This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
test_0728_SECOND87.71 3295.34 171.43 5693.49 994.23 397.49 489.08 1296.41 1294.21 46
SED-MVS90.08 290.85 287.77 2695.30 270.98 6393.57 794.06 1077.24 5093.10 195.72 882.99 197.44 689.07 1496.63 494.88 14
IU-MVS95.30 271.25 5792.95 5266.81 25892.39 688.94 1696.63 494.85 19
test_241102_ONE95.30 270.98 6394.06 1077.17 5393.10 195.39 1182.99 197.27 11
DVP-MVScopyleft89.60 390.35 387.33 4095.27 571.25 5793.49 992.73 6077.33 4892.12 995.78 480.98 997.40 889.08 1296.41 1293.33 89
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test072695.27 571.25 5793.60 694.11 677.33 4892.81 395.79 380.98 9
test_one_060195.07 771.46 5594.14 578.27 3592.05 1195.74 680.83 11
test_part295.06 872.65 3291.80 13
HPM-MVS++copyleft89.02 989.15 988.63 595.01 976.03 192.38 2792.85 5580.26 1187.78 3094.27 3275.89 1996.81 2387.45 3296.44 993.05 101
FOURS195.00 1072.39 3995.06 193.84 1574.49 11591.30 15
DPE-MVScopyleft89.48 589.98 488.01 1694.80 1172.69 3191.59 4394.10 875.90 8792.29 795.66 1081.67 697.38 1087.44 3396.34 1593.95 56
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
CNVR-MVS88.93 1089.13 1088.33 894.77 1273.82 890.51 6093.00 4380.90 788.06 2694.06 4276.43 1696.84 2188.48 2495.99 1894.34 41
ACMMPR87.44 2387.23 2788.08 1494.64 1373.59 1293.04 1293.20 3476.78 6584.66 6894.52 2168.81 8996.65 3084.53 4994.90 4094.00 54
region2R87.42 2587.20 2888.09 1394.63 1473.55 1393.03 1493.12 3776.73 6884.45 7494.52 2169.09 8096.70 2784.37 5194.83 4494.03 53
OPU-MVS89.06 394.62 1575.42 493.57 794.02 4482.45 396.87 2083.77 5896.48 894.88 14
HFP-MVS87.58 2287.47 2487.94 1994.58 1673.54 1593.04 1293.24 3376.78 6584.91 6194.44 2870.78 6296.61 3284.53 4994.89 4193.66 70
MCST-MVS87.37 2787.25 2687.73 2894.53 1772.46 3889.82 7693.82 1673.07 14984.86 6492.89 7476.22 1796.33 3884.89 4495.13 3694.40 38
APDe-MVScopyleft89.15 789.63 687.73 2894.49 1871.69 5293.83 493.96 1375.70 9191.06 1696.03 176.84 1497.03 1789.09 1195.65 2794.47 34
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
DP-MVS Recon83.11 9882.09 10586.15 5894.44 1970.92 6888.79 11292.20 8770.53 19579.17 14491.03 12164.12 13496.03 4668.39 20990.14 10691.50 152
XVS87.18 2986.91 3388.00 1794.42 2073.33 1992.78 1892.99 4679.14 2183.67 9094.17 3667.45 10296.60 3383.06 6394.50 5094.07 51
X-MVStestdata80.37 15177.83 18688.00 1794.42 2073.33 1992.78 1892.99 4679.14 2183.67 9012.47 40667.45 10296.60 3383.06 6394.50 5094.07 51
mPP-MVS86.67 3786.32 3987.72 3094.41 2273.55 1392.74 2092.22 8676.87 6282.81 10394.25 3466.44 11296.24 4182.88 6794.28 6093.38 86
NCCC88.06 1588.01 1988.24 1194.41 2273.62 1191.22 5292.83 5681.50 585.79 5093.47 6073.02 4097.00 1884.90 4294.94 3994.10 49
ZNCC-MVS87.94 1987.85 2088.20 1294.39 2473.33 1993.03 1493.81 1776.81 6385.24 5594.32 3171.76 5096.93 1985.53 3995.79 2294.32 42
ZD-MVS94.38 2572.22 4492.67 6270.98 18587.75 3294.07 4174.01 3296.70 2784.66 4794.84 43
MP-MVScopyleft87.71 2087.64 2287.93 2194.36 2673.88 692.71 2292.65 6577.57 4183.84 8794.40 3072.24 4596.28 4085.65 3895.30 3593.62 77
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
DVP-MVS++90.23 191.01 187.89 2494.34 2771.25 5795.06 194.23 378.38 3392.78 495.74 682.45 397.49 489.42 996.68 294.95 10
MSC_two_6792asdad89.16 194.34 2775.53 292.99 4697.53 289.67 696.44 994.41 36
No_MVS89.16 194.34 2775.53 292.99 4697.53 289.67 696.44 994.41 36
MSP-MVS89.51 489.91 588.30 1094.28 3073.46 1792.90 1694.11 680.27 1091.35 1494.16 3778.35 1396.77 2489.59 894.22 6294.67 25
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
SMA-MVScopyleft89.08 889.23 788.61 694.25 3173.73 992.40 2493.63 2174.77 10992.29 795.97 274.28 2997.24 1288.58 2196.91 194.87 16
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
APD-MVScopyleft87.44 2387.52 2387.19 4294.24 3272.39 3991.86 4192.83 5673.01 15188.58 2194.52 2173.36 3496.49 3684.26 5295.01 3792.70 110
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
PGM-MVS86.68 3686.27 4087.90 2294.22 3373.38 1890.22 7093.04 3875.53 9383.86 8694.42 2967.87 9996.64 3182.70 7294.57 4993.66 70
CP-MVS87.11 3086.92 3287.68 3494.20 3473.86 793.98 392.82 5976.62 7183.68 8994.46 2567.93 9795.95 5284.20 5594.39 5593.23 92
MTAPA87.23 2887.00 2987.90 2294.18 3574.25 586.58 18992.02 9179.45 1985.88 4894.80 1768.07 9696.21 4286.69 3695.34 3393.23 92
GST-MVS87.42 2587.26 2587.89 2494.12 3672.97 2492.39 2693.43 2876.89 6184.68 6593.99 4870.67 6496.82 2284.18 5695.01 3793.90 59
SR-MVS86.73 3486.67 3586.91 4694.11 3772.11 4792.37 2892.56 7174.50 11486.84 4494.65 2067.31 10495.77 5484.80 4692.85 7192.84 108
114514_t80.68 14279.51 14884.20 11994.09 3867.27 15189.64 8491.11 12658.75 34774.08 25890.72 12658.10 20595.04 8969.70 19489.42 11790.30 196
HPM-MVScopyleft87.11 3086.98 3087.50 3893.88 3972.16 4592.19 3493.33 3176.07 8483.81 8893.95 5169.77 7496.01 4885.15 4094.66 4694.32 42
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
save fliter93.80 4072.35 4290.47 6391.17 12374.31 118
ACMMP_NAP88.05 1788.08 1787.94 1993.70 4173.05 2290.86 5593.59 2376.27 8188.14 2495.09 1571.06 5996.67 2987.67 2996.37 1494.09 50
HPM-MVS_fast85.35 5984.95 6586.57 5393.69 4270.58 7592.15 3691.62 10973.89 12882.67 10594.09 4062.60 15195.54 6280.93 8892.93 7093.57 79
TSAR-MVS + MP.88.02 1888.11 1687.72 3093.68 4372.13 4691.41 4792.35 7974.62 11388.90 2093.85 5275.75 2096.00 4987.80 2894.63 4795.04 7
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
MP-MVS-pluss87.67 2187.72 2187.54 3693.64 4472.04 4889.80 7893.50 2575.17 10286.34 4695.29 1270.86 6196.00 4988.78 1996.04 1694.58 29
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
ACMMPcopyleft85.89 4985.39 5687.38 3993.59 4572.63 3392.74 2093.18 3676.78 6580.73 12893.82 5364.33 13296.29 3982.67 7390.69 9893.23 92
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
DeepC-MVS_fast79.65 386.91 3386.62 3687.76 2793.52 4672.37 4191.26 4893.04 3876.62 7184.22 7893.36 6371.44 5696.76 2580.82 9095.33 3494.16 47
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
CDPH-MVS85.76 5185.29 6187.17 4393.49 4771.08 6188.58 12292.42 7768.32 24784.61 6993.48 5872.32 4496.15 4579.00 10395.43 3194.28 44
DP-MVS76.78 23174.57 24683.42 15193.29 4869.46 9488.55 12383.70 28363.98 29970.20 29588.89 17054.01 23994.80 10146.66 36281.88 22486.01 314
CPTT-MVS83.73 8083.33 8684.92 9193.28 4970.86 6992.09 3790.38 14468.75 23979.57 13992.83 7660.60 19193.04 18280.92 8991.56 8890.86 173
TEST993.26 5072.96 2588.75 11491.89 9968.44 24585.00 5993.10 6774.36 2895.41 69
train_agg86.43 3986.20 4187.13 4493.26 5072.96 2588.75 11491.89 9968.69 24085.00 5993.10 6774.43 2695.41 6984.97 4195.71 2593.02 103
test_893.13 5272.57 3588.68 11991.84 10368.69 24084.87 6393.10 6774.43 2695.16 79
新几何183.42 15193.13 5270.71 7185.48 26257.43 35781.80 11391.98 9063.28 14092.27 20564.60 24092.99 6987.27 287
AdaColmapbinary80.58 14679.42 15084.06 12993.09 5468.91 10589.36 9488.97 19569.27 22375.70 22189.69 14857.20 21695.77 5463.06 25088.41 13387.50 282
SR-MVS-dyc-post85.77 5085.61 5386.23 5693.06 5570.63 7391.88 3992.27 8173.53 13885.69 5194.45 2665.00 13095.56 6082.75 6891.87 8392.50 120
RE-MVS-def85.48 5593.06 5570.63 7391.88 3992.27 8173.53 13885.69 5194.45 2663.87 13682.75 6891.87 8392.50 120
原ACMM184.35 11193.01 5768.79 10792.44 7463.96 30081.09 12491.57 10166.06 11895.45 6567.19 21994.82 4588.81 255
CSCG86.41 4186.19 4287.07 4592.91 5872.48 3790.81 5693.56 2473.95 12583.16 9691.07 11875.94 1895.19 7879.94 10094.38 5793.55 81
agg_prior92.85 5971.94 5191.78 10684.41 7594.93 91
9.1488.26 1592.84 6091.52 4694.75 173.93 12788.57 2294.67 1975.57 2295.79 5386.77 3595.76 23
SF-MVS88.46 1288.74 1287.64 3592.78 6171.95 5092.40 2494.74 275.71 8989.16 1995.10 1475.65 2196.19 4387.07 3496.01 1794.79 21
MG-MVS83.41 8983.45 8283.28 15692.74 6262.28 25188.17 14089.50 17175.22 9881.49 11792.74 8266.75 10795.11 8372.85 16591.58 8792.45 123
APD-MVS_3200maxsize85.97 4585.88 4886.22 5792.69 6369.53 8991.93 3892.99 4673.54 13785.94 4794.51 2465.80 12295.61 5883.04 6592.51 7593.53 83
test1286.80 4992.63 6470.70 7291.79 10582.71 10471.67 5396.16 4494.50 5093.54 82
test_prior86.33 5492.61 6569.59 8892.97 5195.48 6493.91 57
SD-MVS88.06 1588.50 1486.71 5192.60 6672.71 2991.81 4293.19 3577.87 3690.32 1794.00 4674.83 2393.78 13987.63 3094.27 6193.65 74
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
PAPM_NR83.02 9982.41 9984.82 9492.47 6766.37 16787.93 14991.80 10473.82 12977.32 18490.66 12767.90 9894.90 9570.37 18689.48 11693.19 96
DeepPCF-MVS80.84 188.10 1388.56 1386.73 5092.24 6869.03 10089.57 8693.39 3077.53 4589.79 1894.12 3978.98 1296.58 3585.66 3795.72 2494.58 29
SteuartSystems-ACMMP88.72 1188.86 1188.32 992.14 6972.96 2593.73 593.67 2080.19 1288.10 2594.80 1773.76 3397.11 1587.51 3195.82 2194.90 13
Skip Steuart: Steuart Systems R&D Blog.
UA-Net85.08 6384.96 6485.45 7392.07 7068.07 13089.78 7990.86 13382.48 384.60 7093.20 6669.35 7795.22 7771.39 17790.88 9693.07 100
旧先验191.96 7165.79 18086.37 25093.08 7169.31 7992.74 7288.74 259
MSLP-MVS++85.43 5785.76 5184.45 10791.93 7270.24 7690.71 5792.86 5477.46 4784.22 7892.81 7867.16 10692.94 18480.36 9594.35 5890.16 200
LFMVS81.82 11581.23 11683.57 14891.89 7363.43 23289.84 7581.85 31277.04 5883.21 9493.10 6752.26 25393.43 15871.98 17289.95 11193.85 61
PLCcopyleft70.83 1178.05 20576.37 22483.08 16791.88 7467.80 13588.19 13989.46 17264.33 29369.87 30488.38 18653.66 24193.58 14758.86 29082.73 21387.86 273
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
dcpmvs_285.63 5386.15 4484.06 12991.71 7564.94 19886.47 19291.87 10173.63 13386.60 4593.02 7276.57 1591.87 22083.36 6092.15 7995.35 3
MVS_111021_HR85.14 6184.75 6686.32 5591.65 7672.70 3085.98 20590.33 14876.11 8382.08 10891.61 10071.36 5894.17 12281.02 8692.58 7492.08 137
test22291.50 7768.26 12584.16 25183.20 29454.63 36879.74 13691.63 9958.97 20091.42 8986.77 300
TSAR-MVS + GP.85.71 5285.33 5886.84 4791.34 7872.50 3689.07 10487.28 23476.41 7485.80 4990.22 13874.15 3195.37 7481.82 7791.88 8292.65 114
MAR-MVS81.84 11480.70 12585.27 7791.32 7971.53 5489.82 7690.92 12969.77 21478.50 15786.21 24862.36 15794.52 10965.36 23392.05 8189.77 224
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
DeepC-MVS79.81 287.08 3286.88 3487.69 3391.16 8072.32 4390.31 6893.94 1477.12 5582.82 10294.23 3572.13 4797.09 1684.83 4595.37 3293.65 74
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
3Dnovator+77.84 485.48 5584.47 7388.51 791.08 8173.49 1693.18 1193.78 1880.79 876.66 20093.37 6260.40 19596.75 2677.20 12293.73 6695.29 5
Anonymous20240521178.25 19777.01 20681.99 19891.03 8260.67 27084.77 23383.90 28170.65 19480.00 13591.20 11341.08 35091.43 23965.21 23485.26 17293.85 61
CS-MVS-test86.29 4286.48 3785.71 6891.02 8367.21 15492.36 2993.78 1878.97 2883.51 9391.20 11370.65 6595.15 8081.96 7694.89 4194.77 22
VDD-MVS83.01 10082.36 10184.96 8891.02 8366.40 16688.91 10888.11 21377.57 4184.39 7693.29 6452.19 25493.91 13377.05 12488.70 12894.57 31
API-MVS81.99 11281.23 11684.26 11890.94 8570.18 8291.10 5389.32 17671.51 17478.66 15388.28 18965.26 12595.10 8664.74 23991.23 9287.51 281
testdata79.97 24490.90 8664.21 21484.71 26859.27 34185.40 5392.91 7362.02 16489.08 28468.95 20291.37 9086.63 304
PHI-MVS86.43 3986.17 4387.24 4190.88 8770.96 6592.27 3294.07 972.45 15485.22 5691.90 9269.47 7696.42 3783.28 6295.94 1994.35 40
VNet82.21 10782.41 9981.62 20490.82 8860.93 26584.47 24189.78 16376.36 7984.07 8391.88 9364.71 13190.26 26270.68 18388.89 12293.66 70
PVSNet_Blended_VisFu82.62 10381.83 11184.96 8890.80 8969.76 8788.74 11691.70 10869.39 22078.96 14688.46 18465.47 12494.87 9874.42 14888.57 12990.24 198
MM89.16 689.23 788.97 490.79 9073.65 1092.66 2391.17 12386.57 187.39 3794.97 1671.70 5297.68 192.19 195.63 2895.57 1
CS-MVS86.69 3586.95 3185.90 6590.76 9167.57 14292.83 1793.30 3279.67 1784.57 7192.27 8671.47 5595.02 9084.24 5493.46 6795.13 6
Anonymous2024052980.19 15578.89 16384.10 12290.60 9264.75 20288.95 10790.90 13065.97 27580.59 12991.17 11549.97 28393.73 14569.16 20082.70 21593.81 65
h-mvs3383.15 9582.19 10386.02 6290.56 9370.85 7088.15 14289.16 18576.02 8584.67 6691.39 10761.54 16995.50 6382.71 7075.48 30191.72 146
Anonymous2023121178.97 18377.69 19482.81 18090.54 9464.29 21390.11 7291.51 11465.01 28576.16 21688.13 19850.56 27793.03 18369.68 19577.56 27191.11 163
LS3D76.95 22974.82 24483.37 15490.45 9567.36 14889.15 10286.94 24161.87 32269.52 30790.61 12851.71 26694.53 10846.38 36586.71 15288.21 268
VDDNet81.52 12380.67 12684.05 13290.44 9664.13 21689.73 8185.91 25671.11 18183.18 9593.48 5850.54 27893.49 15373.40 15988.25 13494.54 32
CNLPA78.08 20376.79 21381.97 19990.40 9771.07 6287.59 15884.55 27166.03 27472.38 27789.64 15057.56 21186.04 31559.61 28283.35 20588.79 256
PAPR81.66 12180.89 12383.99 13790.27 9864.00 21786.76 18491.77 10768.84 23877.13 19389.50 15467.63 10094.88 9767.55 21488.52 13193.09 99
Vis-MVSNetpermissive83.46 8882.80 9685.43 7490.25 9968.74 11190.30 6990.13 15576.33 8080.87 12792.89 7461.00 18394.20 12072.45 17190.97 9493.35 88
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
DPM-MVS84.93 6784.29 7586.84 4790.20 10073.04 2387.12 17093.04 3869.80 21282.85 10091.22 11273.06 3996.02 4776.72 12994.63 4791.46 156
EPP-MVSNet83.40 9083.02 9084.57 10090.13 10164.47 20892.32 3090.73 13574.45 11779.35 14291.10 11669.05 8395.12 8172.78 16687.22 14494.13 48
CANet86.45 3886.10 4587.51 3790.09 10270.94 6789.70 8292.59 7081.78 481.32 11991.43 10670.34 6697.23 1384.26 5293.36 6894.37 39
test250677.30 22476.49 22079.74 24990.08 10352.02 35987.86 15363.10 39474.88 10680.16 13492.79 7938.29 36392.35 20268.74 20592.50 7694.86 17
ECVR-MVScopyleft79.61 16279.26 15580.67 23190.08 10354.69 34387.89 15177.44 35174.88 10680.27 13192.79 7948.96 29992.45 19668.55 20692.50 7694.86 17
HQP_MVS83.64 8383.14 8785.14 8090.08 10368.71 11391.25 5092.44 7479.12 2378.92 14891.00 12260.42 19395.38 7178.71 10786.32 15791.33 157
plane_prior790.08 10368.51 120
patch_mono-283.65 8284.54 7080.99 22390.06 10765.83 17884.21 25088.74 20471.60 17285.01 5792.44 8474.51 2583.50 33682.15 7592.15 7993.64 76
test111179.43 16979.18 15880.15 24189.99 10853.31 35687.33 16577.05 35475.04 10380.23 13392.77 8148.97 29892.33 20468.87 20392.40 7894.81 20
CHOSEN 1792x268877.63 21875.69 22883.44 15089.98 10968.58 11978.70 32887.50 23056.38 36275.80 22086.84 22558.67 20191.40 24061.58 26885.75 16990.34 193
IS-MVSNet83.15 9582.81 9584.18 12089.94 11063.30 23491.59 4388.46 21079.04 2579.49 14092.16 8865.10 12794.28 11567.71 21291.86 8594.95 10
plane_prior189.90 111
bld_raw_dy_0_6484.37 7284.35 7484.46 10689.86 11264.47 20886.68 18692.49 7272.08 16584.16 8189.77 14668.76 9195.08 8880.97 8794.34 5993.82 64
sasdasda85.91 4785.87 4986.04 6089.84 11369.44 9590.45 6593.00 4376.70 6988.01 2891.23 11073.28 3693.91 13381.50 7988.80 12494.77 22
canonicalmvs85.91 4785.87 4986.04 6089.84 11369.44 9590.45 6593.00 4376.70 6988.01 2891.23 11073.28 3693.91 13381.50 7988.80 12494.77 22
plane_prior689.84 11368.70 11560.42 193
MVS_030488.08 1488.08 1788.08 1489.67 11672.04 4892.26 3389.26 18084.19 285.01 5795.18 1369.93 7197.20 1491.63 295.60 2994.99 9
NP-MVS89.62 11768.32 12390.24 136
EIA-MVS83.31 9382.80 9684.82 9489.59 11865.59 18388.21 13892.68 6174.66 11178.96 14686.42 24469.06 8295.26 7675.54 14190.09 10793.62 77
HyFIR lowres test77.53 21975.40 23683.94 14189.59 11866.62 16380.36 30788.64 20756.29 36376.45 20585.17 27257.64 21093.28 16261.34 27183.10 20991.91 142
TAPA-MVS73.13 979.15 17777.94 18282.79 18389.59 11862.99 24488.16 14191.51 11465.77 27677.14 19291.09 11760.91 18493.21 16750.26 34487.05 14692.17 134
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
thres100view90076.50 23575.55 23379.33 25789.52 12156.99 31285.83 21283.23 29273.94 12676.32 20987.12 22151.89 26391.95 21548.33 35383.75 19489.07 238
GeoE81.71 11781.01 12183.80 14389.51 12264.45 21088.97 10688.73 20571.27 17878.63 15489.76 14766.32 11493.20 17069.89 19286.02 16493.74 68
alignmvs85.48 5585.32 5985.96 6389.51 12269.47 9289.74 8092.47 7376.17 8287.73 3491.46 10570.32 6793.78 13981.51 7888.95 12194.63 28
mamv485.00 6584.68 6885.93 6489.51 12267.64 13988.38 13192.65 6572.35 15984.47 7390.26 13568.98 8795.69 5781.09 8594.45 5394.47 34
PS-MVSNAJ81.69 11881.02 12083.70 14489.51 12268.21 12784.28 24990.09 15670.79 18781.26 12385.62 26263.15 14594.29 11475.62 13988.87 12388.59 262
MVSMamba_pp84.98 6684.70 6785.80 6689.43 12667.63 14088.44 12592.64 6772.17 16284.54 7290.39 13368.88 8895.28 7581.45 8194.39 5594.49 33
MGCFI-Net85.06 6485.51 5483.70 14489.42 12763.01 24089.43 8992.62 6976.43 7387.53 3591.34 10872.82 4293.42 15981.28 8388.74 12794.66 27
ACMP74.13 681.51 12580.57 12784.36 11089.42 12768.69 11689.97 7491.50 11774.46 11675.04 24690.41 13253.82 24094.54 10777.56 11882.91 21089.86 220
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
thres600view776.50 23575.44 23479.68 25189.40 12957.16 30985.53 22083.23 29273.79 13076.26 21087.09 22251.89 26391.89 21848.05 35883.72 19790.00 212
ETV-MVS84.90 6984.67 6985.59 7089.39 13068.66 11788.74 11692.64 6779.97 1584.10 8285.71 25769.32 7895.38 7180.82 9091.37 9092.72 109
BH-RMVSNet79.61 16278.44 17183.14 16489.38 13165.93 17584.95 23087.15 23873.56 13678.19 16689.79 14556.67 21993.36 16059.53 28386.74 15190.13 202
iter_conf05_1183.91 7683.56 8084.97 8789.34 13266.68 16286.01 20492.25 8470.16 20482.83 10188.56 18169.00 8695.60 5979.43 10294.43 5492.63 115
HQP-NCC89.33 13389.17 9876.41 7477.23 187
ACMP_Plane89.33 13389.17 9876.41 7477.23 187
HQP-MVS82.61 10482.02 10784.37 10989.33 13366.98 15789.17 9892.19 8876.41 7477.23 18790.23 13760.17 19695.11 8377.47 11985.99 16591.03 167
EC-MVSNet86.01 4386.38 3884.91 9289.31 13666.27 16992.32 3093.63 2179.37 2084.17 8091.88 9369.04 8495.43 6783.93 5793.77 6593.01 104
ACMM73.20 880.78 14179.84 14283.58 14789.31 13668.37 12289.99 7391.60 11070.28 20077.25 18589.66 14953.37 24593.53 15274.24 15182.85 21188.85 253
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
Test_1112_low_res76.40 23975.44 23479.27 25889.28 13858.09 29381.69 28587.07 23959.53 33972.48 27586.67 23461.30 17689.33 27960.81 27580.15 24490.41 191
F-COLMAP76.38 24074.33 25182.50 19089.28 13866.95 16088.41 12789.03 19064.05 29766.83 33288.61 17846.78 31092.89 18557.48 30278.55 25987.67 276
LPG-MVS_test82.08 10981.27 11584.50 10389.23 14068.76 10990.22 7091.94 9775.37 9676.64 20191.51 10254.29 23594.91 9278.44 10983.78 19189.83 221
LGP-MVS_train84.50 10389.23 14068.76 10991.94 9775.37 9676.64 20191.51 10254.29 23594.91 9278.44 10983.78 19189.83 221
BH-untuned79.47 16778.60 16782.05 19689.19 14265.91 17686.07 20388.52 20972.18 16175.42 22987.69 20361.15 18093.54 15160.38 27686.83 15086.70 302
xiu_mvs_v2_base81.69 11881.05 11983.60 14689.15 14368.03 13284.46 24390.02 15770.67 19081.30 12286.53 24263.17 14494.19 12175.60 14088.54 13088.57 263
test_yl81.17 12880.47 13083.24 15989.13 14463.62 22386.21 19989.95 16072.43 15781.78 11489.61 15157.50 21293.58 14770.75 18186.90 14892.52 118
DCV-MVSNet81.17 12880.47 13083.24 15989.13 14463.62 22386.21 19989.95 16072.43 15781.78 11489.61 15157.50 21293.58 14770.75 18186.90 14892.52 118
tfpn200view976.42 23875.37 23879.55 25689.13 14457.65 30385.17 22383.60 28473.41 14176.45 20586.39 24552.12 25591.95 21548.33 35383.75 19489.07 238
thres40076.50 23575.37 23879.86 24689.13 14457.65 30385.17 22383.60 28473.41 14176.45 20586.39 24552.12 25591.95 21548.33 35383.75 19490.00 212
1112_ss77.40 22276.43 22280.32 23889.11 14860.41 27583.65 25887.72 22662.13 32073.05 26886.72 22962.58 15389.97 26862.11 26380.80 23590.59 184
SDMVSNet80.38 14980.18 13680.99 22389.03 14964.94 19880.45 30689.40 17375.19 10076.61 20389.98 14160.61 19087.69 30476.83 12783.55 20090.33 194
sd_testset77.70 21677.40 19978.60 26989.03 14960.02 27979.00 32485.83 25875.19 10076.61 20389.98 14154.81 22685.46 32262.63 25683.55 20090.33 194
Fast-Effi-MVS+80.81 13679.92 13983.47 14988.85 15164.51 20585.53 22089.39 17470.79 18778.49 15885.06 27567.54 10193.58 14767.03 22286.58 15392.32 126
PVSNet_BlendedMVS80.60 14480.02 13782.36 19388.85 15165.40 18686.16 20192.00 9369.34 22278.11 16886.09 25266.02 11994.27 11671.52 17482.06 22187.39 283
PVSNet_Blended80.98 13180.34 13282.90 17688.85 15165.40 18684.43 24592.00 9367.62 25378.11 16885.05 27666.02 11994.27 11671.52 17489.50 11589.01 245
MVS_111021_LR82.61 10482.11 10484.11 12188.82 15471.58 5385.15 22586.16 25374.69 11080.47 13091.04 11962.29 15890.55 26080.33 9690.08 10890.20 199
BH-w/o78.21 19977.33 20280.84 22788.81 15565.13 19384.87 23187.85 22369.75 21574.52 25484.74 28061.34 17593.11 17758.24 29785.84 16784.27 337
FIs82.07 11082.42 9881.04 22288.80 15658.34 29188.26 13793.49 2676.93 6078.47 15991.04 11969.92 7292.34 20369.87 19384.97 17492.44 124
OPM-MVS83.50 8782.95 9285.14 8088.79 15770.95 6689.13 10391.52 11277.55 4480.96 12691.75 9560.71 18694.50 11079.67 10186.51 15589.97 216
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
WR-MVS79.49 16679.22 15780.27 23988.79 15758.35 29085.06 22788.61 20878.56 3077.65 17788.34 18763.81 13890.66 25964.98 23777.22 27391.80 145
OMC-MVS82.69 10281.97 10984.85 9388.75 15967.42 14587.98 14590.87 13274.92 10579.72 13791.65 9762.19 16193.96 12675.26 14386.42 15693.16 97
hse-mvs281.72 11680.94 12284.07 12788.72 16067.68 13885.87 20987.26 23576.02 8584.67 6688.22 19261.54 16993.48 15482.71 7073.44 32991.06 165
AUN-MVS79.21 17677.60 19684.05 13288.71 16167.61 14185.84 21187.26 23569.08 23177.23 18788.14 19753.20 24793.47 15575.50 14273.45 32891.06 165
ACMH67.68 1675.89 24673.93 25581.77 20288.71 16166.61 16488.62 12189.01 19269.81 21166.78 33386.70 23341.95 34791.51 23555.64 31678.14 26687.17 289
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
Vis-MVSNet (Re-imp)78.36 19678.45 17078.07 28088.64 16351.78 36586.70 18579.63 33674.14 12375.11 24390.83 12561.29 17789.75 27258.10 29891.60 8692.69 112
PatchMatch-RL72.38 28370.90 28776.80 29788.60 16467.38 14779.53 31676.17 36062.75 31369.36 30982.00 32745.51 32484.89 32753.62 32480.58 23878.12 375
ACMH+68.96 1476.01 24574.01 25382.03 19788.60 16465.31 19088.86 11087.55 22870.25 20267.75 32187.47 21141.27 34893.19 17258.37 29575.94 29487.60 278
LTVRE_ROB69.57 1376.25 24174.54 24881.41 21088.60 16464.38 21279.24 32089.12 18970.76 18969.79 30687.86 20049.09 29693.20 17056.21 31580.16 24386.65 303
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
DELS-MVS85.41 5885.30 6085.77 6788.49 16767.93 13385.52 22293.44 2778.70 2983.63 9289.03 16874.57 2495.71 5680.26 9894.04 6393.66 70
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
CLD-MVS82.31 10681.65 11284.29 11488.47 16867.73 13785.81 21392.35 7975.78 8878.33 16286.58 23964.01 13594.35 11376.05 13487.48 14190.79 174
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
UniMVSNet_NR-MVSNet81.88 11381.54 11382.92 17588.46 16963.46 23087.13 16992.37 7880.19 1278.38 16089.14 16471.66 5493.05 18070.05 18976.46 28492.25 129
ab-mvs79.51 16578.97 16281.14 21988.46 16960.91 26683.84 25589.24 18270.36 19779.03 14588.87 17163.23 14390.21 26465.12 23582.57 21692.28 128
testing9176.54 23375.66 23179.18 26188.43 17155.89 33081.08 29383.00 29873.76 13175.34 23284.29 28746.20 31790.07 26664.33 24184.50 18091.58 149
FC-MVSNet-test81.52 12382.02 10780.03 24388.42 17255.97 32987.95 14793.42 2977.10 5677.38 18290.98 12469.96 7091.79 22168.46 20884.50 18092.33 125
Effi-MVS+83.62 8583.08 8885.24 7888.38 17367.45 14488.89 10989.15 18675.50 9482.27 10688.28 18969.61 7594.45 11277.81 11687.84 13693.84 63
UniMVSNet (Re)81.60 12281.11 11883.09 16688.38 17364.41 21187.60 15793.02 4278.42 3278.56 15688.16 19369.78 7393.26 16369.58 19676.49 28391.60 147
VPNet78.69 18978.66 16678.76 26688.31 17555.72 33284.45 24486.63 24676.79 6478.26 16390.55 13059.30 19889.70 27466.63 22377.05 27590.88 172
FA-MVS(test-final)80.96 13279.91 14084.10 12288.30 17665.01 19684.55 24090.01 15873.25 14679.61 13887.57 20658.35 20494.72 10471.29 17886.25 15992.56 117
TR-MVS77.44 22076.18 22581.20 21788.24 17763.24 23584.61 23886.40 24967.55 25477.81 17486.48 24354.10 23793.15 17457.75 30182.72 21487.20 288
EI-MVSNet-Vis-set84.19 7383.81 7885.31 7688.18 17867.85 13487.66 15689.73 16680.05 1482.95 9789.59 15370.74 6394.82 10080.66 9484.72 17793.28 91
testing1175.14 25774.01 25378.53 27288.16 17956.38 32380.74 30080.42 32770.67 19072.69 27383.72 30043.61 33589.86 26962.29 25983.76 19389.36 234
testing9976.09 24475.12 24279.00 26288.16 17955.50 33580.79 29781.40 31673.30 14475.17 24084.27 28944.48 33090.02 26764.28 24284.22 18891.48 154
baseline176.98 22876.75 21677.66 28588.13 18155.66 33385.12 22681.89 31073.04 15076.79 19688.90 16962.43 15687.78 30363.30 24971.18 34489.55 230
test_040272.79 28170.44 29279.84 24788.13 18165.99 17485.93 20784.29 27565.57 27967.40 32785.49 26446.92 30992.61 19135.88 38874.38 31980.94 367
tttt051779.40 17177.91 18383.90 14288.10 18363.84 22088.37 13284.05 27971.45 17576.78 19789.12 16549.93 28694.89 9670.18 18883.18 20892.96 106
FE-MVS77.78 21275.68 22984.08 12688.09 18466.00 17383.13 26987.79 22468.42 24678.01 17185.23 27045.50 32595.12 8159.11 28785.83 16891.11 163
VPA-MVSNet80.60 14480.55 12880.76 22988.07 18560.80 26886.86 17891.58 11175.67 9280.24 13289.45 16063.34 13990.25 26370.51 18579.22 25691.23 160
UGNet80.83 13579.59 14784.54 10288.04 18668.09 12989.42 9188.16 21276.95 5976.22 21189.46 15849.30 29393.94 12968.48 20790.31 10291.60 147
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
WR-MVS_H78.51 19378.49 16978.56 27088.02 18756.38 32388.43 12692.67 6277.14 5473.89 25987.55 20866.25 11589.24 28158.92 28973.55 32790.06 210
QAPM80.88 13379.50 14985.03 8488.01 18868.97 10491.59 4392.00 9366.63 26775.15 24292.16 8857.70 20995.45 6563.52 24588.76 12690.66 180
3Dnovator76.31 583.38 9182.31 10286.59 5287.94 18972.94 2890.64 5892.14 9077.21 5275.47 22592.83 7658.56 20294.72 10473.24 16292.71 7392.13 136
testing22274.04 26572.66 26878.19 27787.89 19055.36 33681.06 29479.20 34071.30 17774.65 25283.57 30339.11 35988.67 29251.43 33685.75 16990.53 186
EI-MVSNet-UG-set83.81 7883.38 8485.09 8387.87 19167.53 14387.44 16289.66 16779.74 1682.23 10789.41 16270.24 6894.74 10379.95 9983.92 19092.99 105
TranMVSNet+NR-MVSNet80.84 13480.31 13382.42 19187.85 19262.33 24987.74 15591.33 11980.55 977.99 17289.86 14365.23 12692.62 19067.05 22175.24 31192.30 127
CP-MVSNet78.22 19878.34 17477.84 28287.83 19354.54 34587.94 14891.17 12377.65 3873.48 26388.49 18362.24 16088.43 29562.19 26074.07 32090.55 185
DU-MVS81.12 13080.52 12982.90 17687.80 19463.46 23087.02 17391.87 10179.01 2678.38 16089.07 16665.02 12893.05 18070.05 18976.46 28492.20 132
NR-MVSNet80.23 15379.38 15182.78 18487.80 19463.34 23386.31 19691.09 12779.01 2672.17 27989.07 16667.20 10592.81 18966.08 22875.65 29792.20 132
TAMVS78.89 18577.51 19883.03 17087.80 19467.79 13684.72 23485.05 26667.63 25276.75 19887.70 20262.25 15990.82 25558.53 29487.13 14590.49 188
thres20075.55 25074.47 24978.82 26587.78 19757.85 30083.07 27283.51 28772.44 15675.84 21984.42 28252.08 25891.75 22347.41 36083.64 19986.86 298
ETVMVS72.25 28671.05 28575.84 30287.77 19851.91 36279.39 31874.98 36369.26 22473.71 26082.95 31140.82 35286.14 31446.17 36684.43 18589.47 231
PS-CasMVS78.01 20778.09 17977.77 28487.71 19954.39 34788.02 14491.22 12077.50 4673.26 26588.64 17760.73 18588.41 29661.88 26473.88 32490.53 186
PCF-MVS73.52 780.38 14978.84 16485.01 8587.71 19968.99 10383.65 25891.46 11863.00 30777.77 17690.28 13466.10 11695.09 8761.40 26988.22 13590.94 171
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
thisisatest053079.40 17177.76 19184.31 11387.69 20165.10 19487.36 16384.26 27770.04 20577.42 18188.26 19149.94 28494.79 10270.20 18784.70 17893.03 102
casdiffmvs_mvgpermissive85.99 4486.09 4685.70 6987.65 20267.22 15388.69 11893.04 3879.64 1885.33 5492.54 8373.30 3594.50 11083.49 5991.14 9395.37 2
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
GBi-Net78.40 19477.40 19981.40 21187.60 20363.01 24088.39 12889.28 17771.63 16975.34 23287.28 21354.80 22791.11 24662.72 25279.57 24990.09 206
test178.40 19477.40 19981.40 21187.60 20363.01 24088.39 12889.28 17771.63 16975.34 23287.28 21354.80 22791.11 24662.72 25279.57 24990.09 206
FMVSNet278.20 20077.21 20381.20 21787.60 20362.89 24587.47 16189.02 19171.63 16975.29 23887.28 21354.80 22791.10 24962.38 25779.38 25389.61 228
CDS-MVSNet79.07 18077.70 19383.17 16387.60 20368.23 12684.40 24786.20 25267.49 25576.36 20886.54 24161.54 16990.79 25661.86 26587.33 14290.49 188
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
iter_conf0583.17 9482.90 9483.97 13887.59 20765.09 19588.29 13691.52 11272.35 15981.39 11890.13 14068.76 9194.84 9980.30 9785.75 16991.98 141
HY-MVS69.67 1277.95 20877.15 20480.36 23687.57 20860.21 27883.37 26587.78 22566.11 27175.37 23187.06 22463.27 14190.48 26161.38 27082.43 21790.40 192
mvsmamba81.69 11880.74 12484.56 10187.45 20966.72 16191.26 4885.89 25774.66 11178.23 16490.56 12954.33 23494.91 9280.73 9383.54 20292.04 140
xiu_mvs_v1_base_debu80.80 13879.72 14484.03 13487.35 21070.19 7985.56 21588.77 20069.06 23281.83 11088.16 19350.91 27292.85 18678.29 11387.56 13889.06 240
xiu_mvs_v1_base80.80 13879.72 14484.03 13487.35 21070.19 7985.56 21588.77 20069.06 23281.83 11088.16 19350.91 27292.85 18678.29 11387.56 13889.06 240
xiu_mvs_v1_base_debi80.80 13879.72 14484.03 13487.35 21070.19 7985.56 21588.77 20069.06 23281.83 11088.16 19350.91 27292.85 18678.29 11387.56 13889.06 240
MVSFormer82.85 10182.05 10685.24 7887.35 21070.21 7790.50 6190.38 14468.55 24281.32 11989.47 15661.68 16693.46 15678.98 10490.26 10492.05 138
lupinMVS81.39 12680.27 13584.76 9787.35 21070.21 7785.55 21886.41 24862.85 31081.32 11988.61 17861.68 16692.24 20778.41 11190.26 10491.83 143
testing368.56 31867.67 31971.22 34587.33 21542.87 39383.06 27371.54 37570.36 19769.08 31284.38 28430.33 38285.69 31837.50 38775.45 30485.09 330
baseline84.93 6784.98 6384.80 9687.30 21665.39 18887.30 16692.88 5377.62 3984.04 8492.26 8771.81 4993.96 12681.31 8290.30 10395.03 8
PAPM77.68 21776.40 22381.51 20787.29 21761.85 25683.78 25689.59 16964.74 28771.23 28788.70 17462.59 15293.66 14652.66 32987.03 14789.01 245
LCM-MVSNet-Re77.05 22676.94 20977.36 29087.20 21851.60 36680.06 31080.46 32675.20 9967.69 32286.72 22962.48 15488.98 28663.44 24789.25 11891.51 151
casdiffmvspermissive85.11 6285.14 6285.01 8587.20 21865.77 18187.75 15492.83 5677.84 3784.36 7792.38 8572.15 4693.93 13281.27 8490.48 10095.33 4
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
COLMAP_ROBcopyleft66.92 1773.01 27870.41 29380.81 22887.13 22065.63 18288.30 13584.19 27862.96 30863.80 35887.69 20338.04 36492.56 19346.66 36274.91 31484.24 338
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
PEN-MVS77.73 21377.69 19477.84 28287.07 22153.91 35087.91 15091.18 12277.56 4373.14 26788.82 17261.23 17889.17 28259.95 27972.37 33590.43 190
MVS_Test83.15 9583.06 8983.41 15386.86 22263.21 23686.11 20292.00 9374.31 11882.87 9989.44 16170.03 6993.21 16777.39 12188.50 13293.81 65
UniMVSNet_ETH3D79.10 17978.24 17781.70 20386.85 22360.24 27787.28 16788.79 19974.25 12076.84 19490.53 13149.48 28991.56 23067.98 21082.15 21993.29 90
FMVSNet377.88 21076.85 21180.97 22586.84 22462.36 24886.52 19188.77 20071.13 18075.34 23286.66 23554.07 23891.10 24962.72 25279.57 24989.45 232
FMVSNet177.44 22076.12 22681.40 21186.81 22563.01 24088.39 12889.28 17770.49 19674.39 25587.28 21349.06 29791.11 24660.91 27378.52 26090.09 206
nrg03083.88 7783.53 8184.96 8886.77 22669.28 9990.46 6492.67 6274.79 10882.95 9791.33 10972.70 4393.09 17880.79 9279.28 25592.50 120
ET-MVSNet_ETH3D78.63 19076.63 21984.64 9986.73 22769.47 9285.01 22884.61 27069.54 21866.51 34086.59 23750.16 28191.75 22376.26 13184.24 18792.69 112
fmvsm_s_conf0.5_n83.80 7983.71 7984.07 12786.69 22867.31 14989.46 8883.07 29671.09 18286.96 4393.70 5569.02 8591.47 23788.79 1884.62 17993.44 85
UWE-MVS72.13 28771.49 27874.03 32286.66 22947.70 37981.40 29176.89 35663.60 30275.59 22284.22 29039.94 35585.62 31948.98 35086.13 16288.77 257
jason81.39 12680.29 13484.70 9886.63 23069.90 8585.95 20686.77 24463.24 30381.07 12589.47 15661.08 18292.15 20978.33 11290.07 10992.05 138
jason: jason.
PS-MVSNAJss82.07 11081.31 11484.34 11286.51 23167.27 15189.27 9691.51 11471.75 16779.37 14190.22 13863.15 14594.27 11677.69 11782.36 21891.49 153
WTY-MVS75.65 24975.68 22975.57 30686.40 23256.82 31477.92 33882.40 30665.10 28276.18 21387.72 20163.13 14880.90 35160.31 27781.96 22289.00 247
DTE-MVSNet76.99 22776.80 21277.54 28986.24 23353.06 35887.52 15990.66 13677.08 5772.50 27488.67 17660.48 19289.52 27657.33 30570.74 34690.05 211
PVSNet64.34 1872.08 28870.87 28875.69 30486.21 23456.44 32174.37 35980.73 32162.06 32170.17 29782.23 32342.86 33983.31 33854.77 31984.45 18487.32 286
fmvsm_s_conf0.5_n_a83.63 8483.41 8384.28 11586.14 23568.12 12889.43 8982.87 30170.27 20187.27 3993.80 5469.09 8091.58 22888.21 2683.65 19893.14 98
test_fmvsm_n_192085.29 6085.34 5785.13 8286.12 23669.93 8388.65 12090.78 13469.97 20888.27 2393.98 4971.39 5791.54 23288.49 2390.45 10193.91 57
tfpnnormal74.39 26073.16 26478.08 27986.10 23758.05 29484.65 23787.53 22970.32 19971.22 28885.63 26154.97 22589.86 26943.03 37675.02 31386.32 306
IterMVS-LS80.06 15679.38 15182.11 19585.89 23863.20 23786.79 18189.34 17574.19 12175.45 22886.72 22966.62 10892.39 19972.58 16876.86 27890.75 177
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
Baseline_NR-MVSNet78.15 20278.33 17577.61 28785.79 23956.21 32786.78 18285.76 25973.60 13577.93 17387.57 20665.02 12888.99 28567.14 22075.33 30887.63 277
cascas76.72 23274.64 24582.99 17285.78 24065.88 17782.33 27889.21 18360.85 32872.74 27081.02 33247.28 30693.75 14367.48 21585.02 17389.34 235
MVS78.19 20176.99 20881.78 20185.66 24166.99 15684.66 23590.47 14255.08 36772.02 28185.27 26863.83 13794.11 12466.10 22789.80 11384.24 338
XVG-OURS80.41 14879.23 15683.97 13885.64 24269.02 10283.03 27490.39 14371.09 18277.63 17891.49 10454.62 23391.35 24175.71 13783.47 20391.54 150
CANet_DTU80.61 14379.87 14182.83 17885.60 24363.17 23987.36 16388.65 20676.37 7875.88 21888.44 18553.51 24393.07 17973.30 16089.74 11492.25 129
XVG-OURS-SEG-HR80.81 13679.76 14383.96 14085.60 24368.78 10883.54 26390.50 14170.66 19376.71 19991.66 9660.69 18791.26 24376.94 12581.58 22691.83 143
TransMVSNet (Re)75.39 25574.56 24777.86 28185.50 24557.10 31186.78 18286.09 25572.17 16271.53 28587.34 21263.01 14989.31 28056.84 31061.83 37287.17 289
fmvsm_l_conf0.5_n84.47 7184.54 7084.27 11785.42 24668.81 10688.49 12487.26 23568.08 24988.03 2793.49 5772.04 4891.77 22288.90 1789.14 12092.24 131
fmvsm_l_conf0.5_n_a84.13 7484.16 7684.06 12985.38 24768.40 12188.34 13386.85 24367.48 25687.48 3693.40 6170.89 6091.61 22688.38 2589.22 11992.16 135
MVP-Stereo76.12 24274.46 25081.13 22085.37 24869.79 8684.42 24687.95 21965.03 28467.46 32585.33 26753.28 24691.73 22558.01 29983.27 20681.85 362
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
thisisatest051577.33 22375.38 23783.18 16285.27 24963.80 22182.11 28183.27 29165.06 28375.91 21783.84 29649.54 28894.27 11667.24 21886.19 16091.48 154
tt080578.73 18777.83 18681.43 20985.17 25060.30 27689.41 9290.90 13071.21 17977.17 19188.73 17346.38 31293.21 16772.57 16978.96 25790.79 174
OpenMVScopyleft72.83 1079.77 16078.33 17584.09 12585.17 25069.91 8490.57 5990.97 12866.70 26172.17 27991.91 9154.70 23193.96 12661.81 26690.95 9588.41 266
AllTest70.96 29568.09 31079.58 25485.15 25263.62 22384.58 23979.83 33362.31 31760.32 36986.73 22732.02 37688.96 28850.28 34271.57 34286.15 310
TestCases79.58 25485.15 25263.62 22379.83 33362.31 31760.32 36986.73 22732.02 37688.96 28850.28 34271.57 34286.15 310
Effi-MVS+-dtu80.03 15778.57 16884.42 10885.13 25468.74 11188.77 11388.10 21474.99 10474.97 24783.49 30457.27 21593.36 16073.53 15680.88 23391.18 161
SixPastTwentyTwo73.37 27271.26 28479.70 25085.08 25557.89 29985.57 21483.56 28671.03 18465.66 34485.88 25442.10 34592.57 19259.11 28763.34 37088.65 261
test_fmvsmconf_n85.92 4686.04 4785.57 7185.03 25669.51 9089.62 8590.58 13873.42 14087.75 3294.02 4472.85 4193.24 16490.37 390.75 9793.96 55
EG-PatchMatch MVS74.04 26571.82 27580.71 23084.92 25767.42 14585.86 21088.08 21566.04 27364.22 35483.85 29535.10 37292.56 19357.44 30380.83 23482.16 361
fmvsm_s_conf0.1_n83.56 8683.38 8484.10 12284.86 25867.28 15089.40 9383.01 29770.67 19087.08 4093.96 5068.38 9491.45 23888.56 2284.50 18093.56 80
IB-MVS68.01 1575.85 24773.36 26283.31 15584.76 25966.03 17183.38 26485.06 26570.21 20369.40 30881.05 33145.76 32294.66 10665.10 23675.49 30089.25 237
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
mvs_tets79.13 17877.77 19083.22 16184.70 26066.37 16789.17 9890.19 15369.38 22175.40 23089.46 15844.17 33293.15 17476.78 12880.70 23790.14 201
Syy-MVS68.05 32267.85 31368.67 35884.68 26140.97 39978.62 32973.08 37266.65 26566.74 33479.46 34752.11 25782.30 34332.89 39176.38 28982.75 356
myMVS_eth3d67.02 32866.29 32969.21 35384.68 26142.58 39478.62 32973.08 37266.65 26566.74 33479.46 34731.53 37982.30 34339.43 38476.38 28982.75 356
jajsoiax79.29 17477.96 18183.27 15784.68 26166.57 16589.25 9790.16 15469.20 22875.46 22789.49 15545.75 32393.13 17676.84 12680.80 23590.11 204
WB-MVSnew71.96 28971.65 27772.89 33184.67 26451.88 36382.29 27977.57 34862.31 31773.67 26183.00 31053.49 24481.10 35045.75 36982.13 22085.70 319
MIMVSNet70.69 29969.30 29874.88 31384.52 26556.35 32575.87 34979.42 33764.59 28867.76 32082.41 31941.10 34981.54 34746.64 36481.34 22786.75 301
MSDG73.36 27470.99 28680.49 23484.51 26665.80 17980.71 30186.13 25465.70 27765.46 34583.74 29944.60 32890.91 25451.13 33776.89 27784.74 333
mvs_anonymous79.42 17079.11 15980.34 23784.45 26757.97 29782.59 27687.62 22767.40 25776.17 21588.56 18168.47 9389.59 27570.65 18486.05 16393.47 84
EI-MVSNet80.52 14779.98 13882.12 19484.28 26863.19 23886.41 19388.95 19674.18 12278.69 15187.54 20966.62 10892.43 19772.57 16980.57 23990.74 178
CVMVSNet72.99 27972.58 26974.25 32084.28 26850.85 37186.41 19383.45 28944.56 38473.23 26687.54 20949.38 29185.70 31765.90 22978.44 26286.19 309
pm-mvs177.25 22576.68 21878.93 26484.22 27058.62 28986.41 19388.36 21171.37 17673.31 26488.01 19961.22 17989.15 28364.24 24373.01 33289.03 244
EPNet83.72 8182.92 9386.14 5984.22 27069.48 9191.05 5485.27 26381.30 676.83 19591.65 9766.09 11795.56 6076.00 13593.85 6493.38 86
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
test_fmvsmvis_n_192084.02 7583.87 7784.49 10584.12 27269.37 9888.15 14287.96 21870.01 20683.95 8593.23 6568.80 9091.51 23588.61 2089.96 11092.57 116
v879.97 15979.02 16182.80 18184.09 27364.50 20787.96 14690.29 15174.13 12475.24 23986.81 22662.88 15093.89 13674.39 14975.40 30690.00 212
v1079.74 16178.67 16582.97 17484.06 27464.95 19787.88 15290.62 13773.11 14875.11 24386.56 24061.46 17294.05 12573.68 15475.55 29989.90 218
SCA74.22 26372.33 27279.91 24584.05 27562.17 25279.96 31379.29 33966.30 27072.38 27780.13 34151.95 26188.60 29359.25 28577.67 27088.96 249
test_djsdf80.30 15279.32 15383.27 15783.98 27665.37 18990.50 6190.38 14468.55 24276.19 21288.70 17456.44 22093.46 15678.98 10480.14 24590.97 170
131476.53 23475.30 24080.21 24083.93 27762.32 25084.66 23588.81 19860.23 33270.16 29884.07 29355.30 22490.73 25867.37 21683.21 20787.59 280
MS-PatchMatch73.83 26872.67 26777.30 29283.87 27866.02 17281.82 28284.66 26961.37 32668.61 31682.82 31547.29 30588.21 29759.27 28484.32 18677.68 376
fmvsm_s_conf0.1_n_a83.32 9282.99 9184.28 11583.79 27968.07 13089.34 9582.85 30269.80 21287.36 3894.06 4268.34 9591.56 23087.95 2783.46 20493.21 95
v114480.03 15779.03 16083.01 17183.78 28064.51 20587.11 17190.57 14071.96 16678.08 17086.20 24961.41 17393.94 12974.93 14477.23 27290.60 183
OurMVSNet-221017-074.26 26272.42 27179.80 24883.76 28159.59 28485.92 20886.64 24566.39 26966.96 33087.58 20539.46 35691.60 22765.76 23169.27 35188.22 267
v2v48280.23 15379.29 15483.05 16983.62 28264.14 21587.04 17289.97 15973.61 13478.18 16787.22 21761.10 18193.82 13776.11 13276.78 28191.18 161
XXY-MVS75.41 25475.56 23274.96 31283.59 28357.82 30180.59 30383.87 28266.54 26874.93 24888.31 18863.24 14280.09 35462.16 26176.85 27986.97 296
v119279.59 16478.43 17283.07 16883.55 28464.52 20486.93 17690.58 13870.83 18677.78 17585.90 25359.15 19993.94 12973.96 15377.19 27490.76 176
EGC-MVSNET52.07 36147.05 36567.14 36283.51 28560.71 26980.50 30567.75 3850.07 4090.43 41075.85 37324.26 38981.54 34728.82 39462.25 37159.16 394
v7n78.97 18377.58 19783.14 16483.45 28665.51 18488.32 13491.21 12173.69 13272.41 27686.32 24757.93 20693.81 13869.18 19975.65 29790.11 204
v14419279.47 16778.37 17382.78 18483.35 28763.96 21886.96 17490.36 14769.99 20777.50 17985.67 26060.66 18893.77 14174.27 15076.58 28290.62 181
tpm273.26 27571.46 27978.63 26783.34 28856.71 31780.65 30280.40 32856.63 36173.55 26282.02 32651.80 26591.24 24456.35 31478.42 26387.95 270
v192192079.22 17578.03 18082.80 18183.30 28963.94 21986.80 18090.33 14869.91 21077.48 18085.53 26358.44 20393.75 14373.60 15576.85 27990.71 179
baseline275.70 24873.83 25881.30 21483.26 29061.79 25882.57 27780.65 32266.81 25866.88 33183.42 30557.86 20892.19 20863.47 24679.57 24989.91 217
v124078.99 18277.78 18982.64 18783.21 29163.54 22786.62 18890.30 15069.74 21777.33 18385.68 25957.04 21793.76 14273.13 16376.92 27690.62 181
XVG-ACMP-BASELINE76.11 24374.27 25281.62 20483.20 29264.67 20383.60 26189.75 16569.75 21571.85 28287.09 22232.78 37592.11 21069.99 19180.43 24188.09 269
MDTV_nov1_ep1369.97 29783.18 29353.48 35377.10 34380.18 33260.45 32969.33 31080.44 33848.89 30086.90 30851.60 33478.51 261
PatchmatchNetpermissive73.12 27771.33 28278.49 27483.18 29360.85 26779.63 31578.57 34364.13 29471.73 28379.81 34651.20 27085.97 31657.40 30476.36 29188.66 260
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
Fast-Effi-MVS+-dtu78.02 20676.49 22082.62 18883.16 29566.96 15986.94 17587.45 23272.45 15471.49 28684.17 29154.79 23091.58 22867.61 21380.31 24289.30 236
gg-mvs-nofinetune69.95 30767.96 31175.94 30183.07 29654.51 34677.23 34270.29 37863.11 30570.32 29462.33 38943.62 33488.69 29153.88 32387.76 13784.62 335
MVSTER79.01 18177.88 18582.38 19283.07 29664.80 20184.08 25488.95 19669.01 23578.69 15187.17 22054.70 23192.43 19774.69 14580.57 23989.89 219
K. test v371.19 29268.51 30479.21 26083.04 29857.78 30284.35 24876.91 35572.90 15362.99 36182.86 31439.27 35791.09 25161.65 26752.66 38888.75 258
eth_miper_zixun_eth77.92 20976.69 21781.61 20683.00 29961.98 25483.15 26889.20 18469.52 21974.86 24984.35 28661.76 16592.56 19371.50 17672.89 33390.28 197
diffmvspermissive82.10 10881.88 11082.76 18683.00 29963.78 22283.68 25789.76 16472.94 15282.02 10989.85 14465.96 12190.79 25682.38 7487.30 14393.71 69
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
test_fmvsmconf0.1_n85.61 5485.65 5285.50 7282.99 30169.39 9789.65 8390.29 15173.31 14387.77 3194.15 3871.72 5193.23 16590.31 490.67 9993.89 60
FMVSNet569.50 31067.96 31174.15 32182.97 30255.35 33780.01 31282.12 30962.56 31563.02 35981.53 32836.92 36781.92 34548.42 35274.06 32185.17 328
c3_l78.75 18677.91 18381.26 21582.89 30361.56 26084.09 25389.13 18869.97 20875.56 22384.29 28766.36 11392.09 21173.47 15875.48 30190.12 203
sss73.60 27073.64 26073.51 32682.80 30455.01 34176.12 34581.69 31362.47 31674.68 25185.85 25657.32 21478.11 36260.86 27480.93 23287.39 283
GA-MVS76.87 23075.17 24181.97 19982.75 30562.58 24681.44 29086.35 25172.16 16474.74 25082.89 31346.20 31792.02 21368.85 20481.09 23191.30 159
v14878.72 18877.80 18881.47 20882.73 30661.96 25586.30 19788.08 21573.26 14576.18 21385.47 26562.46 15592.36 20171.92 17373.82 32590.09 206
IterMVS-SCA-FT75.43 25373.87 25780.11 24282.69 30764.85 20081.57 28783.47 28869.16 22970.49 29284.15 29251.95 26188.15 29869.23 19872.14 33887.34 285
miper_ehance_all_eth78.59 19277.76 19181.08 22182.66 30861.56 26083.65 25889.15 18668.87 23775.55 22483.79 29866.49 11192.03 21273.25 16176.39 28689.64 227
CostFormer75.24 25673.90 25679.27 25882.65 30958.27 29280.80 29682.73 30461.57 32375.33 23683.13 30955.52 22291.07 25264.98 23778.34 26588.45 264
EPNet_dtu75.46 25274.86 24377.23 29382.57 31054.60 34486.89 17783.09 29571.64 16866.25 34285.86 25555.99 22188.04 30054.92 31886.55 15489.05 243
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
RPSCF73.23 27671.46 27978.54 27182.50 31159.85 28082.18 28082.84 30358.96 34471.15 28989.41 16245.48 32684.77 32858.82 29171.83 34091.02 169
cl____77.72 21476.76 21480.58 23282.49 31260.48 27383.09 27087.87 22169.22 22674.38 25685.22 27162.10 16291.53 23371.09 17975.41 30589.73 226
DIV-MVS_self_test77.72 21476.76 21480.58 23282.48 31360.48 27383.09 27087.86 22269.22 22674.38 25685.24 26962.10 16291.53 23371.09 17975.40 30689.74 225
tpm cat170.57 30068.31 30677.35 29182.41 31457.95 29878.08 33580.22 33152.04 37368.54 31777.66 36352.00 26087.84 30251.77 33272.07 33986.25 307
cl2278.07 20477.01 20681.23 21682.37 31561.83 25783.55 26287.98 21768.96 23675.06 24583.87 29461.40 17491.88 21973.53 15676.39 28689.98 215
tpm72.37 28471.71 27674.35 31982.19 31652.00 36079.22 32177.29 35264.56 28972.95 26983.68 30251.35 26883.26 33958.33 29675.80 29587.81 274
tpmvs71.09 29469.29 29976.49 29882.04 31756.04 32878.92 32681.37 31764.05 29767.18 32978.28 35849.74 28789.77 27149.67 34772.37 33583.67 345
dmvs_re71.14 29370.58 28972.80 33281.96 31859.68 28275.60 35179.34 33868.55 24269.27 31180.72 33749.42 29076.54 37052.56 33077.79 26782.19 360
pmmvs474.03 26771.91 27480.39 23581.96 31868.32 12381.45 28982.14 30859.32 34069.87 30485.13 27352.40 25188.13 29960.21 27874.74 31684.73 334
TinyColmap67.30 32764.81 33274.76 31581.92 32056.68 31880.29 30981.49 31560.33 33056.27 38383.22 30624.77 38887.66 30545.52 37069.47 35079.95 371
ITE_SJBPF78.22 27681.77 32160.57 27183.30 29069.25 22567.54 32387.20 21836.33 36987.28 30754.34 32174.62 31786.80 299
miper_enhance_ethall77.87 21176.86 21080.92 22681.65 32261.38 26282.68 27588.98 19365.52 28075.47 22582.30 32165.76 12392.00 21472.95 16476.39 28689.39 233
MVS-HIRNet59.14 35057.67 35363.57 36781.65 32243.50 39271.73 36665.06 39139.59 39151.43 38857.73 39538.34 36282.58 34239.53 38273.95 32264.62 391
GG-mvs-BLEND75.38 30981.59 32455.80 33179.32 31969.63 38067.19 32873.67 37843.24 33688.90 29050.41 33984.50 18081.45 364
IterMVS74.29 26172.94 26678.35 27581.53 32563.49 22981.58 28682.49 30568.06 25069.99 30183.69 30151.66 26785.54 32065.85 23071.64 34186.01 314
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
CHOSEN 280x42066.51 33264.71 33371.90 33781.45 32663.52 22857.98 39668.95 38453.57 36962.59 36376.70 36646.22 31675.29 38355.25 31779.68 24876.88 378
gm-plane-assit81.40 32753.83 35162.72 31480.94 33492.39 19963.40 248
pmmvs674.69 25973.39 26178.61 26881.38 32857.48 30686.64 18787.95 21964.99 28670.18 29686.61 23650.43 27989.52 27662.12 26270.18 34888.83 254
test-LLR72.94 28072.43 27074.48 31781.35 32958.04 29578.38 33177.46 34966.66 26269.95 30279.00 35248.06 30279.24 35666.13 22584.83 17586.15 310
test-mter71.41 29170.39 29474.48 31781.35 32958.04 29578.38 33177.46 34960.32 33169.95 30279.00 35236.08 37079.24 35666.13 22584.83 17586.15 310
CR-MVSNet73.37 27271.27 28379.67 25281.32 33165.19 19175.92 34780.30 32959.92 33572.73 27181.19 32952.50 24986.69 30959.84 28077.71 26887.11 293
RPMNet73.51 27170.49 29182.58 18981.32 33165.19 19175.92 34792.27 8157.60 35572.73 27176.45 36852.30 25295.43 6748.14 35777.71 26887.11 293
V4279.38 17378.24 17782.83 17881.10 33365.50 18585.55 21889.82 16271.57 17378.21 16586.12 25160.66 18893.18 17375.64 13875.46 30389.81 223
lessismore_v078.97 26381.01 33457.15 31065.99 38861.16 36682.82 31539.12 35891.34 24259.67 28146.92 39488.43 265
Patchmtry70.74 29869.16 30175.49 30880.72 33554.07 34974.94 35880.30 32958.34 34870.01 29981.19 32952.50 24986.54 31053.37 32671.09 34585.87 318
PatchT68.46 32067.85 31370.29 34980.70 33643.93 39172.47 36474.88 36460.15 33370.55 29076.57 36749.94 28481.59 34650.58 33874.83 31585.34 323
USDC70.33 30368.37 30576.21 30080.60 33756.23 32679.19 32286.49 24760.89 32761.29 36585.47 26531.78 37889.47 27853.37 32676.21 29282.94 355
tpmrst72.39 28272.13 27373.18 33080.54 33849.91 37579.91 31479.08 34163.11 30571.69 28479.95 34355.32 22382.77 34165.66 23273.89 32386.87 297
anonymousdsp78.60 19177.15 20482.98 17380.51 33967.08 15587.24 16889.53 17065.66 27875.16 24187.19 21952.52 24892.25 20677.17 12379.34 25489.61 228
OpenMVS_ROBcopyleft64.09 1970.56 30168.19 30777.65 28680.26 34059.41 28685.01 22882.96 30058.76 34665.43 34682.33 32037.63 36691.23 24545.34 37276.03 29382.32 358
test_fmvsmconf0.01_n84.73 7084.52 7285.34 7580.25 34169.03 10089.47 8789.65 16873.24 14786.98 4294.27 3266.62 10893.23 16590.26 589.95 11193.78 67
Anonymous2023120668.60 31667.80 31671.02 34680.23 34250.75 37278.30 33480.47 32556.79 36066.11 34382.63 31846.35 31478.95 35843.62 37575.70 29683.36 348
miper_lstm_enhance74.11 26473.11 26577.13 29480.11 34359.62 28372.23 36586.92 24266.76 26070.40 29382.92 31256.93 21882.92 34069.06 20172.63 33488.87 252
MIMVSNet168.58 31766.78 32773.98 32380.07 34451.82 36480.77 29884.37 27264.40 29159.75 37282.16 32436.47 36883.63 33542.73 37770.33 34786.48 305
ADS-MVSNet266.20 33763.33 34074.82 31479.92 34558.75 28867.55 38275.19 36253.37 37065.25 34875.86 37142.32 34280.53 35341.57 37968.91 35385.18 326
ADS-MVSNet64.36 34162.88 34468.78 35779.92 34547.17 38167.55 38271.18 37653.37 37065.25 34875.86 37142.32 34273.99 38741.57 37968.91 35385.18 326
test_vis1_n_192075.52 25175.78 22774.75 31679.84 34757.44 30783.26 26685.52 26162.83 31179.34 14386.17 25045.10 32779.71 35578.75 10681.21 23087.10 295
D2MVS74.82 25873.21 26379.64 25379.81 34862.56 24780.34 30887.35 23364.37 29268.86 31382.66 31746.37 31390.10 26567.91 21181.24 22986.25 307
our_test_369.14 31267.00 32575.57 30679.80 34958.80 28777.96 33677.81 34659.55 33862.90 36278.25 35947.43 30483.97 33251.71 33367.58 35883.93 343
ppachtmachnet_test70.04 30667.34 32378.14 27879.80 34961.13 26379.19 32280.59 32359.16 34265.27 34779.29 34946.75 31187.29 30649.33 34866.72 35986.00 316
dp66.80 32965.43 33170.90 34879.74 35148.82 37875.12 35674.77 36559.61 33764.08 35577.23 36442.89 33880.72 35248.86 35166.58 36183.16 350
EPMVS69.02 31368.16 30871.59 33979.61 35249.80 37777.40 34066.93 38662.82 31270.01 29979.05 35045.79 32177.86 36456.58 31275.26 31087.13 292
PVSNet_057.27 2061.67 34859.27 35168.85 35679.61 35257.44 30768.01 38173.44 37155.93 36458.54 37570.41 38544.58 32977.55 36547.01 36135.91 39771.55 385
CL-MVSNet_self_test72.37 28471.46 27975.09 31179.49 35453.53 35280.76 29985.01 26769.12 23070.51 29182.05 32557.92 20784.13 33152.27 33166.00 36487.60 278
Patchmatch-test64.82 34063.24 34169.57 35179.42 35549.82 37663.49 39369.05 38351.98 37559.95 37180.13 34150.91 27270.98 39140.66 38173.57 32687.90 272
MDA-MVSNet-bldmvs66.68 33063.66 33975.75 30379.28 35660.56 27273.92 36178.35 34464.43 29050.13 39079.87 34544.02 33383.67 33446.10 36756.86 38083.03 353
TESTMET0.1,169.89 30869.00 30272.55 33479.27 35756.85 31378.38 33174.71 36757.64 35468.09 31977.19 36537.75 36576.70 36963.92 24484.09 18984.10 341
N_pmnet52.79 35953.26 35851.40 38378.99 3587.68 41569.52 3753.89 41451.63 37657.01 38074.98 37540.83 35165.96 39837.78 38664.67 36780.56 370
dmvs_testset62.63 34564.11 33658.19 37378.55 35924.76 40975.28 35265.94 38967.91 25160.34 36876.01 37053.56 24273.94 38831.79 39267.65 35775.88 380
EU-MVSNet68.53 31967.61 32071.31 34478.51 36047.01 38284.47 24184.27 27642.27 38766.44 34184.79 27940.44 35383.76 33358.76 29268.54 35683.17 349
pmmvs571.55 29070.20 29675.61 30577.83 36156.39 32281.74 28480.89 31857.76 35367.46 32584.49 28149.26 29485.32 32457.08 30775.29 30985.11 329
test0.0.03 168.00 32367.69 31868.90 35577.55 36247.43 38075.70 35072.95 37466.66 26266.56 33682.29 32248.06 30275.87 37744.97 37374.51 31883.41 347
Patchmatch-RL test70.24 30467.78 31777.61 28777.43 36359.57 28571.16 36870.33 37762.94 30968.65 31572.77 38050.62 27685.49 32169.58 19666.58 36187.77 275
pmmvs-eth3d70.50 30267.83 31578.52 27377.37 36466.18 17081.82 28281.51 31458.90 34563.90 35780.42 33942.69 34086.28 31358.56 29365.30 36683.11 351
JIA-IIPM66.32 33462.82 34576.82 29677.09 36561.72 25965.34 38975.38 36158.04 35264.51 35262.32 39042.05 34686.51 31151.45 33569.22 35282.21 359
Gipumacopyleft45.18 36741.86 37055.16 38077.03 36651.52 36732.50 40280.52 32432.46 39827.12 40135.02 4029.52 40575.50 37922.31 40160.21 37838.45 401
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
MDA-MVSNet_test_wron65.03 33862.92 34271.37 34175.93 36756.73 31569.09 38074.73 36657.28 35854.03 38677.89 36045.88 31974.39 38649.89 34661.55 37382.99 354
test_cas_vis1_n_192073.76 26973.74 25973.81 32475.90 36859.77 28180.51 30482.40 30658.30 34981.62 11685.69 25844.35 33176.41 37376.29 13078.61 25885.23 325
YYNet165.03 33862.91 34371.38 34075.85 36956.60 31969.12 37974.66 36857.28 35854.12 38577.87 36145.85 32074.48 38549.95 34561.52 37483.05 352
PMMVS69.34 31168.67 30371.35 34375.67 37062.03 25375.17 35373.46 37050.00 37968.68 31479.05 35052.07 25978.13 36161.16 27282.77 21273.90 382
testgi66.67 33166.53 32867.08 36375.62 37141.69 39875.93 34676.50 35766.11 27165.20 35086.59 23735.72 37174.71 38443.71 37473.38 33084.84 332
test20.0367.45 32566.95 32668.94 35475.48 37244.84 38977.50 33977.67 34766.66 26263.01 36083.80 29747.02 30878.40 36042.53 37868.86 35583.58 346
KD-MVS_2432*160066.22 33563.89 33773.21 32775.47 37353.42 35470.76 37184.35 27364.10 29566.52 33878.52 35634.55 37384.98 32550.40 34050.33 39181.23 365
miper_refine_blended66.22 33563.89 33773.21 32775.47 37353.42 35470.76 37184.35 27364.10 29566.52 33878.52 35634.55 37384.98 32550.40 34050.33 39181.23 365
Anonymous2024052168.80 31567.22 32473.55 32574.33 37554.11 34883.18 26785.61 26058.15 35061.68 36480.94 33430.71 38181.27 34957.00 30873.34 33185.28 324
KD-MVS_self_test68.81 31467.59 32172.46 33574.29 37645.45 38477.93 33787.00 24063.12 30463.99 35678.99 35442.32 34284.77 32856.55 31364.09 36987.16 291
PM-MVS66.41 33364.14 33573.20 32973.92 37756.45 32078.97 32564.96 39263.88 30164.72 35180.24 34019.84 39483.44 33766.24 22464.52 36879.71 372
test_fmvs170.93 29670.52 29072.16 33673.71 37855.05 34080.82 29578.77 34251.21 37878.58 15584.41 28331.20 38076.94 36875.88 13680.12 24684.47 336
UnsupCasMVSNet_bld63.70 34361.53 34970.21 35073.69 37951.39 36972.82 36381.89 31055.63 36557.81 37871.80 38238.67 36078.61 35949.26 34952.21 38980.63 368
WB-MVS54.94 35354.72 35555.60 37973.50 38020.90 41174.27 36061.19 39659.16 34250.61 38974.15 37647.19 30775.78 37817.31 40335.07 39870.12 386
UnsupCasMVSNet_eth67.33 32665.99 33071.37 34173.48 38151.47 36875.16 35485.19 26465.20 28160.78 36780.93 33642.35 34177.20 36657.12 30653.69 38785.44 322
TDRefinement67.49 32464.34 33476.92 29573.47 38261.07 26484.86 23282.98 29959.77 33658.30 37685.13 27326.06 38687.89 30147.92 35960.59 37781.81 363
ambc75.24 31073.16 38350.51 37363.05 39487.47 23164.28 35377.81 36217.80 39689.73 27357.88 30060.64 37685.49 321
CMPMVSbinary51.72 2170.19 30568.16 30876.28 29973.15 38457.55 30579.47 31783.92 28048.02 38156.48 38284.81 27843.13 33786.42 31262.67 25581.81 22584.89 331
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
SSC-MVS53.88 35653.59 35754.75 38172.87 38519.59 41273.84 36260.53 39857.58 35649.18 39173.45 37946.34 31575.47 38116.20 40632.28 40069.20 387
new-patchmatchnet61.73 34761.73 34861.70 36972.74 38624.50 41069.16 37878.03 34561.40 32456.72 38175.53 37438.42 36176.48 37245.95 36857.67 37984.13 340
test_vis1_n69.85 30969.21 30071.77 33872.66 38755.27 33981.48 28876.21 35952.03 37475.30 23783.20 30828.97 38376.22 37574.60 14678.41 26483.81 344
test_fmvs1_n70.86 29770.24 29572.73 33372.51 38855.28 33881.27 29279.71 33551.49 37778.73 15084.87 27727.54 38577.02 36776.06 13379.97 24785.88 317
LF4IMVS64.02 34262.19 34669.50 35270.90 38953.29 35776.13 34477.18 35352.65 37258.59 37480.98 33323.55 39076.52 37153.06 32866.66 36078.68 374
mvsany_test162.30 34661.26 35065.41 36569.52 39054.86 34266.86 38449.78 40546.65 38268.50 31883.21 30749.15 29566.28 39756.93 30960.77 37575.11 381
test_fmvs268.35 32167.48 32270.98 34769.50 39151.95 36180.05 31176.38 35849.33 38074.65 25284.38 28423.30 39175.40 38274.51 14775.17 31285.60 320
new_pmnet50.91 36250.29 36252.78 38268.58 39234.94 40463.71 39156.63 40239.73 39044.95 39265.47 38821.93 39258.48 40134.98 38956.62 38164.92 390
DSMNet-mixed57.77 35256.90 35460.38 37167.70 39335.61 40269.18 37753.97 40332.30 39957.49 37979.88 34440.39 35468.57 39638.78 38572.37 33576.97 377
test_vis1_rt60.28 34958.42 35265.84 36467.25 39455.60 33470.44 37360.94 39744.33 38559.00 37366.64 38724.91 38768.67 39562.80 25169.48 34973.25 383
APD_test153.31 35849.93 36363.42 36865.68 39550.13 37471.59 36766.90 38734.43 39640.58 39571.56 3838.65 40776.27 37434.64 39055.36 38563.86 392
FPMVS53.68 35751.64 35959.81 37265.08 39651.03 37069.48 37669.58 38141.46 38840.67 39472.32 38116.46 39870.00 39424.24 40065.42 36558.40 396
pmmvs357.79 35154.26 35668.37 35964.02 39756.72 31675.12 35665.17 39040.20 38952.93 38769.86 38620.36 39375.48 38045.45 37155.25 38672.90 384
test_fmvs363.36 34461.82 34767.98 36062.51 39846.96 38377.37 34174.03 36945.24 38367.50 32478.79 35512.16 40272.98 39072.77 16766.02 36383.99 342
wuyk23d16.82 37615.94 37919.46 39058.74 39931.45 40539.22 4003.74 4156.84 4066.04 4092.70 4091.27 41424.29 40910.54 40914.40 4082.63 406
testf145.72 36541.96 36857.00 37456.90 40045.32 38566.14 38759.26 39926.19 40030.89 39960.96 3934.14 41070.64 39226.39 39846.73 39555.04 397
APD_test245.72 36541.96 36857.00 37456.90 40045.32 38566.14 38759.26 39926.19 40030.89 39960.96 3934.14 41070.64 39226.39 39846.73 39555.04 397
mvsany_test353.99 35551.45 36061.61 37055.51 40244.74 39063.52 39245.41 40943.69 38658.11 37776.45 36817.99 39563.76 40054.77 31947.59 39376.34 379
test_vis3_rt49.26 36447.02 36656.00 37654.30 40345.27 38866.76 38648.08 40636.83 39344.38 39353.20 3987.17 40964.07 39956.77 31155.66 38358.65 395
PMMVS240.82 36938.86 37246.69 38453.84 40416.45 41348.61 39949.92 40437.49 39231.67 39760.97 3928.14 40856.42 40328.42 39530.72 40167.19 389
test_f52.09 36050.82 36155.90 37753.82 40542.31 39759.42 39558.31 40136.45 39456.12 38470.96 38412.18 40157.79 40253.51 32556.57 38267.60 388
LCM-MVSNet54.25 35449.68 36467.97 36153.73 40645.28 38766.85 38580.78 32035.96 39539.45 39662.23 3918.70 40678.06 36348.24 35651.20 39080.57 369
E-PMN31.77 37030.64 37335.15 38752.87 40727.67 40657.09 39747.86 40724.64 40216.40 40733.05 40311.23 40354.90 40414.46 40718.15 40422.87 403
EMVS30.81 37229.65 37434.27 38850.96 40825.95 40856.58 39846.80 40824.01 40315.53 40830.68 40412.47 40054.43 40512.81 40817.05 40522.43 404
ANet_high50.57 36346.10 36763.99 36648.67 40939.13 40070.99 37080.85 31961.39 32531.18 39857.70 39617.02 39773.65 38931.22 39315.89 40679.18 373
MVEpermissive26.22 2330.37 37325.89 37743.81 38544.55 41035.46 40328.87 40339.07 41018.20 40418.58 40640.18 4012.68 41347.37 40717.07 40523.78 40348.60 400
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
PMVScopyleft37.38 2244.16 36840.28 37155.82 37840.82 41142.54 39665.12 39063.99 39334.43 39624.48 40257.12 3973.92 41276.17 37617.10 40455.52 38448.75 399
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
DeepMVS_CXcopyleft27.40 38940.17 41226.90 40724.59 41317.44 40523.95 40348.61 4009.77 40426.48 40818.06 40224.47 40228.83 402
test_method31.52 37129.28 37538.23 38627.03 4136.50 41620.94 40462.21 3954.05 40722.35 40552.50 39913.33 39947.58 40627.04 39734.04 39960.62 393
tmp_tt18.61 37521.40 37810.23 3914.82 41410.11 41434.70 40130.74 4121.48 40823.91 40426.07 40528.42 38413.41 41027.12 39615.35 4077.17 405
testmvs6.04 3798.02 3820.10 3930.08 4150.03 41869.74 3740.04 4160.05 4100.31 4111.68 4100.02 4160.04 4110.24 4100.02 4090.25 408
test1236.12 3788.11 3810.14 3920.06 4160.09 41771.05 3690.03 4170.04 4110.25 4121.30 4110.05 4150.03 4120.21 4110.01 4100.29 407
test_blank0.00 3810.00 3840.00 3940.00 4170.00 4190.00 4050.00 4180.00 4120.00 4130.00 4120.00 4170.00 4130.00 4120.00 4110.00 409
eth-test20.00 417
eth-test0.00 417
uanet_test0.00 3810.00 3840.00 3940.00 4170.00 4190.00 4050.00 4180.00 4120.00 4130.00 4120.00 4170.00 4130.00 4120.00 4110.00 409
DCPMVS0.00 3810.00 3840.00 3940.00 4170.00 4190.00 4050.00 4180.00 4120.00 4130.00 4120.00 4170.00 4130.00 4120.00 4110.00 409
cdsmvs_eth3d_5k19.96 37426.61 3760.00 3940.00 4170.00 4190.00 40589.26 1800.00 4120.00 41388.61 17861.62 1680.00 4130.00 4120.00 4110.00 409
pcd_1.5k_mvsjas5.26 3807.02 3830.00 3940.00 4170.00 4190.00 4050.00 4180.00 4120.00 4130.00 41263.15 1450.00 4130.00 4120.00 4110.00 409
sosnet-low-res0.00 3810.00 3840.00 3940.00 4170.00 4190.00 4050.00 4180.00 4120.00 4130.00 4120.00 4170.00 4130.00 4120.00 4110.00 409
sosnet0.00 3810.00 3840.00 3940.00 4170.00 4190.00 4050.00 4180.00 4120.00 4130.00 4120.00 4170.00 4130.00 4120.00 4110.00 409
uncertanet0.00 3810.00 3840.00 3940.00 4170.00 4190.00 4050.00 4180.00 4120.00 4130.00 4120.00 4170.00 4130.00 4120.00 4110.00 409
Regformer0.00 3810.00 3840.00 3940.00 4170.00 4190.00 4050.00 4180.00 4120.00 4130.00 4120.00 4170.00 4130.00 4120.00 4110.00 409
ab-mvs-re7.23 3779.64 3800.00 3940.00 4170.00 4190.00 4050.00 4180.00 4120.00 41386.72 2290.00 4170.00 4130.00 4120.00 4110.00 409
uanet0.00 3810.00 3840.00 3940.00 4170.00 4190.00 4050.00 4180.00 4120.00 4130.00 4120.00 4170.00 4130.00 4120.00 4110.00 409
WAC-MVS42.58 39439.46 383
PC_three_145268.21 24892.02 1294.00 4682.09 595.98 5184.58 4896.68 294.95 10
test_241102_TWO94.06 1077.24 5092.78 495.72 881.26 897.44 689.07 1496.58 694.26 45
test_0728_THIRD78.38 3392.12 995.78 481.46 797.40 889.42 996.57 794.67 25
GSMVS88.96 249
sam_mvs151.32 26988.96 249
sam_mvs50.01 282
MTGPAbinary92.02 91
test_post178.90 3275.43 40848.81 30185.44 32359.25 285
test_post5.46 40750.36 28084.24 330
patchmatchnet-post74.00 37751.12 27188.60 293
MTMP92.18 3532.83 411
test9_res84.90 4295.70 2692.87 107
agg_prior282.91 6695.45 3092.70 110
test_prior472.60 3489.01 105
test_prior288.85 11175.41 9584.91 6193.54 5674.28 2983.31 6195.86 20
旧先验286.56 19058.10 35187.04 4188.98 28674.07 152
新几何286.29 198
无先验87.48 16088.98 19360.00 33494.12 12367.28 21788.97 248
原ACMM286.86 178
testdata291.01 25362.37 258
segment_acmp73.08 38
testdata184.14 25275.71 89
plane_prior592.44 7495.38 7178.71 10786.32 15791.33 157
plane_prior491.00 122
plane_prior368.60 11878.44 3178.92 148
plane_prior291.25 5079.12 23
plane_prior68.71 11390.38 6777.62 3986.16 161
n20.00 418
nn0.00 418
door-mid69.98 379
test1192.23 85
door69.44 382
HQP5-MVS66.98 157
BP-MVS77.47 119
HQP4-MVS77.24 18695.11 8391.03 167
HQP3-MVS92.19 8885.99 165
HQP2-MVS60.17 196
MDTV_nov1_ep13_2view37.79 40175.16 35455.10 36666.53 33749.34 29253.98 32287.94 271
ACMMP++_ref81.95 223
ACMMP++81.25 228
Test By Simon64.33 132