | 87.46 19 |
|
MCST-MVS | | | 73.67 25 | 77.39 25 | 69.33 19 | 76.26 9 | 78.19 17 | 78.77 26 | 54.54 31 | 75.33 28 | 59.99 25 | 67.96 32 | 79.23 22 | 62.43 17 | 78.00 18 | 75.71 29 | 84.02 2 | 87.30 20 |
|
CNVR-MVS | | | 75.62 11 | 79.91 13 | 70.61 10 | 75.76 10 | 78.82 14 | 81.66 9 | 57.12 13 | 79.77 17 | 63.04 14 | 70.69 24 | 81.15 15 | 62.99 10 | 80.23 4 | 79.54 3 | 83.11 9 | 89.16 8 |
|
NCCC | | | 74.27 19 | 77.83 24 | 70.13 13 | 75.70 11 | 77.41 23 | 80.51 15 | 57.09 14 | 78.25 21 | 62.28 18 | 65.54 37 | 78.26 25 | 62.18 19 | 79.13 7 | 78.51 9 | 83.01 11 | 87.68 18 |
|
CSCG | | | 74.68 15 | 79.22 15 | 69.40 18 | 75.69 12 | 80.01 9 | 79.12 24 | 52.83 42 | 79.34 18 | 63.99 10 | 70.49 25 | 82.02 11 | 60.35 31 | 77.48 24 | 77.22 19 | 84.38 1 | 87.97 15 |
|
DPM-MVS | | | 72.80 27 | 75.90 30 | 69.19 21 | 75.51 13 | 77.68 20 | 81.62 11 | 54.83 27 | 75.96 26 | 62.06 19 | 63.96 43 | 76.58 30 | 58.55 38 | 76.66 33 | 76.77 23 | 82.60 19 | 83.68 43 |
|
SMA-MVS | | | 77.32 6 | 82.51 6 | 71.26 7 | 75.43 14 | 80.19 8 | 82.22 7 | 58.26 3 | 84.83 6 | 64.36 8 | 78.19 15 | 83.46 5 | 63.61 7 | 81.00 1 | 80.28 1 | 83.66 4 | 89.62 6 |
|
APD-MVS | | | 75.80 10 | 80.90 10 | 69.86 16 | 75.42 15 | 78.48 16 | 81.43 13 | 57.44 12 | 80.45 15 | 59.32 27 | 85.28 7 | 80.82 17 | 63.96 6 | 76.89 29 | 76.08 27 | 81.58 38 | 88.30 12 |
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
MSP-MVS | | | 77.82 4 | 83.46 4 | 71.24 8 | 75.26 16 | 80.22 7 | 82.95 4 | 57.85 7 | 85.90 3 | 64.79 5 | 88.54 3 | 83.43 6 | 66.24 2 | 78.21 17 | 78.56 7 | 80.34 45 | 89.39 7 |
|
train_agg | | | 73.89 22 | 78.25 21 | 68.80 24 | 75.25 17 | 72.27 52 | 79.75 18 | 56.05 21 | 74.87 33 | 58.97 28 | 81.83 11 | 79.76 21 | 61.05 26 | 77.39 25 | 76.01 28 | 81.71 35 | 85.61 31 |
|
TSAR-MVS + MP. | | | 75.22 13 | 80.06 12 | 69.56 17 | 74.61 18 | 72.74 50 | 80.59 14 | 55.70 24 | 80.80 13 | 62.65 16 | 86.25 5 | 82.92 8 | 62.07 20 | 76.89 29 | 75.66 30 | 81.77 34 | 85.19 34 |
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
SD-MVS | | | 74.43 17 | 78.87 17 | 69.26 20 | 74.39 19 | 73.70 46 | 79.06 25 | 55.24 26 | 81.04 12 | 62.71 15 | 80.18 12 | 82.61 9 | 61.70 22 | 75.43 41 | 73.92 44 | 82.44 21 | 85.22 33 |
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
ACMMP_NAP | | | 76.15 8 | 81.17 8 | 70.30 11 | 74.09 20 | 79.47 10 | 81.59 12 | 57.09 14 | 81.38 11 | 63.89 11 | 79.02 13 | 80.48 18 | 62.24 18 | 80.05 5 | 79.12 4 | 82.94 12 | 88.64 9 |
|
HFP-MVS | | | 74.87 14 | 78.86 19 | 70.21 12 | 73.99 21 | 77.91 18 | 80.36 16 | 56.63 16 | 78.41 20 | 64.27 9 | 74.54 20 | 77.75 28 | 62.96 11 | 78.70 11 | 77.82 12 | 83.02 10 | 86.91 22 |
|
AdaColmap | | | 67.89 46 | 68.85 56 | 66.77 30 | 73.73 22 | 74.30 43 | 75.28 40 | 53.58 37 | 70.24 46 | 57.59 35 | 51.19 99 | 59.19 88 | 60.74 28 | 75.33 43 | 73.72 46 | 79.69 53 | 77.96 67 |
|
MP-MVS | | | 74.31 18 | 78.87 17 | 68.99 22 | 73.49 23 | 78.56 15 | 79.25 23 | 56.51 17 | 75.33 28 | 60.69 23 | 75.30 19 | 79.12 23 | 61.81 21 | 77.78 21 | 77.93 11 | 82.18 28 | 88.06 14 |
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
zzz-MVS | | | 74.25 20 | 77.97 23 | 69.91 15 | 73.43 24 | 74.06 44 | 79.69 19 | 56.44 18 | 80.74 14 | 64.98 4 | 68.72 30 | 79.98 20 | 62.92 12 | 78.24 16 | 77.77 14 | 81.99 30 | 86.30 24 |
|
TSAR-MVS + ACMM | | | 72.56 29 | 79.07 16 | 64.96 41 | 73.24 25 | 73.16 49 | 78.50 27 | 48.80 65 | 79.34 18 | 55.32 41 | 85.04 8 | 81.49 14 | 58.57 37 | 75.06 44 | 73.75 45 | 75.35 101 | 85.61 31 |
|
CDPH-MVS | | | 71.47 32 | 75.82 32 | 66.41 32 | 72.97 26 | 77.15 25 | 78.14 30 | 54.71 28 | 69.88 48 | 53.07 56 | 70.98 23 | 74.83 37 | 56.95 51 | 76.22 34 | 76.57 24 | 82.62 18 | 85.09 35 |
|
PGM-MVS | | | 72.89 26 | 77.13 26 | 67.94 26 | 72.47 27 | 77.25 24 | 79.27 22 | 54.63 30 | 73.71 35 | 57.95 34 | 72.38 22 | 75.33 35 | 60.75 27 | 78.25 15 | 77.36 18 | 82.57 20 | 85.62 30 |
|
ACMMPR | | | 73.79 24 | 78.41 20 | 68.40 25 | 72.35 28 | 77.79 19 | 79.32 21 | 56.38 19 | 77.67 24 | 58.30 32 | 74.16 21 | 76.66 29 | 61.40 23 | 78.32 13 | 77.80 13 | 82.68 16 | 86.51 23 |
|
OPM-MVS | | | 69.33 38 | 71.05 46 | 67.32 28 | 72.34 29 | 75.70 33 | 79.57 20 | 56.34 20 | 55.21 70 | 53.81 54 | 59.51 61 | 68.96 54 | 59.67 33 | 77.61 23 | 76.44 25 | 82.19 27 | 83.88 41 |
|
X-MVS | | | 71.18 33 | 75.66 33 | 65.96 36 | 71.71 30 | 76.96 26 | 77.26 33 | 55.88 23 | 72.75 38 | 54.48 49 | 64.39 41 | 74.47 38 | 54.19 65 | 77.84 20 | 77.37 17 | 82.21 26 | 85.85 28 |
|
HQP-MVS | | | 70.88 34 | 75.02 34 | 66.05 35 | 71.69 31 | 74.47 41 | 77.51 32 | 53.17 39 | 72.89 37 | 54.88 45 | 70.03 27 | 70.48 50 | 57.26 47 | 76.02 36 | 75.01 36 | 81.78 33 | 86.21 25 |
|
MAR-MVS | | | 68.04 45 | 70.74 48 | 64.90 42 | 71.68 32 | 76.33 31 | 74.63 44 | 50.48 56 | 63.81 56 | 55.52 40 | 54.88 81 | 69.90 52 | 57.39 45 | 75.42 42 | 74.79 38 | 79.71 50 | 80.03 56 |
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
mPP-MVS | | | | | | 71.67 33 | | | | | | | 74.36 41 | | | | | |
|
SR-MVS | | | | | | 71.46 34 | | | 54.67 29 | | | | 81.54 13 | | | | | |
|
CLD-MVS | | | 67.02 50 | 71.57 43 | 61.71 52 | 71.01 35 | 74.81 38 | 71.62 52 | 38.91 153 | 71.86 41 | 60.70 22 | 64.97 39 | 67.88 61 | 51.88 88 | 76.77 32 | 74.98 37 | 76.11 91 | 69.75 120 |
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
CP-MVS | | | 72.63 28 | 76.95 28 | 67.59 27 | 70.67 36 | 75.53 34 | 77.95 31 | 56.01 22 | 75.65 27 | 58.82 29 | 69.16 29 | 76.48 31 | 60.46 30 | 77.66 22 | 77.20 20 | 81.65 36 | 86.97 21 |
|
ACMM | | 60.30 7 | 67.58 48 | 68.82 57 | 66.13 34 | 70.59 37 | 72.01 54 | 76.54 35 | 54.26 33 | 65.64 54 | 54.78 47 | 50.35 102 | 61.72 76 | 58.74 36 | 75.79 39 | 75.03 34 | 81.88 31 | 81.17 53 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
XVS | | | | | | 70.49 38 | 76.96 26 | 74.36 45 | | | 54.48 49 | | 74.47 38 | | | | 82.24 24 | |
|
X-MVStestdata | | | | | | 70.49 38 | 76.96 26 | 74.36 45 | | | 54.48 49 | | 74.47 38 | | | | 82.24 24 | |
|
ACMMP | | | 71.57 31 | 75.84 31 | 66.59 31 | 70.30 40 | 76.85 29 | 78.46 28 | 53.95 35 | 73.52 36 | 55.56 39 | 70.13 26 | 71.36 48 | 58.55 38 | 77.00 28 | 76.23 26 | 82.71 15 | 85.81 29 |
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
abl_6 | | | | | 64.36 45 | 70.08 41 | 77.45 22 | 72.88 50 | 50.15 57 | 71.31 43 | 54.77 48 | 62.79 48 | 77.99 27 | 56.80 52 | | | 81.50 39 | 83.91 40 |
|
MVS_111021_HR | | | 67.62 47 | 70.39 50 | 64.39 44 | 69.77 42 | 70.45 58 | 71.44 54 | 51.72 48 | 60.77 64 | 55.06 43 | 62.14 53 | 66.40 63 | 58.13 41 | 76.13 35 | 74.79 38 | 80.19 47 | 82.04 50 |
|
MSLP-MVS++ | | | 68.17 44 | 70.72 49 | 65.19 39 | 69.41 43 | 70.64 56 | 74.99 41 | 45.76 75 | 70.20 47 | 60.17 24 | 56.42 73 | 73.01 44 | 61.14 24 | 72.80 54 | 70.54 57 | 79.70 51 | 81.42 52 |
|
LGP-MVS_train | | | 68.87 40 | 72.03 42 | 65.18 40 | 69.33 44 | 74.03 45 | 76.67 34 | 53.88 36 | 68.46 49 | 52.05 59 | 63.21 45 | 63.89 66 | 56.31 55 | 75.99 37 | 74.43 40 | 82.83 14 | 84.18 37 |
|
ACMP | | 61.42 5 | 68.72 43 | 71.37 44 | 65.64 38 | 69.06 45 | 74.45 42 | 75.88 38 | 53.30 38 | 68.10 50 | 55.74 38 | 61.53 56 | 62.29 72 | 56.97 50 | 74.70 45 | 74.23 42 | 82.88 13 | 84.31 36 |
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
DeepC-MVS_fast | | 65.08 3 | 72.00 30 | 76.11 29 | 67.21 29 | 68.93 46 | 77.46 21 | 76.54 35 | 54.35 32 | 74.92 32 | 58.64 31 | 65.18 38 | 74.04 43 | 62.62 15 | 77.92 19 | 77.02 21 | 82.16 29 | 86.21 25 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
CANet | | | 68.77 41 | 73.01 38 | 63.83 47 | 68.30 47 | 75.19 35 | 73.73 48 | 47.90 66 | 63.86 55 | 54.84 46 | 67.51 34 | 74.36 41 | 57.62 42 | 74.22 47 | 73.57 48 | 80.56 43 | 82.36 47 |
|
TSAR-MVS + GP. | | | 69.71 35 | 73.92 37 | 64.80 43 | 68.27 48 | 70.56 57 | 71.90 51 | 50.75 52 | 71.38 42 | 57.46 36 | 68.68 31 | 75.42 34 | 60.10 32 | 73.47 51 | 73.99 43 | 80.32 46 | 83.97 39 |
|
3Dnovator+ | | 62.63 4 | 69.51 36 | 72.62 40 | 65.88 37 | 68.21 49 | 76.47 30 | 73.50 49 | 52.74 43 | 70.85 44 | 58.65 30 | 55.97 75 | 69.95 51 | 61.11 25 | 76.80 31 | 75.09 33 | 81.09 42 | 83.23 46 |
|
MVS_0304 | | | 69.49 37 | 73.96 36 | 64.28 46 | 67.92 50 | 76.13 32 | 74.90 42 | 47.60 67 | 63.29 58 | 54.09 53 | 67.44 35 | 76.35 32 | 59.53 34 | 75.81 38 | 75.03 34 | 81.62 37 | 83.70 42 |
|
DeepC-MVS | | 66.32 2 | 73.85 23 | 78.10 22 | 68.90 23 | 67.92 50 | 79.31 11 | 78.16 29 | 59.28 1 | 78.24 22 | 61.13 20 | 67.36 36 | 76.10 33 | 63.40 8 | 79.11 8 | 78.41 10 | 83.52 5 | 88.16 13 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
DeepPCF-MVS | | 66.49 1 | 74.25 20 | 80.97 9 | 66.41 32 | 67.75 52 | 78.87 13 | 75.61 39 | 54.16 34 | 84.86 5 | 58.22 33 | 77.94 16 | 81.01 16 | 62.52 16 | 78.34 12 | 77.38 16 | 80.16 48 | 88.40 11 |
|
UA-Net | | | 58.50 86 | 64.68 75 | 51.30 114 | 66.97 53 | 67.13 81 | 53.68 153 | 45.65 78 | 49.51 100 | 31.58 142 | 62.91 47 | 68.47 56 | 35.85 163 | 68.20 92 | 67.28 89 | 74.03 111 | 69.24 130 |
|
PHI-MVS | | | 69.27 39 | 74.84 35 | 62.76 51 | 66.83 54 | 74.83 37 | 73.88 47 | 49.32 61 | 70.61 45 | 50.93 60 | 69.62 28 | 74.84 36 | 57.25 48 | 75.53 40 | 74.32 41 | 78.35 64 | 84.17 38 |
|
3Dnovator | | 60.86 6 | 66.99 51 | 70.32 51 | 63.11 49 | 66.63 55 | 74.52 39 | 71.56 53 | 45.76 75 | 67.37 52 | 55.00 44 | 54.31 86 | 68.19 58 | 58.49 40 | 73.97 48 | 73.63 47 | 81.22 41 | 80.23 55 |
|
EPNet | | | 65.14 56 | 69.54 54 | 60.00 57 | 66.61 56 | 67.67 74 | 67.53 62 | 55.32 25 | 62.67 60 | 46.22 77 | 67.74 33 | 65.93 64 | 48.07 106 | 72.17 56 | 72.12 50 | 76.28 87 | 78.47 64 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
OpenMVS | | 57.13 9 | 62.81 63 | 65.75 67 | 59.39 60 | 66.47 57 | 69.52 60 | 64.26 93 | 43.07 123 | 61.34 63 | 50.19 63 | 47.29 119 | 64.41 65 | 54.60 64 | 70.18 72 | 68.62 74 | 77.73 66 | 78.89 61 |
|
ACMH | | 52.42 13 | 58.24 93 | 59.56 110 | 56.70 82 | 66.34 58 | 69.59 59 | 66.71 70 | 49.12 62 | 46.08 133 | 28.90 155 | 42.67 163 | 41.20 180 | 52.60 81 | 71.39 60 | 70.28 59 | 76.51 83 | 75.72 88 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
MSDG | | | 58.46 88 | 58.97 116 | 57.85 74 | 66.27 59 | 66.23 90 | 67.72 60 | 42.33 127 | 53.43 76 | 43.68 88 | 43.39 154 | 45.35 158 | 49.75 95 | 68.66 83 | 67.77 82 | 77.38 72 | 67.96 135 |
|
QAPM | | | 65.27 54 | 69.49 55 | 60.35 55 | 65.43 60 | 72.20 53 | 65.69 82 | 47.23 68 | 63.46 57 | 49.14 66 | 53.56 87 | 71.04 49 | 57.01 49 | 72.60 55 | 71.41 53 | 77.62 68 | 82.14 49 |
|
CPTT-MVS | | | 68.76 42 | 73.01 38 | 63.81 48 | 65.42 61 | 73.66 47 | 76.39 37 | 52.08 44 | 72.61 39 | 50.33 62 | 60.73 57 | 72.65 46 | 59.43 35 | 73.32 52 | 72.12 50 | 79.19 57 | 85.99 27 |
|
MS-PatchMatch | | | 58.19 95 | 60.20 99 | 55.85 86 | 65.17 62 | 64.16 106 | 64.82 88 | 41.48 135 | 50.95 90 | 42.17 97 | 45.38 139 | 56.42 99 | 48.08 105 | 68.30 88 | 66.70 97 | 73.39 119 | 69.46 128 |
|
PCF-MVS | | 59.98 8 | 67.32 49 | 71.04 47 | 62.97 50 | 64.77 63 | 74.49 40 | 74.78 43 | 49.54 59 | 67.44 51 | 54.39 52 | 58.35 66 | 72.81 45 | 55.79 61 | 71.54 59 | 69.24 66 | 78.57 59 | 83.41 44 |
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
EG-PatchMatch MVS | | | 56.98 102 | 58.24 123 | 55.50 88 | 64.66 64 | 68.62 63 | 61.48 102 | 43.63 108 | 38.44 184 | 41.44 99 | 38.05 174 | 46.18 153 | 43.95 124 | 71.71 58 | 70.61 56 | 77.87 65 | 74.08 100 |
|
Effi-MVS+-dtu | | | 60.34 74 | 62.32 83 | 58.03 69 | 64.31 65 | 67.44 78 | 65.99 77 | 42.26 128 | 49.55 98 | 42.00 98 | 48.92 109 | 59.79 86 | 56.27 56 | 68.07 96 | 67.03 90 | 77.35 73 | 75.45 91 |
|
FC-MVSNet-train | | | 58.40 89 | 63.15 81 | 52.85 107 | 64.29 66 | 61.84 117 | 55.98 137 | 46.47 71 | 53.06 80 | 34.96 131 | 61.95 55 | 56.37 101 | 39.49 144 | 68.67 82 | 68.36 76 | 75.92 95 | 71.81 108 |
|
Effi-MVS+ | | | 63.28 60 | 65.96 66 | 60.17 56 | 64.26 67 | 68.06 68 | 68.78 57 | 45.71 77 | 54.08 73 | 46.64 74 | 55.92 76 | 63.13 70 | 55.94 59 | 70.38 70 | 71.43 52 | 79.68 54 | 78.70 62 |
|
CS-MVS | | | 63.45 59 | 65.72 68 | 60.80 53 | 64.20 68 | 67.86 70 | 68.46 59 | 43.50 113 | 53.86 74 | 49.90 64 | 56.44 72 | 60.45 83 | 57.27 46 | 73.56 50 | 70.13 62 | 81.45 40 | 77.73 69 |
|
LS3D | | | 60.20 75 | 61.70 84 | 58.45 65 | 64.18 69 | 67.77 71 | 67.19 64 | 48.84 64 | 61.67 62 | 41.27 102 | 45.89 134 | 51.81 117 | 54.18 66 | 68.78 80 | 66.50 104 | 75.03 103 | 69.48 126 |
|
ACMH+ | | 53.71 12 | 59.26 78 | 60.28 96 | 58.06 67 | 64.17 70 | 68.46 64 | 67.51 63 | 50.93 51 | 52.46 86 | 35.83 128 | 40.83 168 | 45.12 162 | 52.32 84 | 69.88 73 | 69.00 70 | 77.59 70 | 76.21 85 |
|
DELS-MVS | | | 65.87 52 | 70.30 52 | 60.71 54 | 64.05 71 | 72.68 51 | 70.90 55 | 45.43 79 | 57.49 67 | 49.05 68 | 64.43 40 | 68.66 55 | 55.11 63 | 74.31 46 | 73.02 49 | 79.70 51 | 81.51 51 |
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
canonicalmvs | | | 65.62 53 | 72.06 41 | 58.11 66 | 63.94 72 | 71.05 55 | 64.49 91 | 43.18 121 | 74.08 34 | 47.35 70 | 64.17 42 | 71.97 47 | 51.17 91 | 71.87 57 | 70.74 55 | 78.51 62 | 80.56 54 |
|
EIA-MVS | | | 61.53 71 | 63.79 79 | 58.89 63 | 63.82 73 | 67.61 75 | 65.35 85 | 42.15 131 | 49.98 95 | 45.66 79 | 57.47 70 | 56.62 98 | 56.59 54 | 70.91 65 | 69.15 67 | 79.78 49 | 74.80 94 |
|
Anonymous202405211 | | | | 60.60 92 | | 63.44 74 | 66.71 87 | 61.00 107 | 47.23 68 | 50.62 93 | | 36.85 177 | 60.63 82 | 43.03 132 | 69.17 77 | 67.72 84 | 75.41 98 | 72.54 105 |
|
ETV-MVS | | | 63.23 61 | 66.08 65 | 59.91 58 | 63.13 75 | 68.13 67 | 67.62 61 | 44.62 88 | 53.39 77 | 46.23 76 | 58.74 63 | 58.19 91 | 57.45 44 | 73.60 49 | 71.38 54 | 80.39 44 | 79.13 59 |
|
gg-mvs-nofinetune | | | 49.07 159 | 52.56 159 | 45.00 160 | 61.99 76 | 59.78 136 | 53.55 155 | 41.63 133 | 31.62 200 | 12.08 194 | 29.56 194 | 53.28 111 | 29.57 178 | 66.27 126 | 64.49 131 | 71.19 148 | 62.92 165 |
|
DCV-MVSNet | | | 59.49 76 | 64.00 78 | 54.23 93 | 61.81 77 | 64.33 105 | 61.42 103 | 43.77 102 | 52.85 83 | 38.94 116 | 55.62 78 | 62.15 74 | 43.24 131 | 69.39 76 | 67.66 85 | 76.22 89 | 75.97 86 |
|
casdiffmvs | | | 64.09 57 | 68.13 58 | 59.37 61 | 61.81 77 | 68.32 66 | 68.48 58 | 44.45 91 | 61.95 61 | 49.12 67 | 63.04 46 | 69.67 53 | 53.83 68 | 70.46 67 | 66.06 109 | 78.55 60 | 77.43 70 |
|
Anonymous20231211 | | | 57.71 98 | 60.79 90 | 54.13 95 | 61.68 79 | 65.81 93 | 60.81 108 | 43.70 106 | 51.97 88 | 39.67 111 | 34.82 182 | 63.59 67 | 43.31 129 | 68.55 86 | 66.63 100 | 75.59 96 | 74.13 99 |
|
IS_MVSNet | | | 57.95 96 | 64.26 77 | 50.60 116 | 61.62 80 | 65.25 99 | 57.18 125 | 45.42 80 | 50.79 91 | 26.49 166 | 57.81 68 | 60.05 85 | 34.51 167 | 71.24 63 | 70.20 61 | 78.36 63 | 74.44 96 |
|
NR-MVSNet | | | 55.35 117 | 59.46 111 | 50.56 117 | 61.33 81 | 62.97 111 | 57.91 122 | 51.80 46 | 48.62 115 | 20.59 178 | 51.99 95 | 44.73 168 | 34.10 170 | 68.58 84 | 68.64 73 | 77.66 67 | 70.67 117 |
|
MVS_111021_LR | | | 63.05 62 | 66.43 62 | 59.10 62 | 61.33 81 | 63.77 108 | 65.87 79 | 43.58 109 | 60.20 65 | 53.70 55 | 62.09 54 | 62.38 71 | 55.84 60 | 70.24 71 | 68.08 77 | 74.30 108 | 78.28 66 |
|
EPP-MVSNet | | | 59.39 77 | 65.45 70 | 52.32 111 | 60.96 83 | 67.70 73 | 58.42 119 | 44.75 86 | 49.71 97 | 27.23 163 | 59.03 62 | 62.20 73 | 43.34 128 | 70.71 66 | 69.13 68 | 79.25 56 | 79.63 58 |
|
TransMVSNet (Re) | | | 51.92 141 | 55.38 140 | 47.88 146 | 60.95 84 | 59.90 135 | 53.95 150 | 45.14 82 | 39.47 178 | 24.85 170 | 43.87 149 | 46.51 149 | 29.15 179 | 67.55 106 | 65.23 122 | 73.26 124 | 65.16 156 |
|
gm-plane-assit | | | 44.74 179 | 45.95 187 | 43.33 168 | 60.88 85 | 46.79 193 | 36.97 201 | 32.24 191 | 24.15 206 | 11.79 195 | 29.26 195 | 32.97 201 | 46.64 111 | 65.09 140 | 62.95 144 | 71.45 145 | 60.42 176 |
|
baseline1 | | | 54.48 125 | 58.69 117 | 49.57 122 | 60.63 86 | 58.29 151 | 55.70 139 | 44.95 84 | 49.20 103 | 29.62 151 | 54.77 82 | 54.75 106 | 35.29 164 | 67.15 114 | 64.08 133 | 71.21 147 | 62.58 169 |
|
DI_MVS_plusplus_trai | | | 61.88 67 | 65.17 72 | 58.06 67 | 60.05 87 | 65.26 97 | 66.03 76 | 44.22 92 | 55.75 69 | 46.73 72 | 54.64 84 | 68.12 59 | 54.13 67 | 69.13 78 | 66.66 98 | 77.18 75 | 76.61 78 |
|
PVSNet_Blended_VisFu | | | 63.65 58 | 66.92 59 | 59.83 59 | 60.03 88 | 73.44 48 | 66.33 73 | 48.95 63 | 52.20 87 | 50.81 61 | 56.07 74 | 60.25 84 | 53.56 70 | 73.23 53 | 70.01 63 | 79.30 55 | 83.24 45 |
|
UniMVSNet_NR-MVSNet | | | 56.94 104 | 61.14 87 | 52.05 113 | 60.02 89 | 65.21 100 | 57.44 123 | 52.93 41 | 49.37 101 | 24.31 173 | 54.62 85 | 50.54 123 | 39.04 146 | 68.69 81 | 68.84 71 | 78.53 61 | 70.72 113 |
|
IterMVS-LS | | | 58.30 92 | 61.39 86 | 54.71 91 | 59.92 90 | 58.40 148 | 59.42 113 | 43.64 107 | 48.71 112 | 40.25 109 | 57.53 69 | 58.55 90 | 52.15 86 | 65.42 138 | 65.34 119 | 72.85 126 | 75.77 87 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
MVS_Test | | | 62.40 66 | 66.23 64 | 57.94 70 | 59.77 91 | 64.77 103 | 66.50 72 | 41.76 132 | 57.26 68 | 49.33 65 | 62.68 50 | 67.47 62 | 53.50 73 | 68.57 85 | 66.25 106 | 76.77 80 | 76.58 79 |
|
TranMVSNet+NR-MVSNet | | | 55.87 111 | 60.14 101 | 50.88 115 | 59.46 92 | 63.82 107 | 57.93 121 | 52.98 40 | 48.94 107 | 20.52 179 | 52.87 89 | 47.33 140 | 36.81 160 | 69.12 79 | 69.03 69 | 77.56 71 | 69.89 119 |
|
Fast-Effi-MVS+ | | | 60.36 73 | 63.35 80 | 56.87 80 | 58.70 93 | 65.86 92 | 65.08 87 | 37.11 166 | 53.00 82 | 45.36 81 | 52.12 94 | 56.07 103 | 56.27 56 | 71.28 62 | 69.42 65 | 78.71 58 | 75.69 89 |
|
IB-MVS | | 54.11 11 | 58.36 91 | 60.70 91 | 55.62 87 | 58.67 94 | 68.02 69 | 61.56 100 | 43.15 122 | 46.09 132 | 44.06 87 | 44.24 146 | 50.99 122 | 48.71 100 | 66.70 120 | 70.33 58 | 77.60 69 | 78.50 63 |
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
Fast-Effi-MVS+-dtu | | | 56.30 109 | 59.29 113 | 52.82 108 | 58.64 95 | 64.89 101 | 65.56 83 | 32.89 188 | 45.80 135 | 35.04 130 | 45.89 134 | 54.14 108 | 49.41 96 | 67.16 113 | 66.45 105 | 75.37 100 | 70.69 115 |
|
CNLPA | | | 62.78 64 | 66.31 63 | 58.65 64 | 58.47 96 | 68.41 65 | 65.98 78 | 41.22 138 | 78.02 23 | 56.04 37 | 46.65 122 | 59.50 87 | 57.50 43 | 69.67 74 | 65.27 121 | 72.70 132 | 76.67 77 |
|
tpm cat1 | | | 53.30 130 | 53.41 152 | 53.17 104 | 58.16 97 | 59.15 142 | 63.73 96 | 38.27 161 | 50.73 92 | 46.98 71 | 45.57 138 | 44.00 174 | 49.20 97 | 55.90 186 | 54.02 185 | 62.65 177 | 64.50 160 |
|
v1144 | | | 58.88 81 | 60.16 100 | 57.39 76 | 58.03 98 | 67.26 79 | 67.14 66 | 44.46 90 | 45.17 138 | 44.33 86 | 47.81 116 | 49.92 127 | 53.20 79 | 67.77 102 | 66.62 101 | 77.15 76 | 76.58 79 |
|
v10 | | | 59.17 80 | 60.60 92 | 57.50 75 | 57.95 99 | 66.73 84 | 67.09 68 | 44.11 93 | 46.85 126 | 45.42 80 | 48.18 115 | 51.07 119 | 53.63 69 | 67.84 100 | 66.59 102 | 76.79 79 | 76.92 75 |
|
v1192 | | | 58.51 85 | 59.66 106 | 57.17 77 | 57.82 100 | 67.72 72 | 66.21 75 | 44.83 85 | 44.15 146 | 43.49 89 | 46.68 121 | 47.94 131 | 53.55 71 | 67.39 109 | 66.51 103 | 77.13 77 | 77.20 73 |
|
v144192 | | | 58.23 94 | 59.40 112 | 56.87 80 | 57.56 101 | 66.89 82 | 65.70 80 | 45.01 83 | 44.06 147 | 42.88 91 | 46.61 123 | 48.09 130 | 53.49 74 | 66.94 118 | 65.90 113 | 76.61 81 | 77.29 71 |
|
v1921920 | | | 57.89 97 | 59.02 115 | 56.58 83 | 57.55 102 | 66.66 88 | 64.72 90 | 44.70 87 | 43.55 150 | 42.73 92 | 46.17 131 | 46.93 144 | 53.51 72 | 66.78 119 | 65.75 115 | 76.29 86 | 77.28 72 |
|
Vis-MVSNet (Re-imp) | | | 50.37 149 | 57.73 129 | 41.80 175 | 57.53 103 | 54.35 165 | 45.70 183 | 45.24 81 | 49.80 96 | 13.43 192 | 58.23 67 | 56.42 99 | 20.11 194 | 62.96 146 | 63.36 140 | 68.76 156 | 58.96 181 |
|
CostFormer | | | 56.57 107 | 59.13 114 | 53.60 98 | 57.52 104 | 61.12 124 | 66.94 69 | 35.95 171 | 53.44 75 | 44.68 84 | 55.87 77 | 54.44 107 | 48.21 103 | 60.37 159 | 58.33 166 | 68.27 158 | 70.33 118 |
|
thres400 | | | 52.38 136 | 55.51 138 | 48.74 133 | 57.49 105 | 60.10 134 | 55.45 142 | 43.54 110 | 42.90 157 | 26.72 165 | 43.34 156 | 45.03 166 | 36.61 161 | 66.20 128 | 64.53 130 | 72.66 133 | 66.43 142 |
|
thres600view7 | | | 51.91 142 | 55.14 142 | 48.14 142 | 57.43 106 | 60.18 132 | 54.60 148 | 43.73 104 | 42.61 161 | 25.20 169 | 43.10 159 | 44.47 171 | 35.19 165 | 66.36 123 | 63.28 141 | 72.66 133 | 66.01 149 |
|
thres200 | | | 52.39 135 | 55.37 141 | 48.90 131 | 57.39 107 | 60.18 132 | 55.60 140 | 43.73 104 | 42.93 156 | 27.41 161 | 43.35 155 | 45.09 163 | 36.61 161 | 66.36 123 | 63.92 136 | 72.66 133 | 65.78 151 |
|
baseline2 | | | 55.89 110 | 57.82 126 | 53.64 97 | 57.36 108 | 61.09 125 | 59.75 112 | 40.45 145 | 47.38 124 | 41.26 103 | 51.23 98 | 46.90 145 | 48.11 104 | 65.63 135 | 64.38 132 | 74.90 104 | 68.16 134 |
|
v8 | | | 58.88 81 | 60.57 94 | 56.92 79 | 57.35 109 | 65.69 94 | 66.69 71 | 42.64 125 | 47.89 121 | 45.77 78 | 49.04 107 | 52.98 112 | 52.77 80 | 67.51 107 | 65.57 116 | 76.26 88 | 75.30 93 |
|
thres100view900 | | | 52.04 139 | 54.81 145 | 48.80 132 | 57.31 110 | 59.33 139 | 55.30 144 | 42.92 124 | 42.85 158 | 27.81 159 | 43.00 160 | 45.06 164 | 36.99 158 | 64.74 141 | 63.51 138 | 72.47 136 | 65.21 155 |
|
tfpn200view9 | | | 52.53 133 | 55.51 138 | 49.06 129 | 57.31 110 | 60.24 131 | 55.42 143 | 43.77 102 | 42.85 158 | 27.81 159 | 43.00 160 | 45.06 164 | 37.32 156 | 66.38 122 | 64.54 129 | 72.71 131 | 66.54 141 |
|
v1240 | | | 57.55 99 | 58.63 119 | 56.29 84 | 57.30 112 | 66.48 89 | 63.77 95 | 44.56 89 | 42.77 160 | 42.48 94 | 45.64 137 | 46.28 151 | 53.46 75 | 66.32 125 | 65.80 114 | 76.16 90 | 77.13 74 |
|
CHOSEN 1792x2688 | | | 55.85 112 | 58.01 124 | 53.33 100 | 57.26 113 | 62.82 113 | 63.29 99 | 41.55 134 | 46.65 128 | 38.34 117 | 34.55 183 | 53.50 109 | 52.43 83 | 67.10 115 | 67.56 87 | 67.13 162 | 73.92 102 |
|
PVSNet_BlendedMVS | | | 61.63 69 | 64.82 73 | 57.91 72 | 57.21 114 | 67.55 76 | 63.47 97 | 46.08 73 | 54.72 71 | 52.46 57 | 58.59 64 | 60.73 79 | 51.82 89 | 70.46 67 | 65.20 123 | 76.44 84 | 76.50 82 |
|
PVSNet_Blended | | | 61.63 69 | 64.82 73 | 57.91 72 | 57.21 114 | 67.55 76 | 63.47 97 | 46.08 73 | 54.72 71 | 52.46 57 | 58.59 64 | 60.73 79 | 51.82 89 | 70.46 67 | 65.20 123 | 76.44 84 | 76.50 82 |
|
v2v482 | | | 58.69 84 | 60.12 103 | 57.03 78 | 57.16 116 | 66.05 91 | 67.17 65 | 43.52 111 | 46.33 130 | 45.19 82 | 49.46 106 | 51.02 120 | 52.51 82 | 67.30 110 | 66.03 110 | 76.61 81 | 74.62 95 |
|
tfpnnormal | | | 50.16 151 | 52.19 163 | 47.78 148 | 56.86 117 | 58.37 149 | 54.15 149 | 44.01 99 | 38.35 186 | 25.94 167 | 36.10 178 | 37.89 193 | 34.50 168 | 65.93 130 | 63.42 139 | 71.26 146 | 65.28 154 |
|
diffmvs | | | 61.64 68 | 66.55 61 | 55.90 85 | 56.63 118 | 63.71 109 | 67.13 67 | 41.27 137 | 59.49 66 | 46.70 73 | 63.93 44 | 68.01 60 | 50.46 92 | 67.30 110 | 65.51 117 | 73.24 125 | 77.87 68 |
|
HyFIR lowres test | | | 56.87 105 | 58.60 120 | 54.84 90 | 56.62 119 | 69.27 61 | 64.77 89 | 42.21 129 | 45.66 136 | 37.50 123 | 33.08 185 | 57.47 96 | 53.33 76 | 65.46 137 | 67.94 78 | 74.60 105 | 71.35 110 |
|
v7n | | | 55.67 113 | 57.46 131 | 53.59 99 | 56.06 120 | 65.29 96 | 61.06 106 | 43.26 120 | 40.17 175 | 37.99 120 | 40.79 169 | 45.27 161 | 47.09 110 | 67.67 104 | 66.21 107 | 76.08 92 | 76.82 76 |
|
dps | | | 50.42 148 | 51.20 169 | 49.51 123 | 55.88 121 | 56.07 161 | 53.73 151 | 38.89 154 | 43.66 148 | 40.36 108 | 45.66 136 | 37.63 195 | 45.23 119 | 59.05 162 | 56.18 170 | 62.94 176 | 60.16 177 |
|
CANet_DTU | | | 58.88 81 | 64.68 75 | 52.12 112 | 55.77 122 | 66.75 83 | 63.92 94 | 37.04 167 | 53.32 78 | 37.45 124 | 59.81 59 | 61.81 75 | 44.43 123 | 68.25 89 | 67.47 88 | 74.12 110 | 75.33 92 |
|
WR-MVS | | | 48.78 161 | 55.06 143 | 41.45 176 | 55.50 123 | 60.40 130 | 43.77 191 | 49.99 58 | 41.92 164 | 8.10 204 | 45.24 142 | 45.56 156 | 17.47 195 | 61.57 154 | 64.60 128 | 73.85 112 | 66.14 148 |
|
UniMVSNet (Re) | | | 55.15 121 | 60.39 95 | 49.03 130 | 55.31 124 | 64.59 104 | 55.77 138 | 50.63 53 | 48.66 114 | 20.95 177 | 51.47 97 | 50.40 124 | 34.41 169 | 67.81 101 | 67.89 79 | 77.11 78 | 71.88 107 |
|
test-LLR | | | 49.28 155 | 50.29 173 | 48.10 143 | 55.26 125 | 47.16 188 | 49.52 164 | 43.48 115 | 39.22 179 | 31.98 138 | 43.65 152 | 47.93 132 | 41.29 139 | 56.80 177 | 55.36 176 | 67.08 163 | 61.94 170 |
|
test0.0.03 1 | | | 43.15 184 | 46.95 186 | 38.72 184 | 55.26 125 | 50.56 177 | 42.48 194 | 43.48 115 | 38.16 188 | 15.11 188 | 35.07 181 | 44.69 169 | 16.47 197 | 55.95 185 | 54.34 184 | 59.54 184 | 49.87 198 |
|
GA-MVS | | | 55.67 113 | 58.33 121 | 52.58 110 | 55.23 127 | 63.09 110 | 61.08 105 | 40.15 149 | 42.95 155 | 37.02 126 | 52.61 91 | 47.68 135 | 47.51 108 | 65.92 131 | 65.35 118 | 74.49 107 | 70.68 116 |
|
DTE-MVSNet | | | 48.03 167 | 53.28 154 | 41.91 174 | 54.64 128 | 57.50 157 | 44.63 190 | 51.66 49 | 41.02 170 | 7.97 205 | 46.26 128 | 40.90 181 | 20.24 193 | 60.45 158 | 62.89 145 | 72.33 139 | 63.97 161 |
|
pmmvs4 | | | 54.66 124 | 56.07 135 | 53.00 105 | 54.63 129 | 57.08 159 | 60.43 110 | 44.10 94 | 51.69 89 | 40.55 106 | 46.55 126 | 44.79 167 | 45.95 116 | 62.54 148 | 63.66 137 | 72.36 138 | 66.20 146 |
|
DU-MVS | | | 55.41 116 | 59.59 107 | 50.54 118 | 54.60 130 | 62.97 111 | 57.44 123 | 51.80 46 | 48.62 115 | 24.31 173 | 51.99 95 | 47.00 143 | 39.04 146 | 68.11 94 | 67.75 83 | 76.03 94 | 70.72 113 |
|
Baseline_NR-MVSNet | | | 53.50 128 | 57.89 125 | 48.37 140 | 54.60 130 | 59.25 141 | 56.10 133 | 51.84 45 | 49.32 102 | 17.92 186 | 45.38 139 | 47.68 135 | 36.93 159 | 68.11 94 | 65.95 111 | 72.84 127 | 69.57 124 |
|
v148 | | | 55.58 115 | 57.61 130 | 53.20 102 | 54.59 132 | 61.86 116 | 61.18 104 | 38.70 158 | 44.30 145 | 42.25 96 | 47.53 117 | 50.24 126 | 48.73 99 | 65.15 139 | 62.61 149 | 73.79 113 | 71.61 109 |
|
PEN-MVS | | | 49.21 157 | 54.32 147 | 43.24 170 | 54.33 133 | 59.26 140 | 47.04 177 | 51.37 50 | 41.67 166 | 9.97 199 | 46.22 129 | 41.80 179 | 22.97 191 | 60.52 157 | 64.03 134 | 73.73 114 | 66.75 140 |
|
pm-mvs1 | | | 51.02 145 | 55.55 137 | 45.73 155 | 54.16 134 | 58.52 146 | 50.92 160 | 42.56 126 | 40.32 174 | 25.67 168 | 43.66 151 | 50.34 125 | 30.06 177 | 65.85 132 | 63.97 135 | 70.99 149 | 66.21 145 |
|
EPNet_dtu | | | 52.05 138 | 58.26 122 | 44.81 161 | 54.10 135 | 50.09 180 | 52.01 158 | 40.82 141 | 53.03 81 | 27.41 161 | 54.90 80 | 57.96 95 | 26.72 184 | 62.97 145 | 62.70 148 | 67.78 160 | 66.19 147 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
tpm | | | 48.82 160 | 51.27 168 | 45.96 154 | 54.10 135 | 47.35 187 | 56.05 134 | 30.23 192 | 46.70 127 | 43.21 90 | 52.54 92 | 47.55 138 | 37.28 157 | 54.11 191 | 50.50 194 | 54.90 194 | 60.12 178 |
|
CDS-MVSNet | | | 52.42 134 | 57.06 133 | 47.02 151 | 53.92 137 | 58.30 150 | 55.50 141 | 46.47 71 | 42.52 162 | 29.38 153 | 49.50 105 | 52.85 113 | 28.49 182 | 66.70 120 | 66.89 94 | 68.34 157 | 62.63 168 |
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
test20.03 | | | 40.38 192 | 44.20 193 | 35.92 191 | 53.73 138 | 49.05 181 | 38.54 199 | 43.49 114 | 32.55 197 | 9.54 200 | 27.88 197 | 39.12 189 | 12.24 202 | 56.28 182 | 54.69 181 | 57.96 189 | 49.83 199 |
|
Vis-MVSNet | | | 58.48 87 | 65.70 69 | 50.06 121 | 53.40 139 | 67.20 80 | 60.24 111 | 43.32 118 | 48.83 109 | 30.23 148 | 62.38 52 | 61.61 77 | 40.35 142 | 71.03 64 | 69.77 64 | 72.82 128 | 79.11 60 |
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
PLC | | 52.09 14 | 59.21 79 | 62.47 82 | 55.41 89 | 53.24 140 | 64.84 102 | 64.47 92 | 40.41 147 | 65.92 53 | 44.53 85 | 46.19 130 | 55.69 104 | 55.33 62 | 68.24 91 | 65.30 120 | 74.50 106 | 71.09 111 |
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
thisisatest0530 | | | 56.68 106 | 59.68 105 | 53.19 103 | 52.97 141 | 60.96 127 | 59.41 114 | 40.51 143 | 48.26 118 | 41.06 104 | 52.67 90 | 46.30 150 | 49.78 93 | 67.66 105 | 67.83 80 | 75.39 99 | 74.07 101 |
|
OMC-MVS | | | 65.16 55 | 71.35 45 | 57.94 70 | 52.95 142 | 68.82 62 | 69.00 56 | 38.28 160 | 79.89 16 | 55.20 42 | 62.76 49 | 68.31 57 | 56.14 58 | 71.30 61 | 68.70 72 | 76.06 93 | 79.67 57 |
|
tpmrst | | | 48.08 165 | 49.88 177 | 45.98 153 | 52.71 143 | 48.11 185 | 53.62 154 | 33.70 184 | 48.70 113 | 39.74 110 | 48.96 108 | 46.23 152 | 40.29 143 | 50.14 199 | 49.28 196 | 55.80 191 | 57.71 184 |
|
tttt0517 | | | 56.53 108 | 59.59 107 | 52.95 106 | 52.66 144 | 60.99 126 | 59.21 116 | 40.51 143 | 47.89 121 | 40.40 107 | 52.50 93 | 46.04 154 | 49.78 93 | 67.75 103 | 67.83 80 | 75.15 102 | 74.17 98 |
|
GBi-Net | | | 55.20 118 | 60.25 97 | 49.31 124 | 52.42 145 | 61.44 119 | 57.03 126 | 44.04 96 | 49.18 104 | 30.47 144 | 48.28 111 | 58.19 91 | 38.22 149 | 68.05 97 | 66.96 91 | 73.69 115 | 69.65 121 |
|
test1 | | | 55.20 118 | 60.25 97 | 49.31 124 | 52.42 145 | 61.44 119 | 57.03 126 | 44.04 96 | 49.18 104 | 30.47 144 | 48.28 111 | 58.19 91 | 38.22 149 | 68.05 97 | 66.96 91 | 73.69 115 | 69.65 121 |
|
FMVSNet2 | | | 55.04 122 | 59.95 104 | 49.31 124 | 52.42 145 | 61.44 119 | 57.03 126 | 44.08 95 | 49.55 98 | 30.40 147 | 46.89 120 | 58.84 89 | 38.22 149 | 67.07 116 | 66.21 107 | 73.69 115 | 69.65 121 |
|
FMVSNet3 | | | 54.78 123 | 59.58 109 | 49.17 127 | 52.37 148 | 61.31 123 | 56.72 131 | 44.04 96 | 49.18 104 | 30.47 144 | 48.28 111 | 58.19 91 | 38.09 152 | 65.48 136 | 65.20 123 | 73.31 122 | 69.45 129 |
|
testgi | | | 38.71 194 | 43.64 194 | 32.95 195 | 52.30 149 | 48.63 184 | 35.59 204 | 35.05 174 | 31.58 201 | 9.03 203 | 30.29 190 | 40.75 183 | 11.19 207 | 55.30 187 | 53.47 190 | 54.53 196 | 45.48 202 |
|
Anonymous20231206 | | | 42.28 185 | 45.89 188 | 38.07 186 | 51.96 150 | 48.98 182 | 43.66 192 | 38.81 157 | 38.74 183 | 14.32 191 | 26.74 198 | 40.90 181 | 20.94 192 | 56.64 180 | 54.67 182 | 58.71 185 | 54.59 188 |
|
pmmvs6 | | | 48.35 163 | 51.64 165 | 44.51 163 | 51.92 151 | 57.94 155 | 49.44 166 | 42.17 130 | 34.45 193 | 24.62 172 | 28.87 196 | 46.90 145 | 29.07 181 | 64.60 142 | 63.08 142 | 69.83 153 | 65.68 152 |
|
PatchmatchNet | | | 49.92 153 | 51.29 167 | 48.32 141 | 51.83 152 | 51.86 174 | 53.38 156 | 37.63 165 | 47.90 120 | 40.83 105 | 48.54 110 | 45.30 159 | 45.19 120 | 56.86 176 | 53.99 187 | 61.08 182 | 54.57 189 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
WR-MVS_H | | | 47.65 168 | 53.67 150 | 40.63 179 | 51.45 153 | 59.74 137 | 44.71 189 | 49.37 60 | 40.69 172 | 7.61 206 | 46.04 132 | 44.34 173 | 17.32 196 | 57.79 173 | 61.18 154 | 73.30 123 | 65.86 150 |
|
LTVRE_ROB | | 44.17 16 | 47.06 173 | 50.15 176 | 43.44 167 | 51.39 154 | 58.42 147 | 42.90 193 | 43.51 112 | 22.27 207 | 14.85 190 | 41.94 167 | 34.57 198 | 45.43 117 | 62.28 151 | 62.77 147 | 62.56 179 | 68.83 132 |
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
CP-MVSNet | | | 48.37 162 | 53.53 151 | 42.34 172 | 51.35 155 | 58.01 154 | 46.56 178 | 50.54 54 | 41.62 167 | 10.61 196 | 46.53 127 | 40.68 184 | 23.18 189 | 58.71 167 | 61.83 151 | 71.81 142 | 67.36 139 |
|
PS-CasMVS | | | 48.18 164 | 53.25 155 | 42.27 173 | 51.26 156 | 57.94 155 | 46.51 179 | 50.52 55 | 41.30 168 | 10.56 197 | 45.35 141 | 40.34 186 | 23.04 190 | 58.66 168 | 61.79 152 | 71.74 144 | 67.38 138 |
|
our_test_3 | | | | | | 51.15 157 | 57.31 158 | 55.12 145 | | | | | | | | | | |
|
SCA | | | 50.99 146 | 53.22 156 | 48.40 139 | 51.07 158 | 56.78 160 | 50.25 162 | 39.05 152 | 48.31 117 | 41.38 100 | 49.54 104 | 46.70 148 | 46.00 115 | 58.31 169 | 56.28 169 | 62.65 177 | 56.60 186 |
|
UniMVSNet_ETH3D | | | 52.62 132 | 55.98 136 | 48.70 135 | 51.04 159 | 60.71 129 | 56.87 129 | 46.74 70 | 42.52 162 | 26.96 164 | 42.50 164 | 45.95 155 | 37.87 153 | 66.22 127 | 65.15 126 | 72.74 129 | 68.78 133 |
|
IterMVS-SCA-FT | | | 52.18 137 | 57.75 128 | 45.68 156 | 51.01 160 | 62.06 115 | 55.10 146 | 34.75 175 | 44.85 139 | 32.86 136 | 51.13 100 | 51.22 118 | 48.74 98 | 62.47 149 | 61.51 153 | 51.61 201 | 71.02 112 |
|
FMVSNet1 | | | 54.08 126 | 58.68 118 | 48.71 134 | 50.90 161 | 61.35 122 | 56.73 130 | 43.94 100 | 45.91 134 | 29.32 154 | 42.72 162 | 56.26 102 | 37.70 154 | 68.05 97 | 66.96 91 | 73.69 115 | 69.50 125 |
|
pmmvs-eth3d | | | 51.33 143 | 52.25 162 | 50.26 120 | 50.82 162 | 54.65 164 | 56.03 135 | 43.45 117 | 43.51 151 | 37.20 125 | 39.20 172 | 39.04 190 | 42.28 134 | 61.85 153 | 62.78 146 | 71.78 143 | 64.72 158 |
|
MVSTER | | | 57.19 100 | 61.11 88 | 52.62 109 | 50.82 162 | 58.79 144 | 61.55 101 | 37.86 163 | 48.81 110 | 41.31 101 | 57.43 71 | 52.10 115 | 48.60 101 | 68.19 93 | 66.75 96 | 75.56 97 | 75.68 90 |
|
ambc | | | | 45.54 191 | | 50.66 164 | 52.63 172 | 40.99 196 | | 38.36 185 | 24.67 171 | 22.62 203 | 13.94 212 | 29.14 180 | 65.71 134 | 58.06 167 | 58.60 187 | 67.43 137 |
|
thisisatest0515 | | | 53.85 127 | 56.84 134 | 50.37 119 | 50.25 165 | 58.17 152 | 55.99 136 | 39.90 150 | 41.88 165 | 38.16 119 | 45.91 133 | 45.30 159 | 44.58 122 | 66.15 129 | 66.89 94 | 73.36 121 | 73.57 104 |
|
baseline | | | 55.19 120 | 60.88 89 | 48.55 137 | 49.87 166 | 58.10 153 | 58.70 118 | 34.75 175 | 52.82 84 | 39.48 115 | 60.18 58 | 60.86 78 | 45.41 118 | 61.05 155 | 60.74 158 | 63.10 175 | 72.41 106 |
|
MDTV_nov1_ep13 | | | 50.32 150 | 52.43 161 | 47.86 147 | 49.87 166 | 54.70 163 | 58.10 120 | 34.29 179 | 45.59 137 | 37.71 121 | 47.44 118 | 47.42 139 | 41.86 136 | 58.07 172 | 55.21 178 | 65.34 169 | 58.56 182 |
|
IterMVS | | | 53.45 129 | 57.12 132 | 49.17 127 | 49.23 168 | 60.93 128 | 59.05 117 | 34.63 177 | 44.53 141 | 33.22 133 | 51.09 101 | 51.01 121 | 48.38 102 | 62.43 150 | 60.79 157 | 70.54 151 | 69.05 131 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
COLMAP_ROB | | 46.52 15 | 51.99 140 | 54.86 144 | 48.63 136 | 49.13 169 | 61.73 118 | 60.53 109 | 36.57 168 | 53.14 79 | 32.95 135 | 37.10 175 | 38.68 191 | 40.49 141 | 65.72 133 | 63.08 142 | 72.11 141 | 64.60 159 |
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
CR-MVSNet | | | 50.47 147 | 52.61 158 | 47.98 145 | 49.03 170 | 52.94 169 | 48.27 169 | 38.86 155 | 44.41 142 | 39.59 112 | 44.34 145 | 44.65 170 | 46.63 112 | 58.97 164 | 60.31 159 | 65.48 167 | 62.66 166 |
|
V42 | | | 56.97 103 | 60.14 101 | 53.28 101 | 48.16 171 | 62.78 114 | 66.30 74 | 37.93 162 | 47.44 123 | 42.68 93 | 48.19 114 | 52.59 114 | 51.90 87 | 67.46 108 | 65.94 112 | 72.72 130 | 76.55 81 |
|
MDTV_nov1_ep13_2view | | | 47.62 169 | 49.72 178 | 45.18 159 | 48.05 172 | 53.70 167 | 54.90 147 | 33.80 183 | 39.90 177 | 29.79 150 | 38.85 173 | 41.89 178 | 39.17 145 | 58.99 163 | 55.55 175 | 65.34 169 | 59.17 180 |
|
EPMVS | | | 44.66 180 | 47.86 184 | 40.92 178 | 47.97 173 | 44.70 197 | 47.58 174 | 33.27 186 | 48.11 119 | 29.58 152 | 49.65 103 | 44.38 172 | 34.65 166 | 51.71 194 | 47.90 198 | 52.49 199 | 48.57 200 |
|
RPMNet | | | 46.41 174 | 48.72 180 | 43.72 165 | 47.77 174 | 52.94 169 | 46.02 182 | 33.92 181 | 44.41 142 | 31.82 141 | 36.89 176 | 37.42 196 | 37.41 155 | 53.88 192 | 54.02 185 | 65.37 168 | 61.47 172 |
|
TAPA-MVS | | 54.74 10 | 60.85 72 | 66.61 60 | 54.12 96 | 47.38 175 | 65.33 95 | 65.35 85 | 36.51 169 | 75.16 31 | 48.82 69 | 54.70 83 | 63.51 68 | 53.31 77 | 68.36 87 | 64.97 127 | 73.37 120 | 74.27 97 |
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
SixPastTwentyTwo | | | 47.55 170 | 50.25 175 | 44.41 164 | 47.30 176 | 54.31 166 | 47.81 172 | 40.36 148 | 33.76 194 | 19.93 181 | 43.75 150 | 32.77 202 | 42.07 135 | 59.82 160 | 60.94 156 | 68.98 154 | 66.37 144 |
|
TAMVS | | | 44.02 182 | 49.18 179 | 37.99 187 | 47.03 177 | 45.97 194 | 45.04 186 | 28.47 196 | 39.11 181 | 20.23 180 | 43.22 158 | 48.52 128 | 28.49 182 | 58.15 171 | 57.95 168 | 58.71 185 | 51.36 192 |
|
UGNet | | | 57.03 101 | 65.25 71 | 47.44 149 | 46.54 178 | 66.73 84 | 56.30 132 | 43.28 119 | 50.06 94 | 32.99 134 | 62.57 51 | 63.26 69 | 33.31 172 | 68.25 89 | 67.58 86 | 72.20 140 | 78.29 65 |
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
TSAR-MVS + COLMAP | | | 62.65 65 | 69.90 53 | 54.19 94 | 46.31 179 | 66.73 84 | 65.49 84 | 41.36 136 | 76.57 25 | 46.31 75 | 76.80 17 | 56.68 97 | 53.27 78 | 69.50 75 | 66.65 99 | 72.40 137 | 76.36 84 |
|
PatchMatch-RL | | | 50.11 152 | 51.56 166 | 48.43 138 | 46.23 180 | 51.94 173 | 50.21 163 | 38.62 159 | 46.62 129 | 37.51 122 | 42.43 165 | 39.38 188 | 52.24 85 | 60.98 156 | 59.56 162 | 65.76 166 | 60.01 179 |
|
CMPMVS | | 37.70 17 | 49.24 156 | 52.71 157 | 45.19 158 | 45.97 181 | 51.23 176 | 47.44 175 | 29.31 193 | 43.04 154 | 44.69 83 | 34.45 184 | 48.35 129 | 43.64 125 | 62.59 147 | 59.82 161 | 60.08 183 | 69.48 126 |
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
pmmvs5 | | | 47.07 172 | 51.02 171 | 42.46 171 | 45.18 182 | 51.47 175 | 48.23 171 | 33.09 187 | 38.17 187 | 28.62 157 | 46.60 124 | 43.48 175 | 30.74 175 | 58.28 170 | 58.63 165 | 68.92 155 | 60.48 175 |
|
USDC | | | 51.11 144 | 53.71 149 | 48.08 144 | 44.76 183 | 55.99 162 | 53.01 157 | 40.90 139 | 52.49 85 | 36.14 127 | 44.67 144 | 33.66 200 | 43.27 130 | 63.23 144 | 61.10 155 | 70.39 152 | 64.82 157 |
|
FC-MVSNet-test | | | 39.65 193 | 48.35 182 | 29.49 198 | 44.43 184 | 39.28 204 | 30.23 207 | 40.44 146 | 43.59 149 | 3.12 212 | 53.00 88 | 42.03 177 | 10.02 209 | 55.09 188 | 54.77 180 | 48.66 202 | 50.71 194 |
|
ADS-MVSNet | | | 40.67 190 | 43.38 195 | 37.50 188 | 44.36 185 | 39.79 203 | 42.09 195 | 32.67 190 | 44.34 144 | 28.87 156 | 40.76 170 | 40.37 185 | 30.22 176 | 48.34 203 | 45.87 202 | 46.81 204 | 44.21 204 |
|
new-patchmatchnet | | | 33.24 200 | 37.20 201 | 28.62 200 | 44.32 186 | 38.26 205 | 29.68 208 | 36.05 170 | 31.97 199 | 6.33 208 | 26.59 199 | 27.33 205 | 11.12 208 | 50.08 200 | 41.05 204 | 44.23 205 | 45.15 203 |
|
MVS-HIRNet | | | 42.24 186 | 41.15 198 | 43.51 166 | 44.06 187 | 40.74 200 | 35.77 203 | 35.35 172 | 35.38 192 | 38.34 117 | 25.63 200 | 38.55 192 | 43.48 127 | 50.77 196 | 47.03 200 | 64.07 171 | 49.98 196 |
|
PatchT | | | 48.08 165 | 51.03 170 | 44.64 162 | 42.96 188 | 50.12 179 | 40.36 197 | 35.09 173 | 43.17 153 | 39.59 112 | 42.00 166 | 39.96 187 | 46.63 112 | 58.97 164 | 60.31 159 | 63.21 174 | 62.66 166 |
|
CVMVSNet | | | 46.38 176 | 52.01 164 | 39.81 181 | 42.40 189 | 50.26 178 | 46.15 180 | 37.68 164 | 40.03 176 | 15.09 189 | 46.56 125 | 47.56 137 | 33.72 171 | 56.50 181 | 55.65 174 | 63.80 173 | 67.53 136 |
|
TinyColmap | | | 47.08 171 | 47.56 185 | 46.52 152 | 42.35 190 | 53.44 168 | 51.77 159 | 40.70 142 | 43.44 152 | 31.92 140 | 29.78 193 | 23.72 209 | 45.04 121 | 61.99 152 | 59.54 163 | 67.35 161 | 61.03 173 |
|
ET-MVSNet_ETH3D | | | 58.38 90 | 61.57 85 | 54.67 92 | 42.15 191 | 65.26 97 | 65.70 80 | 43.82 101 | 48.84 108 | 42.34 95 | 59.76 60 | 47.76 134 | 56.68 53 | 67.02 117 | 68.60 75 | 77.33 74 | 73.73 103 |
|
MIMVSNet | | | 43.79 183 | 48.53 181 | 38.27 185 | 41.46 192 | 48.97 183 | 50.81 161 | 32.88 189 | 44.55 140 | 22.07 175 | 32.05 186 | 47.15 141 | 24.76 187 | 58.73 166 | 56.09 172 | 57.63 190 | 52.14 190 |
|
N_pmnet | | | 32.67 201 | 36.85 202 | 27.79 201 | 40.55 193 | 32.13 206 | 35.80 202 | 26.79 199 | 37.24 190 | 9.10 201 | 32.02 187 | 30.94 203 | 16.30 198 | 47.22 204 | 41.21 203 | 38.21 207 | 37.21 205 |
|
anonymousdsp | | | 52.84 131 | 57.78 127 | 47.06 150 | 40.24 194 | 58.95 143 | 53.70 152 | 33.54 185 | 36.51 191 | 32.69 137 | 43.88 148 | 45.40 157 | 47.97 107 | 67.17 112 | 70.28 59 | 74.22 109 | 82.29 48 |
|
EU-MVSNet | | | 40.63 191 | 45.65 190 | 34.78 194 | 39.11 195 | 46.94 191 | 40.02 198 | 34.03 180 | 33.50 195 | 10.37 198 | 35.57 180 | 37.80 194 | 23.65 188 | 51.90 193 | 50.21 195 | 61.49 181 | 63.62 164 |
|
FPMVS | | | 38.36 195 | 40.41 199 | 35.97 190 | 38.92 196 | 39.85 202 | 45.50 184 | 25.79 202 | 41.13 169 | 18.70 183 | 30.10 191 | 24.56 207 | 31.86 174 | 49.42 201 | 46.80 201 | 55.04 192 | 51.03 193 |
|
TESTMET0.1,1 | | | 46.09 177 | 50.29 173 | 41.18 177 | 36.91 197 | 47.16 188 | 49.52 164 | 20.32 206 | 39.22 179 | 31.98 138 | 43.65 152 | 47.93 132 | 41.29 139 | 56.80 177 | 55.36 176 | 67.08 163 | 61.94 170 |
|
FMVSNet5 | | | 40.96 188 | 45.81 189 | 35.29 193 | 34.30 198 | 44.55 198 | 47.28 176 | 28.84 195 | 40.76 171 | 21.62 176 | 29.85 192 | 42.44 176 | 24.77 186 | 57.53 174 | 55.00 179 | 54.93 193 | 50.56 195 |
|
PMMVS | | | 49.20 158 | 54.28 148 | 43.28 169 | 34.13 199 | 45.70 195 | 48.98 167 | 26.09 201 | 46.31 131 | 34.92 132 | 55.22 79 | 53.47 110 | 47.48 109 | 59.43 161 | 59.04 164 | 68.05 159 | 60.77 174 |
|
PMVS | | 27.84 18 | 33.81 199 | 35.28 203 | 32.09 196 | 34.13 199 | 24.81 209 | 32.51 206 | 26.48 200 | 26.41 204 | 19.37 182 | 23.76 201 | 24.02 208 | 25.18 185 | 50.78 195 | 47.24 199 | 54.89 195 | 49.95 197 |
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
test-mter | | | 45.30 178 | 50.37 172 | 39.38 182 | 33.65 201 | 46.99 190 | 47.59 173 | 18.59 207 | 38.75 182 | 28.00 158 | 43.28 157 | 46.82 147 | 41.50 138 | 57.28 175 | 55.78 173 | 66.93 165 | 63.70 163 |
|
CHOSEN 280x420 | | | 40.80 189 | 45.05 192 | 35.84 192 | 32.95 202 | 29.57 207 | 44.98 187 | 23.71 204 | 37.54 189 | 18.42 184 | 31.36 189 | 47.07 142 | 46.41 114 | 56.71 179 | 54.65 183 | 48.55 203 | 58.47 183 |
|
PM-MVS | | | 44.55 181 | 48.13 183 | 40.37 180 | 32.85 203 | 46.82 192 | 46.11 181 | 29.28 194 | 40.48 173 | 29.99 149 | 39.98 171 | 34.39 199 | 41.80 137 | 56.08 184 | 53.88 189 | 62.19 180 | 65.31 153 |
|
TDRefinement | | | 49.31 154 | 52.44 160 | 45.67 157 | 30.44 204 | 59.42 138 | 59.24 115 | 39.78 151 | 48.76 111 | 31.20 143 | 35.73 179 | 29.90 204 | 42.81 133 | 64.24 143 | 62.59 150 | 70.55 150 | 66.43 142 |
|
Gipuma | | | 25.87 202 | 26.91 205 | 24.66 202 | 28.98 205 | 20.17 210 | 20.46 209 | 34.62 178 | 29.55 202 | 9.10 201 | 4.91 212 | 5.31 216 | 15.76 199 | 49.37 202 | 49.10 197 | 39.03 206 | 29.95 207 |
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
MDA-MVSNet-bldmvs | | | 41.36 187 | 43.15 196 | 39.27 183 | 28.74 206 | 52.68 171 | 44.95 188 | 40.84 140 | 32.89 196 | 18.13 185 | 31.61 188 | 22.09 210 | 38.97 148 | 50.45 198 | 56.11 171 | 64.01 172 | 56.23 187 |
|
E-PMN | | | 15.09 205 | 13.19 208 | 17.30 204 | 27.80 207 | 12.62 213 | 7.81 213 | 27.54 197 | 14.62 211 | 3.19 210 | 6.89 209 | 2.52 219 | 15.09 200 | 15.93 208 | 20.22 208 | 22.38 209 | 19.53 210 |
|
MIMVSNet1 | | | 35.51 197 | 41.41 197 | 28.63 199 | 27.53 208 | 43.36 199 | 38.09 200 | 33.82 182 | 32.01 198 | 6.77 207 | 21.63 204 | 35.43 197 | 11.97 204 | 55.05 189 | 53.99 187 | 53.59 198 | 48.36 201 |
|
EMVS | | | 14.49 206 | 12.45 209 | 16.87 206 | 27.02 209 | 12.56 214 | 8.13 212 | 27.19 198 | 15.05 210 | 3.14 211 | 6.69 210 | 2.67 218 | 15.08 201 | 14.60 210 | 18.05 209 | 20.67 210 | 17.56 212 |
|
pmmvs3 | | | 35.10 198 | 38.47 200 | 31.17 197 | 26.37 210 | 40.47 201 | 34.51 205 | 18.09 208 | 24.75 205 | 16.88 187 | 23.05 202 | 26.69 206 | 32.69 173 | 50.73 197 | 51.60 192 | 58.46 188 | 51.98 191 |
|
RPSCF | | | 46.41 174 | 54.42 146 | 37.06 189 | 25.70 211 | 45.14 196 | 45.39 185 | 20.81 205 | 62.79 59 | 35.10 129 | 44.92 143 | 55.60 105 | 43.56 126 | 56.12 183 | 52.45 191 | 51.80 200 | 63.91 162 |
|
new_pmnet | | | 23.19 203 | 28.17 204 | 17.37 203 | 17.03 212 | 24.92 208 | 19.66 210 | 16.16 210 | 27.05 203 | 4.42 209 | 20.77 205 | 19.20 211 | 12.19 203 | 37.71 205 | 36.38 205 | 34.77 208 | 31.17 206 |
|
PMMVS2 | | | 15.84 204 | 19.68 206 | 11.35 207 | 15.74 213 | 16.95 211 | 13.31 211 | 17.64 209 | 16.08 209 | 0.36 215 | 13.12 206 | 11.47 213 | 1.69 211 | 28.82 206 | 27.24 207 | 19.38 211 | 24.09 209 |
|
MVE | | 12.28 19 | 13.53 207 | 15.72 207 | 10.96 208 | 7.39 214 | 15.71 212 | 6.05 214 | 23.73 203 | 10.29 213 | 3.01 213 | 5.77 211 | 3.41 217 | 11.91 205 | 20.11 207 | 29.79 206 | 13.67 212 | 24.98 208 |
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
tmp_tt | | | | | 5.40 209 | 3.97 215 | 2.35 216 | 3.26 216 | 0.44 212 | 17.56 208 | 12.09 193 | 11.48 208 | 7.14 214 | 1.98 210 | 15.68 209 | 15.49 210 | 10.69 213 | |
|
GG-mvs-BLEND | | | 36.62 196 | 53.39 153 | 17.06 205 | 0.01 216 | 58.61 145 | 48.63 168 | 0.01 213 | 47.13 125 | 0.02 216 | 43.98 147 | 60.64 81 | 0.03 212 | 54.92 190 | 51.47 193 | 53.64 197 | 56.99 185 |
|
uanet_test | | | 0.00 210 | 0.00 212 | 0.00 210 | 0.00 217 | 0.00 217 | 0.00 219 | 0.00 214 | 0.00 216 | 0.00 217 | 0.00 215 | 0.00 220 | 0.00 215 | 0.00 213 | 0.00 213 | 0.00 215 | 0.00 215 |
|
sosnet-low-res | | | 0.00 210 | 0.00 212 | 0.00 210 | 0.00 217 | 0.00 217 | 0.00 219 | 0.00 214 | 0.00 216 | 0.00 217 | 0.00 215 | 0.00 220 | 0.00 215 | 0.00 213 | 0.00 213 | 0.00 215 | 0.00 215 |
|
sosnet | | | 0.00 210 | 0.00 212 | 0.00 210 | 0.00 217 | 0.00 217 | 0.00 219 | 0.00 214 | 0.00 216 | 0.00 217 | 0.00 215 | 0.00 220 | 0.00 215 | 0.00 213 | 0.00 213 | 0.00 215 | 0.00 215 |
|
testmvs | | | 0.01 208 | 0.02 210 | 0.00 210 | 0.00 217 | 0.00 217 | 0.01 218 | 0.00 214 | 0.01 214 | 0.00 217 | 0.03 214 | 0.00 220 | 0.01 213 | 0.01 212 | 0.01 211 | 0.00 215 | 0.06 214 |
|
test123 | | | 0.01 208 | 0.02 210 | 0.00 210 | 0.00 217 | 0.00 217 | 0.00 219 | 0.00 214 | 0.01 214 | 0.00 217 | 0.04 213 | 0.00 220 | 0.01 213 | 0.00 213 | 0.01 211 | 0.00 215 | 0.07 213 |
|
9.14 | | | | | | | | | | | | | 81.81 12 | | | | | |
|
test_part1 | | | | | | | | | | | | | | | | | | 90.62 3 |
|
MTAPA | | | | | | | | | | | 65.14 3 | | 80.20 19 | | | | | |
|
MTMP | | | | | | | | | | | 62.63 17 | | 78.04 26 | | | | | |
|
Patchmatch-RL test | | | | | | | | 1.04 217 | | | | | | | | | | |
|
NP-MVS | | | | | | | | | | 72.00 40 | | | | | | | | |
|
Patchmtry | | | | | | | 47.61 186 | 48.27 169 | 38.86 155 | | 39.59 112 | | | | | | | |
|
DeepMVS_CX | | | | | | | 6.95 215 | 5.98 215 | 2.25 211 | 11.73 212 | 2.07 214 | 11.85 207 | 5.43 215 | 11.75 206 | 11.40 211 | | 8.10 214 | 18.38 211 |
|