This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorcourty.delive.electrofacadekickermeadowofficepipesplaygr.reliefrelief.terraceterrai.
sort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
HPM-MVS++copyleft87.09 888.92 1284.95 592.61 187.91 4090.23 1576.06 488.85 1281.20 1087.33 1387.93 1179.47 888.59 888.23 590.15 3493.60 20
SMA-MVScopyleft87.56 690.17 684.52 991.71 290.57 990.77 875.19 1390.67 680.50 1486.59 1788.86 778.09 1689.92 189.41 190.84 1095.19 4
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
NCCC85.34 2086.59 2483.88 1691.48 388.88 2589.79 1775.54 1186.67 2177.94 2376.55 3584.99 2578.07 1788.04 1187.68 1190.46 2593.31 21
CNVR-MVS86.36 1388.19 1684.23 1291.33 489.84 1490.34 1175.56 1087.36 1878.97 1881.19 2886.76 1778.74 1189.30 488.58 290.45 2694.33 9
xxxxxxxxxxxxxcwj85.35 1985.76 3084.86 791.26 591.10 790.90 575.65 789.21 881.25 791.12 761.35 11578.82 987.42 1986.23 3091.28 393.90 12
SF-MVS87.47 789.70 784.86 791.26 591.10 790.90 575.65 789.21 881.25 791.12 788.93 678.82 987.42 1986.23 3091.28 393.90 12
APDe-MVS88.00 590.50 585.08 490.95 791.58 692.03 175.53 1291.15 480.10 1592.27 488.34 1080.80 488.00 1386.99 1891.09 695.16 5
DPE-MVS88.63 391.29 385.53 290.87 892.20 391.98 276.00 590.55 782.09 693.85 190.75 181.25 188.62 787.59 1390.96 995.48 3
HFP-MVS86.15 1487.95 1784.06 1490.80 989.20 2389.62 2074.26 1687.52 1580.63 1286.82 1684.19 2978.22 1487.58 1787.19 1690.81 1293.13 24
SteuartSystems-ACMMP85.99 1588.31 1583.27 2190.73 1089.84 1490.27 1474.31 1584.56 3075.88 3087.32 1485.04 2477.31 2489.01 688.46 391.14 593.96 11
Skip Steuart: Steuart Systems R&D Blog.
APD-MVScopyleft86.84 1188.91 1384.41 1090.66 1190.10 1290.78 775.64 987.38 1778.72 1990.68 1086.82 1680.15 687.13 2586.45 2890.51 2093.83 14
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
MP-MVScopyleft85.50 1887.40 2083.28 2090.65 1289.51 1989.16 2474.11 1983.70 3478.06 2285.54 2084.89 2777.31 2487.40 2287.14 1790.41 2793.65 19
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
train_agg84.86 2587.21 2182.11 2790.59 1385.47 5589.81 1673.55 2683.95 3273.30 3889.84 1287.23 1475.61 3286.47 3485.46 3989.78 3992.06 32
MCST-MVS85.13 2386.62 2383.39 1890.55 1489.82 1689.29 2273.89 2384.38 3176.03 2979.01 3185.90 2178.47 1287.81 1586.11 3492.11 193.29 22
SED-MVS88.85 191.59 285.67 190.54 1592.29 291.71 376.40 292.41 283.24 292.50 390.64 381.10 289.53 288.02 791.00 895.73 2
zzz-MVS85.71 1686.88 2284.34 1190.54 1587.11 4489.77 1874.17 1888.54 1383.08 378.60 3286.10 1978.11 1587.80 1687.46 1490.35 2992.56 26
DVP-MVS88.67 291.62 185.22 390.47 1792.36 190.69 976.15 393.08 182.75 492.19 590.71 280.45 589.27 587.91 890.82 1195.84 1
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
DeepC-MVS_fast78.24 384.27 2985.50 3182.85 2390.46 1889.24 2187.83 3374.24 1784.88 2676.23 2875.26 3881.05 4377.62 2188.02 1287.62 1290.69 1692.41 28
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
ACMMP_NAP86.52 1289.01 1083.62 1790.28 1990.09 1390.32 1374.05 2088.32 1479.74 1687.04 1585.59 2376.97 2989.35 388.44 490.35 2994.27 10
SD-MVS86.96 989.45 884.05 1590.13 2089.23 2289.77 1874.59 1489.17 1080.70 1189.93 1189.67 478.47 1287.57 1886.79 2290.67 1793.76 16
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
ACMMPR85.52 1787.53 1983.17 2290.13 2089.27 2089.30 2173.97 2186.89 2077.14 2586.09 1883.18 3277.74 2087.42 1987.20 1590.77 1392.63 25
PGM-MVS84.42 2886.29 2782.23 2690.04 2288.82 2789.23 2371.74 3682.82 3774.61 3384.41 2382.09 3577.03 2887.13 2586.73 2490.73 1592.06 32
MSP-MVS88.09 490.84 484.88 690.00 2391.80 591.63 475.80 691.99 381.23 992.54 289.18 580.89 387.99 1487.91 889.70 4394.51 6
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
CSCG85.28 2287.68 1882.49 2589.95 2491.99 488.82 2571.20 3886.41 2279.63 1779.26 2988.36 973.94 3986.64 3286.67 2591.40 294.41 7
mPP-MVS89.90 2581.29 42
TSAR-MVS + MP.86.88 1089.23 984.14 1389.78 2688.67 3190.59 1073.46 2788.99 1180.52 1391.26 688.65 879.91 786.96 3086.22 3290.59 1893.83 14
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
X-MVS83.23 3385.20 3380.92 3489.71 2788.68 2888.21 3273.60 2482.57 3871.81 4677.07 3381.92 3771.72 5886.98 2986.86 2090.47 2292.36 29
DPM-MVS83.30 3284.33 3582.11 2789.56 2888.49 3490.33 1273.24 2883.85 3376.46 2772.43 4882.65 3373.02 4786.37 3686.91 1990.03 3689.62 51
TSAR-MVS + ACMM85.10 2488.81 1480.77 3589.55 2988.53 3388.59 2872.55 3187.39 1671.90 4390.95 987.55 1274.57 3487.08 2786.54 2687.47 8593.67 17
CP-MVS84.74 2786.43 2682.77 2489.48 3088.13 3988.64 2673.93 2284.92 2576.77 2681.94 2683.50 3077.29 2686.92 3186.49 2790.49 2193.14 23
CDPH-MVS82.64 3485.03 3479.86 3989.41 3188.31 3688.32 3071.84 3580.11 4567.47 6282.09 2581.44 4171.85 5685.89 4086.15 3390.24 3291.25 38
DeepC-MVS78.47 284.81 2686.03 2883.37 1989.29 3290.38 1188.61 2776.50 186.25 2377.22 2475.12 3980.28 4577.59 2288.39 988.17 691.02 793.66 18
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
AdaColmapbinary79.74 4778.62 5981.05 3389.23 3386.06 5284.95 4971.96 3479.39 4875.51 3163.16 8968.84 9376.51 3083.55 5782.85 5588.13 7086.46 74
SR-MVS88.99 3473.57 2587.54 13
EPNet79.08 5480.62 4977.28 5388.90 3583.17 7683.65 5572.41 3274.41 5867.15 6476.78 3474.37 6064.43 9583.70 5683.69 5187.15 8988.19 59
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
DeepPCF-MVS79.04 185.30 2188.93 1181.06 3288.77 3690.48 1085.46 4673.08 2990.97 573.77 3784.81 2285.95 2077.43 2388.22 1087.73 1087.85 7894.34 8
ACMMPcopyleft83.42 3185.27 3281.26 3188.47 3788.49 3488.31 3172.09 3383.42 3572.77 4182.65 2478.22 4975.18 3386.24 3885.76 3690.74 1492.13 31
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
3Dnovator+75.73 482.40 3582.76 4081.97 2988.02 3889.67 1786.60 3771.48 3781.28 4378.18 2164.78 8377.96 5177.13 2787.32 2386.83 2190.41 2791.48 36
OPM-MVS79.68 4879.28 5780.15 3887.99 3986.77 4788.52 2972.72 3064.55 9267.65 6167.87 7174.33 6174.31 3786.37 3685.25 4189.73 4289.81 49
MAR-MVS79.21 5180.32 5377.92 5187.46 4088.15 3883.95 5367.48 6274.28 5968.25 5864.70 8477.04 5272.17 5285.42 4285.00 4388.22 6687.62 64
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
HQP-MVS81.19 4183.27 3878.76 4687.40 4185.45 5686.95 3570.47 4181.31 4266.91 6579.24 3076.63 5371.67 5984.43 5083.78 5089.19 5392.05 34
abl_679.05 4387.27 4288.85 2683.62 5668.25 5581.68 4172.94 4073.79 4584.45 2872.55 5089.66 4590.64 43
CANet81.62 4083.41 3779.53 4187.06 4388.59 3285.47 4567.96 5976.59 5374.05 3474.69 4081.98 3672.98 4886.14 3985.47 3889.68 4490.42 46
MSLP-MVS++82.09 3782.66 4181.42 3087.03 4487.22 4385.82 4270.04 4380.30 4478.66 2068.67 6781.04 4477.81 1985.19 4684.88 4489.19 5391.31 37
ACMM72.26 878.86 5578.13 6179.71 4086.89 4583.40 7386.02 4070.50 4075.28 5571.49 5063.01 9069.26 8773.57 4184.11 5283.98 4889.76 4187.84 62
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
XVS86.63 4688.68 2885.00 4771.81 4681.92 3790.47 22
X-MVStestdata86.63 4688.68 2885.00 4771.81 4681.92 3790.47 22
PHI-MVS82.36 3685.89 2978.24 4986.40 4889.52 1885.52 4469.52 4982.38 4065.67 6981.35 2782.36 3473.07 4587.31 2486.76 2389.24 5091.56 35
LGP-MVS_train79.83 4481.22 4778.22 5086.28 4985.36 5886.76 3669.59 4777.34 5065.14 7175.68 3770.79 7571.37 6284.60 4884.01 4790.18 3390.74 42
MVS_030481.73 3983.86 3679.26 4286.22 5089.18 2486.41 3867.15 6375.28 5570.75 5374.59 4183.49 3174.42 3687.05 2886.34 2990.58 1991.08 40
CPTT-MVS81.77 3883.10 3980.21 3785.93 5186.45 5087.72 3470.98 3982.54 3971.53 4974.23 4481.49 4076.31 3182.85 6481.87 6188.79 6192.26 30
MVS_111021_HR80.13 4381.46 4578.58 4785.77 5285.17 5983.45 5769.28 5074.08 6170.31 5474.31 4375.26 5873.13 4486.46 3585.15 4289.53 4689.81 49
ACMP73.23 779.79 4580.53 5078.94 4485.61 5385.68 5385.61 4369.59 4777.33 5171.00 5274.45 4269.16 8871.88 5483.15 6183.37 5389.92 3790.57 45
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
UA-Net74.47 7477.80 6470.59 8985.33 5485.40 5773.54 13665.98 7260.65 12456.00 10672.11 4979.15 4654.63 16183.13 6282.25 5888.04 7281.92 122
TSAR-MVS + GP.83.69 3086.58 2580.32 3685.14 5586.96 4584.91 5070.25 4284.71 2973.91 3685.16 2185.63 2277.92 1885.44 4185.71 3789.77 4092.45 27
LS3D74.08 7673.39 8874.88 6785.05 5682.62 7979.71 7368.66 5372.82 6458.80 8957.61 11861.31 11671.07 6480.32 9678.87 10886.00 12780.18 136
QAPM78.47 5680.22 5476.43 5785.03 5786.75 4880.62 6666.00 7173.77 6265.35 7065.54 7978.02 5072.69 4983.71 5583.36 5488.87 5990.41 47
OpenMVScopyleft70.44 1076.15 6776.82 7575.37 6385.01 5884.79 6178.99 8162.07 11671.27 6667.88 6057.91 11772.36 6870.15 6682.23 6981.41 6688.12 7187.78 63
CLD-MVS79.35 5081.23 4677.16 5485.01 5886.92 4685.87 4160.89 12680.07 4775.35 3272.96 4673.21 6568.43 7685.41 4384.63 4587.41 8685.44 85
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
3Dnovator73.76 579.75 4680.52 5178.84 4584.94 6087.35 4184.43 5265.54 7478.29 4973.97 3563.00 9175.62 5774.07 3885.00 4785.34 4090.11 3589.04 53
PCF-MVS73.28 679.42 4980.41 5278.26 4884.88 6188.17 3786.08 3969.85 4475.23 5768.43 5768.03 7078.38 4871.76 5781.26 8280.65 8388.56 6491.18 39
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
DELS-MVS79.15 5381.07 4876.91 5583.54 6287.31 4284.45 5164.92 7969.98 6769.34 5571.62 5276.26 5469.84 6786.57 3385.90 3589.39 4889.88 48
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
OMC-MVS80.26 4282.59 4277.54 5283.04 6385.54 5483.25 5865.05 7887.32 1972.42 4272.04 5078.97 4773.30 4383.86 5381.60 6588.15 6988.83 55
PLCcopyleft68.99 1175.68 6875.31 8076.12 5982.94 6481.26 8979.94 7066.10 6977.15 5266.86 6659.13 10768.53 9473.73 4080.38 9579.04 10487.13 9381.68 124
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
CNLPA77.20 6177.54 6676.80 5682.63 6584.31 6379.77 7264.64 8085.17 2473.18 3956.37 12469.81 8374.53 3581.12 8678.69 10986.04 12587.29 68
ACMH+66.54 1371.36 9370.09 11172.85 7782.59 6681.13 9178.56 8368.04 5761.55 11652.52 12851.50 16354.14 15068.56 7578.85 11679.50 10086.82 10183.94 104
ACMH65.37 1470.71 9770.00 11271.54 8182.51 6782.47 8077.78 9168.13 5656.19 15146.06 16154.30 13451.20 17768.68 7480.66 9180.72 7686.07 12184.45 101
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
EIA-MVS75.64 6976.60 7674.53 7182.43 6883.84 6678.32 8762.28 11565.96 8263.28 7968.95 6367.54 9771.61 6082.55 6681.63 6489.24 5085.72 79
canonicalmvs79.16 5282.37 4375.41 6282.33 6986.38 5180.80 6363.18 9282.90 3667.34 6372.79 4776.07 5569.62 6883.46 6084.41 4689.20 5290.60 44
ETV-MVS77.32 6078.81 5875.58 6182.24 7083.64 7079.98 6864.02 8669.64 7163.90 7670.89 5669.94 8273.41 4285.39 4483.91 4989.92 3788.31 58
MSDG71.52 9069.87 11373.44 7582.21 7179.35 10879.52 7464.59 8166.15 8061.87 8053.21 14856.09 14065.85 9278.94 11578.50 11186.60 11076.85 158
test_part174.24 7573.44 8775.18 6482.02 7282.34 8183.88 5462.40 11360.93 12268.68 5649.25 17469.71 8465.73 9381.26 8281.98 6088.35 6588.60 57
CS-MVS76.92 6278.01 6275.64 6081.47 7383.59 7180.68 6462.47 11168.39 7365.83 6867.84 7270.74 7673.07 4585.31 4582.79 5690.33 3187.42 65
IS_MVSNet73.33 7977.34 7168.65 10981.29 7483.47 7274.45 11863.58 8965.75 8448.49 14567.11 7670.61 7754.63 16184.51 4983.58 5289.48 4786.34 75
Effi-MVS+75.28 7176.20 7774.20 7381.15 7583.24 7481.11 6163.13 9466.37 7860.27 8564.30 8768.88 9270.93 6581.56 7381.69 6388.61 6287.35 66
MVS_111021_LR78.13 5879.85 5676.13 5881.12 7681.50 8680.28 6765.25 7676.09 5471.32 5176.49 3672.87 6772.21 5182.79 6581.29 6786.59 11187.91 61
FC-MVSNet-train72.60 8475.07 8169.71 9881.10 7778.79 11573.74 13565.23 7766.10 8153.34 12170.36 5863.40 11056.92 14681.44 7580.96 7287.93 7484.46 100
MS-PatchMatch70.17 10470.49 10869.79 9780.98 7877.97 12777.51 9358.95 14962.33 11055.22 11053.14 14965.90 10262.03 11179.08 11377.11 13384.08 15077.91 150
Anonymous20240521172.16 9980.85 7981.85 8376.88 10165.40 7562.89 10746.35 18167.99 9662.05 11081.15 8580.38 8785.97 12884.50 99
TAPA-MVS71.42 977.69 5980.05 5574.94 6680.68 8084.52 6281.36 6063.14 9384.77 2764.82 7368.72 6575.91 5671.86 5581.62 7179.55 9987.80 8085.24 88
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
PVSNet_Blended_VisFu76.57 6477.90 6375.02 6580.56 8186.58 4979.24 7766.18 6864.81 8968.18 5965.61 7771.45 7067.05 7884.16 5181.80 6288.90 5790.92 41
EPP-MVSNet74.00 7777.41 6970.02 9580.53 8283.91 6574.99 11462.68 10665.06 8749.77 14168.68 6672.09 6963.06 10382.49 6880.73 7589.12 5588.91 54
COLMAP_ROBcopyleft62.73 1567.66 13366.76 14968.70 10880.49 8377.98 12575.29 10762.95 9663.62 10149.96 13947.32 18050.72 18058.57 13176.87 13775.50 14984.94 14575.33 169
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
casdiffmvs76.76 6378.46 6074.77 6880.32 8483.73 6980.65 6563.24 9173.58 6366.11 6769.39 6274.09 6269.49 7082.52 6779.35 10388.84 6086.52 73
DCV-MVSNet73.65 7875.78 7971.16 8380.19 8579.27 10977.45 9661.68 12266.73 7758.72 9065.31 8069.96 8162.19 10881.29 8180.97 7186.74 10486.91 69
Anonymous2023121171.90 8772.48 9671.21 8280.14 8681.53 8576.92 9962.89 9764.46 9458.94 8743.80 18570.98 7462.22 10780.70 9080.19 9086.18 11885.73 78
TSAR-MVS + COLMAP78.34 5781.64 4474.48 7280.13 8785.01 6081.73 5965.93 7384.75 2861.68 8185.79 1966.27 10171.39 6182.91 6380.78 7486.01 12685.98 76
baseline170.10 10572.17 9867.69 11879.74 8876.80 13773.91 12964.38 8362.74 10848.30 14764.94 8164.08 10754.17 16381.46 7478.92 10685.66 13376.22 160
EPNet_dtu68.08 12571.00 10464.67 14779.64 8968.62 17875.05 11363.30 9066.36 7945.27 16567.40 7466.84 10043.64 18375.37 14674.98 15281.15 16277.44 153
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
PVSNet_BlendedMVS76.21 6577.52 6774.69 6979.46 9083.79 6777.50 9464.34 8469.88 6871.88 4468.54 6870.42 7867.05 7883.48 5879.63 9587.89 7686.87 70
PVSNet_Blended76.21 6577.52 6774.69 6979.46 9083.79 6777.50 9464.34 8469.88 6871.88 4468.54 6870.42 7867.05 7883.48 5879.63 9587.89 7686.87 70
IB-MVS66.94 1271.21 9471.66 10270.68 8679.18 9282.83 7872.61 14261.77 12059.66 12963.44 7853.26 14659.65 12359.16 13076.78 13982.11 5987.90 7587.33 67
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
MVS_Test75.37 7077.13 7373.31 7679.07 9381.32 8879.98 6860.12 13769.72 7064.11 7570.53 5773.22 6468.90 7280.14 10179.48 10187.67 8285.50 83
Effi-MVS+-dtu71.82 8871.86 10171.78 8078.77 9480.47 9878.55 8461.67 12360.68 12355.49 10758.48 11165.48 10368.85 7376.92 13675.55 14887.35 8785.46 84
EG-PatchMatch MVS67.24 14066.94 14767.60 12078.73 9581.35 8773.28 14059.49 14246.89 19351.42 13343.65 18653.49 15855.50 15881.38 7780.66 8287.15 8981.17 128
gg-mvs-nofinetune62.55 16365.05 16159.62 17278.72 9677.61 13170.83 15053.63 16539.71 20522.04 20636.36 19864.32 10647.53 17681.16 8479.03 10585.00 14477.17 155
Vis-MVSNet (Re-imp)67.83 13073.52 8661.19 16378.37 9776.72 13966.80 16862.96 9565.50 8534.17 18967.19 7569.68 8539.20 19279.39 11079.44 10285.68 13276.73 159
DI_MVS_plusplus_trai75.13 7276.12 7873.96 7478.18 9881.55 8480.97 6262.54 10868.59 7265.13 7261.43 9374.81 5969.32 7181.01 8879.59 9787.64 8385.89 77
thres600view767.68 13268.43 13466.80 13577.90 9978.86 11373.84 13162.75 9956.07 15244.70 16852.85 15452.81 16755.58 15680.41 9277.77 12086.05 12380.28 135
thres40067.95 12768.62 13267.17 12877.90 9978.59 11874.27 12462.72 10156.34 15045.77 16353.00 15153.35 16356.46 14880.21 10078.43 11285.91 13080.43 134
thres20067.98 12668.55 13367.30 12677.89 10178.86 11374.18 12762.75 9956.35 14946.48 15852.98 15253.54 15656.46 14880.41 9277.97 11886.05 12379.78 140
thres100view90067.60 13668.02 13767.12 13077.83 10277.75 12973.90 13062.52 10956.64 14646.82 15552.65 15653.47 16055.92 15278.77 11777.62 12385.72 13179.23 143
tfpn200view968.11 12468.72 13067.40 12377.83 10278.93 11174.28 12362.81 9856.64 14646.82 15552.65 15653.47 16056.59 14780.41 9278.43 11286.11 11980.52 133
Fast-Effi-MVS+73.11 8173.66 8572.48 7877.72 10480.88 9578.55 8458.83 15265.19 8660.36 8459.98 10262.42 11371.22 6381.66 7080.61 8588.20 6784.88 95
UniMVSNet_NR-MVSNet70.59 9872.19 9768.72 10777.72 10480.72 9673.81 13369.65 4661.99 11243.23 17060.54 9857.50 13258.57 13179.56 10781.07 7089.34 4983.97 102
IterMVS-LS71.69 8972.82 9470.37 9177.54 10676.34 14275.13 11260.46 13261.53 11757.57 9764.89 8267.33 9866.04 9177.09 13577.37 12985.48 13685.18 89
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
NR-MVSNet68.79 11970.56 10766.71 13877.48 10779.54 10573.52 13769.20 5161.20 12039.76 17758.52 10950.11 18351.37 17080.26 9980.71 8088.97 5683.59 108
TransMVSNet (Re)64.74 15265.66 15563.66 15477.40 10875.33 15169.86 15162.67 10747.63 19141.21 17650.01 16952.33 17045.31 18079.57 10677.69 12285.49 13577.07 157
TranMVSNet+NR-MVSNet69.25 11470.81 10667.43 12277.23 10979.46 10773.48 13869.66 4560.43 12639.56 17858.82 10853.48 15955.74 15579.59 10581.21 6888.89 5882.70 112
CANet_DTU73.29 8076.96 7469.00 10677.04 11082.06 8279.49 7556.30 16267.85 7553.29 12271.12 5570.37 8061.81 11781.59 7280.96 7286.09 12084.73 96
CHOSEN 1792x268869.20 11569.26 12269.13 10376.86 11178.93 11177.27 9760.12 13761.86 11454.42 11142.54 18961.61 11466.91 8378.55 12078.14 11679.23 17083.23 111
HyFIR lowres test69.47 11268.94 12670.09 9476.77 11282.93 7776.63 10360.17 13559.00 13254.03 11540.54 19465.23 10467.89 7776.54 14278.30 11485.03 14380.07 137
UniMVSNet (Re)69.53 11071.90 10066.76 13676.42 11380.93 9272.59 14368.03 5861.75 11541.68 17558.34 11557.23 13453.27 16679.53 10880.62 8488.57 6384.90 94
gm-plane-assit57.00 18757.62 19456.28 18476.10 11462.43 20047.62 20846.57 19933.84 20823.24 20237.52 19540.19 20559.61 12979.81 10377.55 12584.55 14872.03 179
DU-MVS69.63 10970.91 10568.13 11375.99 11579.54 10573.81 13369.20 5161.20 12043.23 17058.52 10953.50 15758.57 13179.22 11180.45 8687.97 7383.97 102
Baseline_NR-MVSNet67.53 13768.77 12966.09 14075.99 11574.75 15672.43 14468.41 5461.33 11938.33 18251.31 16454.13 15256.03 15179.22 11178.19 11585.37 13882.45 114
CostFormer68.92 11769.58 11868.15 11275.98 11776.17 14478.22 8951.86 17865.80 8361.56 8263.57 8862.83 11161.85 11570.40 18268.67 17979.42 16879.62 141
tfpnnormal64.27 15563.64 17165.02 14475.84 11875.61 14871.24 14962.52 10947.79 19042.97 17242.65 18844.49 19852.66 16878.77 11776.86 13584.88 14679.29 142
baseline269.69 10870.27 11069.01 10575.72 11977.13 13573.82 13258.94 15061.35 11857.09 10061.68 9257.17 13561.99 11278.10 12476.58 14086.48 11479.85 138
diffmvs74.86 7377.37 7071.93 7975.62 12080.35 10079.42 7660.15 13672.81 6564.63 7471.51 5373.11 6666.53 8879.02 11477.98 11785.25 14086.83 72
tpm cat165.41 14763.81 17067.28 12775.61 12172.88 16275.32 10652.85 17262.97 10563.66 7753.24 14753.29 16561.83 11665.54 19364.14 19574.43 19074.60 171
CDS-MVSNet67.65 13469.83 11565.09 14375.39 12276.55 14074.42 12163.75 8753.55 16949.37 14359.41 10562.45 11244.44 18179.71 10479.82 9383.17 15677.36 154
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
Fast-Effi-MVS+-dtu68.34 12269.47 11967.01 13275.15 12377.97 12777.12 9855.40 16457.87 13546.68 15756.17 12560.39 11762.36 10676.32 14376.25 14485.35 13981.34 126
WR-MVS63.03 15967.40 14457.92 17875.14 12477.60 13260.56 19166.10 6954.11 16823.88 20053.94 14053.58 15534.50 19673.93 15577.71 12187.35 8780.94 129
test-LLR64.42 15364.36 16664.49 14875.02 12563.93 19166.61 17061.96 11754.41 16447.77 15057.46 11960.25 11855.20 15970.80 17669.33 17480.40 16674.38 173
test0.0.03 158.80 18361.58 18455.56 18675.02 12568.45 17959.58 19561.96 11752.74 17229.57 19349.75 17254.56 14831.46 19971.19 17169.77 17275.75 18364.57 194
v114469.93 10769.36 12170.61 8874.89 12780.93 9279.11 7960.64 12855.97 15355.31 10953.85 14154.14 15066.54 8778.10 12477.44 12787.14 9285.09 90
v1070.22 10369.76 11670.74 8474.79 12880.30 10279.22 7859.81 14057.71 14056.58 10454.22 13955.31 14366.95 8178.28 12277.47 12687.12 9585.07 91
v870.23 10269.86 11470.67 8774.69 12979.82 10478.79 8259.18 14558.80 13358.20 9555.00 13157.33 13366.31 9077.51 12976.71 13886.82 10183.88 105
v2v48270.05 10669.46 12070.74 8474.62 13080.32 10179.00 8060.62 12957.41 14256.89 10155.43 13055.14 14566.39 8977.25 13277.14 13286.90 9883.57 109
v119269.50 11168.83 12770.29 9274.49 13180.92 9478.55 8460.54 13055.04 15954.21 11252.79 15552.33 17066.92 8277.88 12677.35 13087.04 9685.51 82
UniMVSNet_ETH3D67.18 14167.03 14667.36 12474.44 13278.12 12074.07 12866.38 6652.22 17646.87 15448.64 17551.84 17456.96 14477.29 13178.53 11085.42 13782.59 113
DTE-MVSNet61.85 17264.96 16358.22 17774.32 13374.39 15861.01 19067.85 6051.76 18121.91 20753.28 14548.17 18737.74 19372.22 16476.44 14186.52 11378.49 147
Vis-MVSNetpermissive72.77 8377.20 7267.59 12174.19 13484.01 6476.61 10461.69 12160.62 12550.61 13770.25 5971.31 7355.57 15783.85 5482.28 5786.90 9888.08 60
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
v14419269.34 11368.68 13170.12 9374.06 13580.54 9778.08 9060.54 13054.99 16154.13 11452.92 15352.80 16866.73 8577.13 13476.72 13787.15 8985.63 80
v192192069.03 11668.32 13569.86 9674.03 13680.37 9977.55 9260.25 13454.62 16353.59 12052.36 15951.50 17666.75 8477.17 13376.69 13986.96 9785.56 81
PEN-MVS62.96 16065.77 15459.70 17173.98 13775.45 14963.39 18467.61 6152.49 17425.49 19953.39 14349.12 18640.85 18971.94 16777.26 13186.86 10080.72 131
v124068.64 12167.89 14069.51 10173.89 13880.26 10376.73 10259.97 13953.43 17153.08 12351.82 16250.84 17966.62 8676.79 13876.77 13686.78 10385.34 86
thisisatest053071.48 9173.01 9169.70 9973.83 13978.62 11774.53 11759.12 14664.13 9558.63 9164.60 8558.63 12764.27 9680.28 9880.17 9187.82 7984.64 98
GA-MVS68.14 12369.17 12466.93 13473.77 14078.50 11974.45 11858.28 15455.11 15848.44 14660.08 10053.99 15361.50 11978.43 12177.57 12485.13 14180.54 132
tttt051771.41 9272.95 9269.60 10073.70 14178.70 11674.42 12159.12 14663.89 9958.35 9464.56 8658.39 12964.27 9680.29 9780.17 9187.74 8184.69 97
pm-mvs165.62 14667.42 14363.53 15573.66 14276.39 14169.66 15260.87 12749.73 18643.97 16951.24 16557.00 13748.16 17579.89 10277.84 11984.85 14779.82 139
dps64.00 15762.99 17365.18 14273.29 14372.07 16568.98 15753.07 17157.74 13958.41 9355.55 12847.74 19060.89 12569.53 18567.14 18876.44 18271.19 181
v14867.85 12967.53 14168.23 11173.25 14477.57 13374.26 12557.36 15955.70 15457.45 9953.53 14255.42 14261.96 11375.23 14773.92 15685.08 14281.32 127
PatchMatch-RL67.78 13166.65 15069.10 10473.01 14572.69 16368.49 15861.85 11962.93 10660.20 8656.83 12350.42 18169.52 6975.62 14574.46 15581.51 16073.62 177
GBi-Net70.78 9573.37 8967.76 11472.95 14678.00 12275.15 10962.72 10164.13 9551.44 13058.37 11269.02 8957.59 13881.33 7880.72 7686.70 10582.02 116
test170.78 9573.37 8967.76 11472.95 14678.00 12275.15 10962.72 10164.13 9551.44 13058.37 11269.02 8957.59 13881.33 7880.72 7686.70 10582.02 116
FMVSNet270.39 10172.67 9567.72 11772.95 14678.00 12275.15 10962.69 10563.29 10351.25 13455.64 12668.49 9557.59 13880.91 8980.35 8886.70 10582.02 116
FMVSNet370.49 9972.90 9367.67 11972.88 14977.98 12574.96 11562.72 10164.13 9551.44 13058.37 11269.02 8957.43 14179.43 10979.57 9886.59 11181.81 123
LTVRE_ROB59.44 1661.82 17562.64 17760.87 16572.83 15077.19 13464.37 18058.97 14833.56 20928.00 19652.59 15842.21 20163.93 9974.52 15176.28 14277.15 17782.13 115
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
v7n67.05 14266.94 14767.17 12872.35 15178.97 11073.26 14158.88 15151.16 18250.90 13548.21 17750.11 18360.96 12277.70 12777.38 12886.68 10885.05 92
tpm62.41 16663.15 17261.55 16272.24 15263.79 19371.31 14846.12 20157.82 13655.33 10859.90 10354.74 14753.63 16467.24 19264.29 19470.65 20074.25 175
test20.0353.93 19556.28 19651.19 19572.19 15365.83 18653.20 20261.08 12442.74 19922.08 20537.07 19745.76 19624.29 20770.44 18069.04 17674.31 19163.05 198
CP-MVSNet62.68 16265.49 15759.40 17471.84 15475.34 15062.87 18667.04 6452.64 17327.19 19753.38 14448.15 18841.40 18771.26 17075.68 14686.07 12182.00 119
PS-CasMVS62.38 16865.06 16059.25 17571.73 15575.21 15462.77 18766.99 6551.94 18026.96 19852.00 16147.52 19141.06 18871.16 17375.60 14785.97 12881.97 121
WR-MVS_H61.83 17465.87 15357.12 18171.72 15676.87 13661.45 18966.19 6751.97 17922.92 20453.13 15052.30 17233.80 19771.03 17475.00 15186.65 10980.78 130
USDC67.36 13967.90 13966.74 13771.72 15675.23 15371.58 14660.28 13367.45 7650.54 13860.93 9445.20 19762.08 10976.56 14174.50 15484.25 14975.38 168
UGNet72.78 8277.67 6567.07 13171.65 15883.24 7475.20 10863.62 8864.93 8856.72 10271.82 5173.30 6349.02 17481.02 8780.70 8186.22 11788.67 56
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
tpmrst62.00 17062.35 18161.58 16171.62 15964.14 19069.07 15648.22 19762.21 11153.93 11658.26 11655.30 14455.81 15463.22 19862.62 19770.85 19970.70 182
pmmvs467.89 12867.39 14568.48 11071.60 16073.57 16074.45 11860.98 12564.65 9057.97 9654.95 13251.73 17561.88 11473.78 15675.11 15083.99 15277.91 150
testgi54.39 19457.86 19250.35 19671.59 16167.24 18254.95 20053.25 16943.36 19823.78 20144.64 18447.87 18924.96 20470.45 17968.66 18073.60 19362.78 199
pmmvs662.41 16662.88 17461.87 16071.38 16275.18 15567.76 16159.45 14441.64 20142.52 17437.33 19652.91 16646.87 17777.67 12876.26 14383.23 15579.18 144
FMVSNet168.84 11870.47 10966.94 13371.35 16377.68 13074.71 11662.35 11456.93 14449.94 14050.01 16964.59 10557.07 14381.33 7880.72 7686.25 11682.00 119
IterMVS-SCA-FT66.89 14369.22 12364.17 14971.30 16475.64 14771.33 14753.17 17057.63 14149.08 14460.72 9660.05 12163.09 10274.99 14973.92 15677.07 17881.57 125
PatchmatchNetpermissive64.21 15664.65 16463.69 15371.29 16568.66 17769.63 15351.70 18063.04 10453.77 11859.83 10458.34 13060.23 12868.54 18966.06 19175.56 18568.08 189
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
baseline70.45 10074.09 8466.20 13970.95 16675.67 14674.26 12553.57 16668.33 7458.42 9269.87 6071.45 7061.55 11874.84 15074.76 15378.42 17283.72 107
SCA65.40 14866.58 15164.02 15170.65 16773.37 16167.35 16253.46 16863.66 10054.14 11360.84 9560.20 12061.50 11969.96 18368.14 18477.01 17969.91 183
CR-MVSNet64.83 15165.54 15664.01 15270.64 16869.41 17365.97 17352.74 17357.81 13752.65 12554.27 13556.31 13960.92 12372.20 16573.09 16181.12 16375.69 165
MVSTER72.06 8674.24 8269.51 10170.39 16975.97 14576.91 10057.36 15964.64 9161.39 8368.86 6463.76 10863.46 10081.44 7579.70 9487.56 8485.31 87
Anonymous2023120656.36 18957.80 19354.67 18970.08 17066.39 18560.46 19257.54 15649.50 18829.30 19433.86 20146.64 19235.18 19570.44 18068.88 17875.47 18668.88 188
thisisatest051567.40 13868.78 12865.80 14170.02 17175.24 15269.36 15557.37 15854.94 16253.67 11955.53 12954.85 14658.00 13678.19 12378.91 10786.39 11583.78 106
CMPMVSbinary47.78 1762.49 16562.52 17862.46 15870.01 17270.66 17162.97 18551.84 17951.98 17856.71 10342.87 18753.62 15457.80 13772.23 16370.37 17175.45 18775.91 162
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
TDRefinement66.09 14565.03 16267.31 12569.73 17376.75 13875.33 10564.55 8260.28 12749.72 14245.63 18342.83 20060.46 12775.75 14475.95 14584.08 15078.04 149
TinyColmap62.84 16161.03 18664.96 14569.61 17471.69 16668.48 15959.76 14155.41 15547.69 15247.33 17934.20 20862.76 10574.52 15172.59 16481.44 16171.47 180
RPMNet61.71 17662.88 17460.34 16769.51 17569.41 17363.48 18349.23 18957.81 13745.64 16450.51 16750.12 18253.13 16768.17 19168.49 18281.07 16475.62 167
IterMVS66.36 14468.30 13664.10 15069.48 17674.61 15773.41 13950.79 18457.30 14348.28 14860.64 9759.92 12260.85 12674.14 15472.66 16381.80 15978.82 146
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
SixPastTwentyTwo61.84 17362.45 17961.12 16469.20 17772.20 16462.03 18857.40 15746.54 19438.03 18457.14 12241.72 20258.12 13569.67 18471.58 16781.94 15878.30 148
MDTV_nov1_ep1364.37 15465.24 15863.37 15768.94 17870.81 16972.40 14550.29 18760.10 12853.91 11760.07 10159.15 12557.21 14269.43 18667.30 18677.47 17569.78 185
EPMVS60.00 18161.97 18257.71 17968.46 17963.17 19764.54 17948.23 19663.30 10244.72 16760.19 9956.05 14150.85 17165.27 19662.02 19869.44 20263.81 196
our_test_367.93 18070.99 16866.89 166
FC-MVSNet-test56.90 18865.20 15947.21 19966.98 18163.20 19649.11 20758.60 15359.38 13111.50 21365.60 7856.68 13824.66 20671.17 17271.36 16972.38 19669.02 187
CVMVSNet62.55 16365.89 15258.64 17666.95 18269.15 17566.49 17256.29 16352.46 17532.70 19059.27 10658.21 13150.09 17271.77 16871.39 16879.31 16978.99 145
FPMVS51.87 19750.00 20254.07 19066.83 18357.25 20460.25 19350.91 18250.25 18434.36 18836.04 19932.02 21041.49 18658.98 20456.07 20370.56 20159.36 204
pmmvs-eth3d63.52 15862.44 18064.77 14666.82 18470.12 17269.41 15459.48 14354.34 16752.71 12446.24 18244.35 19956.93 14572.37 16073.77 15883.30 15475.91 162
TAMVS59.58 18262.81 17655.81 18566.03 18565.64 18863.86 18248.74 19249.95 18537.07 18654.77 13358.54 12844.44 18172.29 16271.79 16574.70 18966.66 191
MDTV_nov1_ep13_2view60.16 18060.51 18859.75 17065.39 18669.05 17668.00 16048.29 19551.99 17745.95 16248.01 17849.64 18553.39 16568.83 18866.52 19077.47 17569.55 186
pmmvs562.37 16964.04 16860.42 16665.03 18771.67 16767.17 16452.70 17550.30 18344.80 16654.23 13851.19 17849.37 17372.88 15973.48 16083.45 15374.55 172
ambc53.42 19764.99 18863.36 19549.96 20547.07 19237.12 18528.97 20516.36 21641.82 18575.10 14867.34 18571.55 19875.72 164
V4268.76 12069.63 11767.74 11664.93 18978.01 12178.30 8856.48 16158.65 13456.30 10554.26 13757.03 13664.85 9477.47 13077.01 13485.60 13484.96 93
pmnet_mix0255.30 19157.01 19553.30 19464.14 19059.09 20258.39 19750.24 18853.47 17038.68 18149.75 17245.86 19540.14 19165.38 19560.22 20068.19 20465.33 193
PMVScopyleft39.38 1846.06 20343.30 20549.28 19862.93 19138.75 21141.88 21053.50 16733.33 21035.46 18728.90 20631.01 21133.04 19858.61 20554.63 20668.86 20357.88 205
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
new-patchmatchnet46.97 20149.47 20344.05 20362.82 19256.55 20545.35 20952.01 17742.47 20017.04 21135.73 20035.21 20721.84 21061.27 20154.83 20565.26 20660.26 201
ET-MVSNet_ETH3D72.46 8574.19 8370.44 9062.50 19381.17 9079.90 7162.46 11264.52 9357.52 9871.49 5459.15 12572.08 5378.61 11981.11 6988.16 6883.29 110
ADS-MVSNet55.94 19058.01 19153.54 19362.48 19458.48 20359.12 19646.20 20059.65 13042.88 17352.34 16053.31 16446.31 17862.00 20060.02 20164.23 20760.24 203
RPSCF67.64 13571.25 10363.43 15661.86 19570.73 17067.26 16350.86 18374.20 6058.91 8867.49 7369.33 8664.10 9871.41 16968.45 18377.61 17477.17 155
MIMVSNet58.52 18561.34 18555.22 18760.76 19667.01 18366.81 16749.02 19156.43 14838.90 18040.59 19354.54 14940.57 19073.16 15871.65 16675.30 18866.00 192
PatchT61.97 17164.04 16859.55 17360.49 19767.40 18156.54 19848.65 19356.69 14552.65 12551.10 16652.14 17360.92 12372.20 16573.09 16178.03 17375.69 165
N_pmnet47.35 20050.13 20144.11 20259.98 19851.64 20851.86 20344.80 20249.58 18720.76 20840.65 19240.05 20629.64 20059.84 20255.15 20457.63 20854.00 206
MVS-HIRNet54.41 19352.10 20057.11 18258.99 19956.10 20649.68 20649.10 19046.18 19552.15 12933.18 20246.11 19456.10 15063.19 19959.70 20276.64 18160.25 202
PM-MVS60.48 17960.94 18759.94 16958.85 20066.83 18464.27 18151.39 18155.03 16048.03 14950.00 17140.79 20458.26 13469.20 18767.13 18978.84 17177.60 152
anonymousdsp65.28 14967.98 13862.13 15958.73 20173.98 15967.10 16550.69 18548.41 18947.66 15354.27 13552.75 16961.45 12176.71 14080.20 8987.13 9389.53 52
TESTMET0.1,161.10 17764.36 16657.29 18057.53 20263.93 19166.61 17036.22 20754.41 16447.77 15057.46 11960.25 11855.20 15970.80 17669.33 17480.40 16674.38 173
EU-MVSNet54.63 19258.69 19049.90 19756.99 20362.70 19956.41 19950.64 18645.95 19623.14 20350.42 16846.51 19336.63 19465.51 19464.85 19375.57 18474.91 170
FMVSNet557.24 18660.02 18953.99 19156.45 20462.74 19865.27 17647.03 19855.14 15739.55 17940.88 19153.42 16241.83 18472.35 16171.10 17073.79 19264.50 195
test-mter60.84 17864.62 16556.42 18355.99 20564.18 18965.39 17534.23 20854.39 16646.21 16057.40 12159.49 12455.86 15371.02 17569.65 17380.87 16576.20 161
CHOSEN 280x42058.70 18461.88 18354.98 18855.45 20650.55 20964.92 17740.36 20455.21 15638.13 18348.31 17663.76 10863.03 10473.73 15768.58 18168.00 20573.04 178
PMMVS65.06 15069.17 12460.26 16855.25 20763.43 19466.71 16943.01 20362.41 10950.64 13669.44 6167.04 9963.29 10174.36 15373.54 15982.68 15773.99 176
Gipumacopyleft36.38 20535.80 20737.07 20445.76 20833.90 21229.81 21248.47 19439.91 20418.02 2108.00 2148.14 21825.14 20359.29 20361.02 19955.19 21040.31 208
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
pmmvs347.65 19949.08 20445.99 20044.61 20954.79 20750.04 20431.95 21133.91 20729.90 19230.37 20333.53 20946.31 17863.50 19763.67 19673.14 19563.77 197
MIMVSNet149.27 19853.25 19844.62 20144.61 20961.52 20153.61 20152.18 17641.62 20218.68 20928.14 20741.58 20325.50 20268.46 19069.04 17673.15 19462.37 200
MDA-MVSNet-bldmvs53.37 19653.01 19953.79 19243.67 21167.95 18059.69 19457.92 15543.69 19732.41 19141.47 19027.89 21352.38 16956.97 20665.99 19276.68 18067.13 190
E-PMN21.77 20718.24 21025.89 20640.22 21219.58 21512.46 21639.87 20518.68 2146.71 2159.57 2114.31 22122.36 20919.89 21227.28 21133.73 21228.34 212
EMVS20.98 20817.15 21125.44 20739.51 21319.37 21612.66 21539.59 20619.10 2136.62 2169.27 2124.40 22022.43 20817.99 21324.40 21231.81 21325.53 213
new_pmnet38.40 20442.64 20633.44 20537.54 21445.00 21036.60 21132.72 21040.27 20312.72 21229.89 20428.90 21224.78 20553.17 20752.90 20756.31 20948.34 207
PMMVS225.60 20629.75 20820.76 20928.00 21530.93 21323.10 21329.18 21223.14 2121.46 21818.23 21016.54 2155.08 21240.22 20841.40 20937.76 21137.79 210
tmp_tt14.50 21114.68 2167.17 21810.46 2182.21 21437.73 20628.71 19525.26 20816.98 2144.37 21331.49 20929.77 21026.56 214
MVEpermissive19.12 1920.47 20923.27 20917.20 21012.66 21725.41 21410.52 21734.14 20914.79 2156.53 2178.79 2134.68 21916.64 21129.49 21041.63 20822.73 21538.11 209
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
GG-mvs-BLEND46.86 20267.51 14222.75 2080.05 21876.21 14364.69 1780.04 21561.90 1130.09 21955.57 12771.32 720.08 21470.54 17867.19 18771.58 19769.86 184
testmvs0.09 2100.15 2120.02 2120.01 2190.02 2190.05 2200.01 2160.11 2160.01 2200.26 2160.01 2220.06 2160.10 2140.10 2130.01 2170.43 215
uanet_test0.00 2120.00 2140.00 2140.00 2200.00 2210.00 2220.00 2180.00 2180.00 2210.00 2170.00 2230.00 2170.00 2160.00 2150.00 2190.00 216
sosnet-low-res0.00 2120.00 2140.00 2140.00 2200.00 2210.00 2220.00 2180.00 2180.00 2210.00 2170.00 2230.00 2170.00 2160.00 2150.00 2190.00 216
sosnet0.00 2120.00 2140.00 2140.00 2200.00 2210.00 2220.00 2180.00 2180.00 2210.00 2170.00 2230.00 2170.00 2160.00 2150.00 2190.00 216
test1230.09 2100.14 2130.02 2120.00 2200.02 2190.02 2210.01 2160.09 2170.00 2210.30 2150.00 2230.08 2140.03 2150.09 2140.01 2170.45 214
RE-MVS-def46.24 159
9.1486.88 15
MTAPA83.48 186.45 18
MTMP82.66 584.91 26
Patchmatch-RL test2.85 219
NP-MVS80.10 46
Patchmtry65.80 18765.97 17352.74 17352.65 125
DeepMVS_CXcopyleft18.74 21718.55 2148.02 21326.96 2117.33 21423.81 20913.05 21725.99 20125.17 21122.45 21636.25 211