MG-MVS | | | 87.11 29 | 86.27 39 | 89.62 8 | 97.79 1 | 76.27 4 | 94.96 41 | 94.49 38 | 78.74 60 | 83.87 60 | 92.94 105 | 64.34 76 | 96.94 95 | 75.19 125 | 94.09 35 | 95.66 41 |
|
MCST-MVS | | | 91.08 1 | 91.46 2 | 89.94 4 | 97.66 2 | 73.37 9 | 97.13 2 | 95.58 8 | 89.33 1 | 85.77 38 | 96.26 23 | 72.84 21 | 99.38 1 | 92.64 4 | 95.93 8 | 97.08 6 |
|
OPU-MVS | | | | | 89.97 3 | 97.52 3 | 73.15 11 | 96.89 4 | | | | 97.00 8 | 83.82 2 | 99.15 2 | 95.72 1 | 97.63 3 | 97.62 2 |
|
DP-MVS Recon | | | 82.73 96 | 81.65 102 | 85.98 78 | 97.31 4 | 67.06 100 | 95.15 33 | 91.99 136 | 69.08 224 | 76.50 126 | 93.89 88 | 54.48 179 | 98.20 31 | 70.76 159 | 85.66 120 | 92.69 144 |
|
testtj | | | 86.62 39 | 86.66 38 | 86.50 62 | 96.95 5 | 65.70 138 | 94.41 47 | 93.45 77 | 67.74 233 | 86.19 33 | 96.39 19 | 64.38 75 | 97.91 41 | 87.33 40 | 93.14 52 | 95.90 37 |
|
ETH3 D test6400 | | | 90.27 5 | 90.44 6 | 89.75 6 | 96.82 6 | 74.33 7 | 95.89 15 | 94.80 26 | 77.13 78 | 89.13 17 | 97.38 2 | 74.49 14 | 98.48 23 | 92.32 8 | 95.98 6 | 96.46 20 |
|
CNVR-MVS | | | 90.32 4 | 90.89 4 | 88.61 15 | 96.76 7 | 70.65 22 | 96.47 11 | 94.83 23 | 84.83 8 | 89.07 18 | 96.80 11 | 70.86 28 | 99.06 10 | 92.64 4 | 95.71 9 | 96.12 29 |
|
NCCC | | | 89.07 11 | 89.46 11 | 87.91 20 | 96.60 8 | 69.05 48 | 96.38 12 | 94.64 33 | 84.42 9 | 86.74 29 | 96.20 24 | 66.56 55 | 98.76 17 | 89.03 27 | 94.56 28 | 95.92 36 |
|
IU-MVS | | | | | | 96.46 9 | 69.91 34 | | 95.18 13 | 80.75 33 | 95.28 1 | | | | 92.34 6 | 95.36 12 | 96.47 19 |
|
test_241102_ONE | | | | | | 96.45 10 | 69.38 42 | | 94.44 40 | 71.65 183 | 92.11 3 | 97.05 7 | 76.79 7 | 99.11 4 | | | |
|
test_0728_SECOND | | | | | 88.70 13 | 96.45 10 | 70.43 25 | 96.64 7 | 94.37 46 | | | | | 99.15 2 | 91.91 9 | 94.90 18 | 96.51 17 |
|
MSP-MVS | | | 89.41 9 | 89.73 10 | 88.45 17 | 96.40 12 | 69.99 30 | 96.64 7 | 94.52 36 | 71.92 169 | 90.55 11 | 96.93 9 | 73.77 16 | 99.08 8 | 91.91 9 | 94.90 18 | 96.29 25 |
|
test0726 | | | | | | 96.40 12 | 69.99 30 | 96.76 5 | 94.33 47 | 71.92 169 | 91.89 5 | 97.11 6 | 73.77 16 | | | | |
|
AdaColmap | | | 78.94 155 | 77.00 169 | 84.76 118 | 96.34 14 | 65.86 134 | 92.66 117 | 87.97 268 | 62.18 272 | 70.56 180 | 92.37 121 | 43.53 259 | 97.35 68 | 64.50 217 | 82.86 139 | 91.05 175 |
|
test_part2 | | | | | | 96.29 15 | 68.16 70 | | | | 90.78 9 | | | | | | |
|
DPE-MVS | | | 88.77 12 | 89.21 12 | 87.45 32 | 96.26 16 | 67.56 84 | 94.17 51 | 94.15 53 | 68.77 227 | 90.74 10 | 97.27 3 | 76.09 9 | 98.49 22 | 90.58 16 | 94.91 17 | 96.30 24 |
|
MAR-MVS | | | 84.18 74 | 83.43 74 | 86.44 64 | 96.25 17 | 65.93 133 | 94.28 50 | 94.27 49 | 74.41 111 | 79.16 99 | 95.61 36 | 53.99 183 | 98.88 15 | 69.62 168 | 93.26 50 | 94.50 90 |
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
API-MVS | | | 82.28 103 | 80.53 116 | 87.54 30 | 96.13 18 | 70.59 23 | 93.63 80 | 91.04 175 | 65.72 249 | 75.45 135 | 92.83 111 | 56.11 163 | 98.89 14 | 64.10 219 | 89.75 93 | 93.15 133 |
|
APDe-MVS | | | 87.54 23 | 87.84 20 | 86.65 55 | 96.07 19 | 66.30 123 | 94.84 43 | 93.78 60 | 69.35 218 | 88.39 20 | 96.34 21 | 67.74 44 | 97.66 53 | 90.62 15 | 93.44 48 | 96.01 33 |
|
PAPR | | | 85.15 57 | 84.47 61 | 87.18 38 | 96.02 20 | 68.29 65 | 91.85 146 | 93.00 99 | 76.59 86 | 79.03 100 | 95.00 54 | 61.59 105 | 97.61 57 | 78.16 108 | 89.00 95 | 95.63 42 |
|
APD-MVS | | | 85.93 48 | 85.99 44 | 85.76 88 | 95.98 21 | 65.21 149 | 93.59 82 | 92.58 116 | 66.54 242 | 86.17 34 | 95.88 29 | 63.83 82 | 97.00 87 | 86.39 48 | 92.94 53 | 95.06 68 |
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
DeepC-MVS_fast | | 79.48 2 | 87.95 17 | 88.00 18 | 87.79 23 | 95.86 22 | 68.32 64 | 95.74 19 | 94.11 55 | 83.82 11 | 83.49 61 | 96.19 25 | 64.53 74 | 98.44 25 | 83.42 69 | 94.88 21 | 96.61 11 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
DP-MVS | | | 69.90 254 | 66.48 260 | 80.14 223 | 95.36 23 | 62.93 208 | 89.56 217 | 76.11 321 | 50.27 319 | 57.69 289 | 85.23 205 | 39.68 270 | 95.73 135 | 33.35 329 | 71.05 221 | 81.78 299 |
|
114514_t | | | 79.17 151 | 77.67 157 | 83.68 145 | 95.32 24 | 65.53 144 | 92.85 109 | 91.60 153 | 63.49 261 | 67.92 216 | 90.63 143 | 46.65 242 | 95.72 139 | 67.01 191 | 83.54 137 | 89.79 187 |
|
Regformer-1 | | | 87.24 27 | 87.60 25 | 86.15 75 | 95.14 25 | 65.83 136 | 93.95 64 | 95.12 15 | 82.11 21 | 84.25 52 | 95.73 32 | 67.88 42 | 98.35 28 | 85.60 52 | 88.64 98 | 94.26 95 |
|
Regformer-2 | | | 87.00 33 | 87.43 27 | 85.71 91 | 95.14 25 | 64.73 163 | 93.95 64 | 94.95 20 | 81.69 26 | 84.03 58 | 95.73 32 | 67.35 46 | 98.19 32 | 85.40 54 | 88.64 98 | 94.20 97 |
|
HPM-MVS++ | | | 89.37 10 | 89.95 9 | 87.64 25 | 95.10 27 | 68.23 69 | 95.24 30 | 94.49 38 | 82.43 17 | 88.90 19 | 96.35 20 | 71.89 27 | 98.63 19 | 88.76 29 | 96.40 4 | 96.06 30 |
|
CSCG | | | 86.87 34 | 86.26 40 | 88.72 12 | 95.05 28 | 70.79 21 | 93.83 75 | 95.33 11 | 68.48 231 | 77.63 113 | 94.35 76 | 73.04 19 | 98.45 24 | 84.92 58 | 93.71 44 | 96.92 8 |
|
LFMVS | | | 84.34 69 | 82.73 90 | 89.18 11 | 94.76 29 | 73.25 10 | 94.99 40 | 91.89 140 | 71.90 171 | 82.16 67 | 93.49 95 | 47.98 234 | 97.05 82 | 82.55 77 | 84.82 125 | 97.25 4 |
|
CDPH-MVS | | | 85.71 51 | 85.46 52 | 86.46 63 | 94.75 30 | 67.19 96 | 93.89 69 | 92.83 104 | 70.90 201 | 83.09 63 | 95.28 44 | 63.62 86 | 97.36 67 | 80.63 91 | 94.18 34 | 94.84 76 |
|
test_prior3 | | | 87.38 25 | 87.70 22 | 86.42 65 | 94.71 31 | 67.35 91 | 95.10 35 | 93.10 95 | 75.40 99 | 85.25 46 | 95.61 36 | 67.94 39 | 96.84 99 | 87.47 37 | 94.77 22 | 95.05 69 |
|
test_prior | | | | | 86.42 65 | 94.71 31 | 67.35 91 | | 93.10 95 | | | | | 96.84 99 | | | 95.05 69 |
|
test12 | | | | | 87.09 41 | 94.60 33 | 68.86 52 | | 92.91 101 | | 82.67 65 | | 65.44 65 | 97.55 58 | | 93.69 45 | 94.84 76 |
|
test_yl | | | 84.28 70 | 83.16 81 | 87.64 25 | 94.52 34 | 69.24 44 | 95.78 16 | 95.09 18 | 69.19 221 | 81.09 76 | 92.88 109 | 57.00 149 | 97.44 62 | 81.11 89 | 81.76 147 | 96.23 27 |
|
DCV-MVSNet | | | 84.28 70 | 83.16 81 | 87.64 25 | 94.52 34 | 69.24 44 | 95.78 16 | 95.09 18 | 69.19 221 | 81.09 76 | 92.88 109 | 57.00 149 | 97.44 62 | 81.11 89 | 81.76 147 | 96.23 27 |
|
CANet | | | 89.61 8 | 89.99 8 | 88.46 16 | 94.39 36 | 69.71 38 | 96.53 10 | 93.78 60 | 86.89 4 | 89.68 14 | 95.78 30 | 65.94 59 | 99.10 6 | 92.99 2 | 93.91 39 | 96.58 14 |
|
test_8 | | | | | | 94.19 37 | 67.19 96 | 94.15 54 | 93.42 80 | 71.87 174 | 85.38 44 | 95.35 40 | 68.19 35 | 96.95 94 | | | |
|
TEST9 | | | | | | 94.18 38 | 67.28 93 | 94.16 52 | 93.51 74 | 71.75 181 | 85.52 42 | 95.33 41 | 68.01 38 | 97.27 75 | | | |
|
train_agg | | | 87.21 28 | 87.42 28 | 86.60 56 | 94.18 38 | 67.28 93 | 94.16 52 | 93.51 74 | 71.87 174 | 85.52 42 | 95.33 41 | 68.19 35 | 97.27 75 | 89.09 24 | 94.90 18 | 95.25 62 |
|
Regformer-3 | | | 85.80 50 | 85.92 45 | 85.46 98 | 94.17 40 | 65.09 156 | 92.95 105 | 95.11 16 | 81.13 30 | 81.68 70 | 95.04 52 | 65.82 61 | 98.32 29 | 83.02 71 | 84.36 129 | 92.97 139 |
|
Regformer-4 | | | 85.45 53 | 85.69 50 | 84.73 119 | 94.17 40 | 63.23 201 | 92.95 105 | 94.83 23 | 80.66 34 | 81.29 73 | 95.04 52 | 65.12 67 | 98.08 35 | 82.74 73 | 84.36 129 | 92.88 143 |
|
agg_prior1 | | | 87.02 32 | 87.26 30 | 86.28 72 | 94.16 42 | 66.97 104 | 94.08 57 | 93.31 83 | 71.85 176 | 84.49 50 | 95.39 39 | 68.91 32 | 96.75 103 | 88.84 28 | 94.32 33 | 95.13 65 |
|
agg_prior | | | | | | 94.16 42 | 66.97 104 | | 93.31 83 | | 84.49 50 | | | 96.75 103 | | | |
|
PAPM_NR | | | 82.97 93 | 81.84 100 | 86.37 68 | 94.10 44 | 66.76 111 | 87.66 249 | 92.84 103 | 69.96 212 | 74.07 145 | 93.57 93 | 63.10 95 | 97.50 60 | 70.66 161 | 90.58 86 | 94.85 75 |
|
VNet | | | 86.20 44 | 85.65 51 | 87.84 22 | 93.92 45 | 69.99 30 | 95.73 21 | 95.94 6 | 78.43 62 | 86.00 36 | 93.07 102 | 58.22 135 | 97.00 87 | 85.22 55 | 84.33 132 | 96.52 16 |
|
9.14 | | | | 87.63 23 | | 93.86 46 | | 94.41 47 | 94.18 52 | 72.76 147 | 86.21 32 | 96.51 15 | 66.64 53 | 97.88 44 | 90.08 18 | 94.04 36 | |
|
xxxxxxxxxxxxxcwj | | | 87.80 20 | 88.07 17 | 86.99 44 | 93.84 47 | 67.89 76 | 95.05 37 | 92.66 110 | 78.19 64 | 86.25 30 | 96.44 17 | 66.98 48 | 97.79 46 | 88.68 30 | 94.56 28 | 95.28 57 |
|
save fliter | | | | | | 93.84 47 | 67.89 76 | 95.05 37 | 92.66 110 | 78.19 64 | | | | | | | |
|
PVSNet_BlendedMVS | | | 83.38 88 | 83.43 74 | 83.22 154 | 93.76 49 | 67.53 86 | 94.06 58 | 93.61 70 | 79.13 52 | 81.00 79 | 85.14 206 | 63.19 93 | 97.29 72 | 87.08 43 | 73.91 200 | 84.83 266 |
|
PVSNet_Blended | | | 86.73 38 | 86.86 35 | 86.31 71 | 93.76 49 | 67.53 86 | 96.33 13 | 93.61 70 | 82.34 18 | 81.00 79 | 93.08 100 | 63.19 93 | 97.29 72 | 87.08 43 | 91.38 76 | 94.13 103 |
|
HFP-MVS | | | 84.73 63 | 84.40 64 | 85.72 89 | 93.75 51 | 65.01 157 | 93.50 86 | 93.19 89 | 72.19 163 | 79.22 97 | 94.93 57 | 59.04 130 | 97.67 50 | 81.55 82 | 92.21 62 | 94.49 91 |
|
#test# | | | 84.98 60 | 84.74 60 | 85.72 89 | 93.75 51 | 65.01 157 | 94.09 56 | 93.19 89 | 73.55 132 | 79.22 97 | 94.93 57 | 59.04 130 | 97.67 50 | 82.66 74 | 92.21 62 | 94.49 91 |
|
Anonymous202405211 | | | 77.96 174 | 75.33 189 | 85.87 83 | 93.73 53 | 64.52 165 | 94.85 42 | 85.36 290 | 62.52 270 | 76.11 127 | 90.18 150 | 29.43 316 | 97.29 72 | 68.51 179 | 77.24 185 | 95.81 39 |
|
SD-MVS | | | 87.49 24 | 87.49 26 | 87.50 31 | 93.60 54 | 68.82 54 | 93.90 68 | 92.63 114 | 76.86 82 | 87.90 22 | 95.76 31 | 66.17 56 | 97.63 55 | 89.06 25 | 91.48 75 | 96.05 31 |
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
ETH3D-3000-0.1 | | | 87.61 22 | 87.89 19 | 86.75 51 | 93.58 55 | 67.21 95 | 94.31 49 | 94.14 54 | 72.92 144 | 87.13 25 | 96.62 13 | 67.81 43 | 97.94 38 | 90.13 17 | 94.42 31 | 95.09 67 |
|
ACMMPR | | | 84.37 67 | 84.06 66 | 85.28 105 | 93.56 56 | 64.37 175 | 93.50 86 | 93.15 92 | 72.19 163 | 78.85 104 | 94.86 61 | 56.69 156 | 97.45 61 | 81.55 82 | 92.20 64 | 94.02 110 |
|
region2R | | | 84.36 68 | 84.03 67 | 85.36 103 | 93.54 57 | 64.31 177 | 93.43 89 | 92.95 100 | 72.16 166 | 78.86 103 | 94.84 62 | 56.97 151 | 97.53 59 | 81.38 86 | 92.11 66 | 94.24 96 |
|
TSAR-MVS + GP. | | | 87.96 16 | 88.37 15 | 86.70 54 | 93.51 58 | 65.32 146 | 95.15 33 | 93.84 59 | 78.17 66 | 85.93 37 | 94.80 64 | 75.80 10 | 98.21 30 | 89.38 20 | 88.78 96 | 96.59 12 |
|
PHI-MVS | | | 86.83 36 | 86.85 36 | 86.78 50 | 93.47 59 | 65.55 143 | 95.39 28 | 95.10 17 | 71.77 180 | 85.69 41 | 96.52 14 | 62.07 102 | 98.77 16 | 86.06 50 | 95.60 10 | 96.03 32 |
|
SR-MVS | | | 82.81 95 | 82.58 92 | 83.50 151 | 93.35 60 | 61.16 235 | 92.23 128 | 91.28 166 | 64.48 255 | 81.27 74 | 95.28 44 | 53.71 187 | 95.86 130 | 82.87 72 | 88.77 97 | 93.49 124 |
|
EPNet | | | 87.84 19 | 88.38 14 | 86.23 73 | 93.30 61 | 66.05 128 | 95.26 29 | 94.84 22 | 87.09 3 | 88.06 21 | 94.53 69 | 66.79 52 | 97.34 69 | 83.89 66 | 91.68 71 | 95.29 55 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
XVS | | | 83.87 81 | 83.47 72 | 85.05 110 | 93.22 62 | 63.78 187 | 92.92 107 | 92.66 110 | 73.99 118 | 78.18 107 | 94.31 79 | 55.25 169 | 97.41 64 | 79.16 100 | 91.58 73 | 93.95 112 |
|
X-MVStestdata | | | 76.86 188 | 74.13 206 | 85.05 110 | 93.22 62 | 63.78 187 | 92.92 107 | 92.66 110 | 73.99 118 | 78.18 107 | 10.19 348 | 55.25 169 | 97.41 64 | 79.16 100 | 91.58 73 | 93.95 112 |
|
SMA-MVS | | | 88.14 13 | 88.29 16 | 87.67 24 | 93.21 64 | 68.72 56 | 93.85 71 | 94.03 56 | 74.18 116 | 91.74 6 | 96.67 12 | 65.61 64 | 98.42 27 | 89.24 23 | 96.08 5 | 95.88 38 |
|
原ACMM1 | | | | | 84.42 129 | 93.21 64 | 64.27 180 | | 93.40 82 | 65.39 250 | 79.51 94 | 92.50 115 | 58.11 137 | 96.69 105 | 65.27 213 | 93.96 37 | 92.32 154 |
|
MVS_111021_HR | | | 86.19 45 | 85.80 48 | 87.37 34 | 93.17 66 | 69.79 36 | 93.99 62 | 93.76 63 | 79.08 54 | 78.88 102 | 93.99 86 | 62.25 101 | 98.15 33 | 85.93 51 | 91.15 80 | 94.15 102 |
|
CP-MVS | | | 83.71 85 | 83.40 77 | 84.65 123 | 93.14 67 | 63.84 185 | 94.59 45 | 92.28 122 | 71.03 199 | 77.41 116 | 94.92 59 | 55.21 172 | 96.19 116 | 81.32 87 | 90.70 84 | 93.91 114 |
|
DELS-MVS | | | 90.05 6 | 90.09 7 | 89.94 4 | 93.14 67 | 73.88 8 | 97.01 3 | 94.40 44 | 88.32 2 | 85.71 40 | 94.91 60 | 74.11 15 | 98.91 12 | 87.26 42 | 95.94 7 | 97.03 7 |
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
ZNCC-MVS | | | 85.33 55 | 85.08 56 | 86.06 76 | 93.09 69 | 65.65 140 | 93.89 69 | 93.41 81 | 73.75 126 | 79.94 88 | 94.68 67 | 60.61 114 | 98.03 36 | 82.63 76 | 93.72 43 | 94.52 89 |
|
DeepPCF-MVS | | 81.17 1 | 89.72 7 | 91.38 3 | 84.72 121 | 93.00 70 | 58.16 272 | 96.72 6 | 94.41 42 | 86.50 5 | 90.25 13 | 97.83 1 | 75.46 11 | 98.67 18 | 92.78 3 | 95.49 11 | 97.32 3 |
|
PLC | | 68.80 14 | 75.23 214 | 73.68 212 | 79.86 231 | 92.93 71 | 58.68 269 | 90.64 193 | 88.30 259 | 60.90 280 | 64.43 251 | 90.53 144 | 42.38 263 | 94.57 170 | 56.52 256 | 76.54 189 | 86.33 236 |
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
DWT-MVSNet_test | | | 83.95 79 | 82.80 88 | 87.41 33 | 92.90 72 | 70.07 29 | 89.12 228 | 94.42 41 | 82.15 20 | 77.64 112 | 91.77 129 | 70.81 29 | 96.22 115 | 65.03 214 | 81.36 151 | 95.94 34 |
|
DVP-MVS | | | 90.38 3 | 91.87 1 | 85.88 81 | 92.83 73 | 64.03 184 | 93.06 98 | 94.33 47 | 82.19 19 | 93.65 2 | 96.15 26 | 85.89 1 | 97.19 77 | 91.02 14 | 97.75 1 | 96.43 21 |
|
mPP-MVS | | | 82.96 94 | 82.44 94 | 84.52 126 | 92.83 73 | 62.92 210 | 92.76 110 | 91.85 142 | 71.52 190 | 75.61 133 | 94.24 81 | 53.48 191 | 96.99 90 | 78.97 103 | 90.73 83 | 93.64 121 |
|
GST-MVS | | | 84.63 66 | 84.29 65 | 85.66 93 | 92.82 75 | 65.27 147 | 93.04 100 | 93.13 93 | 73.20 136 | 78.89 101 | 94.18 82 | 59.41 126 | 97.85 45 | 81.45 84 | 92.48 61 | 93.86 116 |
|
WTY-MVS | | | 86.32 42 | 85.81 47 | 87.85 21 | 92.82 75 | 69.37 43 | 95.20 31 | 95.25 12 | 82.71 15 | 81.91 68 | 94.73 65 | 67.93 41 | 97.63 55 | 79.55 97 | 82.25 143 | 96.54 15 |
|
PGM-MVS | | | 83.25 89 | 82.70 91 | 84.92 113 | 92.81 77 | 64.07 183 | 90.44 196 | 92.20 130 | 71.28 194 | 77.23 119 | 94.43 70 | 55.17 173 | 97.31 71 | 79.33 99 | 91.38 76 | 93.37 125 |
|
EI-MVSNet-Vis-set | | | 83.77 83 | 83.67 69 | 84.06 136 | 92.79 78 | 63.56 197 | 91.76 151 | 94.81 25 | 79.65 44 | 77.87 109 | 94.09 83 | 63.35 91 | 97.90 42 | 79.35 98 | 79.36 161 | 90.74 177 |
|
SF-MVS | | | 87.03 31 | 87.09 32 | 86.84 46 | 92.70 79 | 67.45 90 | 93.64 79 | 93.76 63 | 70.78 205 | 86.25 30 | 96.44 17 | 66.98 48 | 97.79 46 | 88.68 30 | 94.56 28 | 95.28 57 |
|
MVSTER | | | 82.47 100 | 82.05 97 | 83.74 141 | 92.68 80 | 69.01 49 | 91.90 143 | 93.21 86 | 79.83 39 | 72.14 167 | 85.71 202 | 74.72 12 | 94.72 167 | 75.72 121 | 72.49 210 | 87.50 213 |
|
MP-MVS | | | 85.02 58 | 84.97 57 | 85.17 109 | 92.60 81 | 64.27 180 | 93.24 93 | 92.27 123 | 73.13 138 | 79.63 93 | 94.43 70 | 61.90 103 | 97.17 78 | 85.00 56 | 92.56 58 | 94.06 108 |
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
thres200 | | | 79.66 143 | 78.33 146 | 83.66 147 | 92.54 82 | 65.82 137 | 93.06 98 | 96.31 3 | 74.90 108 | 73.30 150 | 88.66 163 | 59.67 122 | 95.61 143 | 47.84 285 | 78.67 168 | 89.56 192 |
|
APD-MVS_3200maxsize | | | 81.64 113 | 81.32 105 | 82.59 167 | 92.36 83 | 58.74 268 | 91.39 165 | 91.01 176 | 63.35 262 | 79.72 92 | 94.62 68 | 51.82 201 | 96.14 118 | 79.71 95 | 87.93 103 | 92.89 142 |
|
新几何1 | | | | | 84.73 119 | 92.32 84 | 64.28 179 | | 91.46 159 | 59.56 290 | 79.77 91 | 92.90 107 | 56.95 152 | 96.57 108 | 63.40 223 | 92.91 54 | 93.34 126 |
|
1121 | | | 81.25 117 | 80.05 119 | 84.87 116 | 92.30 85 | 64.31 177 | 87.91 245 | 91.39 161 | 59.44 291 | 79.94 88 | 92.91 106 | 57.09 145 | 97.01 85 | 66.63 193 | 92.81 56 | 93.29 129 |
|
EI-MVSNet-UG-set | | | 83.14 91 | 82.96 84 | 83.67 146 | 92.28 86 | 63.19 203 | 91.38 167 | 94.68 31 | 79.22 49 | 76.60 124 | 93.75 89 | 62.64 98 | 97.76 48 | 78.07 109 | 78.01 172 | 90.05 185 |
|
HPM-MVS | | | 83.25 89 | 82.95 85 | 84.17 134 | 92.25 87 | 62.88 212 | 90.91 184 | 91.86 141 | 70.30 209 | 77.12 120 | 93.96 87 | 56.75 154 | 96.28 113 | 82.04 79 | 91.34 78 | 93.34 126 |
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023 |
HY-MVS | | 76.49 5 | 84.28 70 | 83.36 79 | 87.02 43 | 92.22 88 | 67.74 80 | 84.65 268 | 94.50 37 | 79.15 51 | 82.23 66 | 87.93 177 | 66.88 50 | 96.94 95 | 80.53 92 | 82.20 144 | 96.39 23 |
|
tfpn200view9 | | | 78.79 159 | 77.43 162 | 82.88 158 | 92.21 89 | 64.49 166 | 92.05 136 | 96.28 4 | 73.48 133 | 71.75 173 | 88.26 171 | 60.07 118 | 95.32 153 | 45.16 294 | 77.58 177 | 88.83 195 |
|
thres400 | | | 78.68 162 | 77.43 162 | 82.43 169 | 92.21 89 | 64.49 166 | 92.05 136 | 96.28 4 | 73.48 133 | 71.75 173 | 88.26 171 | 60.07 118 | 95.32 153 | 45.16 294 | 77.58 177 | 87.48 214 |
|
PS-MVSNAJ | | | 88.14 13 | 87.61 24 | 89.71 7 | 92.06 91 | 76.72 1 | 95.75 18 | 93.26 85 | 83.86 10 | 89.55 15 | 96.06 27 | 53.55 188 | 97.89 43 | 91.10 12 | 93.31 49 | 94.54 87 |
|
MSLP-MVS++ | | | 86.27 43 | 85.91 46 | 87.35 35 | 92.01 92 | 68.97 51 | 95.04 39 | 92.70 107 | 79.04 55 | 81.50 72 | 96.50 16 | 58.98 132 | 96.78 101 | 83.49 68 | 93.93 38 | 96.29 25 |
|
ETH3D cwj APD-0.16 | | | 87.06 30 | 87.18 31 | 86.71 52 | 91.99 93 | 67.48 89 | 92.97 103 | 94.21 51 | 71.48 193 | 85.72 39 | 96.32 22 | 68.13 37 | 98.00 37 | 89.06 25 | 94.70 26 | 94.65 83 |
|
旧先验1 | | | | | | 91.94 94 | 60.74 242 | | 91.50 157 | | | 94.36 72 | 65.23 66 | | | 91.84 68 | 94.55 85 |
|
thres600view7 | | | 78.00 172 | 76.66 173 | 82.03 187 | 91.93 95 | 63.69 192 | 91.30 172 | 96.33 1 | 72.43 154 | 70.46 182 | 87.89 178 | 60.31 115 | 94.92 162 | 42.64 306 | 76.64 188 | 87.48 214 |
|
LS3D | | | 69.17 259 | 66.40 261 | 77.50 262 | 91.92 96 | 56.12 288 | 85.12 265 | 80.37 315 | 46.96 326 | 56.50 293 | 87.51 183 | 37.25 287 | 93.71 206 | 32.52 334 | 79.40 160 | 82.68 291 |
|
GG-mvs-BLEND | | | | | 86.53 61 | 91.91 97 | 69.67 40 | 75.02 317 | 94.75 28 | | 78.67 106 | 90.85 139 | 77.91 5 | 94.56 171 | 72.25 146 | 93.74 42 | 95.36 49 |
|
thres100view900 | | | 78.37 168 | 77.01 168 | 82.46 168 | 91.89 98 | 63.21 202 | 91.19 178 | 96.33 1 | 72.28 159 | 70.45 183 | 87.89 178 | 60.31 115 | 95.32 153 | 45.16 294 | 77.58 177 | 88.83 195 |
|
zzz-MVS | | | 84.73 63 | 84.47 61 | 85.50 96 | 91.89 98 | 65.16 151 | 91.55 158 | 92.23 125 | 75.32 101 | 80.53 83 | 95.21 50 | 56.06 164 | 97.16 79 | 84.86 59 | 92.55 59 | 94.18 98 |
|
MTAPA | | | 83.91 80 | 83.38 78 | 85.50 96 | 91.89 98 | 65.16 151 | 81.75 288 | 92.23 125 | 75.32 101 | 80.53 83 | 95.21 50 | 56.06 164 | 97.16 79 | 84.86 59 | 92.55 59 | 94.18 98 |
|
RRT_test8_iter05 | | | 80.61 125 | 79.62 127 | 83.60 148 | 91.87 101 | 66.90 106 | 93.42 91 | 93.68 67 | 77.09 80 | 68.83 205 | 85.63 203 | 66.82 51 | 95.42 150 | 76.46 119 | 62.74 274 | 88.48 202 |
|
canonicalmvs | | | 86.85 35 | 86.25 41 | 88.66 14 | 91.80 102 | 71.92 13 | 93.54 84 | 91.71 148 | 80.26 38 | 87.55 23 | 95.25 48 | 63.59 88 | 96.93 97 | 88.18 33 | 84.34 131 | 97.11 5 |
|
TSAR-MVS + MP. | | | 88.11 15 | 88.64 13 | 86.54 60 | 91.73 103 | 68.04 72 | 90.36 200 | 93.55 73 | 82.89 13 | 91.29 8 | 92.89 108 | 72.27 24 | 96.03 126 | 87.99 34 | 94.77 22 | 95.54 45 |
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
ACMMP | | | 81.49 114 | 80.67 113 | 83.93 138 | 91.71 104 | 62.90 211 | 92.13 130 | 92.22 129 | 71.79 179 | 71.68 175 | 93.49 95 | 50.32 211 | 96.96 93 | 78.47 106 | 84.22 136 | 91.93 160 |
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
BH-RMVSNet | | | 79.46 148 | 77.65 158 | 84.89 114 | 91.68 105 | 65.66 139 | 93.55 83 | 88.09 265 | 72.93 143 | 73.37 149 | 91.12 136 | 46.20 247 | 96.12 119 | 56.28 258 | 85.61 121 | 92.91 141 |
|
baseline1 | | | 81.84 111 | 81.03 110 | 84.28 133 | 91.60 106 | 66.62 114 | 91.08 181 | 91.66 151 | 81.87 24 | 74.86 138 | 91.67 133 | 69.98 31 | 94.92 162 | 71.76 152 | 64.75 262 | 91.29 172 |
|
ACMMP_NAP | | | 86.05 46 | 85.80 48 | 86.80 49 | 91.58 107 | 67.53 86 | 91.79 148 | 93.49 76 | 74.93 107 | 84.61 48 | 95.30 43 | 59.42 125 | 97.92 40 | 86.13 49 | 94.92 16 | 94.94 74 |
|
MVS_Test | | | 84.16 75 | 83.20 80 | 87.05 42 | 91.56 108 | 69.82 35 | 89.99 212 | 92.05 133 | 77.77 70 | 82.84 64 | 86.57 192 | 63.93 81 | 96.09 120 | 74.91 131 | 89.18 94 | 95.25 62 |
|
HPM-MVS_fast | | | 80.25 132 | 79.55 131 | 82.33 174 | 91.55 109 | 59.95 254 | 91.32 171 | 89.16 233 | 65.23 253 | 74.71 139 | 93.07 102 | 47.81 236 | 95.74 134 | 74.87 133 | 88.23 100 | 91.31 171 |
|
CPTT-MVS | | | 79.59 144 | 79.16 139 | 80.89 213 | 91.54 110 | 59.80 256 | 92.10 132 | 88.54 256 | 60.42 283 | 72.96 152 | 93.28 97 | 48.27 230 | 92.80 229 | 78.89 105 | 86.50 116 | 90.06 184 |
|
CS-MVS | | | 86.61 40 | 86.85 36 | 85.88 81 | 91.52 111 | 66.25 125 | 95.42 26 | 92.25 124 | 80.36 37 | 84.10 57 | 94.82 63 | 62.88 97 | 96.08 122 | 88.25 32 | 92.07 67 | 95.30 54 |
|
CNLPA | | | 74.31 222 | 72.30 227 | 80.32 218 | 91.49 112 | 61.66 228 | 90.85 186 | 80.72 314 | 56.67 304 | 63.85 255 | 90.64 141 | 46.75 241 | 90.84 272 | 53.79 266 | 75.99 192 | 88.47 204 |
|
MP-MVS-pluss | | | 85.24 56 | 85.13 55 | 85.56 95 | 91.42 113 | 65.59 142 | 91.54 159 | 92.51 118 | 74.56 110 | 80.62 82 | 95.64 35 | 59.15 129 | 97.00 87 | 86.94 45 | 93.80 40 | 94.07 107 |
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss |
gg-mvs-nofinetune | | | 77.18 186 | 74.31 202 | 85.80 86 | 91.42 113 | 68.36 63 | 71.78 319 | 94.72 29 | 49.61 320 | 77.12 120 | 45.92 336 | 77.41 6 | 93.98 197 | 67.62 186 | 93.16 51 | 95.05 69 |
|
xiu_mvs_v2_base | | | 87.92 18 | 87.38 29 | 89.55 10 | 91.41 115 | 76.43 3 | 95.74 19 | 93.12 94 | 83.53 12 | 89.55 15 | 95.95 28 | 53.45 192 | 97.68 49 | 91.07 13 | 92.62 57 | 94.54 87 |
|
EIA-MVS | | | 84.84 62 | 84.88 58 | 84.69 122 | 91.30 116 | 62.36 219 | 93.85 71 | 92.04 134 | 79.45 45 | 79.33 96 | 94.28 80 | 62.42 100 | 96.35 112 | 80.05 94 | 91.25 79 | 95.38 48 |
|
alignmvs | | | 87.28 26 | 86.97 33 | 88.24 19 | 91.30 116 | 71.14 19 | 95.61 23 | 93.56 72 | 79.30 47 | 87.07 28 | 95.25 48 | 68.43 33 | 96.93 97 | 87.87 35 | 84.33 132 | 96.65 10 |
|
EPMVS | | | 78.49 167 | 75.98 182 | 86.02 77 | 91.21 118 | 69.68 39 | 80.23 299 | 91.20 167 | 75.25 103 | 72.48 162 | 78.11 284 | 54.65 177 | 93.69 207 | 57.66 254 | 83.04 138 | 94.69 79 |
|
FMVSNet3 | | | 77.73 178 | 76.04 181 | 82.80 159 | 91.20 119 | 68.99 50 | 91.87 144 | 91.99 136 | 73.35 135 | 67.04 229 | 83.19 226 | 56.62 157 | 92.14 251 | 59.80 246 | 69.34 229 | 87.28 220 |
|
Anonymous20240529 | | | 76.84 190 | 74.15 205 | 84.88 115 | 91.02 120 | 64.95 160 | 93.84 74 | 91.09 172 | 53.57 311 | 73.00 151 | 87.42 184 | 35.91 296 | 97.32 70 | 69.14 174 | 72.41 212 | 92.36 152 |
|
tpmvs | | | 72.88 236 | 69.76 247 | 82.22 179 | 90.98 121 | 67.05 101 | 78.22 311 | 88.30 259 | 63.10 266 | 64.35 252 | 74.98 303 | 55.09 174 | 94.27 182 | 43.25 300 | 69.57 228 | 85.34 261 |
|
MVS | | | 84.66 65 | 82.86 87 | 90.06 2 | 90.93 122 | 74.56 6 | 87.91 245 | 95.54 9 | 68.55 229 | 72.35 166 | 94.71 66 | 59.78 121 | 98.90 13 | 81.29 88 | 94.69 27 | 96.74 9 |
|
PVSNet | | 73.49 8 | 80.05 136 | 78.63 143 | 84.31 131 | 90.92 123 | 64.97 159 | 92.47 123 | 91.05 174 | 79.18 50 | 72.43 164 | 90.51 145 | 37.05 292 | 94.06 191 | 68.06 181 | 86.00 118 | 93.90 115 |
|
RRT_MVS | | | 77.38 183 | 76.59 174 | 79.77 234 | 90.91 124 | 63.61 196 | 91.15 179 | 90.91 177 | 72.28 159 | 72.06 169 | 87.28 187 | 43.92 257 | 89.04 292 | 73.32 135 | 67.47 244 | 86.67 229 |
|
3Dnovator+ | | 73.60 7 | 82.10 108 | 80.60 115 | 86.60 56 | 90.89 125 | 66.80 110 | 95.20 31 | 93.44 79 | 74.05 117 | 67.42 224 | 92.49 117 | 49.46 220 | 97.65 54 | 70.80 158 | 91.68 71 | 95.33 50 |
|
VDD-MVS | | | 83.06 92 | 81.81 101 | 86.81 48 | 90.86 126 | 67.70 81 | 95.40 27 | 91.50 157 | 75.46 96 | 81.78 69 | 92.34 122 | 40.09 269 | 97.13 81 | 86.85 46 | 82.04 145 | 95.60 43 |
|
BH-w/o | | | 80.49 129 | 79.30 136 | 84.05 137 | 90.83 127 | 64.36 176 | 93.60 81 | 89.42 223 | 74.35 113 | 69.09 198 | 90.15 151 | 55.23 171 | 95.61 143 | 64.61 216 | 86.43 117 | 92.17 158 |
|
ET-MVSNet_ETH3D | | | 84.01 77 | 83.15 83 | 86.58 58 | 90.78 128 | 70.89 20 | 94.74 44 | 94.62 34 | 81.44 27 | 58.19 285 | 93.64 91 | 73.64 18 | 92.35 248 | 82.66 74 | 78.66 169 | 96.50 18 |
|
Anonymous20231211 | | | 73.08 231 | 70.39 241 | 81.13 203 | 90.62 129 | 63.33 199 | 91.40 163 | 90.06 204 | 51.84 315 | 64.46 250 | 80.67 261 | 36.49 294 | 94.07 190 | 63.83 221 | 64.17 267 | 85.98 247 |
|
TR-MVS | | | 78.77 160 | 77.37 165 | 82.95 157 | 90.49 130 | 60.88 237 | 93.67 78 | 90.07 201 | 70.08 211 | 74.51 140 | 91.37 134 | 45.69 248 | 95.70 140 | 60.12 244 | 80.32 156 | 92.29 155 |
|
SteuartSystems-ACMMP | | | 86.82 37 | 86.90 34 | 86.58 58 | 90.42 131 | 66.38 120 | 96.09 14 | 93.87 58 | 77.73 71 | 84.01 59 | 95.66 34 | 63.39 90 | 97.94 38 | 87.40 39 | 93.55 47 | 95.42 46 |
Skip Steuart: Steuart Systems R&D Blog. |
TAPA-MVS | | 70.22 12 | 74.94 218 | 73.53 213 | 79.17 245 | 90.40 132 | 52.07 306 | 89.19 226 | 89.61 218 | 62.69 268 | 70.07 188 | 92.67 113 | 48.89 228 | 94.32 179 | 38.26 320 | 79.97 157 | 91.12 174 |
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
mvs_anonymous | | | 81.36 116 | 79.99 121 | 85.46 98 | 90.39 133 | 68.40 62 | 86.88 259 | 90.61 186 | 74.41 111 | 70.31 186 | 84.67 211 | 63.79 83 | 92.32 249 | 73.13 136 | 85.70 119 | 95.67 40 |
|
CANet_DTU | | | 84.09 76 | 83.52 70 | 85.81 85 | 90.30 134 | 66.82 108 | 91.87 144 | 89.01 241 | 85.27 6 | 86.09 35 | 93.74 90 | 47.71 237 | 96.98 91 | 77.90 111 | 89.78 92 | 93.65 120 |
|
Fast-Effi-MVS+ | | | 81.14 119 | 80.01 120 | 84.51 127 | 90.24 135 | 65.86 134 | 94.12 55 | 89.15 234 | 73.81 125 | 75.37 136 | 88.26 171 | 57.26 143 | 94.53 174 | 66.97 192 | 84.92 124 | 93.15 133 |
|
ETV-MVS | | | 86.01 47 | 86.11 43 | 85.70 92 | 90.21 136 | 67.02 103 | 93.43 89 | 91.92 139 | 81.21 29 | 84.13 56 | 94.07 85 | 60.93 111 | 95.63 141 | 89.28 22 | 89.81 90 | 94.46 93 |
|
tpmrst | | | 80.57 126 | 79.14 140 | 84.84 117 | 90.10 137 | 68.28 66 | 81.70 289 | 89.72 216 | 77.63 73 | 75.96 128 | 79.54 276 | 64.94 71 | 92.71 232 | 75.43 123 | 77.28 184 | 93.55 122 |
|
PVSNet_Blended_VisFu | | | 83.97 78 | 83.50 71 | 85.39 102 | 90.02 138 | 66.59 116 | 93.77 76 | 91.73 146 | 77.43 77 | 77.08 122 | 89.81 156 | 63.77 84 | 96.97 92 | 79.67 96 | 88.21 101 | 92.60 147 |
|
UGNet | | | 79.87 140 | 78.68 142 | 83.45 153 | 89.96 139 | 61.51 230 | 92.13 130 | 90.79 179 | 76.83 83 | 78.85 104 | 86.33 195 | 38.16 278 | 96.17 117 | 67.93 183 | 87.17 108 | 92.67 145 |
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
CHOSEN 1792x2688 | | | 84.98 60 | 83.45 73 | 89.57 9 | 89.94 140 | 75.14 5 | 92.07 135 | 92.32 121 | 81.87 24 | 75.68 130 | 88.27 170 | 60.18 117 | 98.60 20 | 80.46 93 | 90.27 89 | 94.96 73 |
|
abl_6 | | | 79.82 141 | 79.20 138 | 81.70 193 | 89.85 141 | 58.34 270 | 88.47 238 | 90.07 201 | 62.56 269 | 77.71 111 | 93.08 100 | 47.65 238 | 96.78 101 | 77.94 110 | 85.45 122 | 89.99 186 |
|
BH-untuned | | | 78.68 162 | 77.08 166 | 83.48 152 | 89.84 142 | 63.74 189 | 92.70 113 | 88.59 254 | 71.57 188 | 66.83 232 | 88.65 164 | 51.75 203 | 95.39 151 | 59.03 249 | 84.77 126 | 91.32 170 |
|
test222 | | | | | | 89.77 143 | 61.60 229 | 89.55 218 | 89.42 223 | 56.83 303 | 77.28 118 | 92.43 119 | 52.76 195 | | | 91.14 81 | 93.09 135 |
|
PMMVS | | | 81.98 110 | 82.04 98 | 81.78 189 | 89.76 144 | 56.17 287 | 91.13 180 | 90.69 182 | 77.96 68 | 80.09 87 | 93.57 93 | 46.33 245 | 94.99 158 | 81.41 85 | 87.46 106 | 94.17 100 |
|
DPM-MVS | | | 90.70 2 | 90.52 5 | 91.24 1 | 89.68 145 | 76.68 2 | 97.29 1 | 95.35 10 | 82.87 14 | 91.58 7 | 97.22 4 | 79.93 3 | 99.10 6 | 83.12 70 | 97.64 2 | 97.94 1 |
|
QAPM | | | 79.95 139 | 77.39 164 | 87.64 25 | 89.63 146 | 71.41 15 | 93.30 92 | 93.70 66 | 65.34 252 | 67.39 226 | 91.75 131 | 47.83 235 | 98.96 11 | 57.71 253 | 89.81 90 | 92.54 149 |
|
3Dnovator | | 73.91 6 | 82.69 99 | 80.82 111 | 88.31 18 | 89.57 147 | 71.26 16 | 92.60 118 | 94.39 45 | 78.84 57 | 67.89 218 | 92.48 118 | 48.42 229 | 98.52 21 | 68.80 178 | 94.40 32 | 95.15 64 |
|
Effi-MVS+ | | | 83.82 82 | 82.76 89 | 86.99 44 | 89.56 148 | 69.40 41 | 91.35 169 | 86.12 284 | 72.59 149 | 83.22 62 | 92.81 112 | 59.60 123 | 96.01 128 | 81.76 81 | 87.80 104 | 95.56 44 |
|
PatchmatchNet | | | 77.46 181 | 74.63 195 | 85.96 79 | 89.55 149 | 70.35 26 | 79.97 303 | 89.55 219 | 72.23 161 | 70.94 178 | 76.91 295 | 57.03 147 | 92.79 230 | 54.27 264 | 81.17 152 | 94.74 78 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
PatchMatch-RL | | | 72.06 242 | 69.98 242 | 78.28 254 | 89.51 150 | 55.70 290 | 83.49 275 | 83.39 306 | 61.24 279 | 63.72 256 | 82.76 228 | 34.77 299 | 93.03 218 | 53.37 269 | 77.59 176 | 86.12 244 |
|
thisisatest0515 | | | 83.41 87 | 82.49 93 | 86.16 74 | 89.46 151 | 68.26 67 | 93.54 84 | 94.70 30 | 74.31 114 | 75.75 129 | 90.92 137 | 72.62 22 | 96.52 110 | 69.64 166 | 81.50 149 | 93.71 118 |
|
UA-Net | | | 80.02 137 | 79.65 126 | 81.11 204 | 89.33 152 | 57.72 276 | 86.33 262 | 89.00 242 | 77.44 76 | 81.01 78 | 89.15 160 | 59.33 127 | 95.90 129 | 61.01 238 | 84.28 134 | 89.73 189 |
|
dp | | | 75.01 217 | 72.09 229 | 83.76 140 | 89.28 153 | 66.22 127 | 79.96 304 | 89.75 211 | 71.16 196 | 67.80 220 | 77.19 292 | 51.81 202 | 92.54 240 | 50.39 275 | 71.44 219 | 92.51 150 |
|
sss | | | 82.71 98 | 82.38 95 | 83.73 143 | 89.25 154 | 59.58 259 | 92.24 127 | 94.89 21 | 77.96 68 | 79.86 90 | 92.38 120 | 56.70 155 | 97.05 82 | 77.26 114 | 80.86 155 | 94.55 85 |
|
MVSFormer | | | 83.75 84 | 82.88 86 | 86.37 68 | 89.24 155 | 71.18 17 | 89.07 229 | 90.69 182 | 65.80 247 | 87.13 25 | 94.34 77 | 64.99 69 | 92.67 235 | 72.83 139 | 91.80 69 | 95.27 59 |
|
lupinMVS | | | 87.74 21 | 87.77 21 | 87.63 29 | 89.24 155 | 71.18 17 | 96.57 9 | 92.90 102 | 82.70 16 | 87.13 25 | 95.27 46 | 64.99 69 | 95.80 131 | 89.34 21 | 91.80 69 | 95.93 35 |
|
IB-MVS | | 77.80 4 | 82.18 104 | 80.46 117 | 87.35 35 | 89.14 157 | 70.28 27 | 95.59 24 | 95.17 14 | 78.85 56 | 70.19 187 | 85.82 200 | 70.66 30 | 97.67 50 | 72.19 149 | 66.52 250 | 94.09 105 |
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
MDTV_nov1_ep13 | | | | 72.61 223 | | 89.06 158 | 68.48 60 | 80.33 297 | 90.11 200 | 71.84 177 | 71.81 172 | 75.92 300 | 53.01 194 | 93.92 200 | 48.04 284 | 73.38 202 | |
|
testdata | | | | | 81.34 199 | 89.02 159 | 57.72 276 | | 89.84 209 | 58.65 295 | 85.32 45 | 94.09 83 | 57.03 147 | 93.28 214 | 69.34 171 | 90.56 87 | 93.03 137 |
|
CostFormer | | | 82.33 102 | 81.15 106 | 85.86 84 | 89.01 160 | 68.46 61 | 82.39 286 | 93.01 97 | 75.59 94 | 80.25 86 | 81.57 245 | 72.03 26 | 94.96 159 | 79.06 102 | 77.48 181 | 94.16 101 |
|
GBi-Net | | | 75.65 208 | 73.83 210 | 81.10 205 | 88.85 161 | 65.11 153 | 90.01 209 | 90.32 190 | 70.84 202 | 67.04 229 | 80.25 268 | 48.03 231 | 91.54 265 | 59.80 246 | 69.34 229 | 86.64 230 |
|
test1 | | | 75.65 208 | 73.83 210 | 81.10 205 | 88.85 161 | 65.11 153 | 90.01 209 | 90.32 190 | 70.84 202 | 67.04 229 | 80.25 268 | 48.03 231 | 91.54 265 | 59.80 246 | 69.34 229 | 86.64 230 |
|
FMVSNet2 | | | 76.07 198 | 74.01 208 | 82.26 178 | 88.85 161 | 67.66 82 | 91.33 170 | 91.61 152 | 70.84 202 | 65.98 236 | 82.25 234 | 48.03 231 | 92.00 256 | 58.46 251 | 68.73 235 | 87.10 222 |
|
DeepC-MVS | | 77.85 3 | 85.52 52 | 85.24 54 | 86.37 68 | 88.80 164 | 66.64 113 | 92.15 129 | 93.68 67 | 81.07 31 | 76.91 123 | 93.64 91 | 62.59 99 | 98.44 25 | 85.50 53 | 92.84 55 | 94.03 109 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
EPP-MVSNet | | | 81.79 112 | 81.52 103 | 82.61 166 | 88.77 165 | 60.21 251 | 93.02 102 | 93.66 69 | 68.52 230 | 72.90 154 | 90.39 146 | 72.19 25 | 94.96 159 | 74.93 130 | 79.29 163 | 92.67 145 |
|
1112_ss | | | 80.56 127 | 79.83 124 | 82.77 160 | 88.65 166 | 60.78 239 | 92.29 125 | 88.36 258 | 72.58 150 | 72.46 163 | 94.95 55 | 65.09 68 | 93.42 213 | 66.38 199 | 77.71 174 | 94.10 104 |
|
tpm cat1 | | | 75.30 213 | 72.21 228 | 84.58 125 | 88.52 167 | 67.77 79 | 78.16 312 | 88.02 266 | 61.88 276 | 68.45 212 | 76.37 296 | 60.65 112 | 94.03 195 | 53.77 267 | 74.11 197 | 91.93 160 |
|
LCM-MVSNet-Re | | | 72.93 234 | 71.84 231 | 76.18 276 | 88.49 168 | 48.02 322 | 80.07 302 | 70.17 334 | 73.96 121 | 52.25 305 | 80.09 271 | 49.98 215 | 88.24 298 | 67.35 187 | 84.23 135 | 92.28 156 |
|
Vis-MVSNet | | | 80.92 123 | 79.98 122 | 83.74 141 | 88.48 169 | 61.80 225 | 93.44 88 | 88.26 263 | 73.96 121 | 77.73 110 | 91.76 130 | 49.94 216 | 94.76 164 | 65.84 205 | 90.37 88 | 94.65 83 |
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
Vis-MVSNet (Re-imp) | | | 79.24 150 | 79.57 128 | 78.24 256 | 88.46 170 | 52.29 305 | 90.41 198 | 89.12 236 | 74.24 115 | 69.13 197 | 91.91 127 | 65.77 62 | 90.09 284 | 59.00 250 | 88.09 102 | 92.33 153 |
|
ab-mvs | | | 80.18 133 | 78.31 147 | 85.80 86 | 88.44 171 | 65.49 145 | 83.00 283 | 92.67 109 | 71.82 178 | 77.36 117 | 85.01 207 | 54.50 178 | 96.59 106 | 76.35 120 | 75.63 193 | 95.32 52 |
|
gm-plane-assit | | | | | | 88.42 172 | 67.04 102 | | | 78.62 61 | | 91.83 128 | | 97.37 66 | 76.57 117 | | |
|
MVS_111021_LR | | | 82.02 109 | 81.52 103 | 83.51 150 | 88.42 172 | 62.88 212 | 89.77 215 | 88.93 243 | 76.78 84 | 75.55 134 | 93.10 98 | 50.31 212 | 95.38 152 | 83.82 67 | 87.02 109 | 92.26 157 |
|
baseline | | | 85.01 59 | 84.44 63 | 86.71 52 | 88.33 174 | 68.73 55 | 90.24 204 | 91.82 144 | 81.05 32 | 81.18 75 | 92.50 115 | 63.69 85 | 96.08 122 | 84.45 61 | 86.71 113 | 95.32 52 |
|
tpm2 | | | 79.80 142 | 77.95 154 | 85.34 104 | 88.28 175 | 68.26 67 | 81.56 291 | 91.42 160 | 70.11 210 | 77.59 115 | 80.50 263 | 67.40 45 | 94.26 184 | 67.34 188 | 77.35 182 | 93.51 123 |
|
thisisatest0530 | | | 81.15 118 | 80.07 118 | 84.39 130 | 88.26 176 | 65.63 141 | 91.40 163 | 94.62 34 | 71.27 195 | 70.93 179 | 89.18 159 | 72.47 23 | 96.04 125 | 65.62 208 | 76.89 187 | 91.49 165 |
|
casdiffmvs | | | 85.37 54 | 84.87 59 | 86.84 46 | 88.25 177 | 69.07 47 | 93.04 100 | 91.76 145 | 81.27 28 | 80.84 81 | 92.07 125 | 64.23 77 | 96.06 124 | 84.98 57 | 87.43 107 | 95.39 47 |
|
Test_1112_low_res | | | 79.56 145 | 78.60 144 | 82.43 169 | 88.24 178 | 60.39 248 | 92.09 133 | 87.99 267 | 72.10 167 | 71.84 171 | 87.42 184 | 64.62 73 | 93.04 217 | 65.80 206 | 77.30 183 | 93.85 117 |
|
PAPM | | | 85.89 49 | 85.46 52 | 87.18 38 | 88.20 179 | 72.42 12 | 92.41 124 | 92.77 105 | 82.11 21 | 80.34 85 | 93.07 102 | 68.27 34 | 95.02 157 | 78.39 107 | 93.59 46 | 94.09 105 |
|
TESTMET0.1,1 | | | 82.41 101 | 81.98 99 | 83.72 144 | 88.08 180 | 63.74 189 | 92.70 113 | 93.77 62 | 79.30 47 | 77.61 114 | 87.57 182 | 58.19 136 | 94.08 189 | 73.91 134 | 86.68 114 | 93.33 128 |
|
ADS-MVSNet2 | | | 66.90 276 | 63.44 280 | 77.26 268 | 88.06 181 | 60.70 243 | 68.01 328 | 75.56 324 | 57.57 297 | 64.48 248 | 69.87 320 | 38.68 272 | 84.10 315 | 40.87 311 | 67.89 241 | 86.97 223 |
|
ADS-MVSNet | | | 68.54 264 | 64.38 276 | 81.03 209 | 88.06 181 | 66.90 106 | 68.01 328 | 84.02 299 | 57.57 297 | 64.48 248 | 69.87 320 | 38.68 272 | 89.21 291 | 40.87 311 | 67.89 241 | 86.97 223 |
|
EPNet_dtu | | | 78.80 158 | 79.26 137 | 77.43 264 | 88.06 181 | 49.71 318 | 91.96 142 | 91.95 138 | 77.67 72 | 76.56 125 | 91.28 135 | 58.51 134 | 90.20 282 | 56.37 257 | 80.95 154 | 92.39 151 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
miper_enhance_ethall | | | 78.86 156 | 77.97 153 | 81.54 195 | 88.00 184 | 65.17 150 | 91.41 161 | 89.15 234 | 75.19 104 | 68.79 206 | 83.98 218 | 67.17 47 | 92.82 227 | 72.73 141 | 65.30 253 | 86.62 234 |
|
IS-MVSNet | | | 80.14 134 | 79.41 133 | 82.33 174 | 87.91 185 | 60.08 253 | 91.97 141 | 88.27 261 | 72.90 145 | 71.44 177 | 91.73 132 | 61.44 106 | 93.66 208 | 62.47 231 | 86.53 115 | 93.24 130 |
|
CLD-MVS | | | 82.73 96 | 82.35 96 | 83.86 139 | 87.90 186 | 67.65 83 | 95.45 25 | 92.18 132 | 85.06 7 | 72.58 159 | 92.27 123 | 52.46 198 | 95.78 132 | 84.18 62 | 79.06 164 | 88.16 208 |
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
HyFIR lowres test | | | 81.03 121 | 79.56 129 | 85.43 100 | 87.81 187 | 68.11 71 | 90.18 205 | 90.01 206 | 70.65 206 | 72.95 153 | 86.06 198 | 63.61 87 | 94.50 176 | 75.01 129 | 79.75 159 | 93.67 119 |
|
1314 | | | 80.70 124 | 78.95 141 | 85.94 80 | 87.77 188 | 67.56 84 | 87.91 245 | 92.55 117 | 72.17 165 | 67.44 223 | 93.09 99 | 50.27 213 | 97.04 84 | 71.68 154 | 87.64 105 | 93.23 131 |
|
cl-mvsnet2 | | | 77.94 175 | 76.78 171 | 81.42 197 | 87.57 189 | 64.93 161 | 90.67 191 | 88.86 246 | 72.45 153 | 67.63 222 | 82.68 230 | 64.07 78 | 92.91 225 | 71.79 150 | 65.30 253 | 86.44 235 |
|
HQP-NCC | | | | | | 87.54 190 | | 94.06 58 | | 79.80 40 | 74.18 141 | | | | | | |
|
ACMP_Plane | | | | | | 87.54 190 | | 94.06 58 | | 79.80 40 | 74.18 141 | | | | | | |
|
HQP-MVS | | | 81.14 119 | 80.64 114 | 82.64 165 | 87.54 190 | 63.66 194 | 94.06 58 | 91.70 149 | 79.80 40 | 74.18 141 | 90.30 148 | 51.63 205 | 95.61 143 | 77.63 112 | 78.90 165 | 88.63 199 |
|
NP-MVS | | | | | | 87.41 193 | 63.04 204 | | | | | 90.30 148 | | | | | |
|
diffmvs | | | 84.28 70 | 83.83 68 | 85.61 94 | 87.40 194 | 68.02 73 | 90.88 185 | 89.24 228 | 80.54 35 | 81.64 71 | 92.52 114 | 59.83 120 | 94.52 175 | 87.32 41 | 85.11 123 | 94.29 94 |
|
baseline2 | | | 83.68 86 | 83.42 76 | 84.48 128 | 87.37 195 | 66.00 130 | 90.06 208 | 95.93 7 | 79.71 43 | 69.08 199 | 90.39 146 | 77.92 4 | 96.28 113 | 78.91 104 | 81.38 150 | 91.16 173 |
|
plane_prior6 | | | | | | 87.23 196 | 62.32 220 | | | | | | 50.66 209 | | | | |
|
tttt0517 | | | 79.50 146 | 78.53 145 | 82.41 172 | 87.22 197 | 61.43 232 | 89.75 216 | 94.76 27 | 69.29 219 | 67.91 217 | 88.06 176 | 72.92 20 | 95.63 141 | 62.91 227 | 73.90 201 | 90.16 183 |
|
plane_prior1 | | | | | | 87.15 198 | | | | | | | | | | | |
|
cascas | | | 78.18 170 | 75.77 185 | 85.41 101 | 87.14 199 | 69.11 46 | 92.96 104 | 91.15 169 | 66.71 241 | 70.47 181 | 86.07 197 | 37.49 286 | 96.48 111 | 70.15 164 | 79.80 158 | 90.65 178 |
|
CHOSEN 280x420 | | | 77.35 184 | 76.95 170 | 78.55 251 | 87.07 200 | 62.68 216 | 69.71 324 | 82.95 308 | 68.80 226 | 71.48 176 | 87.27 188 | 66.03 58 | 84.00 318 | 76.47 118 | 82.81 141 | 88.95 194 |
|
HQP_MVS | | | 80.34 131 | 79.75 125 | 82.12 182 | 86.94 201 | 62.42 217 | 93.13 96 | 91.31 163 | 78.81 58 | 72.53 160 | 89.14 161 | 50.66 209 | 95.55 147 | 76.74 115 | 78.53 170 | 88.39 205 |
|
plane_prior7 | | | | | | 86.94 201 | 61.51 230 | | | | | | | | | | |
|
test-LLR | | | 80.10 135 | 79.56 129 | 81.72 191 | 86.93 203 | 61.17 233 | 92.70 113 | 91.54 154 | 71.51 191 | 75.62 131 | 86.94 189 | 53.83 184 | 92.38 245 | 72.21 147 | 84.76 127 | 91.60 163 |
|
test-mter | | | 79.96 138 | 79.38 135 | 81.72 191 | 86.93 203 | 61.17 233 | 92.70 113 | 91.54 154 | 73.85 123 | 75.62 131 | 86.94 189 | 49.84 218 | 92.38 245 | 72.21 147 | 84.76 127 | 91.60 163 |
|
SCA | | | 75.82 206 | 72.76 220 | 85.01 112 | 86.63 205 | 70.08 28 | 81.06 293 | 89.19 231 | 71.60 187 | 70.01 189 | 77.09 293 | 45.53 249 | 90.25 277 | 60.43 241 | 73.27 203 | 94.68 80 |
|
xiu_mvs_v1_base_debu | | | 82.16 105 | 81.12 107 | 85.26 106 | 86.42 206 | 68.72 56 | 92.59 120 | 90.44 187 | 73.12 139 | 84.20 53 | 94.36 72 | 38.04 280 | 95.73 135 | 84.12 63 | 86.81 110 | 91.33 167 |
|
xiu_mvs_v1_base | | | 82.16 105 | 81.12 107 | 85.26 106 | 86.42 206 | 68.72 56 | 92.59 120 | 90.44 187 | 73.12 139 | 84.20 53 | 94.36 72 | 38.04 280 | 95.73 135 | 84.12 63 | 86.81 110 | 91.33 167 |
|
xiu_mvs_v1_base_debi | | | 82.16 105 | 81.12 107 | 85.26 106 | 86.42 206 | 68.72 56 | 92.59 120 | 90.44 187 | 73.12 139 | 84.20 53 | 94.36 72 | 38.04 280 | 95.73 135 | 84.12 63 | 86.81 110 | 91.33 167 |
|
F-COLMAP | | | 70.66 249 | 68.44 252 | 77.32 266 | 86.37 209 | 55.91 289 | 88.00 243 | 86.32 279 | 56.94 302 | 57.28 291 | 88.07 175 | 33.58 302 | 92.49 242 | 51.02 273 | 68.37 237 | 83.55 275 |
|
CDS-MVSNet | | | 81.43 115 | 80.74 112 | 83.52 149 | 86.26 210 | 64.45 169 | 92.09 133 | 90.65 185 | 75.83 93 | 73.95 147 | 89.81 156 | 63.97 80 | 92.91 225 | 71.27 155 | 82.82 140 | 93.20 132 |
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
VDDNet | | | 80.50 128 | 78.26 148 | 87.21 37 | 86.19 211 | 69.79 36 | 94.48 46 | 91.31 163 | 60.42 283 | 79.34 95 | 90.91 138 | 38.48 276 | 96.56 109 | 82.16 78 | 81.05 153 | 95.27 59 |
|
jason | | | 86.40 41 | 86.17 42 | 87.11 40 | 86.16 212 | 70.54 24 | 95.71 22 | 92.19 131 | 82.00 23 | 84.58 49 | 94.34 77 | 61.86 104 | 95.53 149 | 87.76 36 | 90.89 82 | 95.27 59 |
jason: jason. |
PCF-MVS | | 73.15 9 | 79.29 149 | 77.63 159 | 84.29 132 | 86.06 213 | 65.96 132 | 87.03 255 | 91.10 171 | 69.86 213 | 69.79 194 | 90.64 141 | 57.54 142 | 96.59 106 | 64.37 218 | 82.29 142 | 90.32 181 |
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
MS-PatchMatch | | | 77.90 177 | 76.50 175 | 82.12 182 | 85.99 214 | 69.95 33 | 91.75 153 | 92.70 107 | 73.97 120 | 62.58 266 | 84.44 214 | 41.11 266 | 95.78 132 | 63.76 222 | 92.17 65 | 80.62 307 |
|
FIs | | | 79.47 147 | 79.41 133 | 79.67 236 | 85.95 215 | 59.40 261 | 91.68 155 | 93.94 57 | 78.06 67 | 68.96 202 | 88.28 169 | 66.61 54 | 91.77 260 | 66.20 202 | 74.99 194 | 87.82 210 |
|
VPA-MVSNet | | | 79.03 152 | 78.00 152 | 82.11 185 | 85.95 215 | 64.48 168 | 93.22 95 | 94.66 32 | 75.05 106 | 74.04 146 | 84.95 208 | 52.17 200 | 93.52 210 | 74.90 132 | 67.04 246 | 88.32 207 |
|
tpm | | | 78.58 165 | 77.03 167 | 83.22 154 | 85.94 217 | 64.56 164 | 83.21 281 | 91.14 170 | 78.31 63 | 73.67 148 | 79.68 274 | 64.01 79 | 92.09 254 | 66.07 203 | 71.26 220 | 93.03 137 |
|
OpenMVS | | 70.45 11 | 78.54 166 | 75.92 183 | 86.41 67 | 85.93 218 | 71.68 14 | 92.74 111 | 92.51 118 | 66.49 243 | 64.56 247 | 91.96 126 | 43.88 258 | 98.10 34 | 54.61 262 | 90.65 85 | 89.44 193 |
|
OMC-MVS | | | 78.67 164 | 77.91 156 | 80.95 211 | 85.76 219 | 57.40 280 | 88.49 237 | 88.67 251 | 73.85 123 | 72.43 164 | 92.10 124 | 49.29 222 | 94.55 172 | 72.73 141 | 77.89 173 | 90.91 176 |
|
miper_ehance_all_eth | | | 77.60 179 | 76.44 176 | 81.09 208 | 85.70 220 | 64.41 173 | 90.65 192 | 88.64 253 | 72.31 157 | 67.37 227 | 82.52 231 | 64.77 72 | 92.64 238 | 70.67 160 | 65.30 253 | 86.24 239 |
|
EI-MVSNet | | | 78.97 154 | 78.22 149 | 81.25 200 | 85.33 221 | 62.73 215 | 89.53 220 | 93.21 86 | 72.39 156 | 72.14 167 | 90.13 152 | 60.99 109 | 94.72 167 | 67.73 185 | 72.49 210 | 86.29 237 |
|
CVMVSNet | | | 74.04 224 | 74.27 203 | 73.33 292 | 85.33 221 | 43.94 332 | 89.53 220 | 88.39 257 | 54.33 310 | 70.37 184 | 90.13 152 | 49.17 224 | 84.05 316 | 61.83 235 | 79.36 161 | 91.99 159 |
|
ACMH | | 63.93 17 | 68.62 262 | 64.81 269 | 80.03 226 | 85.22 223 | 63.25 200 | 87.72 248 | 84.66 294 | 60.83 281 | 51.57 308 | 79.43 277 | 27.29 322 | 94.96 159 | 41.76 307 | 64.84 260 | 81.88 297 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
cl-mvsnet_ | | | 76.07 198 | 74.67 193 | 80.28 220 | 85.15 224 | 61.76 226 | 90.12 206 | 88.73 249 | 71.16 196 | 65.43 239 | 81.57 245 | 61.15 107 | 92.95 220 | 66.54 196 | 62.17 279 | 86.13 243 |
|
cl-mvsnet1 | | | 76.07 198 | 74.67 193 | 80.28 220 | 85.14 225 | 61.75 227 | 90.12 206 | 88.73 249 | 71.16 196 | 65.42 240 | 81.60 244 | 61.15 107 | 92.94 224 | 66.54 196 | 62.16 281 | 86.14 241 |
|
TAMVS | | | 80.37 130 | 79.45 132 | 83.13 156 | 85.14 225 | 63.37 198 | 91.23 174 | 90.76 181 | 74.81 109 | 72.65 157 | 88.49 165 | 60.63 113 | 92.95 220 | 69.41 170 | 81.95 146 | 93.08 136 |
|
MSDG | | | 69.54 257 | 65.73 263 | 80.96 210 | 85.11 227 | 63.71 191 | 84.19 270 | 83.28 307 | 56.95 301 | 54.50 296 | 84.03 216 | 31.50 310 | 96.03 126 | 42.87 304 | 69.13 232 | 83.14 285 |
|
cl_fuxian | | | 76.83 191 | 75.47 188 | 80.93 212 | 85.02 228 | 64.18 182 | 90.39 199 | 88.11 264 | 71.66 182 | 66.65 234 | 81.64 243 | 63.58 89 | 92.56 239 | 69.31 172 | 62.86 273 | 86.04 245 |
|
ACMP | | 71.68 10 | 75.58 211 | 74.23 204 | 79.62 238 | 84.97 229 | 59.64 257 | 90.80 188 | 89.07 239 | 70.39 208 | 62.95 262 | 87.30 186 | 38.28 277 | 93.87 202 | 72.89 138 | 71.45 218 | 85.36 260 |
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
FC-MVSNet-test | | | 77.99 173 | 78.08 151 | 77.70 259 | 84.89 230 | 55.51 291 | 90.27 202 | 93.75 65 | 76.87 81 | 66.80 233 | 87.59 181 | 65.71 63 | 90.23 281 | 62.89 228 | 73.94 199 | 87.37 217 |
|
PVSNet_0 | | 68.08 15 | 71.81 243 | 68.32 254 | 82.27 176 | 84.68 231 | 62.31 221 | 88.68 234 | 90.31 193 | 75.84 92 | 57.93 288 | 80.65 262 | 37.85 283 | 94.19 185 | 69.94 165 | 29.05 339 | 90.31 182 |
|
eth_miper_zixun_eth | | | 75.96 204 | 74.40 201 | 80.66 214 | 84.66 232 | 63.02 205 | 89.28 223 | 88.27 261 | 71.88 173 | 65.73 237 | 81.65 242 | 59.45 124 | 92.81 228 | 68.13 180 | 60.53 295 | 86.14 241 |
|
WR-MVS | | | 76.76 192 | 75.74 186 | 79.82 232 | 84.60 233 | 62.27 222 | 92.60 118 | 92.51 118 | 76.06 90 | 67.87 219 | 85.34 204 | 56.76 153 | 90.24 280 | 62.20 232 | 63.69 272 | 86.94 226 |
|
ACMH+ | | 65.35 16 | 67.65 271 | 64.55 272 | 76.96 270 | 84.59 234 | 57.10 283 | 88.08 242 | 80.79 313 | 58.59 296 | 53.00 302 | 81.09 257 | 26.63 324 | 92.95 220 | 46.51 289 | 61.69 288 | 80.82 304 |
|
VPNet | | | 78.82 157 | 77.53 161 | 82.70 162 | 84.52 235 | 66.44 119 | 93.93 66 | 92.23 125 | 80.46 36 | 72.60 158 | 88.38 168 | 49.18 223 | 93.13 216 | 72.47 145 | 63.97 270 | 88.55 201 |
|
IterMVS-LS | | | 76.49 194 | 75.18 191 | 80.43 217 | 84.49 236 | 62.74 214 | 90.64 193 | 88.80 247 | 72.40 155 | 65.16 242 | 81.72 241 | 60.98 110 | 92.27 250 | 67.74 184 | 64.65 264 | 86.29 237 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
UniMVSNet_NR-MVSNet | | | 78.15 171 | 77.55 160 | 79.98 227 | 84.46 237 | 60.26 249 | 92.25 126 | 93.20 88 | 77.50 75 | 68.88 203 | 86.61 191 | 66.10 57 | 92.13 252 | 66.38 199 | 62.55 275 | 87.54 212 |
|
FMVSNet5 | | | 68.04 268 | 65.66 264 | 75.18 280 | 84.43 238 | 57.89 273 | 83.54 274 | 86.26 281 | 61.83 277 | 53.64 301 | 73.30 308 | 37.15 290 | 85.08 312 | 48.99 280 | 61.77 284 | 82.56 293 |
|
MVS-HIRNet | | | 60.25 299 | 55.55 304 | 74.35 285 | 84.37 239 | 56.57 286 | 71.64 320 | 74.11 327 | 34.44 337 | 45.54 325 | 42.24 339 | 31.11 313 | 89.81 285 | 40.36 314 | 76.10 191 | 76.67 326 |
|
LPG-MVS_test | | | 75.82 206 | 74.58 197 | 79.56 240 | 84.31 240 | 59.37 262 | 90.44 196 | 89.73 214 | 69.49 216 | 64.86 243 | 88.42 166 | 38.65 274 | 94.30 180 | 72.56 143 | 72.76 207 | 85.01 264 |
|
LGP-MVS_train | | | | | 79.56 240 | 84.31 240 | 59.37 262 | | 89.73 214 | 69.49 216 | 64.86 243 | 88.42 166 | 38.65 274 | 94.30 180 | 72.56 143 | 72.76 207 | 85.01 264 |
|
ACMM | | 69.62 13 | 74.34 221 | 72.73 221 | 79.17 245 | 84.25 242 | 57.87 274 | 90.36 200 | 89.93 207 | 63.17 265 | 65.64 238 | 86.04 199 | 37.79 284 | 94.10 187 | 65.89 204 | 71.52 217 | 85.55 257 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
UniMVSNet (Re) | | | 77.58 180 | 76.78 171 | 79.98 227 | 84.11 243 | 60.80 238 | 91.76 151 | 93.17 91 | 76.56 87 | 69.93 193 | 84.78 210 | 63.32 92 | 92.36 247 | 64.89 215 | 62.51 277 | 86.78 228 |
|
test_0402 | | | 64.54 286 | 61.09 291 | 74.92 281 | 84.10 244 | 60.75 241 | 87.95 244 | 79.71 317 | 52.03 314 | 52.41 304 | 77.20 291 | 32.21 308 | 91.64 262 | 23.14 338 | 61.03 291 | 72.36 331 |
|
LTVRE_ROB | | 59.60 19 | 66.27 279 | 63.54 279 | 74.45 284 | 84.00 245 | 51.55 308 | 67.08 331 | 83.53 303 | 58.78 294 | 54.94 295 | 80.31 266 | 34.54 300 | 93.23 215 | 40.64 313 | 68.03 239 | 78.58 321 |
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
miper_lstm_enhance | | | 73.05 232 | 71.73 233 | 77.03 269 | 83.80 246 | 58.32 271 | 81.76 287 | 88.88 244 | 69.80 214 | 61.01 270 | 78.23 283 | 57.19 144 | 87.51 304 | 65.34 212 | 59.53 298 | 85.27 263 |
|
Patchmatch-test | | | 65.86 281 | 60.94 292 | 80.62 215 | 83.75 247 | 58.83 267 | 58.91 338 | 75.26 326 | 44.50 332 | 50.95 312 | 77.09 293 | 58.81 133 | 87.90 301 | 35.13 326 | 64.03 268 | 95.12 66 |
|
nrg030 | | | 80.93 122 | 79.86 123 | 84.13 135 | 83.69 248 | 68.83 53 | 93.23 94 | 91.20 167 | 75.55 95 | 75.06 137 | 88.22 174 | 63.04 96 | 94.74 166 | 81.88 80 | 66.88 247 | 88.82 197 |
|
GA-MVS | | | 78.33 169 | 76.23 179 | 84.65 123 | 83.65 249 | 66.30 123 | 91.44 160 | 90.14 199 | 76.01 91 | 70.32 185 | 84.02 217 | 42.50 262 | 94.72 167 | 70.98 156 | 77.00 186 | 92.94 140 |
|
FMVSNet1 | | | 72.71 239 | 69.91 245 | 81.10 205 | 83.60 250 | 65.11 153 | 90.01 209 | 90.32 190 | 63.92 258 | 63.56 257 | 80.25 268 | 36.35 295 | 91.54 265 | 54.46 263 | 66.75 248 | 86.64 230 |
|
OPM-MVS | | | 79.00 153 | 78.09 150 | 81.73 190 | 83.52 251 | 63.83 186 | 91.64 157 | 90.30 194 | 76.36 89 | 71.97 170 | 89.93 155 | 46.30 246 | 95.17 156 | 75.10 126 | 77.70 175 | 86.19 240 |
|
tfpnnormal | | | 70.10 252 | 67.36 256 | 78.32 253 | 83.45 252 | 60.97 236 | 88.85 231 | 92.77 105 | 64.85 254 | 60.83 272 | 78.53 280 | 43.52 260 | 93.48 211 | 31.73 335 | 61.70 287 | 80.52 308 |
|
Effi-MVS+-dtu | | | 76.14 197 | 75.28 190 | 78.72 250 | 83.22 253 | 55.17 293 | 89.87 213 | 87.78 269 | 75.42 97 | 67.98 215 | 81.43 247 | 45.08 252 | 92.52 241 | 75.08 127 | 71.63 215 | 88.48 202 |
|
mvs-test1 | | | 78.74 161 | 77.95 154 | 81.14 202 | 83.22 253 | 57.13 282 | 93.96 63 | 87.78 269 | 75.42 97 | 72.68 156 | 90.80 140 | 45.08 252 | 94.54 173 | 75.08 127 | 77.49 180 | 91.74 162 |
|
CR-MVSNet | | | 73.79 228 | 70.82 239 | 82.70 162 | 83.15 255 | 67.96 74 | 70.25 321 | 84.00 300 | 73.67 130 | 69.97 191 | 72.41 311 | 57.82 139 | 89.48 288 | 52.99 270 | 73.13 204 | 90.64 179 |
|
RPMNet | | | 69.58 256 | 65.21 268 | 82.70 162 | 83.15 255 | 67.96 74 | 70.25 321 | 86.15 283 | 46.83 328 | 69.97 191 | 65.10 327 | 56.48 160 | 89.48 288 | 35.79 325 | 73.13 204 | 90.64 179 |
|
DU-MVS | | | 76.86 188 | 75.84 184 | 79.91 229 | 82.96 257 | 60.26 249 | 91.26 173 | 91.54 154 | 76.46 88 | 68.88 203 | 86.35 193 | 56.16 161 | 92.13 252 | 66.38 199 | 62.55 275 | 87.35 218 |
|
NR-MVSNet | | | 76.05 201 | 74.59 196 | 80.44 216 | 82.96 257 | 62.18 223 | 90.83 187 | 91.73 146 | 77.12 79 | 60.96 271 | 86.35 193 | 59.28 128 | 91.80 259 | 60.74 239 | 61.34 290 | 87.35 218 |
|
XXY-MVS | | | 77.94 175 | 76.44 176 | 82.43 169 | 82.60 259 | 64.44 170 | 92.01 138 | 91.83 143 | 73.59 131 | 70.00 190 | 85.82 200 | 54.43 180 | 94.76 164 | 69.63 167 | 68.02 240 | 88.10 209 |
|
TranMVSNet+NR-MVSNet | | | 75.86 205 | 74.52 199 | 79.89 230 | 82.44 260 | 60.64 245 | 91.37 168 | 91.37 162 | 76.63 85 | 67.65 221 | 86.21 196 | 52.37 199 | 91.55 264 | 61.84 234 | 60.81 293 | 87.48 214 |
|
IterMVS | | | 72.65 241 | 70.83 238 | 78.09 257 | 82.17 261 | 62.96 207 | 87.64 250 | 86.28 280 | 71.56 189 | 60.44 273 | 78.85 279 | 45.42 251 | 86.66 308 | 63.30 224 | 61.83 283 | 84.65 268 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
Patchmtry | | | 67.53 273 | 63.93 277 | 78.34 252 | 82.12 262 | 64.38 174 | 68.72 325 | 84.00 300 | 48.23 325 | 59.24 278 | 72.41 311 | 57.82 139 | 89.27 290 | 46.10 291 | 56.68 307 | 81.36 300 |
|
PatchT | | | 69.11 260 | 65.37 267 | 80.32 218 | 82.07 263 | 63.68 193 | 67.96 330 | 87.62 271 | 50.86 318 | 69.37 195 | 65.18 326 | 57.09 145 | 88.53 296 | 41.59 309 | 66.60 249 | 88.74 198 |
|
MIMVSNet | | | 71.64 244 | 68.44 252 | 81.23 201 | 81.97 264 | 64.44 170 | 73.05 318 | 88.80 247 | 69.67 215 | 64.59 246 | 74.79 304 | 32.79 304 | 87.82 302 | 53.99 265 | 76.35 190 | 91.42 166 |
|
MVP-Stereo | | | 77.12 187 | 76.23 179 | 79.79 233 | 81.72 265 | 66.34 122 | 89.29 222 | 90.88 178 | 70.56 207 | 62.01 269 | 82.88 227 | 49.34 221 | 94.13 186 | 65.55 210 | 93.80 40 | 78.88 318 |
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application. |
IterMVS-SCA-FT | | | 71.55 245 | 69.97 243 | 76.32 274 | 81.48 266 | 60.67 244 | 87.64 250 | 85.99 285 | 66.17 245 | 59.50 277 | 78.88 278 | 45.53 249 | 83.65 320 | 62.58 230 | 61.93 282 | 84.63 269 |
|
COLMAP_ROB | | 57.96 20 | 62.98 294 | 59.65 295 | 72.98 295 | 81.44 267 | 53.00 302 | 83.75 272 | 75.53 325 | 48.34 324 | 48.81 317 | 81.40 249 | 24.14 327 | 90.30 276 | 32.95 331 | 60.52 296 | 75.65 328 |
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
JIA-IIPM | | | 66.06 280 | 62.45 286 | 76.88 271 | 81.42 268 | 54.45 297 | 57.49 339 | 88.67 251 | 49.36 321 | 63.86 254 | 46.86 335 | 56.06 164 | 90.25 277 | 49.53 279 | 68.83 233 | 85.95 248 |
|
WR-MVS_H | | | 70.59 250 | 69.94 244 | 72.53 298 | 81.03 269 | 51.43 309 | 87.35 253 | 92.03 135 | 67.38 238 | 60.23 274 | 80.70 259 | 55.84 168 | 83.45 322 | 46.33 290 | 58.58 302 | 82.72 289 |
|
Fast-Effi-MVS+-dtu | | | 75.04 216 | 73.37 215 | 80.07 225 | 80.86 270 | 59.52 260 | 91.20 177 | 85.38 289 | 71.90 171 | 65.20 241 | 84.84 209 | 41.46 265 | 92.97 219 | 66.50 198 | 72.96 206 | 87.73 211 |
|
Baseline_NR-MVSNet | | | 73.99 225 | 72.83 219 | 77.48 263 | 80.78 271 | 59.29 264 | 91.79 148 | 84.55 295 | 68.85 225 | 68.99 201 | 80.70 259 | 56.16 161 | 92.04 255 | 62.67 229 | 60.98 292 | 81.11 301 |
|
CP-MVSNet | | | 70.50 251 | 69.91 245 | 72.26 301 | 80.71 272 | 51.00 312 | 87.23 254 | 90.30 194 | 67.84 232 | 59.64 276 | 82.69 229 | 50.23 214 | 82.30 329 | 51.28 272 | 59.28 299 | 83.46 279 |
|
v8 | | | 75.35 212 | 73.26 216 | 81.61 194 | 80.67 273 | 66.82 108 | 89.54 219 | 89.27 227 | 71.65 183 | 63.30 260 | 80.30 267 | 54.99 175 | 94.06 191 | 67.33 189 | 62.33 278 | 83.94 272 |
|
PS-MVSNAJss | | | 77.26 185 | 76.31 178 | 80.13 224 | 80.64 274 | 59.16 265 | 90.63 195 | 91.06 173 | 72.80 146 | 68.58 210 | 84.57 213 | 53.55 188 | 93.96 198 | 72.97 137 | 71.96 214 | 87.27 221 |
|
TransMVSNet (Re) | | | 70.07 253 | 67.66 255 | 77.31 267 | 80.62 275 | 59.13 266 | 91.78 150 | 84.94 293 | 65.97 246 | 60.08 275 | 80.44 264 | 50.78 208 | 91.87 257 | 48.84 281 | 45.46 326 | 80.94 303 |
|
v2v482 | | | 77.42 182 | 75.65 187 | 82.73 161 | 80.38 276 | 67.13 99 | 91.85 146 | 90.23 196 | 75.09 105 | 69.37 195 | 83.39 224 | 53.79 186 | 94.44 177 | 71.77 151 | 65.00 259 | 86.63 233 |
|
MVS_0304 | | | 68.99 261 | 67.23 259 | 74.28 287 | 80.36 277 | 52.54 303 | 87.01 257 | 86.36 278 | 59.89 289 | 66.22 235 | 73.56 307 | 24.25 326 | 88.03 300 | 57.34 255 | 70.11 223 | 82.27 294 |
|
PS-CasMVS | | | 69.86 255 | 69.13 249 | 72.07 304 | 80.35 278 | 50.57 314 | 87.02 256 | 89.75 211 | 67.27 239 | 59.19 280 | 82.28 233 | 46.58 243 | 82.24 330 | 50.69 274 | 59.02 300 | 83.39 281 |
|
v10 | | | 74.77 219 | 72.54 225 | 81.46 196 | 80.33 279 | 66.71 112 | 89.15 227 | 89.08 238 | 70.94 200 | 63.08 261 | 79.86 272 | 52.52 197 | 94.04 194 | 65.70 207 | 62.17 279 | 83.64 274 |
|
test0.0.03 1 | | | 72.76 237 | 72.71 222 | 72.88 296 | 80.25 280 | 47.99 323 | 91.22 175 | 89.45 221 | 71.51 191 | 62.51 267 | 87.66 180 | 53.83 184 | 85.06 313 | 50.16 276 | 67.84 243 | 85.58 255 |
|
v1144 | | | 76.73 193 | 74.88 192 | 82.27 176 | 80.23 281 | 66.60 115 | 91.68 155 | 90.21 198 | 73.69 128 | 69.06 200 | 81.89 238 | 52.73 196 | 94.40 178 | 69.21 173 | 65.23 256 | 85.80 251 |
|
v148 | | | 76.19 196 | 74.47 200 | 81.36 198 | 80.05 282 | 64.44 170 | 91.75 153 | 90.23 196 | 73.68 129 | 67.13 228 | 80.84 258 | 55.92 167 | 93.86 204 | 68.95 176 | 61.73 286 | 85.76 254 |
|
v1192 | | | 75.98 203 | 73.92 209 | 82.15 181 | 79.73 283 | 66.24 126 | 91.22 175 | 89.75 211 | 72.67 148 | 68.49 211 | 81.42 248 | 49.86 217 | 94.27 182 | 67.08 190 | 65.02 258 | 85.95 248 |
|
AllTest | | | 61.66 295 | 58.06 297 | 72.46 299 | 79.57 284 | 51.42 310 | 80.17 300 | 68.61 336 | 51.25 316 | 45.88 321 | 81.23 251 | 19.86 335 | 86.58 309 | 38.98 317 | 57.01 305 | 79.39 315 |
|
TestCases | | | | | 72.46 299 | 79.57 284 | 51.42 310 | | 68.61 336 | 51.25 316 | 45.88 321 | 81.23 251 | 19.86 335 | 86.58 309 | 38.98 317 | 57.01 305 | 79.39 315 |
|
MDA-MVSNet-bldmvs | | | 61.54 297 | 57.70 299 | 73.05 294 | 79.53 286 | 57.00 284 | 83.08 282 | 81.23 311 | 57.57 297 | 34.91 337 | 72.45 310 | 32.79 304 | 86.26 311 | 35.81 324 | 41.95 330 | 75.89 327 |
|
v144192 | | | 76.05 201 | 74.03 207 | 82.12 182 | 79.50 287 | 66.55 117 | 91.39 165 | 89.71 217 | 72.30 158 | 68.17 213 | 81.33 250 | 51.75 203 | 94.03 195 | 67.94 182 | 64.19 266 | 85.77 252 |
|
v1921920 | | | 75.63 210 | 73.49 214 | 82.06 186 | 79.38 288 | 66.35 121 | 91.07 183 | 89.48 220 | 71.98 168 | 67.99 214 | 81.22 253 | 49.16 225 | 93.90 201 | 66.56 195 | 64.56 265 | 85.92 250 |
|
PEN-MVS | | | 69.46 258 | 68.56 251 | 72.17 303 | 79.27 289 | 49.71 318 | 86.90 258 | 89.24 228 | 67.24 240 | 59.08 281 | 82.51 232 | 47.23 240 | 83.54 321 | 48.42 283 | 57.12 303 | 83.25 282 |
|
v1240 | | | 75.21 215 | 72.98 218 | 81.88 188 | 79.20 290 | 66.00 130 | 90.75 190 | 89.11 237 | 71.63 186 | 67.41 225 | 81.22 253 | 47.36 239 | 93.87 202 | 65.46 211 | 64.72 263 | 85.77 252 |
|
pmmvs4 | | | 73.92 226 | 71.81 232 | 80.25 222 | 79.17 291 | 65.24 148 | 87.43 252 | 87.26 275 | 67.64 237 | 63.46 258 | 83.91 219 | 48.96 227 | 91.53 268 | 62.94 226 | 65.49 252 | 83.96 271 |
|
D2MVS | | | 73.80 227 | 72.02 230 | 79.15 247 | 79.15 292 | 62.97 206 | 88.58 236 | 90.07 201 | 72.94 142 | 59.22 279 | 78.30 281 | 42.31 264 | 92.70 234 | 65.59 209 | 72.00 213 | 81.79 298 |
|
V42 | | | 76.46 195 | 74.55 198 | 82.19 180 | 79.14 293 | 67.82 78 | 90.26 203 | 89.42 223 | 73.75 126 | 68.63 209 | 81.89 238 | 51.31 207 | 94.09 188 | 71.69 153 | 64.84 260 | 84.66 267 |
|
pm-mvs1 | | | 72.89 235 | 71.09 237 | 78.26 255 | 79.10 294 | 57.62 278 | 90.80 188 | 89.30 226 | 67.66 235 | 62.91 263 | 81.78 240 | 49.11 226 | 92.95 220 | 60.29 243 | 58.89 301 | 84.22 270 |
|
our_test_3 | | | 68.29 266 | 64.69 271 | 79.11 248 | 78.92 295 | 64.85 162 | 88.40 240 | 85.06 291 | 60.32 285 | 52.68 303 | 76.12 298 | 40.81 267 | 89.80 287 | 44.25 299 | 55.65 308 | 82.67 292 |
|
ppachtmachnet_test | | | 67.72 270 | 63.70 278 | 79.77 234 | 78.92 295 | 66.04 129 | 88.68 234 | 82.90 309 | 60.11 287 | 55.45 294 | 75.96 299 | 39.19 271 | 90.55 273 | 39.53 315 | 52.55 317 | 82.71 290 |
|
TinyColmap | | | 60.32 298 | 56.42 303 | 72.00 305 | 78.78 297 | 53.18 301 | 78.36 310 | 75.64 323 | 52.30 313 | 41.59 333 | 75.82 301 | 14.76 340 | 88.35 297 | 35.84 323 | 54.71 313 | 74.46 329 |
|
SixPastTwentyTwo | | | 64.92 284 | 61.78 290 | 74.34 286 | 78.74 298 | 49.76 317 | 83.42 278 | 79.51 318 | 62.86 267 | 50.27 313 | 77.35 288 | 30.92 314 | 90.49 275 | 45.89 292 | 47.06 324 | 82.78 286 |
|
EG-PatchMatch MVS | | | 68.55 263 | 65.41 266 | 77.96 258 | 78.69 299 | 62.93 208 | 89.86 214 | 89.17 232 | 60.55 282 | 50.27 313 | 77.73 287 | 22.60 331 | 94.06 191 | 47.18 288 | 72.65 209 | 76.88 325 |
|
pmmvs5 | | | 73.35 230 | 71.52 234 | 78.86 249 | 78.64 300 | 60.61 246 | 91.08 181 | 86.90 276 | 67.69 234 | 63.32 259 | 83.64 220 | 44.33 256 | 90.53 274 | 62.04 233 | 66.02 251 | 85.46 258 |
|
UniMVSNet_ETH3D | | | 72.74 238 | 70.53 240 | 79.36 242 | 78.62 301 | 56.64 285 | 85.01 266 | 89.20 230 | 63.77 260 | 64.84 245 | 84.44 214 | 34.05 301 | 91.86 258 | 63.94 220 | 70.89 222 | 89.57 191 |
|
XVG-OURS | | | 74.25 223 | 72.46 226 | 79.63 237 | 78.45 302 | 57.59 279 | 80.33 297 | 87.39 272 | 63.86 259 | 68.76 207 | 89.62 158 | 40.50 268 | 91.72 261 | 69.00 175 | 74.25 196 | 89.58 190 |
|
XVG-OURS-SEG-HR | | | 74.70 220 | 73.08 217 | 79.57 239 | 78.25 303 | 57.33 281 | 80.49 295 | 87.32 273 | 63.22 264 | 68.76 207 | 90.12 154 | 44.89 254 | 91.59 263 | 70.55 162 | 74.09 198 | 89.79 187 |
|
MDA-MVSNet_test_wron | | | 63.78 291 | 60.16 293 | 74.64 282 | 78.15 304 | 60.41 247 | 83.49 275 | 84.03 298 | 56.17 307 | 39.17 335 | 71.59 317 | 37.22 288 | 83.24 325 | 42.87 304 | 48.73 322 | 80.26 311 |
|
YYNet1 | | | 63.76 292 | 60.14 294 | 74.62 283 | 78.06 305 | 60.19 252 | 83.46 277 | 83.99 302 | 56.18 306 | 39.25 334 | 71.56 318 | 37.18 289 | 83.34 323 | 42.90 303 | 48.70 323 | 80.32 310 |
|
DTE-MVSNet | | | 68.46 265 | 67.33 257 | 71.87 306 | 77.94 306 | 49.00 321 | 86.16 263 | 88.58 255 | 66.36 244 | 58.19 285 | 82.21 235 | 46.36 244 | 83.87 319 | 44.97 297 | 55.17 310 | 82.73 288 |
|
USDC | | | 67.43 275 | 64.51 273 | 76.19 275 | 77.94 306 | 55.29 292 | 78.38 309 | 85.00 292 | 73.17 137 | 48.36 318 | 80.37 265 | 21.23 333 | 92.48 243 | 52.15 271 | 64.02 269 | 80.81 305 |
|
jajsoiax | | | 73.05 232 | 71.51 235 | 77.67 260 | 77.46 308 | 54.83 294 | 88.81 232 | 90.04 205 | 69.13 223 | 62.85 264 | 83.51 222 | 31.16 312 | 92.75 231 | 70.83 157 | 69.80 225 | 85.43 259 |
|
mvs_tets | | | 72.71 239 | 71.11 236 | 77.52 261 | 77.41 309 | 54.52 296 | 88.45 239 | 89.76 210 | 68.76 228 | 62.70 265 | 83.26 225 | 29.49 315 | 92.71 232 | 70.51 163 | 69.62 227 | 85.34 261 |
|
N_pmnet | | | 50.55 307 | 49.11 309 | 54.88 322 | 77.17 310 | 4.02 353 | 84.36 269 | 2.00 353 | 48.59 322 | 45.86 323 | 68.82 322 | 32.22 307 | 82.80 326 | 31.58 336 | 51.38 319 | 77.81 323 |
|
test_djsdf | | | 73.76 229 | 72.56 224 | 77.39 265 | 77.00 311 | 53.93 298 | 89.07 229 | 90.69 182 | 65.80 247 | 63.92 253 | 82.03 237 | 43.14 261 | 92.67 235 | 72.83 139 | 68.53 236 | 85.57 256 |
|
OpenMVS_ROB | | 61.12 18 | 66.39 278 | 62.92 283 | 76.80 272 | 76.51 312 | 57.77 275 | 89.22 224 | 83.41 305 | 55.48 308 | 53.86 300 | 77.84 286 | 26.28 325 | 93.95 199 | 34.90 327 | 68.76 234 | 78.68 320 |
|
v7n | | | 71.31 246 | 68.65 250 | 79.28 243 | 76.40 313 | 60.77 240 | 86.71 260 | 89.45 221 | 64.17 257 | 58.77 284 | 78.24 282 | 44.59 255 | 93.54 209 | 57.76 252 | 61.75 285 | 83.52 277 |
|
K. test v3 | | | 63.09 293 | 59.61 296 | 73.53 291 | 76.26 314 | 49.38 320 | 83.27 279 | 77.15 320 | 64.35 256 | 47.77 319 | 72.32 313 | 28.73 317 | 87.79 303 | 49.93 278 | 36.69 336 | 83.41 280 |
|
RPSCF | | | 64.24 288 | 61.98 289 | 71.01 307 | 76.10 315 | 45.00 329 | 75.83 316 | 75.94 322 | 46.94 327 | 58.96 282 | 84.59 212 | 31.40 311 | 82.00 331 | 47.76 286 | 60.33 297 | 86.04 245 |
|
OurMVSNet-221017-0 | | | 64.68 285 | 62.17 288 | 72.21 302 | 76.08 316 | 47.35 326 | 80.67 294 | 81.02 312 | 56.19 305 | 51.60 307 | 79.66 275 | 27.05 323 | 88.56 295 | 53.60 268 | 53.63 315 | 80.71 306 |
|
Anonymous20231206 | | | 67.53 273 | 65.78 262 | 72.79 297 | 74.95 317 | 47.59 325 | 88.23 241 | 87.32 273 | 61.75 278 | 58.07 287 | 77.29 290 | 37.79 284 | 87.29 306 | 42.91 302 | 63.71 271 | 83.48 278 |
|
ITE_SJBPF | | | | | 70.43 308 | 74.44 318 | 47.06 327 | | 77.32 319 | 60.16 286 | 54.04 299 | 83.53 221 | 23.30 330 | 84.01 317 | 43.07 301 | 61.58 289 | 80.21 312 |
|
EU-MVSNet | | | 64.01 289 | 63.01 282 | 67.02 316 | 74.40 319 | 38.86 340 | 83.27 279 | 86.19 282 | 45.11 330 | 54.27 297 | 81.15 256 | 36.91 293 | 80.01 334 | 48.79 282 | 57.02 304 | 82.19 296 |
|
XVG-ACMP-BASELINE | | | 68.04 268 | 65.53 265 | 75.56 278 | 74.06 320 | 52.37 304 | 78.43 308 | 85.88 286 | 62.03 273 | 58.91 283 | 81.21 255 | 20.38 334 | 91.15 271 | 60.69 240 | 68.18 238 | 83.16 284 |
|
anonymousdsp | | | 71.14 247 | 69.37 248 | 76.45 273 | 72.95 321 | 54.71 295 | 84.19 270 | 88.88 244 | 61.92 275 | 62.15 268 | 79.77 273 | 38.14 279 | 91.44 270 | 68.90 177 | 67.45 245 | 83.21 283 |
|
lessismore_v0 | | | | | 73.72 290 | 72.93 322 | 47.83 324 | | 61.72 344 | | 45.86 323 | 73.76 306 | 28.63 319 | 89.81 285 | 47.75 287 | 31.37 338 | 83.53 276 |
|
pmmvs6 | | | 67.57 272 | 64.76 270 | 76.00 277 | 72.82 323 | 53.37 300 | 88.71 233 | 86.78 277 | 53.19 312 | 57.58 290 | 78.03 285 | 35.33 298 | 92.41 244 | 55.56 260 | 54.88 312 | 82.21 295 |
|
testgi | | | 64.48 287 | 62.87 284 | 69.31 310 | 71.24 324 | 40.62 336 | 85.49 264 | 79.92 316 | 65.36 251 | 54.18 298 | 83.49 223 | 23.74 329 | 84.55 314 | 41.60 308 | 60.79 294 | 82.77 287 |
|
Patchmatch-RL test | | | 68.17 267 | 64.49 274 | 79.19 244 | 71.22 325 | 53.93 298 | 70.07 323 | 71.54 333 | 69.22 220 | 56.79 292 | 62.89 329 | 56.58 158 | 88.61 293 | 69.53 169 | 52.61 316 | 95.03 72 |
|
Gipuma | | | 34.91 313 | 31.44 315 | 45.30 326 | 70.99 326 | 39.64 339 | 19.85 346 | 72.56 330 | 20.10 343 | 16.16 344 | 21.47 345 | 5.08 349 | 71.16 338 | 13.07 342 | 43.70 329 | 25.08 342 |
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
UnsupCasMVSNet_eth | | | 65.79 282 | 63.10 281 | 73.88 288 | 70.71 327 | 50.29 316 | 81.09 292 | 89.88 208 | 72.58 150 | 49.25 316 | 74.77 305 | 32.57 306 | 87.43 305 | 55.96 259 | 41.04 332 | 83.90 273 |
|
CMPMVS | | 48.56 21 | 66.77 277 | 64.41 275 | 73.84 289 | 70.65 328 | 50.31 315 | 77.79 313 | 85.73 288 | 45.54 329 | 44.76 327 | 82.14 236 | 35.40 297 | 90.14 283 | 63.18 225 | 74.54 195 | 81.07 302 |
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
test20.03 | | | 63.83 290 | 62.65 285 | 67.38 315 | 70.58 329 | 39.94 337 | 86.57 261 | 84.17 297 | 63.29 263 | 51.86 306 | 77.30 289 | 37.09 291 | 82.47 327 | 38.87 319 | 54.13 314 | 79.73 313 |
|
testing_2 | | | 71.09 248 | 67.32 258 | 82.40 173 | 69.82 330 | 66.52 118 | 83.64 273 | 90.77 180 | 72.21 162 | 45.12 326 | 71.07 319 | 27.60 321 | 93.74 205 | 75.71 122 | 69.96 224 | 86.95 225 |
|
MIMVSNet1 | | | 60.16 300 | 57.33 300 | 68.67 311 | 69.71 331 | 44.13 331 | 78.92 306 | 84.21 296 | 55.05 309 | 44.63 328 | 71.85 315 | 23.91 328 | 81.54 333 | 32.63 333 | 55.03 311 | 80.35 309 |
|
pmmvs-eth3d | | | 65.53 283 | 62.32 287 | 75.19 279 | 69.39 332 | 59.59 258 | 82.80 284 | 83.43 304 | 62.52 270 | 51.30 310 | 72.49 309 | 32.86 303 | 87.16 307 | 55.32 261 | 50.73 320 | 78.83 319 |
|
UnsupCasMVSNet_bld | | | 61.60 296 | 57.71 298 | 73.29 293 | 68.73 333 | 51.64 307 | 78.61 307 | 89.05 240 | 57.20 300 | 46.11 320 | 61.96 330 | 28.70 318 | 88.60 294 | 50.08 277 | 38.90 334 | 79.63 314 |
|
new-patchmatchnet | | | 59.30 302 | 56.48 302 | 67.79 313 | 65.86 334 | 44.19 330 | 82.47 285 | 81.77 310 | 59.94 288 | 43.65 331 | 66.20 325 | 27.67 320 | 81.68 332 | 39.34 316 | 41.40 331 | 77.50 324 |
|
PM-MVS | | | 59.40 301 | 56.59 301 | 67.84 312 | 63.63 335 | 41.86 333 | 76.76 314 | 63.22 342 | 59.01 293 | 51.07 311 | 72.27 314 | 11.72 342 | 83.25 324 | 61.34 236 | 50.28 321 | 78.39 322 |
|
DSMNet-mixed | | | 56.78 303 | 54.44 305 | 63.79 318 | 63.21 336 | 29.44 344 | 64.43 333 | 64.10 341 | 42.12 334 | 51.32 309 | 71.60 316 | 31.76 309 | 75.04 336 | 36.23 322 | 65.20 257 | 86.87 227 |
|
new_pmnet | | | 49.31 308 | 46.44 310 | 57.93 320 | 62.84 337 | 40.74 335 | 68.47 327 | 62.96 343 | 36.48 336 | 35.09 336 | 57.81 332 | 14.97 339 | 72.18 337 | 32.86 332 | 46.44 325 | 60.88 337 |
|
LF4IMVS | | | 54.01 306 | 52.12 306 | 59.69 319 | 62.41 338 | 39.91 338 | 68.59 326 | 68.28 338 | 42.96 333 | 44.55 329 | 75.18 302 | 14.09 341 | 68.39 339 | 41.36 310 | 51.68 318 | 70.78 332 |
|
ambc | | | | | 69.61 309 | 61.38 339 | 41.35 334 | 49.07 342 | 85.86 287 | | 50.18 315 | 66.40 324 | 10.16 343 | 88.14 299 | 45.73 293 | 44.20 327 | 79.32 317 |
|
TDRefinement | | | 55.28 305 | 51.58 307 | 66.39 317 | 59.53 340 | 46.15 328 | 76.23 315 | 72.80 329 | 44.60 331 | 42.49 332 | 76.28 297 | 15.29 338 | 82.39 328 | 33.20 330 | 43.75 328 | 70.62 333 |
|
pmmvs3 | | | 55.51 304 | 51.50 308 | 67.53 314 | 57.90 341 | 50.93 313 | 80.37 296 | 73.66 328 | 40.63 335 | 44.15 330 | 64.75 328 | 16.30 337 | 78.97 335 | 44.77 298 | 40.98 333 | 72.69 330 |
|
DeepMVS_CX | | | | | 34.71 329 | 51.45 342 | 24.73 348 | | 28.48 352 | 31.46 338 | 17.49 343 | 52.75 333 | 5.80 348 | 42.60 348 | 18.18 340 | 19.42 340 | 36.81 340 |
|
FPMVS | | | 45.64 309 | 43.10 311 | 53.23 324 | 51.42 343 | 36.46 341 | 64.97 332 | 71.91 331 | 29.13 339 | 27.53 338 | 61.55 331 | 9.83 344 | 65.01 343 | 16.00 341 | 55.58 309 | 58.22 338 |
|
wuyk23d | | | 11.30 320 | 10.95 322 | 12.33 333 | 48.05 344 | 19.89 349 | 25.89 345 | 1.92 354 | 3.58 347 | 3.12 349 | 1.37 349 | 0.64 354 | 15.77 350 | 6.23 347 | 7.77 347 | 1.35 346 |
|
PMMVS2 | | | 37.93 312 | 33.61 314 | 50.92 325 | 46.31 345 | 24.76 347 | 60.55 337 | 50.05 345 | 28.94 340 | 20.93 340 | 47.59 334 | 4.41 351 | 65.13 342 | 25.14 337 | 18.55 341 | 62.87 336 |
|
E-PMN | | | 24.61 315 | 24.00 318 | 26.45 330 | 43.74 346 | 18.44 350 | 60.86 335 | 39.66 347 | 15.11 344 | 9.53 347 | 22.10 344 | 6.52 347 | 46.94 346 | 8.31 345 | 10.14 343 | 13.98 344 |
|
EMVS | | | 23.76 317 | 23.20 320 | 25.46 331 | 41.52 347 | 16.90 351 | 60.56 336 | 38.79 350 | 14.62 345 | 8.99 348 | 20.24 347 | 7.35 346 | 45.82 347 | 7.25 346 | 9.46 344 | 13.64 345 |
|
LCM-MVSNet | | | 40.54 310 | 35.79 312 | 54.76 323 | 36.92 348 | 30.81 343 | 51.41 340 | 69.02 335 | 22.07 341 | 24.63 339 | 45.37 337 | 4.56 350 | 65.81 341 | 33.67 328 | 34.50 337 | 67.67 334 |
|
ANet_high | | | 40.27 311 | 35.20 313 | 55.47 321 | 34.74 349 | 34.47 342 | 63.84 334 | 71.56 332 | 48.42 323 | 18.80 342 | 41.08 340 | 9.52 345 | 64.45 344 | 20.18 339 | 8.66 346 | 67.49 335 |
|
MVE | | 24.84 23 | 24.35 316 | 19.77 321 | 38.09 328 | 34.56 350 | 26.92 346 | 26.57 344 | 38.87 349 | 11.73 346 | 11.37 346 | 27.44 342 | 1.37 353 | 50.42 345 | 11.41 343 | 14.60 342 | 36.93 339 |
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
PMVS | | 26.43 22 | 31.84 314 | 28.16 316 | 42.89 327 | 25.87 351 | 27.58 345 | 50.92 341 | 49.78 346 | 21.37 342 | 14.17 345 | 40.81 341 | 2.01 352 | 66.62 340 | 9.61 344 | 38.88 335 | 34.49 341 |
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
tmp_tt | | | 22.26 318 | 23.75 319 | 17.80 332 | 5.23 352 | 12.06 352 | 35.26 343 | 39.48 348 | 2.82 348 | 18.94 341 | 44.20 338 | 22.23 332 | 24.64 349 | 36.30 321 | 9.31 345 | 16.69 343 |
|
testmvs | | | 7.23 322 | 9.62 324 | 0.06 335 | 0.04 353 | 0.02 355 | 84.98 267 | 0.02 355 | 0.03 349 | 0.18 350 | 1.21 350 | 0.01 356 | 0.02 351 | 0.14 348 | 0.01 348 | 0.13 348 |
|
test123 | | | 6.92 323 | 9.21 325 | 0.08 334 | 0.03 354 | 0.05 354 | 81.65 290 | 0.01 356 | 0.02 350 | 0.14 351 | 0.85 351 | 0.03 355 | 0.02 351 | 0.12 349 | 0.00 349 | 0.16 347 |
|
uanet_test | | | 0.00 325 | 0.00 327 | 0.00 336 | 0.00 355 | 0.00 356 | 0.00 347 | 0.00 357 | 0.00 351 | 0.00 352 | 0.00 352 | 0.00 357 | 0.00 353 | 0.00 350 | 0.00 349 | 0.00 349 |
|
cdsmvs_eth3d_5k | | | 19.86 319 | 26.47 317 | 0.00 336 | 0.00 355 | 0.00 356 | 0.00 347 | 93.45 77 | 0.00 351 | 0.00 352 | 95.27 46 | 49.56 219 | 0.00 353 | 0.00 350 | 0.00 349 | 0.00 349 |
|
pcd_1.5k_mvsjas | | | 4.46 324 | 5.95 326 | 0.00 336 | 0.00 355 | 0.00 356 | 0.00 347 | 0.00 357 | 0.00 351 | 0.00 352 | 0.00 352 | 53.55 188 | 0.00 353 | 0.00 350 | 0.00 349 | 0.00 349 |
|
sosnet-low-res | | | 0.00 325 | 0.00 327 | 0.00 336 | 0.00 355 | 0.00 356 | 0.00 347 | 0.00 357 | 0.00 351 | 0.00 352 | 0.00 352 | 0.00 357 | 0.00 353 | 0.00 350 | 0.00 349 | 0.00 349 |
|
sosnet | | | 0.00 325 | 0.00 327 | 0.00 336 | 0.00 355 | 0.00 356 | 0.00 347 | 0.00 357 | 0.00 351 | 0.00 352 | 0.00 352 | 0.00 357 | 0.00 353 | 0.00 350 | 0.00 349 | 0.00 349 |
|
uncertanet | | | 0.00 325 | 0.00 327 | 0.00 336 | 0.00 355 | 0.00 356 | 0.00 347 | 0.00 357 | 0.00 351 | 0.00 352 | 0.00 352 | 0.00 357 | 0.00 353 | 0.00 350 | 0.00 349 | 0.00 349 |
|
Regformer | | | 0.00 325 | 0.00 327 | 0.00 336 | 0.00 355 | 0.00 356 | 0.00 347 | 0.00 357 | 0.00 351 | 0.00 352 | 0.00 352 | 0.00 357 | 0.00 353 | 0.00 350 | 0.00 349 | 0.00 349 |
|
ab-mvs-re | | | 7.91 321 | 10.55 323 | 0.00 336 | 0.00 355 | 0.00 356 | 0.00 347 | 0.00 357 | 0.00 351 | 0.00 352 | 94.95 55 | 0.00 357 | 0.00 353 | 0.00 350 | 0.00 349 | 0.00 349 |
|
uanet | | | 0.00 325 | 0.00 327 | 0.00 336 | 0.00 355 | 0.00 356 | 0.00 347 | 0.00 357 | 0.00 351 | 0.00 352 | 0.00 352 | 0.00 357 | 0.00 353 | 0.00 350 | 0.00 349 | 0.00 349 |
|
test_241102_TWO | | | | | | | | | 94.41 42 | 71.65 183 | 92.07 4 | 97.21 5 | 74.58 13 | 99.11 4 | 92.34 6 | 95.36 12 | 96.59 12 |
|
test_0728_THIRD | | | | | | | | | | 72.48 152 | 90.55 11 | 96.93 9 | 76.24 8 | 99.08 8 | 91.53 11 | 94.99 14 | 96.43 21 |
|
GSMVS | | | | | | | | | | | | | | | | | 94.68 80 |
|
test_part1 | | | | | 0.00 336 | | 0.00 356 | 0.00 347 | 94.26 50 | | | | 0.00 357 | 0.00 353 | 0.00 350 | 0.00 349 | 0.00 349 |
|
sam_mvs1 | | | | | | | | | | | | | 57.85 138 | | | | 94.68 80 |
|
sam_mvs | | | | | | | | | | | | | 54.91 176 | | | | |
|
MTGPA | | | | | | | | | 92.23 125 | | | | | | | | |
|
test_post1 | | | | | | | | 78.95 305 | | | | 20.70 346 | 53.05 193 | 91.50 269 | 60.43 241 | | |
|
test_post | | | | | | | | | | | | 23.01 343 | 56.49 159 | 92.67 235 | | | |
|
patchmatchnet-post | | | | | | | | | | | | 67.62 323 | 57.62 141 | 90.25 277 | | | |
|
MTMP | | | | | | | | 93.77 76 | 32.52 351 | | | | | | | | |
|
test9_res | | | | | | | | | | | | | | | 89.41 19 | 94.96 15 | 95.29 55 |
|
agg_prior2 | | | | | | | | | | | | | | | 86.41 47 | 94.75 25 | 95.33 50 |
|
test_prior4 | | | | | | | 67.18 98 | 93.92 67 | | | | | | | | | |
|
test_prior2 | | | | | | | | 95.10 35 | | 75.40 99 | 85.25 46 | 95.61 36 | 67.94 39 | | 87.47 37 | 94.77 22 | |
|
旧先验2 | | | | | | | | 92.00 140 | | 59.37 292 | 87.54 24 | | | 93.47 212 | 75.39 124 | | |
|
新几何2 | | | | | | | | 91.41 161 | | | | | | | | | |
|
无先验 | | | | | | | | 92.71 112 | 92.61 115 | 62.03 273 | | | | 97.01 85 | 66.63 193 | | 93.97 111 |
|
原ACMM2 | | | | | | | | 92.01 138 | | | | | | | | | |
|
testdata2 | | | | | | | | | | | | | | 96.09 120 | 61.26 237 | | |
|
segment_acmp | | | | | | | | | | | | | 65.94 59 | | | | |
|
testdata1 | | | | | | | | 89.21 225 | | 77.55 74 | | | | | | | |
|
plane_prior5 | | | | | | | | | 91.31 163 | | | | | 95.55 147 | 76.74 115 | 78.53 170 | 88.39 205 |
|
plane_prior4 | | | | | | | | | | | | 89.14 161 | | | | | |
|
plane_prior3 | | | | | | | 61.95 224 | | | 79.09 53 | 72.53 160 | | | | | | |
|
plane_prior2 | | | | | | | | 93.13 96 | | 78.81 58 | | | | | | | |
|
plane_prior | | | | | | | 62.42 217 | 93.85 71 | | 79.38 46 | | | | | | 78.80 167 | |
|
n2 | | | | | | | | | 0.00 357 | | | | | | | | |
|
nn | | | | | | | | | 0.00 357 | | | | | | | | |
|
door-mid | | | | | | | | | 66.01 340 | | | | | | | | |
|
test11 | | | | | | | | | 93.01 97 | | | | | | | | |
|
door | | | | | | | | | 66.57 339 | | | | | | | | |
|
HQP5-MVS | | | | | | | 63.66 194 | | | | | | | | | | |
|
BP-MVS | | | | | | | | | | | | | | | 77.63 112 | | |
|
HQP4-MVS | | | | | | | | | | | 74.18 141 | | | 95.61 143 | | | 88.63 199 |
|
HQP3-MVS | | | | | | | | | 91.70 149 | | | | | | | 78.90 165 | |
|
HQP2-MVS | | | | | | | | | | | | | 51.63 205 | | | | |
|
MDTV_nov1_ep13_2view | | | | | | | 59.90 255 | 80.13 301 | | 67.65 236 | 72.79 155 | | 54.33 181 | | 59.83 245 | | 92.58 148 |
|
ACMMP++_ref | | | | | | | | | | | | | | | | 71.63 215 | |
|
ACMMP++ | | | | | | | | | | | | | | | | 69.72 226 | |
|
Test By Simon | | | | | | | | | | | | | 54.21 182 | | | | |
|