MG-MVS | | | 87.11 30 | 86.27 40 | 89.62 8 | 97.79 1 | 76.27 4 | 94.96 42 | 94.49 38 | 78.74 61 | 83.87 62 | 92.94 110 | 64.34 78 | 96.94 98 | 75.19 131 | 94.09 36 | 95.66 42 |
|
MCST-MVS | | | 91.08 1 | 91.46 2 | 89.94 4 | 97.66 2 | 73.37 9 | 97.13 2 | 95.58 8 | 89.33 1 | 85.77 39 | 96.26 24 | 72.84 22 | 99.38 1 | 92.64 4 | 95.93 8 | 97.08 7 |
|
OPU-MVS | | | | | 89.97 3 | 97.52 3 | 73.15 11 | 96.89 4 | | | | 97.00 9 | 83.82 2 | 99.15 2 | 95.72 1 | 97.63 3 | 97.62 2 |
|
DP-MVS Recon | | | 82.73 98 | 81.65 105 | 85.98 79 | 97.31 4 | 67.06 102 | 95.15 34 | 91.99 137 | 69.08 230 | 76.50 132 | 93.89 93 | 54.48 186 | 98.20 32 | 70.76 167 | 85.66 125 | 92.69 147 |
|
testtj | | | 86.62 40 | 86.66 39 | 86.50 63 | 96.95 5 | 65.70 139 | 94.41 48 | 93.45 79 | 67.74 239 | 86.19 34 | 96.39 20 | 64.38 77 | 97.91 42 | 87.33 43 | 93.14 53 | 95.90 38 |
|
ETH3 D test6400 | | | 90.27 5 | 90.44 6 | 89.75 6 | 96.82 6 | 74.33 7 | 95.89 16 | 94.80 26 | 77.13 79 | 89.13 18 | 97.38 2 | 74.49 15 | 98.48 24 | 92.32 9 | 95.98 6 | 96.46 21 |
|
CNVR-MVS | | | 90.32 4 | 90.89 4 | 88.61 16 | 96.76 7 | 70.65 23 | 96.47 12 | 94.83 23 | 84.83 8 | 89.07 19 | 96.80 12 | 70.86 29 | 99.06 11 | 92.64 4 | 95.71 9 | 96.12 30 |
|
ZD-MVS | | | | | | 96.63 8 | 65.50 146 | | 93.50 77 | 70.74 210 | 85.26 47 | 95.19 53 | 64.92 73 | 97.29 73 | 87.51 39 | 93.01 54 | |
|
NCCC | | | 89.07 12 | 89.46 12 | 87.91 21 | 96.60 9 | 69.05 50 | 96.38 13 | 94.64 33 | 84.42 9 | 86.74 30 | 96.20 25 | 66.56 56 | 98.76 18 | 89.03 28 | 94.56 29 | 95.92 37 |
|
IU-MVS | | | | | | 96.46 10 | 69.91 35 | | 95.18 13 | 80.75 34 | 95.28 1 | | | | 92.34 6 | 95.36 12 | 96.47 20 |
|
SED-MVS | | | 89.94 7 | 90.36 7 | 88.70 13 | 96.45 11 | 69.38 43 | 96.89 4 | 94.44 40 | 71.65 186 | 92.11 3 | 97.21 5 | 76.79 7 | 99.11 4 | 92.34 6 | 95.36 12 | 97.62 2 |
|
test_241102_ONE | | | | | | 96.45 11 | 69.38 43 | | 94.44 40 | 71.65 186 | 92.11 3 | 97.05 8 | 76.79 7 | 99.11 4 | | | |
|
test_0728_SECOND | | | | | 88.70 13 | 96.45 11 | 70.43 26 | 96.64 8 | 94.37 47 | | | | | 99.15 2 | 91.91 10 | 94.90 19 | 96.51 18 |
|
DVP-MVS | | | 89.41 10 | 89.73 11 | 88.45 18 | 96.40 14 | 69.99 31 | 96.64 8 | 94.52 36 | 71.92 172 | 90.55 12 | 96.93 10 | 73.77 17 | 99.08 9 | 91.91 10 | 94.90 19 | 96.29 26 |
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025 |
test0726 | | | | | | 96.40 14 | 69.99 31 | 96.76 6 | 94.33 48 | 71.92 172 | 91.89 6 | 97.11 7 | 73.77 17 | | | | |
|
AdaColmap |  | | 78.94 160 | 77.00 176 | 84.76 120 | 96.34 16 | 65.86 135 | 92.66 120 | 87.97 277 | 62.18 283 | 70.56 188 | 92.37 126 | 43.53 270 | 97.35 69 | 64.50 225 | 82.86 144 | 91.05 181 |
|
test_part2 | | | | | | 96.29 17 | 68.16 72 | | | | 90.78 10 | | | | | | |
|
DPE-MVS |  | | 88.77 13 | 89.21 13 | 87.45 33 | 96.26 18 | 67.56 86 | 94.17 52 | 94.15 53 | 68.77 233 | 90.74 11 | 97.27 3 | 76.09 10 | 98.49 23 | 90.58 17 | 94.91 18 | 96.30 25 |
|
MAR-MVS | | | 84.18 75 | 83.43 75 | 86.44 65 | 96.25 19 | 65.93 134 | 94.28 51 | 94.27 50 | 74.41 112 | 79.16 103 | 95.61 37 | 53.99 190 | 98.88 16 | 69.62 176 | 93.26 51 | 94.50 91 |
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
API-MVS | | | 82.28 105 | 80.53 120 | 87.54 31 | 96.13 20 | 70.59 24 | 93.63 82 | 91.04 178 | 65.72 257 | 75.45 141 | 92.83 116 | 56.11 167 | 98.89 15 | 64.10 227 | 89.75 95 | 93.15 136 |
|
APDe-MVS | | | 87.54 23 | 87.84 20 | 86.65 56 | 96.07 21 | 66.30 124 | 94.84 44 | 93.78 60 | 69.35 224 | 88.39 21 | 96.34 22 | 67.74 45 | 97.66 54 | 90.62 16 | 93.44 49 | 96.01 34 |
|
PAPR | | | 85.15 58 | 84.47 62 | 87.18 39 | 96.02 22 | 68.29 67 | 91.85 149 | 93.00 101 | 76.59 87 | 79.03 104 | 95.00 56 | 61.59 107 | 97.61 58 | 78.16 115 | 89.00 97 | 95.63 43 |
|
APD-MVS |  | | 85.93 49 | 85.99 45 | 85.76 89 | 95.98 23 | 65.21 151 | 93.59 84 | 92.58 117 | 66.54 250 | 86.17 35 | 95.88 30 | 63.83 84 | 97.00 90 | 86.39 51 | 92.94 55 | 95.06 69 |
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
DeepC-MVS_fast | | 79.48 2 | 87.95 18 | 88.00 18 | 87.79 24 | 95.86 24 | 68.32 66 | 95.74 20 | 94.11 55 | 83.82 11 | 83.49 63 | 96.19 26 | 64.53 76 | 98.44 26 | 83.42 72 | 94.88 22 | 96.61 12 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
DP-MVS | | | 69.90 262 | 66.48 268 | 80.14 229 | 95.36 25 | 62.93 211 | 89.56 224 | 76.11 333 | 50.27 332 | 57.69 301 | 85.23 212 | 39.68 282 | 95.73 138 | 33.35 342 | 71.05 226 | 81.78 309 |
|
114514_t | | | 79.17 156 | 77.67 163 | 83.68 149 | 95.32 26 | 65.53 145 | 92.85 111 | 91.60 154 | 63.49 270 | 67.92 225 | 90.63 149 | 46.65 253 | 95.72 142 | 67.01 199 | 83.54 142 | 89.79 193 |
|
Regformer-1 | | | 87.24 27 | 87.60 25 | 86.15 76 | 95.14 27 | 65.83 137 | 93.95 66 | 95.12 15 | 82.11 21 | 84.25 54 | 95.73 33 | 67.88 43 | 98.35 29 | 85.60 55 | 88.64 100 | 94.26 96 |
|
Regformer-2 | | | 87.00 34 | 87.43 27 | 85.71 92 | 95.14 27 | 64.73 166 | 93.95 66 | 94.95 20 | 81.69 26 | 84.03 60 | 95.73 33 | 67.35 47 | 98.19 33 | 85.40 57 | 88.64 100 | 94.20 98 |
|
HPM-MVS++ |  | | 89.37 11 | 89.95 10 | 87.64 26 | 95.10 29 | 68.23 71 | 95.24 31 | 94.49 38 | 82.43 17 | 88.90 20 | 96.35 21 | 71.89 28 | 98.63 20 | 88.76 30 | 96.40 4 | 96.06 31 |
|
CSCG | | | 86.87 35 | 86.26 41 | 88.72 12 | 95.05 30 | 70.79 22 | 93.83 77 | 95.33 11 | 68.48 237 | 77.63 119 | 94.35 81 | 73.04 20 | 98.45 25 | 84.92 61 | 93.71 45 | 96.92 9 |
|
LFMVS | | | 84.34 70 | 82.73 91 | 89.18 11 | 94.76 31 | 73.25 10 | 94.99 41 | 91.89 141 | 71.90 174 | 82.16 70 | 93.49 100 | 47.98 245 | 97.05 85 | 82.55 80 | 84.82 130 | 97.25 5 |
|
CDPH-MVS | | | 85.71 52 | 85.46 53 | 86.46 64 | 94.75 32 | 67.19 98 | 93.89 71 | 92.83 106 | 70.90 205 | 83.09 65 | 95.28 45 | 63.62 88 | 97.36 68 | 80.63 95 | 94.18 35 | 94.84 77 |
|
test_prior3 | | | 87.38 25 | 87.70 22 | 86.42 66 | 94.71 33 | 67.35 93 | 95.10 36 | 93.10 97 | 75.40 100 | 85.25 48 | 95.61 37 | 67.94 40 | 96.84 102 | 87.47 40 | 94.77 23 | 95.05 70 |
|
test_prior | | | | | 86.42 66 | 94.71 33 | 67.35 93 | | 93.10 97 | | | | | 96.84 102 | | | 95.05 70 |
|
test12 | | | | | 87.09 42 | 94.60 35 | 68.86 54 | | 92.91 103 | | 82.67 68 | | 65.44 66 | 97.55 59 | | 93.69 46 | 94.84 77 |
|
test_yl | | | 84.28 71 | 83.16 82 | 87.64 26 | 94.52 36 | 69.24 46 | 95.78 17 | 95.09 18 | 69.19 227 | 81.09 79 | 92.88 114 | 57.00 153 | 97.44 63 | 81.11 93 | 81.76 152 | 96.23 28 |
|
DCV-MVSNet | | | 84.28 71 | 83.16 82 | 87.64 26 | 94.52 36 | 69.24 46 | 95.78 17 | 95.09 18 | 69.19 227 | 81.09 79 | 92.88 114 | 57.00 153 | 97.44 63 | 81.11 93 | 81.76 152 | 96.23 28 |
|
CANet | | | 89.61 9 | 89.99 9 | 88.46 17 | 94.39 38 | 69.71 39 | 96.53 11 | 93.78 60 | 86.89 4 | 89.68 15 | 95.78 31 | 65.94 60 | 99.10 7 | 92.99 2 | 93.91 40 | 96.58 15 |
|
test_8 | | | | | | 94.19 39 | 67.19 98 | 94.15 55 | 93.42 82 | 71.87 177 | 85.38 45 | 95.35 41 | 68.19 36 | 96.95 97 | | | |
|
TEST9 | | | | | | 94.18 40 | 67.28 95 | 94.16 53 | 93.51 75 | 71.75 184 | 85.52 43 | 95.33 42 | 68.01 39 | 97.27 77 | | | |
|
train_agg | | | 87.21 28 | 87.42 28 | 86.60 57 | 94.18 40 | 67.28 95 | 94.16 53 | 93.51 75 | 71.87 177 | 85.52 43 | 95.33 42 | 68.19 36 | 97.27 77 | 89.09 25 | 94.90 19 | 95.25 63 |
|
Regformer-3 | | | 85.80 51 | 85.92 46 | 85.46 99 | 94.17 42 | 65.09 159 | 92.95 107 | 95.11 16 | 81.13 31 | 81.68 73 | 95.04 54 | 65.82 62 | 98.32 30 | 83.02 74 | 84.36 134 | 92.97 142 |
|
Regformer-4 | | | 85.45 54 | 85.69 51 | 84.73 121 | 94.17 42 | 63.23 204 | 92.95 107 | 94.83 23 | 80.66 35 | 81.29 76 | 95.04 54 | 65.12 68 | 98.08 36 | 82.74 76 | 84.36 134 | 92.88 146 |
|
agg_prior1 | | | 87.02 33 | 87.26 30 | 86.28 73 | 94.16 44 | 66.97 106 | 94.08 59 | 93.31 85 | 71.85 179 | 84.49 52 | 95.39 40 | 68.91 33 | 96.75 106 | 88.84 29 | 94.32 34 | 95.13 66 |
|
agg_prior | | | | | | 94.16 44 | 66.97 106 | | 93.31 85 | | 84.49 52 | | | 96.75 106 | | | |
|
PAPM_NR | | | 82.97 95 | 81.84 102 | 86.37 69 | 94.10 46 | 66.76 113 | 87.66 258 | 92.84 105 | 69.96 217 | 74.07 152 | 93.57 98 | 63.10 97 | 97.50 61 | 70.66 169 | 90.58 88 | 94.85 76 |
|
VNet | | | 86.20 45 | 85.65 52 | 87.84 23 | 93.92 47 | 69.99 31 | 95.73 22 | 95.94 6 | 78.43 63 | 86.00 37 | 93.07 107 | 58.22 139 | 97.00 90 | 85.22 58 | 84.33 137 | 96.52 17 |
|
9.14 | | | | 87.63 23 | | 93.86 48 | | 94.41 48 | 94.18 52 | 72.76 150 | 86.21 33 | 96.51 16 | 66.64 54 | 97.88 45 | 90.08 19 | 94.04 37 | |
|
xxxxxxxxxxxxxcwj | | | 87.14 29 | 87.19 31 | 86.99 45 | 93.84 49 | 67.89 78 | 95.05 38 | 84.72 304 | 78.19 65 | 86.25 31 | 96.44 18 | 66.98 49 | 97.79 47 | 88.68 31 | 94.56 29 | 95.28 58 |
|
save fliter | | | | | | 93.84 49 | 67.89 78 | 95.05 38 | 92.66 112 | 78.19 65 | | | | | | | |
|
PVSNet_BlendedMVS | | | 83.38 89 | 83.43 75 | 83.22 158 | 93.76 51 | 67.53 88 | 94.06 60 | 93.61 71 | 79.13 53 | 81.00 82 | 85.14 213 | 63.19 95 | 97.29 73 | 87.08 46 | 73.91 205 | 84.83 273 |
|
PVSNet_Blended | | | 86.73 39 | 86.86 36 | 86.31 72 | 93.76 51 | 67.53 88 | 96.33 14 | 93.61 71 | 82.34 18 | 81.00 82 | 93.08 105 | 63.19 95 | 97.29 73 | 87.08 46 | 91.38 78 | 94.13 104 |
|
HFP-MVS | | | 84.73 64 | 84.40 65 | 85.72 90 | 93.75 53 | 65.01 160 | 93.50 88 | 93.19 91 | 72.19 166 | 79.22 101 | 94.93 60 | 59.04 134 | 97.67 51 | 81.55 86 | 92.21 64 | 94.49 92 |
|
#test# | | | 84.98 61 | 84.74 61 | 85.72 90 | 93.75 53 | 65.01 160 | 94.09 58 | 93.19 91 | 73.55 135 | 79.22 101 | 94.93 60 | 59.04 134 | 97.67 51 | 82.66 77 | 92.21 64 | 94.49 92 |
|
Anonymous202405211 | | | 77.96 180 | 75.33 196 | 85.87 84 | 93.73 55 | 64.52 168 | 94.85 43 | 85.36 299 | 62.52 281 | 76.11 133 | 90.18 157 | 29.43 329 | 97.29 73 | 68.51 187 | 77.24 190 | 95.81 40 |
|
SD-MVS | | | 87.49 24 | 87.49 26 | 87.50 32 | 93.60 56 | 68.82 56 | 93.90 70 | 92.63 115 | 76.86 83 | 87.90 23 | 95.76 32 | 66.17 57 | 97.63 56 | 89.06 26 | 91.48 77 | 96.05 32 |
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
ETH3D-3000-0.1 | | | 87.61 22 | 87.89 19 | 86.75 52 | 93.58 57 | 67.21 97 | 94.31 50 | 94.14 54 | 72.92 147 | 87.13 26 | 96.62 14 | 67.81 44 | 97.94 39 | 90.13 18 | 94.42 32 | 95.09 68 |
|
ACMMPR | | | 84.37 68 | 84.06 67 | 85.28 106 | 93.56 58 | 64.37 178 | 93.50 88 | 93.15 94 | 72.19 166 | 78.85 110 | 94.86 64 | 56.69 160 | 97.45 62 | 81.55 86 | 92.20 66 | 94.02 111 |
|
region2R | | | 84.36 69 | 84.03 68 | 85.36 104 | 93.54 59 | 64.31 180 | 93.43 91 | 92.95 102 | 72.16 169 | 78.86 109 | 94.84 65 | 56.97 155 | 97.53 60 | 81.38 90 | 92.11 68 | 94.24 97 |
|
TSAR-MVS + GP. | | | 87.96 17 | 88.37 16 | 86.70 55 | 93.51 60 | 65.32 148 | 95.15 34 | 93.84 59 | 78.17 67 | 85.93 38 | 94.80 67 | 75.80 11 | 98.21 31 | 89.38 21 | 88.78 98 | 96.59 13 |
|
PHI-MVS | | | 86.83 37 | 86.85 37 | 86.78 51 | 93.47 61 | 65.55 144 | 95.39 29 | 95.10 17 | 71.77 183 | 85.69 42 | 96.52 15 | 62.07 104 | 98.77 17 | 86.06 53 | 95.60 10 | 96.03 33 |
|
SR-MVS | | | 82.81 97 | 82.58 93 | 83.50 155 | 93.35 62 | 61.16 239 | 92.23 131 | 91.28 167 | 64.48 263 | 81.27 77 | 95.28 45 | 53.71 194 | 95.86 133 | 82.87 75 | 88.77 99 | 93.49 126 |
|
EPNet | | | 87.84 20 | 88.38 15 | 86.23 74 | 93.30 63 | 66.05 129 | 95.26 30 | 94.84 22 | 87.09 3 | 88.06 22 | 94.53 72 | 66.79 53 | 97.34 70 | 83.89 69 | 91.68 73 | 95.29 56 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
test1172 | | | 81.90 113 | 81.83 103 | 82.13 185 | 93.23 64 | 57.52 288 | 91.61 161 | 90.98 180 | 64.32 265 | 80.20 90 | 95.00 56 | 51.26 215 | 95.61 146 | 81.73 85 | 88.13 104 | 93.26 132 |
|
XVS | | | 83.87 82 | 83.47 73 | 85.05 111 | 93.22 65 | 63.78 190 | 92.92 109 | 92.66 112 | 73.99 121 | 78.18 113 | 94.31 84 | 55.25 174 | 97.41 65 | 79.16 104 | 91.58 75 | 93.95 113 |
|
X-MVStestdata | | | 76.86 194 | 74.13 214 | 85.05 111 | 93.22 65 | 63.78 190 | 92.92 109 | 92.66 112 | 73.99 121 | 78.18 113 | 10.19 361 | 55.25 174 | 97.41 65 | 79.16 104 | 91.58 75 | 93.95 113 |
|
SMA-MVS |  | | 88.14 14 | 88.29 17 | 87.67 25 | 93.21 67 | 68.72 58 | 93.85 73 | 94.03 56 | 74.18 118 | 91.74 7 | 96.67 13 | 65.61 65 | 98.42 28 | 89.24 24 | 96.08 5 | 95.88 39 |
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
原ACMM1 | | | | | 84.42 132 | 93.21 67 | 64.27 183 | | 93.40 84 | 65.39 258 | 79.51 98 | 92.50 120 | 58.11 141 | 96.69 108 | 65.27 221 | 93.96 38 | 92.32 157 |
|
MVS_111021_HR | | | 86.19 46 | 85.80 49 | 87.37 35 | 93.17 69 | 69.79 37 | 93.99 64 | 93.76 63 | 79.08 55 | 78.88 108 | 93.99 91 | 62.25 103 | 98.15 34 | 85.93 54 | 91.15 82 | 94.15 103 |
|
CP-MVS | | | 83.71 86 | 83.40 78 | 84.65 125 | 93.14 70 | 63.84 188 | 94.59 46 | 92.28 123 | 71.03 203 | 77.41 122 | 94.92 62 | 55.21 177 | 96.19 119 | 81.32 91 | 90.70 86 | 93.91 115 |
|
DELS-MVS | | | 90.05 6 | 90.09 8 | 89.94 4 | 93.14 70 | 73.88 8 | 97.01 3 | 94.40 45 | 88.32 2 | 85.71 41 | 94.91 63 | 74.11 16 | 98.91 13 | 87.26 45 | 95.94 7 | 97.03 8 |
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
ZNCC-MVS | | | 85.33 56 | 85.08 57 | 86.06 77 | 93.09 72 | 65.65 141 | 93.89 71 | 93.41 83 | 73.75 129 | 79.94 92 | 94.68 70 | 60.61 116 | 98.03 37 | 82.63 79 | 93.72 44 | 94.52 90 |
|
DeepPCF-MVS | | 81.17 1 | 89.72 8 | 91.38 3 | 84.72 123 | 93.00 73 | 58.16 280 | 96.72 7 | 94.41 43 | 86.50 5 | 90.25 14 | 97.83 1 | 75.46 12 | 98.67 19 | 92.78 3 | 95.49 11 | 97.32 4 |
|
PLC |  | 68.80 14 | 75.23 221 | 73.68 220 | 79.86 237 | 92.93 74 | 58.68 275 | 90.64 199 | 88.30 268 | 60.90 291 | 64.43 260 | 90.53 150 | 42.38 274 | 94.57 177 | 56.52 264 | 76.54 194 | 86.33 242 |
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
DWT-MVSNet_test | | | 83.95 80 | 82.80 89 | 87.41 34 | 92.90 75 | 70.07 30 | 89.12 236 | 94.42 42 | 82.15 20 | 77.64 118 | 91.77 135 | 70.81 30 | 96.22 118 | 65.03 222 | 81.36 156 | 95.94 35 |
|
MSP-MVS | | | 90.38 3 | 91.87 1 | 85.88 82 | 92.83 76 | 64.03 187 | 93.06 100 | 94.33 48 | 82.19 19 | 93.65 2 | 96.15 27 | 85.89 1 | 97.19 79 | 91.02 15 | 97.75 1 | 96.43 22 |
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025 |
mPP-MVS | | | 82.96 96 | 82.44 96 | 84.52 129 | 92.83 76 | 62.92 213 | 92.76 112 | 91.85 143 | 71.52 194 | 75.61 139 | 94.24 86 | 53.48 198 | 96.99 93 | 78.97 107 | 90.73 85 | 93.64 123 |
|
GST-MVS | | | 84.63 67 | 84.29 66 | 85.66 94 | 92.82 78 | 65.27 149 | 93.04 102 | 93.13 95 | 73.20 139 | 78.89 105 | 94.18 87 | 59.41 130 | 97.85 46 | 81.45 88 | 92.48 63 | 93.86 118 |
|
WTY-MVS | | | 86.32 43 | 85.81 48 | 87.85 22 | 92.82 78 | 69.37 45 | 95.20 32 | 95.25 12 | 82.71 15 | 81.91 71 | 94.73 68 | 67.93 42 | 97.63 56 | 79.55 101 | 82.25 148 | 96.54 16 |
|
PGM-MVS | | | 83.25 90 | 82.70 92 | 84.92 115 | 92.81 80 | 64.07 186 | 90.44 202 | 92.20 131 | 71.28 198 | 77.23 125 | 94.43 75 | 55.17 178 | 97.31 72 | 79.33 103 | 91.38 78 | 93.37 127 |
|
EI-MVSNet-Vis-set | | | 83.77 84 | 83.67 70 | 84.06 140 | 92.79 81 | 63.56 200 | 91.76 154 | 94.81 25 | 79.65 45 | 77.87 115 | 94.09 88 | 63.35 93 | 97.90 43 | 79.35 102 | 79.36 166 | 90.74 183 |
|
SF-MVS | | | 87.03 32 | 87.09 33 | 86.84 47 | 92.70 82 | 67.45 92 | 93.64 81 | 93.76 63 | 70.78 209 | 86.25 31 | 96.44 18 | 66.98 49 | 97.79 47 | 88.68 31 | 94.56 29 | 95.28 58 |
|
MVSTER | | | 82.47 102 | 82.05 99 | 83.74 145 | 92.68 83 | 69.01 51 | 91.90 146 | 93.21 88 | 79.83 40 | 72.14 174 | 85.71 209 | 74.72 13 | 94.72 174 | 75.72 128 | 72.49 215 | 87.50 220 |
|
MP-MVS |  | | 85.02 59 | 84.97 58 | 85.17 110 | 92.60 84 | 64.27 183 | 93.24 95 | 92.27 124 | 73.13 141 | 79.63 97 | 94.43 75 | 61.90 105 | 97.17 80 | 85.00 59 | 92.56 60 | 94.06 109 |
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
thres200 | | | 79.66 147 | 78.33 151 | 83.66 151 | 92.54 85 | 65.82 138 | 93.06 100 | 96.31 3 | 74.90 109 | 73.30 157 | 88.66 170 | 59.67 126 | 95.61 146 | 47.84 297 | 78.67 173 | 89.56 198 |
|
test_part1 | | | 79.63 148 | 77.86 162 | 84.93 114 | 92.50 86 | 71.43 15 | 94.15 55 | 91.08 175 | 72.51 155 | 70.66 187 | 84.98 215 | 59.84 123 | 95.07 163 | 72.07 157 | 62.94 279 | 88.30 214 |
|
APD-MVS_3200maxsize | | | 81.64 116 | 81.32 108 | 82.59 170 | 92.36 87 | 58.74 274 | 91.39 169 | 91.01 179 | 63.35 271 | 79.72 96 | 94.62 71 | 51.82 208 | 96.14 121 | 79.71 99 | 87.93 106 | 92.89 145 |
|
新几何1 | | | | | 84.73 121 | 92.32 88 | 64.28 182 | | 91.46 160 | 59.56 301 | 79.77 95 | 92.90 112 | 56.95 156 | 96.57 111 | 63.40 231 | 92.91 56 | 93.34 128 |
|
1121 | | | 81.25 120 | 80.05 124 | 84.87 118 | 92.30 89 | 64.31 180 | 87.91 254 | 91.39 162 | 59.44 302 | 79.94 92 | 92.91 111 | 57.09 149 | 97.01 88 | 66.63 201 | 92.81 58 | 93.29 131 |
|
EI-MVSNet-UG-set | | | 83.14 92 | 82.96 85 | 83.67 150 | 92.28 90 | 63.19 206 | 91.38 171 | 94.68 31 | 79.22 50 | 76.60 130 | 93.75 94 | 62.64 100 | 97.76 49 | 78.07 116 | 78.01 177 | 90.05 191 |
|
HPM-MVS |  | | 83.25 90 | 82.95 86 | 84.17 138 | 92.25 91 | 62.88 215 | 90.91 188 | 91.86 142 | 70.30 214 | 77.12 126 | 93.96 92 | 56.75 158 | 96.28 116 | 82.04 82 | 91.34 80 | 93.34 128 |
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023 |
HY-MVS | | 76.49 5 | 84.28 71 | 83.36 80 | 87.02 44 | 92.22 92 | 67.74 82 | 84.65 277 | 94.50 37 | 79.15 52 | 82.23 69 | 87.93 184 | 66.88 51 | 96.94 98 | 80.53 96 | 82.20 149 | 96.39 24 |
|
tfpn200view9 | | | 78.79 164 | 77.43 168 | 82.88 162 | 92.21 93 | 64.49 169 | 92.05 139 | 96.28 4 | 73.48 136 | 71.75 180 | 88.26 178 | 60.07 121 | 95.32 158 | 45.16 307 | 77.58 182 | 88.83 201 |
|
thres400 | | | 78.68 167 | 77.43 168 | 82.43 172 | 92.21 93 | 64.49 169 | 92.05 139 | 96.28 4 | 73.48 136 | 71.75 180 | 88.26 178 | 60.07 121 | 95.32 158 | 45.16 307 | 77.58 182 | 87.48 221 |
|
PS-MVSNAJ | | | 88.14 14 | 87.61 24 | 89.71 7 | 92.06 95 | 76.72 1 | 95.75 19 | 93.26 87 | 83.86 10 | 89.55 16 | 96.06 28 | 53.55 195 | 97.89 44 | 91.10 13 | 93.31 50 | 94.54 88 |
|
SR-MVS-dyc-post | | | 81.06 124 | 80.70 116 | 82.15 183 | 92.02 96 | 58.56 276 | 90.90 189 | 90.45 190 | 62.76 277 | 78.89 105 | 94.46 73 | 51.26 215 | 95.61 146 | 78.77 110 | 86.77 116 | 92.28 159 |
|
RE-MVS-def | | | | 80.48 121 | | 92.02 96 | 58.56 276 | 90.90 189 | 90.45 190 | 62.76 277 | 78.89 105 | 94.46 73 | 49.30 232 | | 78.77 110 | 86.77 116 | 92.28 159 |
|
MSLP-MVS++ | | | 86.27 44 | 85.91 47 | 87.35 36 | 92.01 98 | 68.97 53 | 95.04 40 | 92.70 109 | 79.04 56 | 81.50 75 | 96.50 17 | 58.98 136 | 96.78 104 | 83.49 71 | 93.93 39 | 96.29 26 |
|
ETH3D cwj APD-0.16 | | | 87.06 31 | 87.18 32 | 86.71 53 | 91.99 99 | 67.48 91 | 92.97 105 | 94.21 51 | 71.48 197 | 85.72 40 | 96.32 23 | 68.13 38 | 98.00 38 | 89.06 26 | 94.70 27 | 94.65 84 |
|
旧先验1 | | | | | | 91.94 100 | 60.74 248 | | 91.50 158 | | | 94.36 77 | 65.23 67 | | | 91.84 70 | 94.55 86 |
|
thres600view7 | | | 78.00 178 | 76.66 180 | 82.03 191 | 91.93 101 | 63.69 195 | 91.30 176 | 96.33 1 | 72.43 158 | 70.46 190 | 87.89 185 | 60.31 117 | 94.92 169 | 42.64 319 | 76.64 193 | 87.48 221 |
|
LS3D | | | 69.17 266 | 66.40 269 | 77.50 268 | 91.92 102 | 56.12 298 | 85.12 274 | 80.37 327 | 46.96 339 | 56.50 305 | 87.51 190 | 37.25 299 | 93.71 213 | 32.52 347 | 79.40 165 | 82.68 299 |
|
GG-mvs-BLEND | | | | | 86.53 62 | 91.91 103 | 69.67 41 | 75.02 329 | 94.75 28 | | 78.67 112 | 90.85 145 | 77.91 5 | 94.56 179 | 72.25 153 | 93.74 43 | 95.36 50 |
|
thres100view900 | | | 78.37 173 | 77.01 175 | 82.46 171 | 91.89 104 | 63.21 205 | 91.19 182 | 96.33 1 | 72.28 163 | 70.45 191 | 87.89 185 | 60.31 117 | 95.32 158 | 45.16 307 | 77.58 182 | 88.83 201 |
|
zzz-MVS | | | 84.73 64 | 84.47 62 | 85.50 97 | 91.89 104 | 65.16 153 | 91.55 162 | 92.23 126 | 75.32 102 | 80.53 86 | 95.21 51 | 56.06 168 | 97.16 81 | 84.86 62 | 92.55 61 | 94.18 99 |
|
MTAPA | | | 83.91 81 | 83.38 79 | 85.50 97 | 91.89 104 | 65.16 153 | 81.75 297 | 92.23 126 | 75.32 102 | 80.53 86 | 95.21 51 | 56.06 168 | 97.16 81 | 84.86 62 | 92.55 61 | 94.18 99 |
|
RRT_test8_iter05 | | | 80.61 129 | 79.62 132 | 83.60 152 | 91.87 107 | 66.90 108 | 93.42 93 | 93.68 68 | 77.09 81 | 68.83 214 | 85.63 210 | 66.82 52 | 95.42 155 | 76.46 126 | 62.74 281 | 88.48 208 |
|
canonicalmvs | | | 86.85 36 | 86.25 42 | 88.66 15 | 91.80 108 | 71.92 13 | 93.54 86 | 91.71 149 | 80.26 39 | 87.55 24 | 95.25 49 | 63.59 90 | 96.93 100 | 88.18 34 | 84.34 136 | 97.11 6 |
|
TSAR-MVS + MP. | | | 88.11 16 | 88.64 14 | 86.54 61 | 91.73 109 | 68.04 74 | 90.36 206 | 93.55 74 | 82.89 13 | 91.29 9 | 92.89 113 | 72.27 25 | 96.03 129 | 87.99 35 | 94.77 23 | 95.54 46 |
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
ACMMP |  | | 81.49 117 | 80.67 117 | 83.93 142 | 91.71 110 | 62.90 214 | 92.13 133 | 92.22 130 | 71.79 182 | 71.68 182 | 93.49 100 | 50.32 221 | 96.96 96 | 78.47 112 | 84.22 141 | 91.93 165 |
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
BH-RMVSNet | | | 79.46 153 | 77.65 164 | 84.89 116 | 91.68 111 | 65.66 140 | 93.55 85 | 88.09 274 | 72.93 146 | 73.37 156 | 91.12 142 | 46.20 258 | 96.12 122 | 56.28 266 | 85.61 126 | 92.91 144 |
|
baseline1 | | | 81.84 114 | 81.03 113 | 84.28 137 | 91.60 112 | 66.62 116 | 91.08 185 | 91.66 152 | 81.87 24 | 74.86 144 | 91.67 139 | 69.98 32 | 94.92 169 | 71.76 160 | 64.75 267 | 91.29 178 |
|
ACMMP_NAP | | | 86.05 47 | 85.80 49 | 86.80 50 | 91.58 113 | 67.53 88 | 91.79 151 | 93.49 78 | 74.93 108 | 84.61 50 | 95.30 44 | 59.42 129 | 97.92 41 | 86.13 52 | 94.92 17 | 94.94 75 |
|
MVS_Test | | | 84.16 76 | 83.20 81 | 87.05 43 | 91.56 114 | 69.82 36 | 89.99 219 | 92.05 134 | 77.77 71 | 82.84 66 | 86.57 199 | 63.93 83 | 96.09 123 | 74.91 137 | 89.18 96 | 95.25 63 |
|
HPM-MVS_fast | | | 80.25 136 | 79.55 136 | 82.33 176 | 91.55 115 | 59.95 260 | 91.32 175 | 89.16 242 | 65.23 261 | 74.71 145 | 93.07 107 | 47.81 247 | 95.74 137 | 74.87 139 | 88.23 102 | 91.31 177 |
|
CPTT-MVS | | | 79.59 149 | 79.16 144 | 80.89 219 | 91.54 116 | 59.80 262 | 92.10 135 | 88.54 265 | 60.42 294 | 72.96 159 | 93.28 102 | 48.27 241 | 92.80 236 | 78.89 109 | 86.50 121 | 90.06 190 |
|
CS-MVS | | | 86.61 41 | 86.85 37 | 85.88 82 | 91.52 117 | 66.25 126 | 95.42 27 | 92.25 125 | 80.36 38 | 84.10 59 | 94.82 66 | 62.88 99 | 96.08 125 | 88.25 33 | 92.07 69 | 95.30 55 |
|
CNLPA | | | 74.31 229 | 72.30 235 | 80.32 224 | 91.49 118 | 61.66 232 | 90.85 192 | 80.72 326 | 56.67 316 | 63.85 264 | 90.64 147 | 46.75 252 | 90.84 280 | 53.79 274 | 75.99 197 | 88.47 210 |
|
MP-MVS-pluss | | | 85.24 57 | 85.13 56 | 85.56 96 | 91.42 119 | 65.59 143 | 91.54 163 | 92.51 119 | 74.56 111 | 80.62 85 | 95.64 36 | 59.15 133 | 97.00 90 | 86.94 48 | 93.80 41 | 94.07 108 |
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss |
gg-mvs-nofinetune | | | 77.18 192 | 74.31 209 | 85.80 87 | 91.42 119 | 68.36 65 | 71.78 331 | 94.72 29 | 49.61 333 | 77.12 126 | 45.92 349 | 77.41 6 | 93.98 205 | 67.62 194 | 93.16 52 | 95.05 70 |
|
xiu_mvs_v2_base | | | 87.92 19 | 87.38 29 | 89.55 10 | 91.41 121 | 76.43 3 | 95.74 20 | 93.12 96 | 83.53 12 | 89.55 16 | 95.95 29 | 53.45 199 | 97.68 50 | 91.07 14 | 92.62 59 | 94.54 88 |
|
EIA-MVS | | | 84.84 63 | 84.88 59 | 84.69 124 | 91.30 122 | 62.36 222 | 93.85 73 | 92.04 135 | 79.45 46 | 79.33 100 | 94.28 85 | 62.42 102 | 96.35 115 | 80.05 98 | 91.25 81 | 95.38 49 |
|
alignmvs | | | 87.28 26 | 86.97 34 | 88.24 20 | 91.30 122 | 71.14 20 | 95.61 24 | 93.56 73 | 79.30 48 | 87.07 29 | 95.25 49 | 68.43 34 | 96.93 100 | 87.87 36 | 84.33 137 | 96.65 11 |
|
EPMVS | | | 78.49 172 | 75.98 189 | 86.02 78 | 91.21 124 | 69.68 40 | 80.23 310 | 91.20 168 | 75.25 104 | 72.48 169 | 78.11 293 | 54.65 182 | 93.69 214 | 57.66 262 | 83.04 143 | 94.69 80 |
|
FMVSNet3 | | | 77.73 184 | 76.04 188 | 82.80 163 | 91.20 125 | 68.99 52 | 91.87 147 | 91.99 137 | 73.35 138 | 67.04 238 | 83.19 235 | 56.62 161 | 92.14 259 | 59.80 254 | 69.34 233 | 87.28 227 |
|
Anonymous20240529 | | | 76.84 196 | 74.15 213 | 84.88 117 | 91.02 126 | 64.95 163 | 93.84 76 | 91.09 174 | 53.57 323 | 73.00 158 | 87.42 191 | 35.91 308 | 97.32 71 | 69.14 182 | 72.41 217 | 92.36 155 |
|
tpmvs | | | 72.88 243 | 69.76 255 | 82.22 181 | 90.98 127 | 67.05 103 | 78.22 322 | 88.30 268 | 63.10 275 | 64.35 261 | 74.98 315 | 55.09 179 | 94.27 190 | 43.25 313 | 69.57 232 | 85.34 268 |
|
MVS | | | 84.66 66 | 82.86 88 | 90.06 2 | 90.93 128 | 74.56 6 | 87.91 254 | 95.54 9 | 68.55 235 | 72.35 173 | 94.71 69 | 59.78 125 | 98.90 14 | 81.29 92 | 94.69 28 | 96.74 10 |
|
PVSNet | | 73.49 8 | 80.05 140 | 78.63 148 | 84.31 135 | 90.92 129 | 64.97 162 | 92.47 126 | 91.05 177 | 79.18 51 | 72.43 171 | 90.51 151 | 37.05 304 | 94.06 199 | 68.06 189 | 86.00 123 | 93.90 117 |
|
RRT_MVS | | | 77.38 189 | 76.59 181 | 79.77 240 | 90.91 130 | 63.61 199 | 91.15 183 | 90.91 181 | 72.28 163 | 72.06 176 | 87.28 194 | 43.92 268 | 89.04 299 | 73.32 142 | 67.47 248 | 86.67 235 |
|
3Dnovator+ | | 73.60 7 | 82.10 110 | 80.60 119 | 86.60 57 | 90.89 131 | 66.80 112 | 95.20 32 | 93.44 81 | 74.05 120 | 67.42 233 | 92.49 122 | 49.46 230 | 97.65 55 | 70.80 166 | 91.68 73 | 95.33 51 |
|
VDD-MVS | | | 83.06 93 | 81.81 104 | 86.81 49 | 90.86 132 | 67.70 83 | 95.40 28 | 91.50 158 | 75.46 97 | 81.78 72 | 92.34 127 | 40.09 281 | 97.13 83 | 86.85 49 | 82.04 150 | 95.60 44 |
|
BH-w/o | | | 80.49 133 | 79.30 141 | 84.05 141 | 90.83 133 | 64.36 179 | 93.60 83 | 89.42 232 | 74.35 114 | 69.09 207 | 90.15 158 | 55.23 176 | 95.61 146 | 64.61 224 | 86.43 122 | 92.17 163 |
|
ET-MVSNet_ETH3D | | | 84.01 78 | 83.15 84 | 86.58 59 | 90.78 134 | 70.89 21 | 94.74 45 | 94.62 34 | 81.44 28 | 58.19 295 | 93.64 96 | 73.64 19 | 92.35 256 | 82.66 77 | 78.66 174 | 96.50 19 |
|
Anonymous20231211 | | | 73.08 238 | 70.39 249 | 81.13 209 | 90.62 135 | 63.33 202 | 91.40 167 | 90.06 212 | 51.84 327 | 64.46 259 | 80.67 270 | 36.49 306 | 94.07 198 | 63.83 229 | 64.17 272 | 85.98 254 |
|
TR-MVS | | | 78.77 165 | 77.37 172 | 82.95 161 | 90.49 136 | 60.88 243 | 93.67 80 | 90.07 209 | 70.08 216 | 74.51 146 | 91.37 140 | 45.69 259 | 95.70 143 | 60.12 252 | 80.32 161 | 92.29 158 |
|
SteuartSystems-ACMMP | | | 86.82 38 | 86.90 35 | 86.58 59 | 90.42 137 | 66.38 121 | 96.09 15 | 93.87 58 | 77.73 72 | 84.01 61 | 95.66 35 | 63.39 92 | 97.94 39 | 87.40 42 | 93.55 48 | 95.42 47 |
Skip Steuart: Steuart Systems R&D Blog. |
TAPA-MVS | | 70.22 12 | 74.94 225 | 73.53 221 | 79.17 251 | 90.40 138 | 52.07 317 | 89.19 234 | 89.61 227 | 62.69 279 | 70.07 196 | 92.67 118 | 48.89 239 | 94.32 187 | 38.26 333 | 79.97 162 | 91.12 180 |
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
mvs_anonymous | | | 81.36 119 | 79.99 126 | 85.46 99 | 90.39 139 | 68.40 64 | 86.88 268 | 90.61 189 | 74.41 112 | 70.31 194 | 84.67 219 | 63.79 85 | 92.32 257 | 73.13 143 | 85.70 124 | 95.67 41 |
|
CANet_DTU | | | 84.09 77 | 83.52 71 | 85.81 86 | 90.30 140 | 66.82 110 | 91.87 147 | 89.01 250 | 85.27 6 | 86.09 36 | 93.74 95 | 47.71 248 | 96.98 94 | 77.90 118 | 89.78 94 | 93.65 122 |
|
Fast-Effi-MVS+ | | | 81.14 122 | 80.01 125 | 84.51 130 | 90.24 141 | 65.86 135 | 94.12 57 | 89.15 243 | 73.81 128 | 75.37 142 | 88.26 178 | 57.26 147 | 94.53 182 | 66.97 200 | 84.92 129 | 93.15 136 |
|
ETV-MVS | | | 86.01 48 | 86.11 44 | 85.70 93 | 90.21 142 | 67.02 105 | 93.43 91 | 91.92 140 | 81.21 30 | 84.13 58 | 94.07 90 | 60.93 113 | 95.63 144 | 89.28 23 | 89.81 92 | 94.46 94 |
|
tpmrst | | | 80.57 130 | 79.14 145 | 84.84 119 | 90.10 143 | 68.28 68 | 81.70 298 | 89.72 225 | 77.63 74 | 75.96 134 | 79.54 285 | 64.94 72 | 92.71 239 | 75.43 129 | 77.28 189 | 93.55 124 |
|
PVSNet_Blended_VisFu | | | 83.97 79 | 83.50 72 | 85.39 103 | 90.02 144 | 66.59 118 | 93.77 78 | 91.73 147 | 77.43 78 | 77.08 128 | 89.81 163 | 63.77 86 | 96.97 95 | 79.67 100 | 88.21 103 | 92.60 150 |
|
UGNet | | | 79.87 144 | 78.68 147 | 83.45 157 | 89.96 145 | 61.51 234 | 92.13 133 | 90.79 183 | 76.83 84 | 78.85 110 | 86.33 202 | 38.16 290 | 96.17 120 | 67.93 191 | 87.17 111 | 92.67 148 |
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
CHOSEN 1792x2688 | | | 84.98 61 | 83.45 74 | 89.57 9 | 89.94 146 | 75.14 5 | 92.07 138 | 92.32 122 | 81.87 24 | 75.68 136 | 88.27 177 | 60.18 119 | 98.60 21 | 80.46 97 | 90.27 91 | 94.96 74 |
|
abl_6 | | | 79.82 145 | 79.20 143 | 81.70 197 | 89.85 147 | 58.34 278 | 88.47 247 | 90.07 209 | 62.56 280 | 77.71 117 | 93.08 105 | 47.65 249 | 96.78 104 | 77.94 117 | 85.45 127 | 89.99 192 |
|
BH-untuned | | | 78.68 167 | 77.08 173 | 83.48 156 | 89.84 148 | 63.74 192 | 92.70 116 | 88.59 263 | 71.57 192 | 66.83 241 | 88.65 171 | 51.75 210 | 95.39 156 | 59.03 257 | 84.77 131 | 91.32 176 |
|
test222 | | | | | | 89.77 149 | 61.60 233 | 89.55 225 | 89.42 232 | 56.83 315 | 77.28 124 | 92.43 124 | 52.76 202 | | | 91.14 83 | 93.09 138 |
|
PMMVS | | | 81.98 112 | 82.04 100 | 81.78 193 | 89.76 150 | 56.17 297 | 91.13 184 | 90.69 185 | 77.96 69 | 80.09 91 | 93.57 98 | 46.33 256 | 94.99 165 | 81.41 89 | 87.46 109 | 94.17 101 |
|
DPM-MVS | | | 90.70 2 | 90.52 5 | 91.24 1 | 89.68 151 | 76.68 2 | 97.29 1 | 95.35 10 | 82.87 14 | 91.58 8 | 97.22 4 | 79.93 3 | 99.10 7 | 83.12 73 | 97.64 2 | 97.94 1 |
|
QAPM | | | 79.95 143 | 77.39 171 | 87.64 26 | 89.63 152 | 71.41 16 | 93.30 94 | 93.70 67 | 65.34 260 | 67.39 235 | 91.75 137 | 47.83 246 | 98.96 12 | 57.71 261 | 89.81 92 | 92.54 152 |
|
3Dnovator | | 73.91 6 | 82.69 101 | 80.82 114 | 88.31 19 | 89.57 153 | 71.26 17 | 92.60 121 | 94.39 46 | 78.84 58 | 67.89 227 | 92.48 123 | 48.42 240 | 98.52 22 | 68.80 186 | 94.40 33 | 95.15 65 |
|
Effi-MVS+ | | | 83.82 83 | 82.76 90 | 86.99 45 | 89.56 154 | 69.40 42 | 91.35 173 | 86.12 293 | 72.59 152 | 83.22 64 | 92.81 117 | 59.60 127 | 96.01 131 | 81.76 84 | 87.80 107 | 95.56 45 |
|
PatchmatchNet |  | | 77.46 187 | 74.63 202 | 85.96 80 | 89.55 155 | 70.35 27 | 79.97 314 | 89.55 228 | 72.23 165 | 70.94 185 | 76.91 304 | 57.03 151 | 92.79 237 | 54.27 272 | 81.17 157 | 94.74 79 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
PatchMatch-RL | | | 72.06 249 | 69.98 250 | 78.28 260 | 89.51 156 | 55.70 301 | 83.49 284 | 83.39 318 | 61.24 290 | 63.72 265 | 82.76 237 | 34.77 311 | 93.03 225 | 53.37 277 | 77.59 181 | 86.12 251 |
|
thisisatest0515 | | | 83.41 88 | 82.49 95 | 86.16 75 | 89.46 157 | 68.26 69 | 93.54 86 | 94.70 30 | 74.31 115 | 75.75 135 | 90.92 143 | 72.62 23 | 96.52 113 | 69.64 174 | 81.50 154 | 93.71 120 |
|
hse-mvs3 | | | 83.01 94 | 82.56 94 | 84.35 134 | 89.34 158 | 62.02 227 | 92.72 114 | 93.76 63 | 81.45 27 | 82.73 67 | 92.25 129 | 60.11 120 | 97.13 83 | 87.69 38 | 62.96 278 | 93.91 115 |
|
UA-Net | | | 80.02 141 | 79.65 131 | 81.11 210 | 89.33 159 | 57.72 284 | 86.33 271 | 89.00 251 | 77.44 77 | 81.01 81 | 89.15 167 | 59.33 131 | 95.90 132 | 61.01 246 | 84.28 139 | 89.73 195 |
|
dp | | | 75.01 224 | 72.09 237 | 83.76 144 | 89.28 160 | 66.22 128 | 79.96 315 | 89.75 220 | 71.16 200 | 67.80 229 | 77.19 301 | 51.81 209 | 92.54 247 | 50.39 283 | 71.44 224 | 92.51 153 |
|
sss | | | 82.71 100 | 82.38 97 | 83.73 147 | 89.25 161 | 59.58 265 | 92.24 130 | 94.89 21 | 77.96 69 | 79.86 94 | 92.38 125 | 56.70 159 | 97.05 85 | 77.26 121 | 80.86 160 | 94.55 86 |
|
MVSFormer | | | 83.75 85 | 82.88 87 | 86.37 69 | 89.24 162 | 71.18 18 | 89.07 237 | 90.69 185 | 65.80 255 | 87.13 26 | 94.34 82 | 64.99 70 | 92.67 242 | 72.83 146 | 91.80 71 | 95.27 60 |
|
lupinMVS | | | 87.74 21 | 87.77 21 | 87.63 30 | 89.24 162 | 71.18 18 | 96.57 10 | 92.90 104 | 82.70 16 | 87.13 26 | 95.27 47 | 64.99 70 | 95.80 134 | 89.34 22 | 91.80 71 | 95.93 36 |
|
IB-MVS | | 77.80 4 | 82.18 106 | 80.46 122 | 87.35 36 | 89.14 164 | 70.28 28 | 95.59 25 | 95.17 14 | 78.85 57 | 70.19 195 | 85.82 207 | 70.66 31 | 97.67 51 | 72.19 156 | 66.52 254 | 94.09 106 |
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
MDTV_nov1_ep13 | | | | 72.61 231 | | 89.06 165 | 68.48 62 | 80.33 308 | 90.11 208 | 71.84 180 | 71.81 179 | 75.92 312 | 53.01 201 | 93.92 208 | 48.04 294 | 73.38 207 | |
|
testdata | | | | | 81.34 203 | 89.02 166 | 57.72 284 | | 89.84 218 | 58.65 306 | 85.32 46 | 94.09 88 | 57.03 151 | 93.28 221 | 69.34 179 | 90.56 89 | 93.03 140 |
|
CostFormer | | | 82.33 104 | 81.15 109 | 85.86 85 | 89.01 167 | 68.46 63 | 82.39 295 | 93.01 99 | 75.59 95 | 80.25 89 | 81.57 254 | 72.03 27 | 94.96 166 | 79.06 106 | 77.48 186 | 94.16 102 |
|
GBi-Net | | | 75.65 215 | 73.83 218 | 81.10 211 | 88.85 168 | 65.11 156 | 90.01 216 | 90.32 196 | 70.84 206 | 67.04 238 | 80.25 277 | 48.03 242 | 91.54 273 | 59.80 254 | 69.34 233 | 86.64 236 |
|
test1 | | | 75.65 215 | 73.83 218 | 81.10 211 | 88.85 168 | 65.11 156 | 90.01 216 | 90.32 196 | 70.84 206 | 67.04 238 | 80.25 277 | 48.03 242 | 91.54 273 | 59.80 254 | 69.34 233 | 86.64 236 |
|
FMVSNet2 | | | 76.07 204 | 74.01 216 | 82.26 180 | 88.85 168 | 67.66 84 | 91.33 174 | 91.61 153 | 70.84 206 | 65.98 245 | 82.25 243 | 48.03 242 | 92.00 264 | 58.46 259 | 68.73 239 | 87.10 229 |
|
DeepC-MVS | | 77.85 3 | 85.52 53 | 85.24 55 | 86.37 69 | 88.80 171 | 66.64 115 | 92.15 132 | 93.68 68 | 81.07 32 | 76.91 129 | 93.64 96 | 62.59 101 | 98.44 26 | 85.50 56 | 92.84 57 | 94.03 110 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
EPP-MVSNet | | | 81.79 115 | 81.52 106 | 82.61 169 | 88.77 172 | 60.21 257 | 93.02 104 | 93.66 70 | 68.52 236 | 72.90 161 | 90.39 153 | 72.19 26 | 94.96 166 | 74.93 136 | 79.29 168 | 92.67 148 |
|
1112_ss | | | 80.56 131 | 79.83 129 | 82.77 164 | 88.65 173 | 60.78 245 | 92.29 128 | 88.36 267 | 72.58 153 | 72.46 170 | 94.95 58 | 65.09 69 | 93.42 220 | 66.38 207 | 77.71 179 | 94.10 105 |
|
tpm cat1 | | | 75.30 220 | 72.21 236 | 84.58 128 | 88.52 174 | 67.77 81 | 78.16 323 | 88.02 275 | 61.88 287 | 68.45 221 | 76.37 308 | 60.65 114 | 94.03 203 | 53.77 275 | 74.11 202 | 91.93 165 |
|
LCM-MVSNet-Re | | | 72.93 241 | 71.84 239 | 76.18 284 | 88.49 175 | 48.02 334 | 80.07 313 | 70.17 346 | 73.96 124 | 52.25 317 | 80.09 280 | 49.98 225 | 88.24 305 | 67.35 195 | 84.23 140 | 92.28 159 |
|
Vis-MVSNet |  | | 80.92 127 | 79.98 127 | 83.74 145 | 88.48 176 | 61.80 229 | 93.44 90 | 88.26 272 | 73.96 124 | 77.73 116 | 91.76 136 | 49.94 226 | 94.76 171 | 65.84 213 | 90.37 90 | 94.65 84 |
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
Vis-MVSNet (Re-imp) | | | 79.24 155 | 79.57 133 | 78.24 262 | 88.46 177 | 52.29 316 | 90.41 204 | 89.12 245 | 74.24 117 | 69.13 206 | 91.91 133 | 65.77 63 | 90.09 292 | 59.00 258 | 88.09 105 | 92.33 156 |
|
ab-mvs | | | 80.18 137 | 78.31 152 | 85.80 87 | 88.44 178 | 65.49 147 | 83.00 292 | 92.67 111 | 71.82 181 | 77.36 123 | 85.01 214 | 54.50 183 | 96.59 109 | 76.35 127 | 75.63 198 | 95.32 53 |
|
gm-plane-assit | | | | | | 88.42 179 | 67.04 104 | | | 78.62 62 | | 91.83 134 | | 97.37 67 | 76.57 124 | | |
|
MVS_111021_LR | | | 82.02 111 | 81.52 106 | 83.51 154 | 88.42 179 | 62.88 215 | 89.77 222 | 88.93 252 | 76.78 85 | 75.55 140 | 93.10 103 | 50.31 222 | 95.38 157 | 83.82 70 | 87.02 112 | 92.26 162 |
|
baseline | | | 85.01 60 | 84.44 64 | 86.71 53 | 88.33 181 | 68.73 57 | 90.24 210 | 91.82 145 | 81.05 33 | 81.18 78 | 92.50 120 | 63.69 87 | 96.08 125 | 84.45 64 | 86.71 118 | 95.32 53 |
|
tpm2 | | | 79.80 146 | 77.95 159 | 85.34 105 | 88.28 182 | 68.26 69 | 81.56 300 | 91.42 161 | 70.11 215 | 77.59 121 | 80.50 272 | 67.40 46 | 94.26 192 | 67.34 196 | 77.35 187 | 93.51 125 |
|
thisisatest0530 | | | 81.15 121 | 80.07 123 | 84.39 133 | 88.26 183 | 65.63 142 | 91.40 167 | 94.62 34 | 71.27 199 | 70.93 186 | 89.18 166 | 72.47 24 | 96.04 128 | 65.62 216 | 76.89 192 | 91.49 170 |
|
casdiffmvs | | | 85.37 55 | 84.87 60 | 86.84 47 | 88.25 184 | 69.07 49 | 93.04 102 | 91.76 146 | 81.27 29 | 80.84 84 | 92.07 131 | 64.23 79 | 96.06 127 | 84.98 60 | 87.43 110 | 95.39 48 |
|
Test_1112_low_res | | | 79.56 150 | 78.60 149 | 82.43 172 | 88.24 185 | 60.39 254 | 92.09 136 | 87.99 276 | 72.10 170 | 71.84 178 | 87.42 191 | 64.62 75 | 93.04 224 | 65.80 214 | 77.30 188 | 93.85 119 |
|
PAPM | | | 85.89 50 | 85.46 53 | 87.18 39 | 88.20 186 | 72.42 12 | 92.41 127 | 92.77 107 | 82.11 21 | 80.34 88 | 93.07 107 | 68.27 35 | 95.02 164 | 78.39 113 | 93.59 47 | 94.09 106 |
|
TESTMET0.1,1 | | | 82.41 103 | 81.98 101 | 83.72 148 | 88.08 187 | 63.74 192 | 92.70 116 | 93.77 62 | 79.30 48 | 77.61 120 | 87.57 189 | 58.19 140 | 94.08 197 | 73.91 141 | 86.68 119 | 93.33 130 |
|
ADS-MVSNet2 | | | 66.90 285 | 63.44 290 | 77.26 274 | 88.06 188 | 60.70 249 | 68.01 340 | 75.56 336 | 57.57 308 | 64.48 257 | 69.87 332 | 38.68 284 | 84.10 326 | 40.87 324 | 67.89 245 | 86.97 230 |
|
ADS-MVSNet | | | 68.54 273 | 64.38 286 | 81.03 215 | 88.06 188 | 66.90 108 | 68.01 340 | 84.02 311 | 57.57 308 | 64.48 257 | 69.87 332 | 38.68 284 | 89.21 298 | 40.87 324 | 67.89 245 | 86.97 230 |
|
EPNet_dtu | | | 78.80 163 | 79.26 142 | 77.43 270 | 88.06 188 | 49.71 329 | 91.96 145 | 91.95 139 | 77.67 73 | 76.56 131 | 91.28 141 | 58.51 138 | 90.20 290 | 56.37 265 | 80.95 159 | 92.39 154 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
miper_enhance_ethall | | | 78.86 161 | 77.97 158 | 81.54 199 | 88.00 191 | 65.17 152 | 91.41 165 | 89.15 243 | 75.19 105 | 68.79 215 | 83.98 226 | 67.17 48 | 92.82 234 | 72.73 148 | 65.30 258 | 86.62 240 |
|
IS-MVSNet | | | 80.14 138 | 79.41 138 | 82.33 176 | 87.91 192 | 60.08 259 | 91.97 144 | 88.27 270 | 72.90 148 | 71.44 184 | 91.73 138 | 61.44 108 | 93.66 215 | 62.47 239 | 86.53 120 | 93.24 133 |
|
CLD-MVS | | | 82.73 98 | 82.35 98 | 83.86 143 | 87.90 193 | 67.65 85 | 95.45 26 | 92.18 133 | 85.06 7 | 72.58 166 | 92.27 128 | 52.46 205 | 95.78 135 | 84.18 65 | 79.06 169 | 88.16 215 |
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
HyFIR lowres test | | | 81.03 125 | 79.56 134 | 85.43 101 | 87.81 194 | 68.11 73 | 90.18 211 | 90.01 214 | 70.65 211 | 72.95 160 | 86.06 205 | 63.61 89 | 94.50 184 | 75.01 135 | 79.75 164 | 93.67 121 |
|
1314 | | | 80.70 128 | 78.95 146 | 85.94 81 | 87.77 195 | 67.56 86 | 87.91 254 | 92.55 118 | 72.17 168 | 67.44 232 | 93.09 104 | 50.27 223 | 97.04 87 | 71.68 162 | 87.64 108 | 93.23 134 |
|
cl-mvsnet2 | | | 77.94 181 | 76.78 178 | 81.42 201 | 87.57 196 | 64.93 164 | 90.67 197 | 88.86 255 | 72.45 157 | 67.63 231 | 82.68 239 | 64.07 80 | 92.91 232 | 71.79 158 | 65.30 258 | 86.44 241 |
|
HQP-NCC | | | | | | 87.54 197 | | 94.06 60 | | 79.80 41 | 74.18 148 | | | | | | |
|
ACMP_Plane | | | | | | 87.54 197 | | 94.06 60 | | 79.80 41 | 74.18 148 | | | | | | |
|
HQP-MVS | | | 81.14 122 | 80.64 118 | 82.64 168 | 87.54 197 | 63.66 197 | 94.06 60 | 91.70 150 | 79.80 41 | 74.18 148 | 90.30 155 | 51.63 212 | 95.61 146 | 77.63 119 | 78.90 170 | 88.63 205 |
|
NP-MVS | | | | | | 87.41 200 | 63.04 207 | | | | | 90.30 155 | | | | | |
|
diffmvs | | | 84.28 71 | 83.83 69 | 85.61 95 | 87.40 201 | 68.02 75 | 90.88 191 | 89.24 237 | 80.54 36 | 81.64 74 | 92.52 119 | 59.83 124 | 94.52 183 | 87.32 44 | 85.11 128 | 94.29 95 |
|
baseline2 | | | 83.68 87 | 83.42 77 | 84.48 131 | 87.37 202 | 66.00 131 | 90.06 214 | 95.93 7 | 79.71 44 | 69.08 208 | 90.39 153 | 77.92 4 | 96.28 116 | 78.91 108 | 81.38 155 | 91.16 179 |
|
plane_prior6 | | | | | | 87.23 203 | 62.32 223 | | | | | | 50.66 219 | | | | |
|
tttt0517 | | | 79.50 151 | 78.53 150 | 82.41 175 | 87.22 204 | 61.43 236 | 89.75 223 | 94.76 27 | 69.29 225 | 67.91 226 | 88.06 183 | 72.92 21 | 95.63 144 | 62.91 235 | 73.90 206 | 90.16 189 |
|
plane_prior1 | | | | | | 87.15 205 | | | | | | | | | | | |
|
cascas | | | 78.18 176 | 75.77 192 | 85.41 102 | 87.14 206 | 69.11 48 | 92.96 106 | 91.15 171 | 66.71 249 | 70.47 189 | 86.07 204 | 37.49 298 | 96.48 114 | 70.15 172 | 79.80 163 | 90.65 184 |
|
CHOSEN 280x420 | | | 77.35 190 | 76.95 177 | 78.55 257 | 87.07 207 | 62.68 219 | 69.71 336 | 82.95 320 | 68.80 232 | 71.48 183 | 87.27 195 | 66.03 59 | 84.00 329 | 76.47 125 | 82.81 146 | 88.95 200 |
|
HQP_MVS | | | 80.34 135 | 79.75 130 | 82.12 186 | 86.94 208 | 62.42 220 | 93.13 98 | 91.31 164 | 78.81 59 | 72.53 167 | 89.14 168 | 50.66 219 | 95.55 152 | 76.74 122 | 78.53 175 | 88.39 211 |
|
plane_prior7 | | | | | | 86.94 208 | 61.51 234 | | | | | | | | | | |
|
test-LLR | | | 80.10 139 | 79.56 134 | 81.72 195 | 86.93 210 | 61.17 237 | 92.70 116 | 91.54 155 | 71.51 195 | 75.62 137 | 86.94 196 | 53.83 191 | 92.38 253 | 72.21 154 | 84.76 132 | 91.60 168 |
|
test-mter | | | 79.96 142 | 79.38 140 | 81.72 195 | 86.93 210 | 61.17 237 | 92.70 116 | 91.54 155 | 73.85 126 | 75.62 137 | 86.94 196 | 49.84 228 | 92.38 253 | 72.21 154 | 84.76 132 | 91.60 168 |
|
SCA | | | 75.82 213 | 72.76 228 | 85.01 113 | 86.63 212 | 70.08 29 | 81.06 304 | 89.19 240 | 71.60 191 | 70.01 197 | 77.09 302 | 45.53 260 | 90.25 285 | 60.43 249 | 73.27 208 | 94.68 81 |
|
AUN-MVS | | | 78.37 173 | 77.43 168 | 81.17 207 | 86.60 213 | 57.45 289 | 89.46 229 | 91.16 170 | 74.11 119 | 74.40 147 | 90.49 152 | 55.52 173 | 94.57 177 | 74.73 140 | 60.43 304 | 91.48 171 |
|
xiu_mvs_v1_base_debu | | | 82.16 107 | 81.12 110 | 85.26 107 | 86.42 214 | 68.72 58 | 92.59 123 | 90.44 193 | 73.12 142 | 84.20 55 | 94.36 77 | 38.04 292 | 95.73 138 | 84.12 66 | 86.81 113 | 91.33 173 |
|
xiu_mvs_v1_base | | | 82.16 107 | 81.12 110 | 85.26 107 | 86.42 214 | 68.72 58 | 92.59 123 | 90.44 193 | 73.12 142 | 84.20 55 | 94.36 77 | 38.04 292 | 95.73 138 | 84.12 66 | 86.81 113 | 91.33 173 |
|
xiu_mvs_v1_base_debi | | | 82.16 107 | 81.12 110 | 85.26 107 | 86.42 214 | 68.72 58 | 92.59 123 | 90.44 193 | 73.12 142 | 84.20 55 | 94.36 77 | 38.04 292 | 95.73 138 | 84.12 66 | 86.81 113 | 91.33 173 |
|
F-COLMAP | | | 70.66 255 | 68.44 260 | 77.32 272 | 86.37 217 | 55.91 299 | 88.00 252 | 86.32 289 | 56.94 314 | 57.28 303 | 88.07 182 | 33.58 314 | 92.49 249 | 51.02 281 | 68.37 241 | 83.55 282 |
|
CDS-MVSNet | | | 81.43 118 | 80.74 115 | 83.52 153 | 86.26 218 | 64.45 172 | 92.09 136 | 90.65 188 | 75.83 94 | 73.95 154 | 89.81 163 | 63.97 82 | 92.91 232 | 71.27 163 | 82.82 145 | 93.20 135 |
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
VDDNet | | | 80.50 132 | 78.26 153 | 87.21 38 | 86.19 219 | 69.79 37 | 94.48 47 | 91.31 164 | 60.42 294 | 79.34 99 | 90.91 144 | 38.48 288 | 96.56 112 | 82.16 81 | 81.05 158 | 95.27 60 |
|
jason | | | 86.40 42 | 86.17 43 | 87.11 41 | 86.16 220 | 70.54 25 | 95.71 23 | 92.19 132 | 82.00 23 | 84.58 51 | 94.34 82 | 61.86 106 | 95.53 154 | 87.76 37 | 90.89 84 | 95.27 60 |
jason: jason. |
PCF-MVS | | 73.15 9 | 79.29 154 | 77.63 165 | 84.29 136 | 86.06 221 | 65.96 133 | 87.03 264 | 91.10 173 | 69.86 219 | 69.79 203 | 90.64 147 | 57.54 146 | 96.59 109 | 64.37 226 | 82.29 147 | 90.32 187 |
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
MS-PatchMatch | | | 77.90 183 | 76.50 182 | 82.12 186 | 85.99 222 | 69.95 34 | 91.75 156 | 92.70 109 | 73.97 123 | 62.58 275 | 84.44 222 | 41.11 278 | 95.78 135 | 63.76 230 | 92.17 67 | 80.62 317 |
|
FIs | | | 79.47 152 | 79.41 138 | 79.67 242 | 85.95 223 | 59.40 267 | 91.68 158 | 93.94 57 | 78.06 68 | 68.96 211 | 88.28 176 | 66.61 55 | 91.77 268 | 66.20 210 | 74.99 199 | 87.82 217 |
|
VPA-MVSNet | | | 79.03 157 | 78.00 157 | 82.11 189 | 85.95 223 | 64.48 171 | 93.22 97 | 94.66 32 | 75.05 107 | 74.04 153 | 84.95 216 | 52.17 207 | 93.52 217 | 74.90 138 | 67.04 250 | 88.32 213 |
|
tpm | | | 78.58 170 | 77.03 174 | 83.22 158 | 85.94 225 | 64.56 167 | 83.21 290 | 91.14 172 | 78.31 64 | 73.67 155 | 79.68 283 | 64.01 81 | 92.09 262 | 66.07 211 | 71.26 225 | 93.03 140 |
|
OpenMVS |  | 70.45 11 | 78.54 171 | 75.92 190 | 86.41 68 | 85.93 226 | 71.68 14 | 92.74 113 | 92.51 119 | 66.49 251 | 64.56 256 | 91.96 132 | 43.88 269 | 98.10 35 | 54.61 270 | 90.65 87 | 89.44 199 |
|
OMC-MVS | | | 78.67 169 | 77.91 161 | 80.95 217 | 85.76 227 | 57.40 290 | 88.49 246 | 88.67 260 | 73.85 126 | 72.43 171 | 92.10 130 | 49.29 233 | 94.55 180 | 72.73 148 | 77.89 178 | 90.91 182 |
|
miper_ehance_all_eth | | | 77.60 185 | 76.44 183 | 81.09 214 | 85.70 228 | 64.41 176 | 90.65 198 | 88.64 262 | 72.31 161 | 67.37 236 | 82.52 240 | 64.77 74 | 92.64 245 | 70.67 168 | 65.30 258 | 86.24 246 |
|
KD-MVS_2432*1600 | | | 69.03 268 | 66.37 270 | 77.01 276 | 85.56 229 | 61.06 240 | 81.44 301 | 90.25 202 | 67.27 245 | 58.00 298 | 76.53 306 | 54.49 184 | 87.63 312 | 48.04 294 | 35.77 348 | 82.34 302 |
|
miper_refine_blended | | | 69.03 268 | 66.37 270 | 77.01 276 | 85.56 229 | 61.06 240 | 81.44 301 | 90.25 202 | 67.27 245 | 58.00 298 | 76.53 306 | 54.49 184 | 87.63 312 | 48.04 294 | 35.77 348 | 82.34 302 |
|
EI-MVSNet | | | 78.97 159 | 78.22 154 | 81.25 205 | 85.33 231 | 62.73 218 | 89.53 227 | 93.21 88 | 72.39 160 | 72.14 174 | 90.13 159 | 60.99 111 | 94.72 174 | 67.73 193 | 72.49 215 | 86.29 244 |
|
CVMVSNet | | | 74.04 231 | 74.27 210 | 73.33 301 | 85.33 231 | 43.94 344 | 89.53 227 | 88.39 266 | 54.33 322 | 70.37 192 | 90.13 159 | 49.17 235 | 84.05 327 | 61.83 243 | 79.36 166 | 91.99 164 |
|
ACMH | | 63.93 17 | 68.62 271 | 64.81 279 | 80.03 232 | 85.22 233 | 63.25 203 | 87.72 257 | 84.66 306 | 60.83 292 | 51.57 320 | 79.43 286 | 27.29 334 | 94.96 166 | 41.76 320 | 64.84 265 | 81.88 307 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
cl-mvsnet_ | | | 76.07 204 | 74.67 200 | 80.28 226 | 85.15 234 | 61.76 230 | 90.12 212 | 88.73 258 | 71.16 200 | 65.43 248 | 81.57 254 | 61.15 109 | 92.95 227 | 66.54 204 | 62.17 286 | 86.13 250 |
|
cl-mvsnet1 | | | 76.07 204 | 74.67 200 | 80.28 226 | 85.14 235 | 61.75 231 | 90.12 212 | 88.73 258 | 71.16 200 | 65.42 249 | 81.60 253 | 61.15 109 | 92.94 231 | 66.54 204 | 62.16 288 | 86.14 248 |
|
TAMVS | | | 80.37 134 | 79.45 137 | 83.13 160 | 85.14 235 | 63.37 201 | 91.23 178 | 90.76 184 | 74.81 110 | 72.65 164 | 88.49 172 | 60.63 115 | 92.95 227 | 69.41 178 | 81.95 151 | 93.08 139 |
|
MSDG | | | 69.54 264 | 65.73 273 | 80.96 216 | 85.11 237 | 63.71 194 | 84.19 279 | 83.28 319 | 56.95 313 | 54.50 308 | 84.03 224 | 31.50 322 | 96.03 129 | 42.87 317 | 69.13 236 | 83.14 292 |
|
cl_fuxian | | | 76.83 197 | 75.47 195 | 80.93 218 | 85.02 238 | 64.18 185 | 90.39 205 | 88.11 273 | 71.66 185 | 66.65 243 | 81.64 252 | 63.58 91 | 92.56 246 | 69.31 180 | 62.86 280 | 86.04 252 |
|
ACMP | | 71.68 10 | 75.58 218 | 74.23 211 | 79.62 244 | 84.97 239 | 59.64 263 | 90.80 194 | 89.07 248 | 70.39 213 | 62.95 271 | 87.30 193 | 38.28 289 | 93.87 210 | 72.89 145 | 71.45 223 | 85.36 267 |
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
FC-MVSNet-test | | | 77.99 179 | 78.08 156 | 77.70 265 | 84.89 240 | 55.51 302 | 90.27 208 | 93.75 66 | 76.87 82 | 66.80 242 | 87.59 188 | 65.71 64 | 90.23 289 | 62.89 236 | 73.94 204 | 87.37 224 |
|
PVSNet_0 | | 68.08 15 | 71.81 250 | 68.32 262 | 82.27 178 | 84.68 241 | 62.31 224 | 88.68 243 | 90.31 199 | 75.84 93 | 57.93 300 | 80.65 271 | 37.85 295 | 94.19 193 | 69.94 173 | 29.05 352 | 90.31 188 |
|
eth_miper_zixun_eth | | | 75.96 210 | 74.40 208 | 80.66 220 | 84.66 242 | 63.02 208 | 89.28 231 | 88.27 270 | 71.88 176 | 65.73 246 | 81.65 251 | 59.45 128 | 92.81 235 | 68.13 188 | 60.53 302 | 86.14 248 |
|
WR-MVS | | | 76.76 198 | 75.74 193 | 79.82 238 | 84.60 243 | 62.27 225 | 92.60 121 | 92.51 119 | 76.06 91 | 67.87 228 | 85.34 211 | 56.76 157 | 90.24 288 | 62.20 240 | 63.69 277 | 86.94 232 |
|
ACMH+ | | 65.35 16 | 67.65 280 | 64.55 282 | 76.96 278 | 84.59 244 | 57.10 293 | 88.08 251 | 80.79 325 | 58.59 307 | 53.00 314 | 81.09 266 | 26.63 336 | 92.95 227 | 46.51 301 | 61.69 295 | 80.82 314 |
|
VPNet | | | 78.82 162 | 77.53 167 | 82.70 166 | 84.52 245 | 66.44 120 | 93.93 68 | 92.23 126 | 80.46 37 | 72.60 165 | 88.38 175 | 49.18 234 | 93.13 223 | 72.47 152 | 63.97 275 | 88.55 207 |
|
IterMVS-LS | | | 76.49 200 | 75.18 198 | 80.43 223 | 84.49 246 | 62.74 217 | 90.64 199 | 88.80 256 | 72.40 159 | 65.16 251 | 81.72 250 | 60.98 112 | 92.27 258 | 67.74 192 | 64.65 269 | 86.29 244 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
UniMVSNet_NR-MVSNet | | | 78.15 177 | 77.55 166 | 79.98 233 | 84.46 247 | 60.26 255 | 92.25 129 | 93.20 90 | 77.50 76 | 68.88 212 | 86.61 198 | 66.10 58 | 92.13 260 | 66.38 207 | 62.55 282 | 87.54 219 |
|
FMVSNet5 | | | 68.04 277 | 65.66 275 | 75.18 289 | 84.43 248 | 57.89 281 | 83.54 283 | 86.26 291 | 61.83 288 | 53.64 313 | 73.30 320 | 37.15 302 | 85.08 323 | 48.99 289 | 61.77 291 | 82.56 301 |
|
MVS-HIRNet | | | 60.25 310 | 55.55 316 | 74.35 294 | 84.37 249 | 56.57 296 | 71.64 332 | 74.11 339 | 34.44 350 | 45.54 339 | 42.24 352 | 31.11 325 | 89.81 293 | 40.36 327 | 76.10 196 | 76.67 338 |
|
LPG-MVS_test | | | 75.82 213 | 74.58 204 | 79.56 246 | 84.31 250 | 59.37 268 | 90.44 202 | 89.73 223 | 69.49 222 | 64.86 252 | 88.42 173 | 38.65 286 | 94.30 188 | 72.56 150 | 72.76 212 | 85.01 271 |
|
LGP-MVS_train | | | | | 79.56 246 | 84.31 250 | 59.37 268 | | 89.73 223 | 69.49 222 | 64.86 252 | 88.42 173 | 38.65 286 | 94.30 188 | 72.56 150 | 72.76 212 | 85.01 271 |
|
ACMM | | 69.62 13 | 74.34 228 | 72.73 229 | 79.17 251 | 84.25 252 | 57.87 282 | 90.36 206 | 89.93 215 | 63.17 274 | 65.64 247 | 86.04 206 | 37.79 296 | 94.10 195 | 65.89 212 | 71.52 222 | 85.55 264 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
UniMVSNet (Re) | | | 77.58 186 | 76.78 178 | 79.98 233 | 84.11 253 | 60.80 244 | 91.76 154 | 93.17 93 | 76.56 88 | 69.93 201 | 84.78 218 | 63.32 94 | 92.36 255 | 64.89 223 | 62.51 284 | 86.78 234 |
|
test_0402 | | | 64.54 295 | 61.09 301 | 74.92 290 | 84.10 254 | 60.75 247 | 87.95 253 | 79.71 329 | 52.03 326 | 52.41 316 | 77.20 300 | 32.21 320 | 91.64 270 | 23.14 351 | 61.03 298 | 72.36 343 |
|
LTVRE_ROB | | 59.60 19 | 66.27 288 | 63.54 289 | 74.45 293 | 84.00 255 | 51.55 319 | 67.08 343 | 83.53 315 | 58.78 305 | 54.94 307 | 80.31 275 | 34.54 312 | 93.23 222 | 40.64 326 | 68.03 243 | 78.58 333 |
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
miper_lstm_enhance | | | 73.05 239 | 71.73 241 | 77.03 275 | 83.80 256 | 58.32 279 | 81.76 296 | 88.88 253 | 69.80 220 | 61.01 280 | 78.23 292 | 57.19 148 | 87.51 314 | 65.34 220 | 59.53 306 | 85.27 270 |
|
Patchmatch-test | | | 65.86 290 | 60.94 302 | 80.62 221 | 83.75 257 | 58.83 273 | 58.91 350 | 75.26 338 | 44.50 345 | 50.95 324 | 77.09 302 | 58.81 137 | 87.90 308 | 35.13 339 | 64.03 273 | 95.12 67 |
|
nrg030 | | | 80.93 126 | 79.86 128 | 84.13 139 | 83.69 258 | 68.83 55 | 93.23 96 | 91.20 168 | 75.55 96 | 75.06 143 | 88.22 181 | 63.04 98 | 94.74 173 | 81.88 83 | 66.88 251 | 88.82 203 |
|
GA-MVS | | | 78.33 175 | 76.23 186 | 84.65 125 | 83.65 259 | 66.30 124 | 91.44 164 | 90.14 207 | 76.01 92 | 70.32 193 | 84.02 225 | 42.50 273 | 94.72 174 | 70.98 164 | 77.00 191 | 92.94 143 |
|
FMVSNet1 | | | 72.71 246 | 69.91 253 | 81.10 211 | 83.60 260 | 65.11 156 | 90.01 216 | 90.32 196 | 63.92 267 | 63.56 266 | 80.25 277 | 36.35 307 | 91.54 273 | 54.46 271 | 66.75 252 | 86.64 236 |
|
OPM-MVS | | | 79.00 158 | 78.09 155 | 81.73 194 | 83.52 261 | 63.83 189 | 91.64 160 | 90.30 200 | 76.36 90 | 71.97 177 | 89.93 162 | 46.30 257 | 95.17 162 | 75.10 132 | 77.70 180 | 86.19 247 |
|
tfpnnormal | | | 70.10 259 | 67.36 265 | 78.32 259 | 83.45 262 | 60.97 242 | 88.85 240 | 92.77 107 | 64.85 262 | 60.83 282 | 78.53 289 | 43.52 271 | 93.48 218 | 31.73 348 | 61.70 294 | 80.52 318 |
|
Effi-MVS+-dtu | | | 76.14 203 | 75.28 197 | 78.72 256 | 83.22 263 | 55.17 304 | 89.87 220 | 87.78 278 | 75.42 98 | 67.98 224 | 81.43 256 | 45.08 263 | 92.52 248 | 75.08 133 | 71.63 220 | 88.48 208 |
|
mvs-test1 | | | 78.74 166 | 77.95 159 | 81.14 208 | 83.22 263 | 57.13 292 | 93.96 65 | 87.78 278 | 75.42 98 | 72.68 163 | 90.80 146 | 45.08 263 | 94.54 181 | 75.08 133 | 77.49 185 | 91.74 167 |
|
CR-MVSNet | | | 73.79 235 | 70.82 247 | 82.70 166 | 83.15 265 | 67.96 76 | 70.25 333 | 84.00 312 | 73.67 133 | 69.97 199 | 72.41 323 | 57.82 143 | 89.48 296 | 52.99 278 | 73.13 209 | 90.64 185 |
|
RPMNet | | | 70.42 258 | 65.68 274 | 84.63 127 | 83.15 265 | 67.96 76 | 70.25 333 | 90.45 190 | 46.83 341 | 69.97 199 | 65.10 340 | 56.48 164 | 95.30 161 | 35.79 338 | 73.13 209 | 90.64 185 |
|
DU-MVS | | | 76.86 194 | 75.84 191 | 79.91 235 | 82.96 267 | 60.26 255 | 91.26 177 | 91.54 155 | 76.46 89 | 68.88 212 | 86.35 200 | 56.16 165 | 92.13 260 | 66.38 207 | 62.55 282 | 87.35 225 |
|
NR-MVSNet | | | 76.05 207 | 74.59 203 | 80.44 222 | 82.96 267 | 62.18 226 | 90.83 193 | 91.73 147 | 77.12 80 | 60.96 281 | 86.35 200 | 59.28 132 | 91.80 267 | 60.74 247 | 61.34 297 | 87.35 225 |
|
XXY-MVS | | | 77.94 181 | 76.44 183 | 82.43 172 | 82.60 269 | 64.44 173 | 92.01 141 | 91.83 144 | 73.59 134 | 70.00 198 | 85.82 207 | 54.43 187 | 94.76 171 | 69.63 175 | 68.02 244 | 88.10 216 |
|
TranMVSNet+NR-MVSNet | | | 75.86 212 | 74.52 206 | 79.89 236 | 82.44 270 | 60.64 251 | 91.37 172 | 91.37 163 | 76.63 86 | 67.65 230 | 86.21 203 | 52.37 206 | 91.55 272 | 61.84 242 | 60.81 300 | 87.48 221 |
|
IterMVS | | | 72.65 248 | 70.83 246 | 78.09 263 | 82.17 271 | 62.96 210 | 87.64 259 | 86.28 290 | 71.56 193 | 60.44 283 | 78.85 288 | 45.42 262 | 86.66 318 | 63.30 232 | 61.83 290 | 84.65 275 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
Patchmtry | | | 67.53 282 | 63.93 287 | 78.34 258 | 82.12 272 | 64.38 177 | 68.72 337 | 84.00 312 | 48.23 338 | 59.24 288 | 72.41 323 | 57.82 143 | 89.27 297 | 46.10 304 | 56.68 316 | 81.36 310 |
|
PatchT | | | 69.11 267 | 65.37 278 | 80.32 224 | 82.07 273 | 63.68 196 | 67.96 342 | 87.62 280 | 50.86 330 | 69.37 204 | 65.18 339 | 57.09 149 | 88.53 303 | 41.59 322 | 66.60 253 | 88.74 204 |
|
MIMVSNet | | | 71.64 251 | 68.44 260 | 81.23 206 | 81.97 274 | 64.44 173 | 73.05 330 | 88.80 256 | 69.67 221 | 64.59 255 | 74.79 316 | 32.79 316 | 87.82 309 | 53.99 273 | 76.35 195 | 91.42 172 |
|
MVP-Stereo | | | 77.12 193 | 76.23 186 | 79.79 239 | 81.72 275 | 66.34 123 | 89.29 230 | 90.88 182 | 70.56 212 | 62.01 278 | 82.88 236 | 49.34 231 | 94.13 194 | 65.55 218 | 93.80 41 | 78.88 330 |
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application. |
IterMVS-SCA-FT | | | 71.55 252 | 69.97 251 | 76.32 282 | 81.48 276 | 60.67 250 | 87.64 259 | 85.99 294 | 66.17 253 | 59.50 287 | 78.88 287 | 45.53 260 | 83.65 331 | 62.58 238 | 61.93 289 | 84.63 276 |
|
COLMAP_ROB |  | 57.96 20 | 62.98 303 | 59.65 305 | 72.98 304 | 81.44 277 | 53.00 313 | 83.75 282 | 75.53 337 | 48.34 337 | 48.81 330 | 81.40 258 | 24.14 339 | 90.30 284 | 32.95 344 | 60.52 303 | 75.65 340 |
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
JIA-IIPM | | | 66.06 289 | 62.45 296 | 76.88 279 | 81.42 278 | 54.45 308 | 57.49 351 | 88.67 260 | 49.36 334 | 63.86 263 | 46.86 348 | 56.06 168 | 90.25 285 | 49.53 287 | 68.83 237 | 85.95 255 |
|
WR-MVS_H | | | 70.59 256 | 69.94 252 | 72.53 307 | 81.03 279 | 51.43 320 | 87.35 262 | 92.03 136 | 67.38 244 | 60.23 284 | 80.70 268 | 55.84 172 | 83.45 333 | 46.33 303 | 58.58 311 | 82.72 296 |
|
Fast-Effi-MVS+-dtu | | | 75.04 223 | 73.37 223 | 80.07 231 | 80.86 280 | 59.52 266 | 91.20 181 | 85.38 298 | 71.90 174 | 65.20 250 | 84.84 217 | 41.46 277 | 92.97 226 | 66.50 206 | 72.96 211 | 87.73 218 |
|
Baseline_NR-MVSNet | | | 73.99 232 | 72.83 227 | 77.48 269 | 80.78 281 | 59.29 270 | 91.79 151 | 84.55 307 | 68.85 231 | 68.99 210 | 80.70 268 | 56.16 165 | 92.04 263 | 62.67 237 | 60.98 299 | 81.11 311 |
|
CP-MVSNet | | | 70.50 257 | 69.91 253 | 72.26 310 | 80.71 282 | 51.00 323 | 87.23 263 | 90.30 200 | 67.84 238 | 59.64 286 | 82.69 238 | 50.23 224 | 82.30 341 | 51.28 280 | 59.28 307 | 83.46 286 |
|
v8 | | | 75.35 219 | 73.26 224 | 81.61 198 | 80.67 283 | 66.82 110 | 89.54 226 | 89.27 236 | 71.65 186 | 63.30 269 | 80.30 276 | 54.99 180 | 94.06 199 | 67.33 197 | 62.33 285 | 83.94 279 |
|
PS-MVSNAJss | | | 77.26 191 | 76.31 185 | 80.13 230 | 80.64 284 | 59.16 271 | 90.63 201 | 91.06 176 | 72.80 149 | 68.58 219 | 84.57 221 | 53.55 195 | 93.96 206 | 72.97 144 | 71.96 219 | 87.27 228 |
|
TransMVSNet (Re) | | | 70.07 260 | 67.66 264 | 77.31 273 | 80.62 285 | 59.13 272 | 91.78 153 | 84.94 303 | 65.97 254 | 60.08 285 | 80.44 273 | 50.78 218 | 91.87 265 | 48.84 290 | 45.46 337 | 80.94 313 |
|
v2v482 | | | 77.42 188 | 75.65 194 | 82.73 165 | 80.38 286 | 67.13 101 | 91.85 149 | 90.23 204 | 75.09 106 | 69.37 204 | 83.39 233 | 53.79 193 | 94.44 185 | 71.77 159 | 65.00 264 | 86.63 239 |
|
MVS_0304 | | | 68.99 270 | 67.23 267 | 74.28 296 | 80.36 287 | 52.54 314 | 87.01 266 | 86.36 288 | 59.89 300 | 66.22 244 | 73.56 319 | 24.25 338 | 88.03 307 | 57.34 263 | 70.11 228 | 82.27 304 |
|
PS-CasMVS | | | 69.86 263 | 69.13 257 | 72.07 313 | 80.35 288 | 50.57 325 | 87.02 265 | 89.75 220 | 67.27 245 | 59.19 290 | 82.28 242 | 46.58 254 | 82.24 342 | 50.69 282 | 59.02 308 | 83.39 288 |
|
v10 | | | 74.77 226 | 72.54 233 | 81.46 200 | 80.33 289 | 66.71 114 | 89.15 235 | 89.08 247 | 70.94 204 | 63.08 270 | 79.86 281 | 52.52 204 | 94.04 202 | 65.70 215 | 62.17 286 | 83.64 281 |
|
test0.0.03 1 | | | 72.76 244 | 72.71 230 | 72.88 305 | 80.25 290 | 47.99 335 | 91.22 179 | 89.45 230 | 71.51 195 | 62.51 276 | 87.66 187 | 53.83 191 | 85.06 324 | 50.16 284 | 67.84 247 | 85.58 262 |
|
v1144 | | | 76.73 199 | 74.88 199 | 82.27 178 | 80.23 291 | 66.60 117 | 91.68 158 | 90.21 206 | 73.69 131 | 69.06 209 | 81.89 247 | 52.73 203 | 94.40 186 | 69.21 181 | 65.23 261 | 85.80 258 |
|
v148 | | | 76.19 202 | 74.47 207 | 81.36 202 | 80.05 292 | 64.44 173 | 91.75 156 | 90.23 204 | 73.68 132 | 67.13 237 | 80.84 267 | 55.92 171 | 93.86 212 | 68.95 184 | 61.73 293 | 85.76 261 |
|
v1192 | | | 75.98 209 | 73.92 217 | 82.15 183 | 79.73 293 | 66.24 127 | 91.22 179 | 89.75 220 | 72.67 151 | 68.49 220 | 81.42 257 | 49.86 227 | 94.27 190 | 67.08 198 | 65.02 263 | 85.95 255 |
|
AllTest | | | 61.66 305 | 58.06 309 | 72.46 308 | 79.57 294 | 51.42 321 | 80.17 311 | 68.61 348 | 51.25 328 | 45.88 335 | 81.23 260 | 19.86 348 | 86.58 319 | 38.98 330 | 57.01 314 | 79.39 326 |
|
TestCases | | | | | 72.46 308 | 79.57 294 | 51.42 321 | | 68.61 348 | 51.25 328 | 45.88 335 | 81.23 260 | 19.86 348 | 86.58 319 | 38.98 330 | 57.01 314 | 79.39 326 |
|
MDA-MVSNet-bldmvs | | | 61.54 307 | 57.70 311 | 73.05 303 | 79.53 296 | 57.00 294 | 83.08 291 | 81.23 323 | 57.57 308 | 34.91 350 | 72.45 322 | 32.79 316 | 86.26 321 | 35.81 337 | 41.95 341 | 75.89 339 |
|
v144192 | | | 76.05 207 | 74.03 215 | 82.12 186 | 79.50 297 | 66.55 119 | 91.39 169 | 89.71 226 | 72.30 162 | 68.17 222 | 81.33 259 | 51.75 210 | 94.03 203 | 67.94 190 | 64.19 271 | 85.77 259 |
|
v1921920 | | | 75.63 217 | 73.49 222 | 82.06 190 | 79.38 298 | 66.35 122 | 91.07 187 | 89.48 229 | 71.98 171 | 67.99 223 | 81.22 262 | 49.16 236 | 93.90 209 | 66.56 203 | 64.56 270 | 85.92 257 |
|
PEN-MVS | | | 69.46 265 | 68.56 259 | 72.17 312 | 79.27 299 | 49.71 329 | 86.90 267 | 89.24 237 | 67.24 248 | 59.08 291 | 82.51 241 | 47.23 251 | 83.54 332 | 48.42 292 | 57.12 312 | 83.25 289 |
|
v1240 | | | 75.21 222 | 72.98 226 | 81.88 192 | 79.20 300 | 66.00 131 | 90.75 196 | 89.11 246 | 71.63 190 | 67.41 234 | 81.22 262 | 47.36 250 | 93.87 210 | 65.46 219 | 64.72 268 | 85.77 259 |
|
pmmvs4 | | | 73.92 233 | 71.81 240 | 80.25 228 | 79.17 301 | 65.24 150 | 87.43 261 | 87.26 285 | 67.64 243 | 63.46 267 | 83.91 227 | 48.96 238 | 91.53 276 | 62.94 234 | 65.49 257 | 83.96 278 |
|
D2MVS | | | 73.80 234 | 72.02 238 | 79.15 253 | 79.15 302 | 62.97 209 | 88.58 245 | 90.07 209 | 72.94 145 | 59.22 289 | 78.30 290 | 42.31 275 | 92.70 241 | 65.59 217 | 72.00 218 | 81.79 308 |
|
V42 | | | 76.46 201 | 74.55 205 | 82.19 182 | 79.14 303 | 67.82 80 | 90.26 209 | 89.42 232 | 73.75 129 | 68.63 218 | 81.89 247 | 51.31 214 | 94.09 196 | 71.69 161 | 64.84 265 | 84.66 274 |
|
pm-mvs1 | | | 72.89 242 | 71.09 245 | 78.26 261 | 79.10 304 | 57.62 286 | 90.80 194 | 89.30 235 | 67.66 241 | 62.91 272 | 81.78 249 | 49.11 237 | 92.95 227 | 60.29 251 | 58.89 309 | 84.22 277 |
|
our_test_3 | | | 68.29 275 | 64.69 281 | 79.11 254 | 78.92 305 | 64.85 165 | 88.40 249 | 85.06 301 | 60.32 296 | 52.68 315 | 76.12 310 | 40.81 279 | 89.80 295 | 44.25 312 | 55.65 317 | 82.67 300 |
|
ppachtmachnet_test | | | 67.72 279 | 63.70 288 | 79.77 240 | 78.92 305 | 66.04 130 | 88.68 243 | 82.90 321 | 60.11 298 | 55.45 306 | 75.96 311 | 39.19 283 | 90.55 281 | 39.53 328 | 52.55 326 | 82.71 297 |
|
TinyColmap | | | 60.32 309 | 56.42 315 | 72.00 314 | 78.78 307 | 53.18 312 | 78.36 321 | 75.64 335 | 52.30 325 | 41.59 346 | 75.82 313 | 14.76 353 | 88.35 304 | 35.84 336 | 54.71 322 | 74.46 341 |
|
SixPastTwentyTwo | | | 64.92 293 | 61.78 300 | 74.34 295 | 78.74 308 | 49.76 328 | 83.42 287 | 79.51 330 | 62.86 276 | 50.27 325 | 77.35 297 | 30.92 326 | 90.49 283 | 45.89 305 | 47.06 335 | 82.78 293 |
|
EG-PatchMatch MVS | | | 68.55 272 | 65.41 277 | 77.96 264 | 78.69 309 | 62.93 211 | 89.86 221 | 89.17 241 | 60.55 293 | 50.27 325 | 77.73 296 | 22.60 343 | 94.06 199 | 47.18 300 | 72.65 214 | 76.88 337 |
|
pmmvs5 | | | 73.35 237 | 71.52 242 | 78.86 255 | 78.64 310 | 60.61 252 | 91.08 185 | 86.90 286 | 67.69 240 | 63.32 268 | 83.64 228 | 44.33 267 | 90.53 282 | 62.04 241 | 66.02 256 | 85.46 265 |
|
UniMVSNet_ETH3D | | | 72.74 245 | 70.53 248 | 79.36 248 | 78.62 311 | 56.64 295 | 85.01 275 | 89.20 239 | 63.77 269 | 64.84 254 | 84.44 222 | 34.05 313 | 91.86 266 | 63.94 228 | 70.89 227 | 89.57 197 |
|
XVG-OURS | | | 74.25 230 | 72.46 234 | 79.63 243 | 78.45 312 | 57.59 287 | 80.33 308 | 87.39 282 | 63.86 268 | 68.76 216 | 89.62 165 | 40.50 280 | 91.72 269 | 69.00 183 | 74.25 201 | 89.58 196 |
|
XVG-OURS-SEG-HR | | | 74.70 227 | 73.08 225 | 79.57 245 | 78.25 313 | 57.33 291 | 80.49 306 | 87.32 283 | 63.22 273 | 68.76 216 | 90.12 161 | 44.89 265 | 91.59 271 | 70.55 170 | 74.09 203 | 89.79 193 |
|
MDA-MVSNet_test_wron | | | 63.78 300 | 60.16 303 | 74.64 291 | 78.15 314 | 60.41 253 | 83.49 284 | 84.03 310 | 56.17 319 | 39.17 348 | 71.59 329 | 37.22 300 | 83.24 336 | 42.87 317 | 48.73 332 | 80.26 321 |
|
YYNet1 | | | 63.76 301 | 60.14 304 | 74.62 292 | 78.06 315 | 60.19 258 | 83.46 286 | 83.99 314 | 56.18 318 | 39.25 347 | 71.56 330 | 37.18 301 | 83.34 334 | 42.90 316 | 48.70 333 | 80.32 320 |
|
DTE-MVSNet | | | 68.46 274 | 67.33 266 | 71.87 315 | 77.94 316 | 49.00 332 | 86.16 272 | 88.58 264 | 66.36 252 | 58.19 295 | 82.21 244 | 46.36 255 | 83.87 330 | 44.97 310 | 55.17 319 | 82.73 295 |
|
USDC | | | 67.43 284 | 64.51 283 | 76.19 283 | 77.94 316 | 55.29 303 | 78.38 320 | 85.00 302 | 73.17 140 | 48.36 331 | 80.37 274 | 21.23 345 | 92.48 250 | 52.15 279 | 64.02 274 | 80.81 315 |
|
jajsoiax | | | 73.05 239 | 71.51 243 | 77.67 266 | 77.46 318 | 54.83 305 | 88.81 241 | 90.04 213 | 69.13 229 | 62.85 273 | 83.51 230 | 31.16 324 | 92.75 238 | 70.83 165 | 69.80 229 | 85.43 266 |
|
mvs_tets | | | 72.71 246 | 71.11 244 | 77.52 267 | 77.41 319 | 54.52 307 | 88.45 248 | 89.76 219 | 68.76 234 | 62.70 274 | 83.26 234 | 29.49 328 | 92.71 239 | 70.51 171 | 69.62 231 | 85.34 268 |
|
N_pmnet | | | 50.55 318 | 49.11 321 | 54.88 333 | 77.17 320 | 4.02 366 | 84.36 278 | 2.00 365 | 48.59 335 | 45.86 337 | 68.82 334 | 32.22 319 | 82.80 338 | 31.58 349 | 51.38 328 | 77.81 335 |
|
test_djsdf | | | 73.76 236 | 72.56 232 | 77.39 271 | 77.00 321 | 53.93 309 | 89.07 237 | 90.69 185 | 65.80 255 | 63.92 262 | 82.03 246 | 43.14 272 | 92.67 242 | 72.83 146 | 68.53 240 | 85.57 263 |
|
bset_n11_16_dypcd | | | 75.95 211 | 74.16 212 | 81.30 204 | 76.91 322 | 65.14 155 | 88.89 239 | 87.48 281 | 74.30 116 | 69.90 202 | 83.40 232 | 42.16 276 | 92.42 251 | 78.39 113 | 66.03 255 | 86.32 243 |
|
OpenMVS_ROB |  | 61.12 18 | 66.39 287 | 62.92 293 | 76.80 280 | 76.51 323 | 57.77 283 | 89.22 232 | 83.41 317 | 55.48 320 | 53.86 312 | 77.84 295 | 26.28 337 | 93.95 207 | 34.90 340 | 68.76 238 | 78.68 332 |
|
v7n | | | 71.31 253 | 68.65 258 | 79.28 249 | 76.40 324 | 60.77 246 | 86.71 269 | 89.45 230 | 64.17 266 | 58.77 294 | 78.24 291 | 44.59 266 | 93.54 216 | 57.76 260 | 61.75 292 | 83.52 284 |
|
K. test v3 | | | 63.09 302 | 59.61 306 | 73.53 300 | 76.26 325 | 49.38 331 | 83.27 288 | 77.15 332 | 64.35 264 | 47.77 333 | 72.32 325 | 28.73 330 | 87.79 310 | 49.93 286 | 36.69 347 | 83.41 287 |
|
RPSCF | | | 64.24 297 | 61.98 299 | 71.01 317 | 76.10 326 | 45.00 341 | 75.83 327 | 75.94 334 | 46.94 340 | 58.96 292 | 84.59 220 | 31.40 323 | 82.00 343 | 47.76 298 | 60.33 305 | 86.04 252 |
|
OurMVSNet-221017-0 | | | 64.68 294 | 62.17 298 | 72.21 311 | 76.08 327 | 47.35 338 | 80.67 305 | 81.02 324 | 56.19 317 | 51.60 319 | 79.66 284 | 27.05 335 | 88.56 302 | 53.60 276 | 53.63 324 | 80.71 316 |
|
Anonymous20231206 | | | 67.53 282 | 65.78 272 | 72.79 306 | 74.95 328 | 47.59 337 | 88.23 250 | 87.32 283 | 61.75 289 | 58.07 297 | 77.29 299 | 37.79 296 | 87.29 316 | 42.91 315 | 63.71 276 | 83.48 285 |
|
ITE_SJBPF | | | | | 70.43 318 | 74.44 329 | 47.06 339 | | 77.32 331 | 60.16 297 | 54.04 311 | 83.53 229 | 23.30 342 | 84.01 328 | 43.07 314 | 61.58 296 | 80.21 323 |
|
EU-MVSNet | | | 64.01 298 | 63.01 292 | 67.02 327 | 74.40 330 | 38.86 353 | 83.27 288 | 86.19 292 | 45.11 343 | 54.27 309 | 81.15 265 | 36.91 305 | 80.01 346 | 48.79 291 | 57.02 313 | 82.19 306 |
|
XVG-ACMP-BASELINE | | | 68.04 277 | 65.53 276 | 75.56 286 | 74.06 331 | 52.37 315 | 78.43 319 | 85.88 295 | 62.03 284 | 58.91 293 | 81.21 264 | 20.38 347 | 91.15 279 | 60.69 248 | 68.18 242 | 83.16 291 |
|
CL-MVSNet_2432*1600 | | | 69.92 261 | 68.09 263 | 75.41 287 | 73.25 332 | 55.90 300 | 90.05 215 | 89.90 216 | 69.96 217 | 61.96 279 | 76.54 305 | 51.05 217 | 87.64 311 | 49.51 288 | 50.59 330 | 82.70 298 |
|
anonymousdsp | | | 71.14 254 | 69.37 256 | 76.45 281 | 72.95 333 | 54.71 306 | 84.19 279 | 88.88 253 | 61.92 286 | 62.15 277 | 79.77 282 | 38.14 291 | 91.44 278 | 68.90 185 | 67.45 249 | 83.21 290 |
|
lessismore_v0 | | | | | 73.72 299 | 72.93 334 | 47.83 336 | | 61.72 356 | | 45.86 337 | 73.76 318 | 28.63 332 | 89.81 293 | 47.75 299 | 31.37 351 | 83.53 283 |
|
pmmvs6 | | | 67.57 281 | 64.76 280 | 76.00 285 | 72.82 335 | 53.37 311 | 88.71 242 | 86.78 287 | 53.19 324 | 57.58 302 | 78.03 294 | 35.33 310 | 92.41 252 | 55.56 268 | 54.88 321 | 82.21 305 |
|
testgi | | | 64.48 296 | 62.87 294 | 69.31 320 | 71.24 336 | 40.62 348 | 85.49 273 | 79.92 328 | 65.36 259 | 54.18 310 | 83.49 231 | 23.74 341 | 84.55 325 | 41.60 321 | 60.79 301 | 82.77 294 |
|
Patchmatch-RL test | | | 68.17 276 | 64.49 284 | 79.19 250 | 71.22 337 | 53.93 309 | 70.07 335 | 71.54 345 | 69.22 226 | 56.79 304 | 62.89 342 | 56.58 162 | 88.61 300 | 69.53 177 | 52.61 325 | 95.03 73 |
|
Gipuma |  | | 34.91 324 | 31.44 327 | 45.30 337 | 70.99 338 | 39.64 352 | 19.85 358 | 72.56 342 | 20.10 356 | 16.16 357 | 21.47 358 | 5.08 362 | 71.16 350 | 13.07 355 | 43.70 340 | 25.08 354 |
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
UnsupCasMVSNet_eth | | | 65.79 291 | 63.10 291 | 73.88 297 | 70.71 339 | 50.29 327 | 81.09 303 | 89.88 217 | 72.58 153 | 49.25 329 | 74.77 317 | 32.57 318 | 87.43 315 | 55.96 267 | 41.04 343 | 83.90 280 |
|
CMPMVS |  | 48.56 21 | 66.77 286 | 64.41 285 | 73.84 298 | 70.65 340 | 50.31 326 | 77.79 324 | 85.73 297 | 45.54 342 | 44.76 340 | 82.14 245 | 35.40 309 | 90.14 291 | 63.18 233 | 74.54 200 | 81.07 312 |
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
test20.03 | | | 63.83 299 | 62.65 295 | 67.38 326 | 70.58 341 | 39.94 349 | 86.57 270 | 84.17 309 | 63.29 272 | 51.86 318 | 77.30 298 | 37.09 303 | 82.47 339 | 38.87 332 | 54.13 323 | 79.73 324 |
|
MIMVSNet1 | | | 60.16 311 | 57.33 312 | 68.67 321 | 69.71 342 | 44.13 343 | 78.92 317 | 84.21 308 | 55.05 321 | 44.63 341 | 71.85 327 | 23.91 340 | 81.54 345 | 32.63 346 | 55.03 320 | 80.35 319 |
|
pmmvs-eth3d | | | 65.53 292 | 62.32 297 | 75.19 288 | 69.39 343 | 59.59 264 | 82.80 293 | 83.43 316 | 62.52 281 | 51.30 322 | 72.49 321 | 32.86 315 | 87.16 317 | 55.32 269 | 50.73 329 | 78.83 331 |
|
UnsupCasMVSNet_bld | | | 61.60 306 | 57.71 310 | 73.29 302 | 68.73 344 | 51.64 318 | 78.61 318 | 89.05 249 | 57.20 312 | 46.11 334 | 61.96 343 | 28.70 331 | 88.60 301 | 50.08 285 | 38.90 345 | 79.63 325 |
|
Anonymous20240521 | | | 62.09 304 | 59.08 307 | 71.10 316 | 67.19 345 | 48.72 333 | 83.91 281 | 85.23 300 | 50.38 331 | 47.84 332 | 71.22 331 | 20.74 346 | 85.51 322 | 46.47 302 | 58.75 310 | 79.06 329 |
|
DIV-MVS_2432*1600 | | | 60.87 308 | 58.60 308 | 67.68 324 | 66.13 346 | 39.93 350 | 75.63 328 | 84.70 305 | 57.32 311 | 49.57 328 | 68.45 335 | 29.55 327 | 82.87 337 | 48.09 293 | 47.94 334 | 80.25 322 |
|
new-patchmatchnet | | | 59.30 313 | 56.48 314 | 67.79 323 | 65.86 347 | 44.19 342 | 82.47 294 | 81.77 322 | 59.94 299 | 43.65 344 | 66.20 338 | 27.67 333 | 81.68 344 | 39.34 329 | 41.40 342 | 77.50 336 |
|
PM-MVS | | | 59.40 312 | 56.59 313 | 67.84 322 | 63.63 348 | 41.86 345 | 76.76 325 | 63.22 354 | 59.01 304 | 51.07 323 | 72.27 326 | 11.72 355 | 83.25 335 | 61.34 244 | 50.28 331 | 78.39 334 |
|
DSMNet-mixed | | | 56.78 314 | 54.44 317 | 63.79 329 | 63.21 349 | 29.44 357 | 64.43 345 | 64.10 353 | 42.12 347 | 51.32 321 | 71.60 328 | 31.76 321 | 75.04 348 | 36.23 335 | 65.20 262 | 86.87 233 |
|
new_pmnet | | | 49.31 319 | 46.44 322 | 57.93 331 | 62.84 350 | 40.74 347 | 68.47 339 | 62.96 355 | 36.48 349 | 35.09 349 | 57.81 345 | 14.97 352 | 72.18 349 | 32.86 345 | 46.44 336 | 60.88 349 |
|
LF4IMVS | | | 54.01 317 | 52.12 318 | 59.69 330 | 62.41 351 | 39.91 351 | 68.59 338 | 68.28 350 | 42.96 346 | 44.55 342 | 75.18 314 | 14.09 354 | 68.39 351 | 41.36 323 | 51.68 327 | 70.78 344 |
|
ambc | | | | | 69.61 319 | 61.38 352 | 41.35 346 | 49.07 354 | 85.86 296 | | 50.18 327 | 66.40 337 | 10.16 356 | 88.14 306 | 45.73 306 | 44.20 338 | 79.32 328 |
|
TDRefinement | | | 55.28 316 | 51.58 319 | 66.39 328 | 59.53 353 | 46.15 340 | 76.23 326 | 72.80 341 | 44.60 344 | 42.49 345 | 76.28 309 | 15.29 351 | 82.39 340 | 33.20 343 | 43.75 339 | 70.62 345 |
|
pmmvs3 | | | 55.51 315 | 51.50 320 | 67.53 325 | 57.90 354 | 50.93 324 | 80.37 307 | 73.66 340 | 40.63 348 | 44.15 343 | 64.75 341 | 16.30 350 | 78.97 347 | 44.77 311 | 40.98 344 | 72.69 342 |
|
DeepMVS_CX |  | | | | 34.71 340 | 51.45 355 | 24.73 361 | | 28.48 364 | 31.46 351 | 17.49 356 | 52.75 346 | 5.80 361 | 42.60 360 | 18.18 353 | 19.42 353 | 36.81 352 |
|
FPMVS | | | 45.64 320 | 43.10 323 | 53.23 335 | 51.42 356 | 36.46 354 | 64.97 344 | 71.91 343 | 29.13 352 | 27.53 351 | 61.55 344 | 9.83 357 | 65.01 355 | 16.00 354 | 55.58 318 | 58.22 350 |
|
wuyk23d | | | 11.30 331 | 10.95 334 | 12.33 344 | 48.05 357 | 19.89 362 | 25.89 357 | 1.92 366 | 3.58 360 | 3.12 362 | 1.37 362 | 0.64 367 | 15.77 362 | 6.23 360 | 7.77 360 | 1.35 358 |
|
PMMVS2 | | | 37.93 323 | 33.61 326 | 50.92 336 | 46.31 358 | 24.76 360 | 60.55 349 | 50.05 357 | 28.94 353 | 20.93 353 | 47.59 347 | 4.41 364 | 65.13 354 | 25.14 350 | 18.55 354 | 62.87 348 |
|
E-PMN | | | 24.61 326 | 24.00 330 | 26.45 341 | 43.74 359 | 18.44 363 | 60.86 347 | 39.66 359 | 15.11 357 | 9.53 360 | 22.10 357 | 6.52 360 | 46.94 358 | 8.31 358 | 10.14 356 | 13.98 356 |
|
EMVS | | | 23.76 328 | 23.20 332 | 25.46 342 | 41.52 360 | 16.90 364 | 60.56 348 | 38.79 362 | 14.62 358 | 8.99 361 | 20.24 360 | 7.35 359 | 45.82 359 | 7.25 359 | 9.46 357 | 13.64 357 |
|
LCM-MVSNet | | | 40.54 321 | 35.79 324 | 54.76 334 | 36.92 361 | 30.81 356 | 51.41 352 | 69.02 347 | 22.07 354 | 24.63 352 | 45.37 350 | 4.56 363 | 65.81 353 | 33.67 341 | 34.50 350 | 67.67 346 |
|
ANet_high | | | 40.27 322 | 35.20 325 | 55.47 332 | 34.74 362 | 34.47 355 | 63.84 346 | 71.56 344 | 48.42 336 | 18.80 355 | 41.08 353 | 9.52 358 | 64.45 356 | 20.18 352 | 8.66 359 | 67.49 347 |
|
MVE |  | 24.84 23 | 24.35 327 | 19.77 333 | 38.09 339 | 34.56 363 | 26.92 359 | 26.57 356 | 38.87 361 | 11.73 359 | 11.37 359 | 27.44 355 | 1.37 366 | 50.42 357 | 11.41 356 | 14.60 355 | 36.93 351 |
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
PMVS |  | 26.43 22 | 31.84 325 | 28.16 328 | 42.89 338 | 25.87 364 | 27.58 358 | 50.92 353 | 49.78 358 | 21.37 355 | 14.17 358 | 40.81 354 | 2.01 365 | 66.62 352 | 9.61 357 | 38.88 346 | 34.49 353 |
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
tmp_tt | | | 22.26 329 | 23.75 331 | 17.80 343 | 5.23 365 | 12.06 365 | 35.26 355 | 39.48 360 | 2.82 361 | 18.94 354 | 44.20 351 | 22.23 344 | 24.64 361 | 36.30 334 | 9.31 358 | 16.69 355 |
|
testmvs | | | 7.23 333 | 9.62 336 | 0.06 346 | 0.04 366 | 0.02 368 | 84.98 276 | 0.02 367 | 0.03 362 | 0.18 363 | 1.21 363 | 0.01 369 | 0.02 363 | 0.14 361 | 0.01 361 | 0.13 360 |
|
test123 | | | 6.92 334 | 9.21 337 | 0.08 345 | 0.03 367 | 0.05 367 | 81.65 299 | 0.01 368 | 0.02 363 | 0.14 364 | 0.85 364 | 0.03 368 | 0.02 363 | 0.12 362 | 0.00 362 | 0.16 359 |
|
uanet_test | | | 0.00 336 | 0.00 339 | 0.00 347 | 0.00 368 | 0.00 369 | 0.00 359 | 0.00 369 | 0.00 364 | 0.00 365 | 0.00 365 | 0.00 370 | 0.00 365 | 0.00 363 | 0.00 362 | 0.00 361 |
|
cdsmvs_eth3d_5k | | | 19.86 330 | 26.47 329 | 0.00 347 | 0.00 368 | 0.00 369 | 0.00 359 | 93.45 79 | 0.00 364 | 0.00 365 | 95.27 47 | 49.56 229 | 0.00 365 | 0.00 363 | 0.00 362 | 0.00 361 |
|
pcd_1.5k_mvsjas | | | 4.46 335 | 5.95 338 | 0.00 347 | 0.00 368 | 0.00 369 | 0.00 359 | 0.00 369 | 0.00 364 | 0.00 365 | 0.00 365 | 53.55 195 | 0.00 365 | 0.00 363 | 0.00 362 | 0.00 361 |
|
sosnet-low-res | | | 0.00 336 | 0.00 339 | 0.00 347 | 0.00 368 | 0.00 369 | 0.00 359 | 0.00 369 | 0.00 364 | 0.00 365 | 0.00 365 | 0.00 370 | 0.00 365 | 0.00 363 | 0.00 362 | 0.00 361 |
|
sosnet | | | 0.00 336 | 0.00 339 | 0.00 347 | 0.00 368 | 0.00 369 | 0.00 359 | 0.00 369 | 0.00 364 | 0.00 365 | 0.00 365 | 0.00 370 | 0.00 365 | 0.00 363 | 0.00 362 | 0.00 361 |
|
uncertanet | | | 0.00 336 | 0.00 339 | 0.00 347 | 0.00 368 | 0.00 369 | 0.00 359 | 0.00 369 | 0.00 364 | 0.00 365 | 0.00 365 | 0.00 370 | 0.00 365 | 0.00 363 | 0.00 362 | 0.00 361 |
|
Regformer | | | 0.00 336 | 0.00 339 | 0.00 347 | 0.00 368 | 0.00 369 | 0.00 359 | 0.00 369 | 0.00 364 | 0.00 365 | 0.00 365 | 0.00 370 | 0.00 365 | 0.00 363 | 0.00 362 | 0.00 361 |
|
ab-mvs-re | | | 7.91 332 | 10.55 335 | 0.00 347 | 0.00 368 | 0.00 369 | 0.00 359 | 0.00 369 | 0.00 364 | 0.00 365 | 94.95 58 | 0.00 370 | 0.00 365 | 0.00 363 | 0.00 362 | 0.00 361 |
|
uanet | | | 0.00 336 | 0.00 339 | 0.00 347 | 0.00 368 | 0.00 369 | 0.00 359 | 0.00 369 | 0.00 364 | 0.00 365 | 0.00 365 | 0.00 370 | 0.00 365 | 0.00 363 | 0.00 362 | 0.00 361 |
|
test_241102_TWO | | | | | | | | | 94.41 43 | 71.65 186 | 92.07 5 | 97.21 5 | 74.58 14 | 99.11 4 | 92.34 6 | 95.36 12 | 96.59 13 |
|
test_0728_THIRD | | | | | | | | | | 72.48 156 | 90.55 12 | 96.93 10 | 76.24 9 | 99.08 9 | 91.53 12 | 94.99 15 | 96.43 22 |
|
GSMVS | | | | | | | | | | | | | | | | | 94.68 81 |
|
sam_mvs1 | | | | | | | | | | | | | 57.85 142 | | | | 94.68 81 |
|
sam_mvs | | | | | | | | | | | | | 54.91 181 | | | | |
|
MTGPA |  | | | | | | | | 92.23 126 | | | | | | | | |
|
test_post1 | | | | | | | | 78.95 316 | | | | 20.70 359 | 53.05 200 | 91.50 277 | 60.43 249 | | |
|
test_post | | | | | | | | | | | | 23.01 356 | 56.49 163 | 92.67 242 | | | |
|
patchmatchnet-post | | | | | | | | | | | | 67.62 336 | 57.62 145 | 90.25 285 | | | |
|
MTMP | | | | | | | | 93.77 78 | 32.52 363 | | | | | | | | |
|
test9_res | | | | | | | | | | | | | | | 89.41 20 | 94.96 16 | 95.29 56 |
|
agg_prior2 | | | | | | | | | | | | | | | 86.41 50 | 94.75 26 | 95.33 51 |
|
test_prior4 | | | | | | | 67.18 100 | 93.92 69 | | | | | | | | | |
|
test_prior2 | | | | | | | | 95.10 36 | | 75.40 100 | 85.25 48 | 95.61 37 | 67.94 40 | | 87.47 40 | 94.77 23 | |
|
旧先验2 | | | | | | | | 92.00 143 | | 59.37 303 | 87.54 25 | | | 93.47 219 | 75.39 130 | | |
|
新几何2 | | | | | | | | 91.41 165 | | | | | | | | | |
|
无先验 | | | | | | | | 92.71 115 | 92.61 116 | 62.03 284 | | | | 97.01 88 | 66.63 201 | | 93.97 112 |
|
原ACMM2 | | | | | | | | 92.01 141 | | | | | | | | | |
|
testdata2 | | | | | | | | | | | | | | 96.09 123 | 61.26 245 | | |
|
segment_acmp | | | | | | | | | | | | | 65.94 60 | | | | |
|
testdata1 | | | | | | | | 89.21 233 | | 77.55 75 | | | | | | | |
|
plane_prior5 | | | | | | | | | 91.31 164 | | | | | 95.55 152 | 76.74 122 | 78.53 175 | 88.39 211 |
|
plane_prior4 | | | | | | | | | | | | 89.14 168 | | | | | |
|
plane_prior3 | | | | | | | 61.95 228 | | | 79.09 54 | 72.53 167 | | | | | | |
|
plane_prior2 | | | | | | | | 93.13 98 | | 78.81 59 | | | | | | | |
|
plane_prior | | | | | | | 62.42 220 | 93.85 73 | | 79.38 47 | | | | | | 78.80 172 | |
|
n2 | | | | | | | | | 0.00 369 | | | | | | | | |
|
nn | | | | | | | | | 0.00 369 | | | | | | | | |
|
door-mid | | | | | | | | | 66.01 352 | | | | | | | | |
|
test11 | | | | | | | | | 93.01 99 | | | | | | | | |
|
door | | | | | | | | | 66.57 351 | | | | | | | | |
|
HQP5-MVS | | | | | | | 63.66 197 | | | | | | | | | | |
|
BP-MVS | | | | | | | | | | | | | | | 77.63 119 | | |
|
HQP4-MVS | | | | | | | | | | | 74.18 148 | | | 95.61 146 | | | 88.63 205 |
|
HQP3-MVS | | | | | | | | | 91.70 150 | | | | | | | 78.90 170 | |
|
HQP2-MVS | | | | | | | | | | | | | 51.63 212 | | | | |
|
MDTV_nov1_ep13_2view | | | | | | | 59.90 261 | 80.13 312 | | 67.65 242 | 72.79 162 | | 54.33 188 | | 59.83 253 | | 92.58 151 |
|
ACMMP++_ref | | | | | | | | | | | | | | | | 71.63 220 | |
|
ACMMP++ | | | | | | | | | | | | | | | | 69.72 230 | |
|
Test By Simon | | | | | | | | | | | | | 54.21 189 | | | | |
|