LCM-MVSNet | | | 95.70 1 | 96.40 1 | 93.61 2 | 98.67 1 | 85.39 29 | 95.54 3 | 97.36 1 | 96.97 1 | 99.04 1 | 99.05 1 | 96.61 1 | 95.92 11 | 85.07 45 | 99.27 1 | 99.54 1 |
|
UniMVSNet_ETH3D | | | 89.12 60 | 90.72 41 | 84.31 142 | 97.00 2 | 64.33 202 | 89.67 57 | 88.38 183 | 88.84 13 | 94.29 18 | 97.57 3 | 90.48 13 | 91.26 177 | 72.57 175 | 97.65 58 | 97.34 14 |
|
PMVS | | 80.48 6 | 90.08 38 | 90.66 42 | 88.34 75 | 96.71 3 | 92.97 1 | 90.31 44 | 89.57 167 | 88.51 15 | 90.11 84 | 95.12 40 | 90.98 7 | 88.92 231 | 77.55 124 | 97.07 78 | 83.13 294 |
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
zzz-MVS | | | 91.27 20 | 91.26 29 | 91.29 27 | 96.59 4 | 86.29 14 | 88.94 72 | 91.81 107 | 84.07 34 | 92.00 55 | 94.40 63 | 86.63 49 | 95.28 47 | 88.59 5 | 98.31 23 | 92.30 153 |
|
MTAPA | | | 91.52 14 | 91.60 16 | 91.29 27 | 96.59 4 | 86.29 14 | 92.02 26 | 91.81 107 | 84.07 34 | 92.00 55 | 94.40 63 | 86.63 49 | 95.28 47 | 88.59 5 | 98.31 23 | 92.30 153 |
|
PEN-MVS | | | 90.03 41 | 91.88 13 | 84.48 137 | 96.57 6 | 58.88 262 | 88.95 71 | 93.19 66 | 91.62 3 | 96.01 5 | 96.16 20 | 87.02 44 | 95.60 29 | 78.69 110 | 98.72 8 | 98.97 3 |
|
PS-CasMVS | | | 90.06 39 | 91.92 10 | 84.47 138 | 96.56 7 | 58.83 265 | 89.04 70 | 92.74 85 | 91.40 4 | 96.12 3 | 96.06 22 | 87.23 42 | 95.57 30 | 79.42 105 | 98.74 5 | 99.00 2 |
|
DTE-MVSNet | | | 89.98 43 | 91.91 12 | 84.21 144 | 96.51 8 | 57.84 270 | 88.93 73 | 92.84 82 | 91.92 2 | 96.16 2 | 96.23 18 | 86.95 45 | 95.99 7 | 79.05 107 | 98.57 14 | 98.80 6 |
|
CP-MVSNet | | | 89.27 57 | 90.91 38 | 84.37 139 | 96.34 9 | 58.61 267 | 88.66 80 | 92.06 99 | 90.78 5 | 95.67 6 | 95.17 38 | 81.80 102 | 95.54 34 | 79.00 108 | 98.69 9 | 98.95 4 |
|
WR-MVS_H | | | 89.91 46 | 91.31 27 | 85.71 117 | 96.32 10 | 62.39 224 | 89.54 62 | 93.31 59 | 90.21 9 | 95.57 8 | 95.66 27 | 81.42 106 | 95.90 12 | 80.94 87 | 98.80 2 | 98.84 5 |
|
MP-MVS | | | 91.14 25 | 90.91 38 | 91.83 19 | 96.18 11 | 86.88 11 | 92.20 23 | 93.03 74 | 82.59 53 | 88.52 121 | 94.37 66 | 86.74 48 | 95.41 42 | 86.32 31 | 98.21 29 | 93.19 125 |
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
mPP-MVS | | | 91.69 11 | 91.47 20 | 92.37 5 | 96.04 12 | 88.48 7 | 92.72 14 | 92.60 88 | 83.09 47 | 91.54 63 | 94.25 70 | 87.67 38 | 95.51 38 | 87.21 24 | 98.11 33 | 93.12 127 |
|
MP-MVS-pluss | | | 90.81 27 | 91.08 31 | 89.99 49 | 95.97 13 | 79.88 65 | 88.13 85 | 94.51 16 | 75.79 131 | 92.94 36 | 94.96 42 | 88.36 24 | 95.01 57 | 90.70 2 | 98.40 19 | 95.09 59 |
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss |
TDRefinement | | | 93.52 2 | 93.39 3 | 93.88 1 | 95.94 14 | 90.26 3 | 95.70 2 | 96.46 2 | 90.58 7 | 92.86 39 | 96.29 16 | 88.16 30 | 94.17 85 | 86.07 37 | 98.48 17 | 97.22 17 |
|
ACMMP_NAP | | | 90.65 29 | 91.07 33 | 89.42 58 | 95.93 15 | 79.54 70 | 89.95 50 | 93.68 46 | 77.65 108 | 91.97 57 | 94.89 44 | 88.38 23 | 95.45 40 | 89.27 3 | 97.87 48 | 93.27 121 |
|
HPM-MVS_fast | | | 92.50 5 | 92.54 5 | 92.37 5 | 95.93 15 | 85.81 27 | 92.99 11 | 94.23 21 | 85.21 28 | 92.51 46 | 95.13 39 | 90.65 10 | 95.34 44 | 88.06 9 | 98.15 32 | 95.95 39 |
|
DVP-MVS | | | 89.08 61 | 88.16 71 | 91.83 19 | 95.76 17 | 86.14 19 | 92.75 13 | 93.90 37 | 78.43 102 | 89.16 110 | 92.25 130 | 72.03 203 | 96.36 2 | 88.21 8 | 90.93 231 | 92.98 131 |
|
region2R | | | 91.44 18 | 91.30 28 | 91.87 17 | 95.75 18 | 85.90 23 | 92.63 17 | 93.30 61 | 81.91 60 | 90.88 77 | 94.21 71 | 87.75 36 | 95.87 14 | 87.60 16 | 97.71 56 | 93.83 100 |
|
ACMMPR | | | 91.49 15 | 91.35 24 | 91.92 14 | 95.74 19 | 85.88 24 | 92.58 18 | 93.25 64 | 81.99 58 | 91.40 66 | 94.17 72 | 87.51 39 | 95.87 14 | 87.74 11 | 97.76 52 | 93.99 93 |
|
ZNCC-MVS | | | 91.26 21 | 91.34 25 | 91.01 33 | 95.73 20 | 83.05 49 | 92.18 24 | 94.22 22 | 80.14 80 | 91.29 69 | 93.97 80 | 87.93 35 | 95.87 14 | 88.65 4 | 97.96 44 | 94.12 90 |
|
TSAR-MVS + MP. | | | 88.14 71 | 87.82 74 | 89.09 63 | 95.72 21 | 76.74 103 | 92.49 21 | 91.19 123 | 67.85 220 | 86.63 152 | 94.84 46 | 79.58 124 | 95.96 10 | 87.62 14 | 94.50 160 | 94.56 70 |
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
PGM-MVS | | | 91.20 23 | 90.95 37 | 91.93 13 | 95.67 22 | 85.85 25 | 90.00 47 | 93.90 37 | 80.32 77 | 91.74 61 | 94.41 62 | 88.17 29 | 95.98 8 | 86.37 30 | 97.99 39 | 93.96 95 |
|
XVS | | | 91.54 13 | 91.36 22 | 92.08 8 | 95.64 23 | 86.25 16 | 92.64 15 | 93.33 56 | 85.07 29 | 89.99 87 | 94.03 77 | 86.57 51 | 95.80 19 | 87.35 20 | 97.62 60 | 94.20 85 |
|
X-MVStestdata | | | 85.04 114 | 82.70 156 | 92.08 8 | 95.64 23 | 86.25 16 | 92.64 15 | 93.33 56 | 85.07 29 | 89.99 87 | 16.05 347 | 86.57 51 | 95.80 19 | 87.35 20 | 97.62 60 | 94.20 85 |
|
HPM-MVS | | | 92.13 7 | 92.20 8 | 91.91 15 | 95.58 25 | 84.67 38 | 93.51 6 | 94.85 13 | 82.88 50 | 91.77 60 | 93.94 87 | 90.55 12 | 95.73 25 | 88.50 7 | 98.23 28 | 95.33 51 |
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023 |
ACMMP | | | 91.91 10 | 91.87 14 | 92.03 11 | 95.53 26 | 85.91 22 | 93.35 9 | 94.16 26 | 82.52 54 | 92.39 49 | 94.14 73 | 89.15 21 | 95.62 28 | 87.35 20 | 98.24 27 | 94.56 70 |
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
GST-MVS | | | 90.96 26 | 91.01 34 | 90.82 36 | 95.45 27 | 82.73 52 | 91.75 30 | 93.74 43 | 80.98 71 | 91.38 67 | 93.80 90 | 87.20 43 | 95.80 19 | 87.10 25 | 97.69 57 | 93.93 96 |
|
HFP-MVS | | | 91.30 19 | 91.39 21 | 91.02 31 | 95.43 28 | 84.66 39 | 92.58 18 | 93.29 62 | 81.99 58 | 91.47 64 | 93.96 83 | 88.35 25 | 95.56 31 | 87.74 11 | 97.74 54 | 92.85 135 |
|
#test# | | | 90.49 34 | 90.31 46 | 91.02 31 | 95.43 28 | 84.66 39 | 90.65 38 | 93.29 62 | 77.00 115 | 91.47 64 | 93.96 83 | 88.35 25 | 95.56 31 | 84.88 48 | 97.74 54 | 92.85 135 |
|
SMA-MVS | | | 90.31 35 | 90.48 44 | 89.83 50 | 95.31 30 | 79.52 71 | 90.98 36 | 93.24 65 | 75.37 138 | 92.84 40 | 95.28 34 | 85.58 60 | 96.09 6 | 87.92 10 | 97.76 52 | 93.88 98 |
|
CP-MVS | | | 91.67 12 | 91.58 17 | 91.96 12 | 95.29 31 | 87.62 9 | 93.38 7 | 93.36 54 | 83.16 46 | 91.06 72 | 94.00 79 | 88.26 27 | 95.71 26 | 87.28 23 | 98.39 20 | 92.55 146 |
|
VDDNet | | | 84.35 129 | 85.39 112 | 81.25 200 | 95.13 32 | 59.32 255 | 85.42 126 | 81.11 257 | 86.41 24 | 87.41 137 | 96.21 19 | 73.61 180 | 90.61 200 | 66.33 223 | 96.85 84 | 93.81 105 |
|
CPTT-MVS | | | 89.39 55 | 88.98 62 | 90.63 39 | 95.09 33 | 86.95 10 | 92.09 25 | 92.30 94 | 79.74 83 | 87.50 136 | 92.38 123 | 81.42 106 | 93.28 122 | 83.07 66 | 97.24 74 | 91.67 176 |
|
ACMM | | 79.39 9 | 90.65 29 | 90.99 35 | 89.63 54 | 95.03 34 | 83.53 44 | 89.62 59 | 93.35 55 | 79.20 91 | 93.83 26 | 93.60 96 | 90.81 8 | 92.96 133 | 85.02 47 | 98.45 18 | 92.41 149 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
UA-Net | | | 91.49 15 | 91.53 18 | 91.39 24 | 94.98 35 | 82.95 51 | 93.52 5 | 92.79 83 | 88.22 16 | 88.53 120 | 97.64 2 | 83.45 75 | 94.55 74 | 86.02 39 | 98.60 12 | 96.67 25 |
|
HPM-MVS++ | | | 88.93 63 | 88.45 70 | 90.38 43 | 94.92 36 | 85.85 25 | 89.70 54 | 91.27 120 | 78.20 104 | 86.69 151 | 92.28 129 | 80.36 117 | 95.06 56 | 86.17 36 | 96.49 96 | 90.22 205 |
|
XVG-ACMP-BASELINE | | | 89.98 43 | 89.84 49 | 90.41 42 | 94.91 37 | 84.50 41 | 89.49 64 | 93.98 32 | 79.68 84 | 92.09 53 | 93.89 88 | 83.80 71 | 93.10 131 | 82.67 71 | 98.04 34 | 93.64 111 |
|
SR-MVS | | | 92.23 6 | 92.34 6 | 91.91 15 | 94.89 38 | 87.85 8 | 92.51 20 | 93.87 40 | 88.20 17 | 93.24 33 | 94.02 78 | 90.15 15 | 95.67 27 | 86.82 26 | 97.34 71 | 92.19 160 |
|
OPM-MVS | | | 89.80 47 | 89.97 47 | 89.27 60 | 94.76 39 | 79.86 66 | 86.76 106 | 92.78 84 | 78.78 97 | 92.51 46 | 93.64 95 | 88.13 31 | 93.84 98 | 84.83 50 | 97.55 63 | 94.10 91 |
|
LPG-MVS_test | | | 91.47 17 | 91.68 15 | 90.82 36 | 94.75 40 | 81.69 53 | 90.00 47 | 94.27 18 | 82.35 55 | 93.67 30 | 94.82 47 | 91.18 5 | 95.52 35 | 85.36 43 | 98.73 6 | 95.23 56 |
|
LGP-MVS_train | | | | | 90.82 36 | 94.75 40 | 81.69 53 | | 94.27 18 | 82.35 55 | 93.67 30 | 94.82 47 | 91.18 5 | 95.52 35 | 85.36 43 | 98.73 6 | 95.23 56 |
|
abl_6 | | | 93.02 4 | 93.16 4 | 92.60 4 | 94.73 42 | 88.99 6 | 93.26 10 | 94.19 25 | 89.11 10 | 94.43 15 | 95.27 35 | 91.86 3 | 95.09 54 | 87.54 18 | 98.02 37 | 93.71 107 |
|
XVG-OURS-SEG-HR | | | 89.59 51 | 89.37 56 | 90.28 45 | 94.47 43 | 85.95 21 | 86.84 102 | 93.91 36 | 80.07 81 | 86.75 150 | 93.26 98 | 93.64 2 | 90.93 187 | 84.60 52 | 90.75 236 | 93.97 94 |
|
ACMP | | 79.16 10 | 90.54 32 | 90.60 43 | 90.35 44 | 94.36 44 | 80.98 59 | 89.16 68 | 94.05 30 | 79.03 94 | 92.87 38 | 93.74 94 | 90.60 11 | 95.21 51 | 82.87 69 | 98.76 3 | 94.87 61 |
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
XVG-OURS | | | 89.18 58 | 88.83 65 | 90.23 46 | 94.28 45 | 86.11 20 | 85.91 117 | 93.60 49 | 80.16 79 | 89.13 111 | 93.44 97 | 83.82 70 | 90.98 185 | 83.86 59 | 95.30 137 | 93.60 113 |
|
test_0728_SECOND | | | | | 86.79 91 | 94.25 46 | 72.45 135 | 90.54 40 | 94.10 29 | | | | | 95.88 13 | 86.42 28 | 97.97 42 | 92.02 164 |
|
IU-MVS | | | | | | 94.18 47 | 72.64 128 | | 90.82 130 | 56.98 291 | 89.67 98 | | | | 85.78 40 | 97.92 45 | 93.28 120 |
|
test_241102_ONE | | | | | | 94.18 47 | 72.65 127 | | 93.69 45 | 83.62 39 | 94.11 22 | 93.78 93 | 90.28 14 | 95.50 39 | | | |
|
MSP-MVS | | | 90.06 39 | 91.32 26 | 86.29 101 | 94.16 49 | 72.56 131 | 90.54 40 | 91.01 127 | 83.61 40 | 93.75 27 | 94.65 52 | 89.76 17 | 95.78 22 | 86.42 28 | 97.97 42 | 90.55 200 |
|
test0726 | | | | | | 94.16 49 | 72.56 131 | 90.63 39 | 93.90 37 | 83.61 40 | 93.75 27 | 94.49 58 | 89.76 17 | | | | |
|
MIMVSNet1 | | | 83.63 147 | 84.59 128 | 80.74 210 | 94.06 51 | 62.77 218 | 82.72 185 | 84.53 240 | 77.57 110 | 90.34 82 | 95.92 23 | 76.88 155 | 85.83 271 | 61.88 252 | 97.42 69 | 93.62 112 |
|
TranMVSNet+NR-MVSNet | | | 87.86 74 | 88.76 67 | 85.18 125 | 94.02 52 | 64.13 203 | 84.38 143 | 91.29 119 | 84.88 31 | 92.06 54 | 93.84 89 | 86.45 53 | 93.73 101 | 73.22 165 | 98.66 10 | 97.69 9 |
|
新几何1 | | | | | 82.95 172 | 93.96 53 | 78.56 80 | | 80.24 262 | 55.45 296 | 83.93 201 | 91.08 157 | 71.19 208 | 88.33 240 | 65.84 228 | 93.07 188 | 81.95 307 |
|
1121 | | | 80.86 183 | 79.81 199 | 84.02 147 | 93.93 54 | 78.70 78 | 81.64 206 | 80.18 263 | 55.43 297 | 83.67 203 | 91.15 155 | 71.29 207 | 91.41 174 | 67.95 215 | 93.06 189 | 81.96 306 |
|
SteuartSystems-ACMMP | | | 91.16 24 | 91.36 22 | 90.55 40 | 93.91 55 | 80.97 60 | 91.49 32 | 93.48 52 | 82.82 51 | 92.60 45 | 93.97 80 | 88.19 28 | 96.29 4 | 87.61 15 | 98.20 31 | 94.39 80 |
Skip Steuart: Steuart Systems R&D Blog. |
test_part2 | | | | | | 93.86 56 | 77.77 86 | | | | 92.84 40 | | | | | | |
|
xxxxxxxxxxxxxcwj | | | 88.58 67 | 88.51 68 | 88.79 66 | 93.75 57 | 77.44 91 | 86.31 114 | 89.72 161 | 70.80 190 | 92.28 50 | 93.80 90 | 86.89 46 | 94.64 68 | 85.52 41 | 97.51 66 | 94.30 83 |
|
save fliter | | | | | | 93.75 57 | 77.44 91 | 86.31 114 | 89.72 161 | 70.80 190 | | | | | | | |
|
LTVRE_ROB | | 86.10 1 | 93.04 3 | 93.44 2 | 91.82 21 | 93.73 59 | 85.72 28 | 96.79 1 | 95.51 5 | 88.86 12 | 95.63 7 | 96.99 8 | 84.81 63 | 93.16 127 | 91.10 1 | 97.53 65 | 96.58 28 |
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
COLMAP_ROB | | 83.01 3 | 91.97 9 | 91.95 9 | 92.04 10 | 93.68 60 | 86.15 18 | 93.37 8 | 95.10 10 | 90.28 8 | 92.11 52 | 95.03 41 | 89.75 19 | 94.93 59 | 79.95 97 | 98.27 26 | 95.04 60 |
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
DeepC-MVS | | 82.31 4 | 89.15 59 | 89.08 59 | 89.37 59 | 93.64 61 | 79.07 74 | 88.54 81 | 94.20 23 | 73.53 156 | 89.71 96 | 94.82 47 | 85.09 61 | 95.77 24 | 84.17 56 | 98.03 36 | 93.26 122 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
mvs_tets | | | 89.78 48 | 89.27 58 | 91.30 26 | 93.51 62 | 84.79 36 | 89.89 52 | 90.63 135 | 70.00 200 | 94.55 14 | 96.67 11 | 87.94 34 | 93.59 109 | 84.27 55 | 95.97 113 | 95.52 47 |
|
HQP_MVS | | | 87.75 78 | 87.43 79 | 88.70 68 | 93.45 63 | 76.42 107 | 89.45 65 | 93.61 47 | 79.44 88 | 86.55 153 | 92.95 106 | 74.84 167 | 95.22 49 | 80.78 90 | 95.83 118 | 94.46 76 |
|
plane_prior7 | | | | | | 93.45 63 | 77.31 95 | | | | | | | | | | |
|
WR-MVS | | | 83.56 148 | 84.40 134 | 81.06 205 | 93.43 65 | 54.88 292 | 78.67 249 | 85.02 235 | 81.24 67 | 90.74 78 | 91.56 147 | 72.85 192 | 91.08 183 | 68.00 213 | 98.04 34 | 97.23 16 |
|
DPE-MVS | | | 90.53 33 | 91.08 31 | 88.88 64 | 93.38 66 | 78.65 79 | 89.15 69 | 94.05 30 | 84.68 32 | 93.90 23 | 94.11 75 | 88.13 31 | 96.30 3 | 84.51 53 | 97.81 50 | 91.70 175 |
|
jajsoiax | | | 89.41 54 | 88.81 66 | 91.19 30 | 93.38 66 | 84.72 37 | 89.70 54 | 90.29 150 | 69.27 204 | 94.39 16 | 96.38 15 | 86.02 58 | 93.52 113 | 83.96 57 | 95.92 115 | 95.34 50 |
|
PS-MVSNAJss | | | 88.31 69 | 87.90 73 | 89.56 57 | 93.31 68 | 77.96 84 | 87.94 87 | 91.97 102 | 70.73 192 | 94.19 21 | 96.67 11 | 76.94 149 | 94.57 72 | 83.07 66 | 96.28 103 | 96.15 31 |
|
test222 | | | | | | 93.31 68 | 76.54 104 | 79.38 237 | 77.79 272 | 52.59 310 | 82.36 220 | 90.84 168 | 66.83 225 | | | 91.69 216 | 81.25 315 |
|
DU-MVS | | | 86.80 85 | 86.99 85 | 86.21 106 | 93.24 70 | 67.02 181 | 83.16 176 | 92.21 95 | 81.73 62 | 90.92 74 | 91.97 134 | 77.20 143 | 93.99 91 | 74.16 154 | 98.35 21 | 97.61 10 |
|
NR-MVSNet | | | 86.00 98 | 86.22 96 | 85.34 123 | 93.24 70 | 64.56 199 | 82.21 199 | 90.46 138 | 80.99 70 | 88.42 123 | 91.97 134 | 77.56 139 | 93.85 96 | 72.46 176 | 98.65 11 | 97.61 10 |
|
OurMVSNet-221017-0 | | | 90.01 42 | 89.74 50 | 90.83 35 | 93.16 72 | 80.37 62 | 91.91 29 | 93.11 68 | 81.10 69 | 95.32 9 | 97.24 5 | 72.94 191 | 94.85 62 | 85.07 45 | 97.78 51 | 97.26 15 |
|
UniMVSNet (Re) | | | 86.87 82 | 86.98 86 | 86.55 95 | 93.11 73 | 68.48 172 | 83.80 156 | 92.87 79 | 80.37 75 | 89.61 102 | 91.81 141 | 77.72 137 | 94.18 83 | 75.00 150 | 98.53 15 | 96.99 22 |
|
APD-MVS_3200maxsize | | | 92.05 8 | 92.24 7 | 91.48 22 | 93.02 74 | 85.17 31 | 92.47 22 | 95.05 11 | 87.65 20 | 93.21 34 | 94.39 65 | 90.09 16 | 95.08 55 | 86.67 27 | 97.60 62 | 94.18 87 |
|
ACMH+ | | 77.89 11 | 90.73 28 | 91.50 19 | 88.44 73 | 93.00 75 | 76.26 109 | 89.65 58 | 95.55 4 | 87.72 19 | 93.89 25 | 94.94 43 | 91.62 4 | 93.44 117 | 78.35 113 | 98.76 3 | 95.61 46 |
|
APDe-MVS | | | 91.22 22 | 91.92 10 | 89.14 62 | 92.97 76 | 78.04 83 | 92.84 12 | 94.14 27 | 83.33 44 | 93.90 23 | 95.73 25 | 88.77 22 | 96.41 1 | 87.60 16 | 97.98 41 | 92.98 131 |
|
114514_t | | | 83.10 158 | 82.54 161 | 84.77 131 | 92.90 77 | 69.10 170 | 86.65 108 | 90.62 136 | 54.66 300 | 81.46 234 | 90.81 169 | 76.98 148 | 94.38 75 | 72.62 174 | 96.18 107 | 90.82 193 |
|
testdata | | | | | 79.54 229 | 92.87 78 | 72.34 136 | | 80.14 264 | 59.91 276 | 85.47 176 | 91.75 143 | 67.96 221 | 85.24 275 | 68.57 211 | 92.18 209 | 81.06 320 |
|
CNVR-MVS | | | 87.81 77 | 87.68 75 | 88.21 77 | 92.87 78 | 77.30 96 | 85.25 127 | 91.23 121 | 77.31 112 | 87.07 144 | 91.47 149 | 82.94 80 | 94.71 65 | 84.67 51 | 96.27 105 | 92.62 145 |
|
SF-MVS | | | 90.27 36 | 90.80 40 | 88.68 69 | 92.86 80 | 77.09 98 | 91.19 35 | 95.74 3 | 81.38 66 | 92.28 50 | 93.80 90 | 86.89 46 | 94.64 68 | 85.52 41 | 97.51 66 | 94.30 83 |
|
UniMVSNet_NR-MVSNet | | | 86.84 84 | 87.06 83 | 86.17 108 | 92.86 80 | 67.02 181 | 82.55 189 | 91.56 111 | 83.08 48 | 90.92 74 | 91.82 140 | 78.25 133 | 93.99 91 | 74.16 154 | 98.35 21 | 97.49 13 |
|
plane_prior1 | | | | | | 92.83 82 | | | | | | | | | | | |
|
原ACMM1 | | | | | 84.60 135 | 92.81 83 | 74.01 119 | | 91.50 113 | 62.59 256 | 82.73 216 | 90.67 174 | 76.53 156 | 94.25 78 | 69.24 200 | 95.69 125 | 85.55 262 |
|
plane_prior6 | | | | | | 92.61 84 | 76.54 104 | | | | | | 74.84 167 | | | | |
|
APD-MVS | | | 89.54 52 | 89.63 52 | 89.26 61 | 92.57 85 | 81.34 58 | 90.19 45 | 93.08 70 | 80.87 72 | 91.13 70 | 93.19 99 | 86.22 56 | 95.97 9 | 82.23 75 | 97.18 76 | 90.45 202 |
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
test_0402 | | | 88.65 65 | 89.58 54 | 85.88 113 | 92.55 86 | 72.22 139 | 84.01 148 | 89.44 169 | 88.63 14 | 94.38 17 | 95.77 24 | 86.38 55 | 93.59 109 | 79.84 98 | 95.21 138 | 91.82 172 |
|
SixPastTwentyTwo | | | 87.20 81 | 87.45 78 | 86.45 97 | 92.52 87 | 69.19 168 | 87.84 89 | 88.05 189 | 81.66 63 | 94.64 13 | 96.53 14 | 65.94 229 | 94.75 64 | 83.02 68 | 96.83 86 | 95.41 49 |
|
ACMH | | 76.49 14 | 89.34 56 | 91.14 30 | 83.96 150 | 92.50 88 | 70.36 156 | 89.55 60 | 93.84 41 | 81.89 61 | 94.70 12 | 95.44 32 | 90.69 9 | 88.31 241 | 83.33 64 | 98.30 25 | 93.20 124 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
VPNet | | | 80.25 197 | 81.68 170 | 75.94 272 | 92.46 89 | 47.98 329 | 76.70 274 | 81.67 255 | 73.45 157 | 84.87 182 | 92.82 110 | 74.66 172 | 86.51 261 | 61.66 255 | 96.85 84 | 93.33 118 |
|
F-COLMAP | | | 84.97 117 | 83.42 146 | 89.63 54 | 92.39 90 | 83.40 45 | 88.83 75 | 91.92 104 | 73.19 166 | 80.18 252 | 89.15 199 | 77.04 147 | 93.28 122 | 65.82 229 | 92.28 205 | 92.21 159 |
|
test_djsdf | | | 89.62 50 | 89.01 60 | 91.45 23 | 92.36 91 | 82.98 50 | 91.98 27 | 90.08 156 | 71.54 185 | 94.28 20 | 96.54 13 | 81.57 104 | 94.27 76 | 86.26 32 | 96.49 96 | 97.09 19 |
|
TEST9 | | | | | | 92.34 92 | 79.70 68 | 83.94 149 | 90.32 143 | 65.41 246 | 84.49 189 | 90.97 162 | 82.03 96 | 93.63 105 | | | |
|
train_agg | | | 85.98 100 | 85.28 113 | 88.07 79 | 92.34 92 | 79.70 68 | 83.94 149 | 90.32 143 | 65.79 236 | 84.49 189 | 90.97 162 | 81.93 98 | 93.63 105 | 81.21 83 | 96.54 94 | 90.88 191 |
|
NCCC | | | 87.36 79 | 86.87 88 | 88.83 65 | 92.32 94 | 78.84 77 | 86.58 110 | 91.09 125 | 78.77 98 | 84.85 183 | 90.89 166 | 80.85 111 | 95.29 45 | 81.14 84 | 95.32 134 | 92.34 151 |
|
testtj | | | 89.51 53 | 89.48 55 | 89.59 56 | 92.26 95 | 80.80 61 | 90.14 46 | 93.54 50 | 83.37 43 | 90.57 81 | 92.55 120 | 84.99 62 | 96.15 5 | 81.26 82 | 96.61 91 | 91.83 171 |
|
FC-MVSNet-test | | | 85.93 101 | 87.05 84 | 82.58 181 | 92.25 96 | 56.44 281 | 85.75 120 | 93.09 69 | 77.33 111 | 91.94 58 | 94.65 52 | 74.78 169 | 93.41 119 | 75.11 149 | 98.58 13 | 97.88 7 |
|
CDPH-MVS | | | 86.17 97 | 85.54 109 | 88.05 80 | 92.25 96 | 75.45 112 | 83.85 153 | 92.01 100 | 65.91 235 | 86.19 160 | 91.75 143 | 83.77 72 | 94.98 58 | 77.43 127 | 96.71 89 | 93.73 106 |
|
pmmvs6 | | | 86.52 89 | 88.06 72 | 81.90 190 | 92.22 98 | 62.28 227 | 84.66 135 | 89.15 172 | 83.54 42 | 89.85 92 | 97.32 4 | 88.08 33 | 86.80 257 | 70.43 192 | 97.30 73 | 96.62 26 |
|
EG-PatchMatch MVS | | | 84.08 137 | 84.11 138 | 83.98 149 | 92.22 98 | 72.61 130 | 82.20 201 | 87.02 208 | 72.63 174 | 88.86 113 | 91.02 160 | 78.52 129 | 91.11 182 | 73.41 164 | 91.09 223 | 88.21 232 |
|
test_8 | | | | | | 92.09 100 | 78.87 76 | 83.82 154 | 90.31 145 | 65.79 236 | 84.36 192 | 90.96 164 | 81.93 98 | 93.44 117 | | | |
|
Vis-MVSNet | | | 86.86 83 | 86.58 91 | 87.72 82 | 92.09 100 | 77.43 93 | 87.35 94 | 92.09 98 | 78.87 96 | 84.27 198 | 94.05 76 | 78.35 132 | 93.65 103 | 80.54 94 | 91.58 219 | 92.08 162 |
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
IS-MVSNet | | | 86.66 87 | 86.82 90 | 86.17 108 | 92.05 102 | 66.87 183 | 91.21 34 | 88.64 179 | 86.30 25 | 89.60 103 | 92.59 117 | 69.22 214 | 94.91 60 | 73.89 158 | 97.89 47 | 96.72 24 |
|
旧先验1 | | | | | | 91.97 103 | 71.77 143 | | 81.78 254 | | | 91.84 138 | 73.92 177 | | | 93.65 178 | 83.61 284 |
|
v7n | | | 90.13 37 | 90.96 36 | 87.65 84 | 91.95 104 | 71.06 151 | 89.99 49 | 93.05 71 | 86.53 23 | 94.29 18 | 96.27 17 | 82.69 82 | 94.08 89 | 86.25 34 | 97.63 59 | 97.82 8 |
|
NP-MVS | | | | | | 91.95 104 | 74.55 116 | | | | | 90.17 185 | | | | | |
|
ETH3D-3000-0.1 | | | 88.85 64 | 88.96 63 | 88.52 70 | 91.94 106 | 77.27 97 | 88.71 78 | 95.26 9 | 76.08 122 | 90.66 80 | 92.69 115 | 84.48 66 | 93.83 99 | 83.38 63 | 97.48 68 | 94.47 75 |
|
OMC-MVS | | | 88.19 70 | 87.52 77 | 90.19 47 | 91.94 106 | 81.68 55 | 87.49 93 | 93.17 67 | 76.02 125 | 88.64 118 | 91.22 152 | 84.24 68 | 93.37 120 | 77.97 120 | 97.03 79 | 95.52 47 |
|
OPU-MVS | | | | | 88.27 76 | 91.89 108 | 77.83 85 | 90.47 43 | | | | 91.22 152 | 81.12 109 | 94.68 66 | 74.48 151 | 95.35 132 | 92.29 155 |
|
FIs | | | 85.35 107 | 86.27 95 | 82.60 180 | 91.86 109 | 57.31 274 | 85.10 129 | 93.05 71 | 75.83 130 | 91.02 73 | 93.97 80 | 73.57 181 | 92.91 137 | 73.97 157 | 98.02 37 | 97.58 12 |
|
9.14 | | | | 89.29 57 | | 91.84 110 | | 88.80 76 | 95.32 8 | 75.14 140 | 91.07 71 | 92.89 108 | 87.27 41 | 93.78 100 | 83.69 61 | 97.55 63 | |
|
MSLP-MVS++ | | | 85.00 116 | 86.03 100 | 81.90 190 | 91.84 110 | 71.56 149 | 86.75 107 | 93.02 75 | 75.95 128 | 87.12 140 | 89.39 193 | 77.98 134 | 89.40 227 | 77.46 125 | 94.78 153 | 84.75 271 |
|
DP-MVS Recon | | | 84.05 138 | 83.22 149 | 86.52 96 | 91.73 112 | 75.27 113 | 83.23 174 | 92.40 91 | 72.04 182 | 82.04 225 | 88.33 209 | 77.91 136 | 93.95 94 | 66.17 224 | 95.12 143 | 90.34 204 |
|
SD-MVS | | | 88.96 62 | 89.88 48 | 86.22 104 | 91.63 113 | 77.07 99 | 89.82 53 | 93.77 42 | 78.90 95 | 92.88 37 | 92.29 128 | 86.11 57 | 90.22 209 | 86.24 35 | 97.24 74 | 91.36 184 |
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
AllTest | | | 87.97 73 | 87.40 80 | 89.68 52 | 91.59 114 | 83.40 45 | 89.50 63 | 95.44 6 | 79.47 86 | 88.00 130 | 93.03 102 | 82.66 83 | 91.47 169 | 70.81 184 | 96.14 109 | 94.16 88 |
|
TestCases | | | | | 89.68 52 | 91.59 114 | 83.40 45 | | 95.44 6 | 79.47 86 | 88.00 130 | 93.03 102 | 82.66 83 | 91.47 169 | 70.81 184 | 96.14 109 | 94.16 88 |
|
MCST-MVS | | | 84.36 127 | 83.93 142 | 85.63 118 | 91.59 114 | 71.58 148 | 83.52 162 | 92.13 97 | 61.82 262 | 83.96 200 | 89.75 191 | 79.93 123 | 93.46 116 | 78.33 114 | 94.34 164 | 91.87 170 |
|
agg_prior1 | | | 85.72 103 | 85.20 114 | 87.28 88 | 91.58 117 | 77.69 87 | 83.69 159 | 90.30 147 | 66.29 232 | 84.32 193 | 91.07 159 | 82.13 92 | 93.18 125 | 81.02 85 | 96.36 100 | 90.98 187 |
|
agg_prior | | | | | | 91.58 117 | 77.69 87 | | 90.30 147 | | 84.32 193 | | | 93.18 125 | | | |
|
PVSNet_Blended_VisFu | | | 81.55 176 | 80.49 186 | 84.70 134 | 91.58 117 | 73.24 124 | 84.21 144 | 91.67 110 | 62.86 255 | 80.94 240 | 87.16 229 | 67.27 223 | 92.87 138 | 69.82 196 | 88.94 255 | 87.99 236 |
|
EPP-MVSNet | | | 85.47 106 | 85.04 116 | 86.77 92 | 91.52 120 | 69.37 162 | 91.63 31 | 87.98 192 | 81.51 65 | 87.05 145 | 91.83 139 | 66.18 228 | 95.29 45 | 70.75 187 | 96.89 82 | 95.64 44 |
|
DeepPCF-MVS | | 81.24 5 | 87.28 80 | 86.21 97 | 90.49 41 | 91.48 121 | 84.90 34 | 83.41 167 | 92.38 93 | 70.25 198 | 89.35 108 | 90.68 173 | 82.85 81 | 94.57 72 | 79.55 101 | 95.95 114 | 92.00 165 |
|
Baseline_NR-MVSNet | | | 84.00 140 | 85.90 102 | 78.29 246 | 91.47 122 | 53.44 300 | 82.29 195 | 87.00 211 | 79.06 93 | 89.55 104 | 95.72 26 | 77.20 143 | 86.14 267 | 72.30 177 | 98.51 16 | 95.28 53 |
|
HyFIR lowres test | | | 75.12 245 | 72.66 262 | 82.50 184 | 91.44 123 | 65.19 194 | 72.47 305 | 87.31 198 | 46.79 331 | 80.29 250 | 84.30 272 | 52.70 292 | 92.10 154 | 51.88 309 | 86.73 277 | 90.22 205 |
|
DP-MVS | | | 88.60 66 | 89.01 60 | 87.36 87 | 91.30 124 | 77.50 90 | 87.55 91 | 92.97 77 | 87.95 18 | 89.62 100 | 92.87 109 | 84.56 64 | 93.89 95 | 77.65 122 | 96.62 90 | 90.70 195 |
|
DeepC-MVS_fast | | 80.27 8 | 86.23 94 | 85.65 108 | 87.96 81 | 91.30 124 | 76.92 100 | 87.19 96 | 91.99 101 | 70.56 193 | 84.96 179 | 90.69 172 | 80.01 120 | 95.14 52 | 78.37 112 | 95.78 122 | 91.82 172 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
3Dnovator+ | | 83.92 2 | 89.97 45 | 89.66 51 | 90.92 34 | 91.27 126 | 81.66 56 | 91.25 33 | 94.13 28 | 88.89 11 | 88.83 115 | 94.26 69 | 77.55 140 | 95.86 17 | 84.88 48 | 95.87 117 | 95.24 55 |
|
ETH3D cwj APD-0.16 | | | 87.83 76 | 87.62 76 | 88.47 72 | 91.21 127 | 78.20 81 | 87.26 95 | 94.54 15 | 72.05 181 | 88.89 112 | 92.31 127 | 83.86 69 | 94.24 79 | 81.59 81 | 96.87 83 | 92.97 134 |
|
HQP-NCC | | | | | | 91.19 128 | | 84.77 131 | | 73.30 162 | 80.55 247 | | | | | | |
|
ACMP_Plane | | | | | | 91.19 128 | | 84.77 131 | | 73.30 162 | 80.55 247 | | | | | | |
|
HQP-MVS | | | 84.61 121 | 84.06 139 | 86.27 102 | 91.19 128 | 70.66 153 | 84.77 131 | 92.68 86 | 73.30 162 | 80.55 247 | 90.17 185 | 72.10 199 | 94.61 70 | 77.30 128 | 94.47 161 | 93.56 115 |
|
VDD-MVS | | | 84.23 134 | 84.58 129 | 83.20 167 | 91.17 131 | 65.16 195 | 83.25 172 | 84.97 237 | 79.79 82 | 87.18 139 | 94.27 67 | 74.77 170 | 90.89 190 | 69.24 200 | 96.54 94 | 93.55 117 |
|
K. test v3 | | | 85.14 110 | 84.73 121 | 86.37 98 | 91.13 132 | 69.63 161 | 85.45 125 | 76.68 279 | 84.06 36 | 92.44 48 | 96.99 8 | 62.03 246 | 94.65 67 | 80.58 93 | 93.24 184 | 94.83 65 |
|
lessismore_v0 | | | | | 85.95 110 | 91.10 133 | 70.99 152 | | 70.91 318 | | 91.79 59 | 94.42 61 | 61.76 247 | 92.93 135 | 79.52 104 | 93.03 190 | 93.93 96 |
|
TransMVSNet (Re) | | | 84.02 139 | 85.74 105 | 78.85 235 | 91.00 134 | 55.20 291 | 82.29 195 | 87.26 199 | 79.65 85 | 88.38 125 | 95.52 31 | 83.00 79 | 86.88 255 | 67.97 214 | 96.60 92 | 94.45 78 |
|
PAPM_NR | | | 83.23 155 | 83.19 151 | 83.33 164 | 90.90 135 | 65.98 189 | 88.19 84 | 90.78 131 | 78.13 106 | 80.87 242 | 87.92 217 | 73.49 184 | 92.42 145 | 70.07 194 | 88.40 259 | 91.60 179 |
|
CSCG | | | 86.26 93 | 86.47 92 | 85.60 119 | 90.87 136 | 74.26 118 | 87.98 86 | 91.85 105 | 80.35 76 | 89.54 106 | 88.01 213 | 79.09 126 | 92.13 151 | 75.51 143 | 95.06 145 | 90.41 203 |
|
PLC | | 73.85 16 | 82.09 170 | 80.31 188 | 87.45 86 | 90.86 137 | 80.29 63 | 85.88 119 | 90.65 134 | 68.17 214 | 76.32 276 | 86.33 239 | 73.12 190 | 92.61 143 | 61.40 258 | 90.02 244 | 89.44 214 |
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
ETH3 D test6400 | | | 85.09 112 | 84.87 119 | 85.75 116 | 90.80 138 | 69.34 163 | 85.90 118 | 93.31 59 | 65.43 242 | 86.11 163 | 89.95 187 | 80.92 110 | 94.86 61 | 75.90 141 | 95.57 127 | 93.05 128 |
|
test12 | | | | | 86.57 94 | 90.74 139 | 72.63 129 | | 90.69 133 | | 82.76 215 | | 79.20 125 | 94.80 63 | | 95.32 134 | 92.27 156 |
|
ITE_SJBPF | | | | | 90.11 48 | 90.72 140 | 84.97 33 | | 90.30 147 | 81.56 64 | 90.02 86 | 91.20 154 | 82.40 86 | 90.81 193 | 73.58 162 | 94.66 157 | 94.56 70 |
|
DPM-MVS | | | 80.10 201 | 79.18 203 | 82.88 176 | 90.71 141 | 69.74 158 | 78.87 246 | 90.84 129 | 60.29 274 | 75.64 285 | 85.92 246 | 67.28 222 | 93.11 130 | 71.24 182 | 91.79 214 | 85.77 261 |
|
TAMVS | | | 78.08 215 | 76.36 227 | 83.23 166 | 90.62 142 | 72.87 125 | 79.08 243 | 80.01 265 | 61.72 264 | 81.35 236 | 86.92 233 | 63.96 237 | 88.78 235 | 50.61 310 | 93.01 191 | 88.04 235 |
|
test_prior3 | | | 86.31 92 | 86.31 94 | 86.32 99 | 90.59 143 | 71.99 141 | 83.37 168 | 92.85 80 | 75.43 135 | 84.58 187 | 91.57 145 | 81.92 100 | 94.17 85 | 79.54 102 | 96.97 80 | 92.80 137 |
|
test_prior | | | | | 86.32 99 | 90.59 143 | 71.99 141 | | 92.85 80 | | | | | 94.17 85 | | | 92.80 137 |
|
ambc | | | | | 82.98 171 | 90.55 145 | 64.86 196 | 88.20 83 | 89.15 172 | | 89.40 107 | 93.96 83 | 71.67 206 | 91.38 176 | 78.83 109 | 96.55 93 | 92.71 141 |
|
Anonymous20231211 | | | 88.40 68 | 89.62 53 | 84.73 132 | 90.46 146 | 65.27 193 | 88.86 74 | 93.02 75 | 87.15 21 | 93.05 35 | 97.10 6 | 82.28 90 | 92.02 156 | 76.70 133 | 97.99 39 | 96.88 23 |
|
Test_1112_low_res | | | 73.90 256 | 73.08 257 | 76.35 268 | 90.35 147 | 55.95 282 | 73.40 303 | 86.17 217 | 50.70 324 | 73.14 298 | 85.94 245 | 58.31 268 | 85.90 270 | 56.51 282 | 83.22 303 | 87.20 246 |
|
VPA-MVSNet | | | 83.47 151 | 84.73 121 | 79.69 226 | 90.29 148 | 57.52 273 | 81.30 213 | 88.69 178 | 76.29 119 | 87.58 135 | 94.44 60 | 80.60 114 | 87.20 250 | 66.60 222 | 96.82 87 | 94.34 82 |
|
FMVSNet1 | | | 84.55 123 | 85.45 111 | 81.85 192 | 90.27 149 | 61.05 238 | 86.83 103 | 88.27 186 | 78.57 101 | 89.66 99 | 95.64 28 | 75.43 161 | 90.68 197 | 69.09 204 | 95.33 133 | 93.82 102 |
|
Anonymous20240529 | | | 86.20 96 | 87.13 81 | 83.42 163 | 90.19 150 | 64.55 200 | 84.55 138 | 90.71 132 | 85.85 26 | 89.94 90 | 95.24 37 | 82.13 92 | 90.40 204 | 69.19 203 | 96.40 99 | 95.31 52 |
|
MVS_111021_HR | | | 84.63 120 | 84.34 136 | 85.49 122 | 90.18 151 | 75.86 111 | 79.23 242 | 87.13 203 | 73.35 159 | 85.56 174 | 89.34 194 | 83.60 74 | 90.50 202 | 76.64 134 | 94.05 170 | 90.09 210 |
|
RPSCF | | | 88.00 72 | 86.93 87 | 91.22 29 | 90.08 152 | 89.30 5 | 89.68 56 | 91.11 124 | 79.26 90 | 89.68 97 | 94.81 50 | 82.44 85 | 87.74 245 | 76.54 135 | 88.74 258 | 96.61 27 |
|
nrg030 | | | 87.85 75 | 88.49 69 | 85.91 111 | 90.07 153 | 69.73 159 | 87.86 88 | 94.20 23 | 74.04 150 | 92.70 44 | 94.66 51 | 85.88 59 | 91.50 168 | 79.72 99 | 97.32 72 | 96.50 29 |
|
AdaColmap | | | 83.66 146 | 83.69 145 | 83.57 160 | 90.05 154 | 72.26 138 | 86.29 116 | 90.00 158 | 78.19 105 | 81.65 232 | 87.16 229 | 83.40 76 | 94.24 79 | 61.69 254 | 94.76 156 | 84.21 276 |
|
pm-mvs1 | | | 83.69 145 | 84.95 118 | 79.91 221 | 90.04 155 | 59.66 252 | 82.43 191 | 87.44 196 | 75.52 134 | 87.85 132 | 95.26 36 | 81.25 108 | 85.65 273 | 68.74 208 | 96.04 112 | 94.42 79 |
|
CHOSEN 1792x2688 | | | 72.45 266 | 70.56 276 | 78.13 248 | 90.02 156 | 63.08 214 | 68.72 318 | 83.16 243 | 42.99 340 | 75.92 281 | 85.46 252 | 57.22 277 | 85.18 277 | 49.87 314 | 81.67 311 | 86.14 256 |
|
anonymousdsp | | | 89.73 49 | 88.88 64 | 92.27 7 | 89.82 157 | 86.67 12 | 90.51 42 | 90.20 153 | 69.87 201 | 95.06 10 | 96.14 21 | 84.28 67 | 93.07 132 | 87.68 13 | 96.34 101 | 97.09 19 |
|
1112_ss | | | 74.82 250 | 73.74 250 | 78.04 250 | 89.57 158 | 60.04 248 | 76.49 278 | 87.09 207 | 54.31 301 | 73.66 297 | 79.80 312 | 60.25 255 | 86.76 259 | 58.37 272 | 84.15 299 | 87.32 245 |
|
PCF-MVS | | 74.62 15 | 82.15 169 | 80.92 182 | 85.84 114 | 89.43 159 | 72.30 137 | 80.53 222 | 91.82 106 | 57.36 289 | 87.81 133 | 89.92 189 | 77.67 138 | 93.63 105 | 58.69 271 | 95.08 144 | 91.58 180 |
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
MVP-Stereo | | | 75.81 240 | 73.51 254 | 82.71 178 | 89.35 160 | 73.62 120 | 80.06 225 | 85.20 229 | 60.30 273 | 73.96 295 | 87.94 215 | 57.89 273 | 89.45 225 | 52.02 305 | 74.87 332 | 85.06 268 |
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application. |
CNLPA | | | 83.55 149 | 83.10 152 | 84.90 128 | 89.34 161 | 83.87 43 | 84.54 140 | 88.77 176 | 79.09 92 | 83.54 207 | 88.66 207 | 74.87 166 | 81.73 297 | 66.84 220 | 92.29 204 | 89.11 221 |
|
TSAR-MVS + GP. | | | 83.95 141 | 82.69 157 | 87.72 82 | 89.27 162 | 81.45 57 | 83.72 158 | 81.58 256 | 74.73 143 | 85.66 171 | 86.06 244 | 72.56 197 | 92.69 141 | 75.44 145 | 95.21 138 | 89.01 227 |
|
MVS_111021_LR | | | 84.28 132 | 83.76 144 | 85.83 115 | 89.23 163 | 83.07 48 | 80.99 217 | 83.56 242 | 72.71 173 | 86.07 164 | 89.07 201 | 81.75 103 | 86.19 266 | 77.11 130 | 93.36 179 | 88.24 231 |
|
LFMVS | | | 80.15 200 | 80.56 184 | 78.89 234 | 89.19 164 | 55.93 283 | 85.22 128 | 73.78 298 | 82.96 49 | 84.28 197 | 92.72 114 | 57.38 275 | 90.07 218 | 63.80 239 | 95.75 123 | 90.68 196 |
|
CLD-MVS | | | 83.18 156 | 82.64 158 | 84.79 130 | 89.05 165 | 67.82 178 | 77.93 257 | 92.52 89 | 68.33 213 | 85.07 178 | 81.54 300 | 82.06 94 | 92.96 133 | 69.35 199 | 97.91 46 | 93.57 114 |
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
LS3D | | | 90.60 31 | 90.34 45 | 91.38 25 | 89.03 166 | 84.23 42 | 93.58 4 | 94.68 14 | 90.65 6 | 90.33 83 | 93.95 86 | 84.50 65 | 95.37 43 | 80.87 88 | 95.50 129 | 94.53 74 |
|
CDS-MVSNet | | | 77.32 223 | 75.40 237 | 83.06 169 | 89.00 167 | 72.48 134 | 77.90 258 | 82.17 251 | 60.81 269 | 78.94 261 | 83.49 279 | 59.30 262 | 88.76 236 | 54.64 296 | 92.37 203 | 87.93 238 |
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
tttt0517 | | | 81.07 180 | 79.58 200 | 85.52 120 | 88.99 168 | 66.45 187 | 87.03 100 | 75.51 287 | 73.76 154 | 88.32 127 | 90.20 182 | 37.96 340 | 94.16 88 | 79.36 106 | 95.13 141 | 95.93 40 |
|
tfpnnormal | | | 81.79 174 | 82.95 154 | 78.31 245 | 88.93 169 | 55.40 287 | 80.83 220 | 82.85 246 | 76.81 116 | 85.90 169 | 94.14 73 | 74.58 173 | 86.51 261 | 66.82 221 | 95.68 126 | 93.01 130 |
|
Vis-MVSNet (Re-imp) | | | 77.82 218 | 77.79 214 | 77.92 252 | 88.82 170 | 51.29 316 | 83.28 170 | 71.97 311 | 74.04 150 | 82.23 222 | 89.78 190 | 57.38 275 | 89.41 226 | 57.22 279 | 95.41 130 | 93.05 128 |
|
TAPA-MVS | | 77.73 12 | 85.71 104 | 84.83 120 | 88.37 74 | 88.78 171 | 79.72 67 | 87.15 98 | 93.50 51 | 69.17 205 | 85.80 170 | 89.56 192 | 80.76 112 | 92.13 151 | 73.21 170 | 95.51 128 | 93.25 123 |
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
FPMVS | | | 72.29 269 | 72.00 268 | 73.14 284 | 88.63 172 | 85.00 32 | 74.65 295 | 67.39 324 | 71.94 184 | 77.80 268 | 87.66 220 | 50.48 297 | 75.83 314 | 49.95 312 | 79.51 318 | 58.58 343 |
|
ETV-MVS | | | 84.31 130 | 83.91 143 | 85.52 120 | 88.58 173 | 70.40 155 | 84.50 142 | 93.37 53 | 78.76 99 | 84.07 199 | 78.72 317 | 80.39 116 | 95.13 53 | 73.82 160 | 92.98 192 | 91.04 186 |
|
BH-untuned | | | 80.96 182 | 80.99 180 | 80.84 209 | 88.55 174 | 68.23 173 | 80.33 224 | 88.46 180 | 72.79 172 | 86.55 153 | 86.76 234 | 74.72 171 | 91.77 165 | 61.79 253 | 88.99 253 | 82.52 300 |
|
Anonymous202405211 | | | 80.51 190 | 81.19 178 | 78.49 242 | 88.48 175 | 57.26 275 | 76.63 275 | 82.49 248 | 81.21 68 | 84.30 196 | 92.24 131 | 67.99 220 | 86.24 265 | 62.22 248 | 95.13 141 | 91.98 168 |
|
ab-mvs | | | 79.67 203 | 80.56 184 | 76.99 259 | 88.48 175 | 56.93 277 | 84.70 134 | 86.06 218 | 68.95 209 | 80.78 243 | 93.08 101 | 75.30 163 | 84.62 282 | 56.78 280 | 90.90 232 | 89.43 215 |
|
PHI-MVS | | | 86.38 91 | 85.81 104 | 88.08 78 | 88.44 177 | 77.34 94 | 89.35 67 | 93.05 71 | 73.15 167 | 84.76 184 | 87.70 219 | 78.87 128 | 94.18 83 | 80.67 92 | 96.29 102 | 92.73 140 |
|
xiu_mvs_v1_base_debu | | | 80.84 184 | 80.14 194 | 82.93 173 | 88.31 178 | 71.73 144 | 79.53 233 | 87.17 200 | 65.43 242 | 79.59 254 | 82.73 290 | 76.94 149 | 90.14 214 | 73.22 165 | 88.33 260 | 86.90 250 |
|
xiu_mvs_v1_base | | | 80.84 184 | 80.14 194 | 82.93 173 | 88.31 178 | 71.73 144 | 79.53 233 | 87.17 200 | 65.43 242 | 79.59 254 | 82.73 290 | 76.94 149 | 90.14 214 | 73.22 165 | 88.33 260 | 86.90 250 |
|
xiu_mvs_v1_base_debi | | | 80.84 184 | 80.14 194 | 82.93 173 | 88.31 178 | 71.73 144 | 79.53 233 | 87.17 200 | 65.43 242 | 79.59 254 | 82.73 290 | 76.94 149 | 90.14 214 | 73.22 165 | 88.33 260 | 86.90 250 |
|
MG-MVS | | | 80.32 196 | 80.94 181 | 78.47 243 | 88.18 181 | 52.62 306 | 82.29 195 | 85.01 236 | 72.01 183 | 79.24 259 | 92.54 121 | 69.36 213 | 93.36 121 | 70.65 189 | 89.19 252 | 89.45 213 |
|
PM-MVS | | | 80.20 199 | 79.00 204 | 83.78 154 | 88.17 182 | 86.66 13 | 81.31 211 | 66.81 330 | 69.64 202 | 88.33 126 | 90.19 183 | 64.58 232 | 83.63 291 | 71.99 180 | 90.03 243 | 81.06 320 |
|
v10 | | | 86.54 88 | 87.10 82 | 84.84 129 | 88.16 183 | 63.28 212 | 86.64 109 | 92.20 96 | 75.42 137 | 92.81 42 | 94.50 57 | 74.05 176 | 94.06 90 | 83.88 58 | 96.28 103 | 97.17 18 |
|
canonicalmvs | | | 85.50 105 | 86.14 98 | 83.58 159 | 87.97 184 | 67.13 180 | 87.55 91 | 94.32 17 | 73.44 158 | 88.47 122 | 87.54 222 | 86.45 53 | 91.06 184 | 75.76 142 | 93.76 174 | 92.54 147 |
|
EIA-MVS | | | 82.19 168 | 81.23 177 | 85.10 126 | 87.95 185 | 69.17 169 | 83.22 175 | 93.33 56 | 70.42 194 | 78.58 263 | 79.77 314 | 77.29 142 | 94.20 82 | 71.51 181 | 88.96 254 | 91.93 169 |
|
VNet | | | 79.31 204 | 80.27 189 | 76.44 267 | 87.92 186 | 53.95 296 | 75.58 287 | 84.35 241 | 74.39 148 | 82.23 222 | 90.72 171 | 72.84 193 | 84.39 284 | 60.38 265 | 93.98 171 | 90.97 188 |
|
CS-MVS | | | 83.43 153 | 83.04 153 | 84.59 136 | 87.87 187 | 66.61 185 | 85.57 123 | 94.90 12 | 73.02 169 | 81.12 238 | 78.56 318 | 80.00 121 | 95.52 35 | 73.04 172 | 93.29 183 | 91.62 178 |
|
v8 | | | 86.22 95 | 86.83 89 | 84.36 140 | 87.82 188 | 62.35 226 | 86.42 112 | 91.33 118 | 76.78 117 | 92.73 43 | 94.48 59 | 73.41 185 | 93.72 102 | 83.10 65 | 95.41 130 | 97.01 21 |
|
alignmvs | | | 83.94 142 | 83.98 141 | 83.80 152 | 87.80 189 | 67.88 177 | 84.54 140 | 91.42 117 | 73.27 165 | 88.41 124 | 87.96 214 | 72.33 198 | 90.83 192 | 76.02 140 | 94.11 168 | 92.69 142 |
|
v1192 | | | 84.57 122 | 84.69 125 | 84.21 144 | 87.75 190 | 62.88 216 | 83.02 179 | 91.43 115 | 69.08 207 | 89.98 89 | 90.89 166 | 72.70 195 | 93.62 108 | 82.41 72 | 94.97 148 | 96.13 32 |
|
PatchMatch-RL | | | 74.48 252 | 73.22 256 | 78.27 247 | 87.70 191 | 85.26 30 | 75.92 284 | 70.09 320 | 64.34 250 | 76.09 279 | 81.25 302 | 65.87 230 | 78.07 308 | 53.86 298 | 83.82 300 | 71.48 332 |
|
v1144 | | | 84.54 125 | 84.72 123 | 84.00 148 | 87.67 192 | 62.55 222 | 82.97 180 | 90.93 128 | 70.32 197 | 89.80 94 | 90.99 161 | 73.50 182 | 93.48 115 | 81.69 80 | 94.65 158 | 95.97 37 |
|
v1240 | | | 84.30 131 | 84.51 131 | 83.65 157 | 87.65 193 | 61.26 235 | 82.85 183 | 91.54 112 | 67.94 218 | 90.68 79 | 90.65 175 | 71.71 205 | 93.64 104 | 82.84 70 | 94.78 153 | 96.07 34 |
|
v1921920 | | | 84.23 134 | 84.37 135 | 83.79 153 | 87.64 194 | 61.71 230 | 82.91 182 | 91.20 122 | 67.94 218 | 90.06 85 | 90.34 179 | 72.04 202 | 93.59 109 | 82.32 74 | 94.91 149 | 96.07 34 |
|
v144192 | | | 84.24 133 | 84.41 133 | 83.71 156 | 87.59 195 | 61.57 231 | 82.95 181 | 91.03 126 | 67.82 221 | 89.80 94 | 90.49 177 | 73.28 188 | 93.51 114 | 81.88 79 | 94.89 150 | 96.04 36 |
|
Fast-Effi-MVS+ | | | 81.04 181 | 80.57 183 | 82.46 185 | 87.50 196 | 63.22 213 | 78.37 253 | 89.63 165 | 68.01 215 | 81.87 227 | 82.08 295 | 82.31 87 | 92.65 142 | 67.10 217 | 88.30 264 | 91.51 182 |
|
pmmvs-eth3d | | | 78.42 212 | 77.04 221 | 82.57 183 | 87.44 197 | 74.41 117 | 80.86 219 | 79.67 266 | 55.68 295 | 84.69 185 | 90.31 181 | 60.91 250 | 85.42 274 | 62.20 249 | 91.59 218 | 87.88 239 |
|
IterMVS-LS | | | 84.73 119 | 84.98 117 | 83.96 150 | 87.35 198 | 63.66 207 | 83.25 172 | 89.88 160 | 76.06 123 | 89.62 100 | 92.37 126 | 73.40 187 | 92.52 144 | 78.16 116 | 94.77 155 | 95.69 42 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
thres100view900 | | | 75.45 241 | 75.05 240 | 76.66 266 | 87.27 199 | 51.88 312 | 81.07 216 | 73.26 302 | 75.68 132 | 83.25 209 | 86.37 238 | 45.54 315 | 88.80 232 | 51.98 306 | 90.99 227 | 89.31 217 |
|
MIMVSNet | | | 71.09 276 | 71.59 271 | 69.57 298 | 87.23 200 | 50.07 324 | 78.91 244 | 71.83 312 | 60.20 275 | 71.26 306 | 91.76 142 | 55.08 288 | 76.09 312 | 41.06 336 | 87.02 276 | 82.54 299 |
|
Effi-MVS+ | | | 83.90 143 | 84.01 140 | 83.57 160 | 87.22 201 | 65.61 192 | 86.55 111 | 92.40 91 | 78.64 100 | 81.34 237 | 84.18 273 | 83.65 73 | 92.93 135 | 74.22 153 | 87.87 268 | 92.17 161 |
|
BH-RMVSNet | | | 80.53 189 | 80.22 192 | 81.49 198 | 87.19 202 | 66.21 188 | 77.79 260 | 86.23 216 | 74.21 149 | 83.69 202 | 88.50 208 | 73.25 189 | 90.75 194 | 63.18 244 | 87.90 267 | 87.52 242 |
|
thisisatest0530 | | | 79.07 205 | 77.33 218 | 84.26 143 | 87.13 203 | 64.58 198 | 83.66 160 | 75.95 282 | 68.86 210 | 85.22 177 | 87.36 226 | 38.10 338 | 93.57 112 | 75.47 144 | 94.28 165 | 94.62 67 |
|
Effi-MVS+-dtu | | | 85.82 102 | 83.38 147 | 93.14 3 | 87.13 203 | 91.15 2 | 87.70 90 | 88.42 181 | 74.57 145 | 83.56 206 | 85.65 247 | 78.49 130 | 94.21 81 | 72.04 178 | 92.88 194 | 94.05 92 |
|
mvs-test1 | | | 84.55 123 | 82.12 165 | 91.84 18 | 87.13 203 | 89.54 4 | 85.05 130 | 88.42 181 | 74.57 145 | 80.60 244 | 82.98 283 | 78.49 130 | 93.98 93 | 72.04 178 | 89.77 245 | 92.00 165 |
|
v2v482 | | | 84.09 136 | 84.24 137 | 83.62 158 | 87.13 203 | 61.40 232 | 82.71 186 | 89.71 163 | 72.19 180 | 89.55 104 | 91.41 150 | 70.70 210 | 93.20 124 | 81.02 85 | 93.76 174 | 96.25 30 |
|
jason | | | 77.42 222 | 75.75 234 | 82.43 186 | 87.10 207 | 69.27 164 | 77.99 256 | 81.94 253 | 51.47 319 | 77.84 266 | 85.07 262 | 60.32 254 | 89.00 229 | 70.74 188 | 89.27 251 | 89.03 225 |
jason: jason. |
PS-MVSNAJ | | | 77.04 226 | 76.53 226 | 78.56 240 | 87.09 208 | 61.40 232 | 75.26 290 | 87.13 203 | 61.25 267 | 74.38 294 | 77.22 326 | 76.94 149 | 90.94 186 | 64.63 236 | 84.83 295 | 83.35 289 |
|
xiu_mvs_v2_base | | | 77.19 224 | 76.75 224 | 78.52 241 | 87.01 209 | 61.30 234 | 75.55 288 | 87.12 206 | 61.24 268 | 74.45 292 | 78.79 316 | 77.20 143 | 90.93 187 | 64.62 237 | 84.80 296 | 83.32 290 |
|
thres600view7 | | | 75.97 238 | 75.35 239 | 77.85 254 | 87.01 209 | 51.84 313 | 80.45 223 | 73.26 302 | 75.20 139 | 83.10 212 | 86.31 241 | 45.54 315 | 89.05 228 | 55.03 293 | 92.24 206 | 92.66 143 |
|
BH-w/o | | | 76.57 231 | 76.07 231 | 78.10 249 | 86.88 211 | 65.92 190 | 77.63 262 | 86.33 215 | 65.69 240 | 80.89 241 | 79.95 311 | 68.97 217 | 90.74 195 | 53.01 302 | 85.25 290 | 77.62 324 |
|
MAR-MVS | | | 80.24 198 | 78.74 206 | 84.73 132 | 86.87 212 | 78.18 82 | 85.75 120 | 87.81 194 | 65.67 241 | 77.84 266 | 78.50 319 | 73.79 179 | 90.53 201 | 61.59 257 | 90.87 233 | 85.49 264 |
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
testing_2 | | | 84.36 127 | 84.64 127 | 83.50 162 | 86.74 213 | 63.97 206 | 84.56 137 | 90.31 145 | 66.22 233 | 91.62 62 | 94.55 55 | 75.88 159 | 91.95 157 | 77.02 132 | 94.89 150 | 94.56 70 |
|
QAPM | | | 82.59 162 | 82.59 160 | 82.58 181 | 86.44 214 | 66.69 184 | 89.94 51 | 90.36 142 | 67.97 217 | 84.94 181 | 92.58 119 | 72.71 194 | 92.18 150 | 70.63 190 | 87.73 270 | 88.85 228 |
|
PAPM | | | 71.77 272 | 70.06 282 | 76.92 260 | 86.39 215 | 53.97 295 | 76.62 276 | 86.62 213 | 53.44 306 | 63.97 334 | 84.73 268 | 57.79 274 | 92.34 146 | 39.65 338 | 81.33 314 | 84.45 273 |
|
GBi-Net | | | 82.02 171 | 82.07 166 | 81.85 192 | 86.38 216 | 61.05 238 | 86.83 103 | 88.27 186 | 72.43 175 | 86.00 165 | 95.64 28 | 63.78 238 | 90.68 197 | 65.95 225 | 93.34 180 | 93.82 102 |
|
test1 | | | 82.02 171 | 82.07 166 | 81.85 192 | 86.38 216 | 61.05 238 | 86.83 103 | 88.27 186 | 72.43 175 | 86.00 165 | 95.64 28 | 63.78 238 | 90.68 197 | 65.95 225 | 93.34 180 | 93.82 102 |
|
FMVSNet2 | | | 81.31 178 | 81.61 172 | 80.41 215 | 86.38 216 | 58.75 266 | 83.93 151 | 86.58 214 | 72.43 175 | 87.65 134 | 92.98 104 | 63.78 238 | 90.22 209 | 66.86 218 | 93.92 172 | 92.27 156 |
|
3Dnovator | | 80.37 7 | 84.80 118 | 84.71 124 | 85.06 127 | 86.36 219 | 74.71 115 | 88.77 77 | 90.00 158 | 75.65 133 | 84.96 179 | 93.17 100 | 74.06 175 | 91.19 179 | 78.28 115 | 91.09 223 | 89.29 219 |
|
Anonymous20231206 | | | 71.38 275 | 71.88 269 | 69.88 295 | 86.31 220 | 54.37 293 | 70.39 313 | 74.62 290 | 52.57 311 | 76.73 272 | 88.76 204 | 59.94 257 | 72.06 320 | 44.35 331 | 93.23 185 | 83.23 292 |
|
baseline | | | 85.20 109 | 85.93 101 | 83.02 170 | 86.30 221 | 62.37 225 | 84.55 138 | 93.96 33 | 74.48 147 | 87.12 140 | 92.03 133 | 82.30 88 | 91.94 158 | 78.39 111 | 94.21 166 | 94.74 66 |
|
API-MVS | | | 82.28 166 | 82.61 159 | 81.30 199 | 86.29 222 | 69.79 157 | 88.71 78 | 87.67 195 | 78.42 103 | 82.15 224 | 84.15 274 | 77.98 134 | 91.59 167 | 65.39 231 | 92.75 196 | 82.51 301 |
|
tfpn200view9 | | | 74.86 249 | 74.23 247 | 76.74 265 | 86.24 223 | 52.12 309 | 79.24 240 | 73.87 296 | 73.34 160 | 81.82 229 | 84.60 270 | 46.02 309 | 88.80 232 | 51.98 306 | 90.99 227 | 89.31 217 |
|
thres400 | | | 75.14 243 | 74.23 247 | 77.86 253 | 86.24 223 | 52.12 309 | 79.24 240 | 73.87 296 | 73.34 160 | 81.82 229 | 84.60 270 | 46.02 309 | 88.80 232 | 51.98 306 | 90.99 227 | 92.66 143 |
|
UGNet | | | 82.78 159 | 81.64 171 | 86.21 106 | 86.20 225 | 76.24 110 | 86.86 101 | 85.68 222 | 77.07 114 | 73.76 296 | 92.82 110 | 69.64 211 | 91.82 164 | 69.04 205 | 93.69 177 | 90.56 199 |
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
CANet | | | 83.79 144 | 82.85 155 | 86.63 93 | 86.17 226 | 72.21 140 | 83.76 157 | 91.43 115 | 77.24 113 | 74.39 293 | 87.45 224 | 75.36 162 | 95.42 41 | 77.03 131 | 92.83 195 | 92.25 158 |
|
casdiffmvs | | | 85.21 108 | 85.85 103 | 83.31 165 | 86.17 226 | 62.77 218 | 83.03 178 | 93.93 34 | 74.69 144 | 88.21 128 | 92.68 116 | 82.29 89 | 91.89 161 | 77.87 121 | 93.75 176 | 95.27 54 |
|
TR-MVS | | | 76.77 229 | 75.79 232 | 79.72 225 | 86.10 228 | 65.79 191 | 77.14 268 | 83.02 244 | 65.20 247 | 81.40 235 | 82.10 294 | 66.30 226 | 90.73 196 | 55.57 288 | 85.27 289 | 82.65 296 |
|
LCM-MVSNet-Re | | | 83.48 150 | 85.06 115 | 78.75 237 | 85.94 229 | 55.75 286 | 80.05 226 | 94.27 18 | 76.47 118 | 96.09 4 | 94.54 56 | 83.31 77 | 89.75 222 | 59.95 266 | 94.89 150 | 90.75 194 |
|
Fast-Effi-MVS+-dtu | | | 82.54 163 | 81.41 175 | 85.90 112 | 85.60 230 | 76.53 106 | 83.07 177 | 89.62 166 | 73.02 169 | 79.11 260 | 83.51 278 | 80.74 113 | 90.24 208 | 68.76 207 | 89.29 249 | 90.94 189 |
|
v148 | | | 82.31 165 | 82.48 162 | 81.81 195 | 85.59 231 | 59.66 252 | 81.47 209 | 86.02 219 | 72.85 171 | 88.05 129 | 90.65 175 | 70.73 209 | 90.91 189 | 75.15 148 | 91.79 214 | 94.87 61 |
|
MVSFormer | | | 82.23 167 | 81.57 174 | 84.19 146 | 85.54 232 | 69.26 165 | 91.98 27 | 90.08 156 | 71.54 185 | 76.23 277 | 85.07 262 | 58.69 266 | 94.27 76 | 86.26 32 | 88.77 256 | 89.03 225 |
|
lupinMVS | | | 76.37 235 | 74.46 245 | 82.09 187 | 85.54 232 | 69.26 165 | 76.79 272 | 80.77 261 | 50.68 325 | 76.23 277 | 82.82 288 | 58.69 266 | 88.94 230 | 69.85 195 | 88.77 256 | 88.07 233 |
|
TinyColmap | | | 81.25 179 | 82.34 164 | 77.99 251 | 85.33 234 | 60.68 244 | 82.32 194 | 88.33 184 | 71.26 187 | 86.97 147 | 92.22 132 | 77.10 146 | 86.98 254 | 62.37 247 | 95.17 140 | 86.31 255 |
|
PAPR | | | 78.84 207 | 78.10 212 | 81.07 204 | 85.17 235 | 60.22 247 | 82.21 199 | 90.57 137 | 62.51 257 | 75.32 288 | 84.61 269 | 74.99 165 | 92.30 148 | 59.48 269 | 88.04 266 | 90.68 196 |
|
pmmvs4 | | | 74.92 248 | 72.98 259 | 80.73 211 | 84.95 236 | 71.71 147 | 76.23 282 | 77.59 273 | 52.83 309 | 77.73 269 | 86.38 237 | 56.35 281 | 84.97 278 | 57.72 278 | 87.05 275 | 85.51 263 |
|
baseline1 | | | 73.26 259 | 73.54 253 | 72.43 290 | 84.92 237 | 47.79 330 | 79.89 229 | 74.00 295 | 65.93 234 | 78.81 262 | 86.28 242 | 56.36 280 | 81.63 298 | 56.63 281 | 79.04 323 | 87.87 240 |
|
Patchmatch-RL test | | | 74.48 252 | 73.68 251 | 76.89 262 | 84.83 238 | 66.54 186 | 72.29 306 | 69.16 323 | 57.70 285 | 86.76 149 | 86.33 239 | 45.79 314 | 82.59 294 | 69.63 197 | 90.65 240 | 81.54 311 |
|
XXY-MVS | | | 74.44 254 | 76.19 229 | 69.21 299 | 84.61 239 | 52.43 308 | 71.70 308 | 77.18 275 | 60.73 271 | 80.60 244 | 90.96 164 | 75.44 160 | 69.35 326 | 56.13 284 | 88.33 260 | 85.86 260 |
|
cascas | | | 76.29 236 | 74.81 241 | 80.72 212 | 84.47 240 | 62.94 215 | 73.89 299 | 87.34 197 | 55.94 294 | 75.16 290 | 76.53 329 | 63.97 236 | 91.16 180 | 65.00 232 | 90.97 230 | 88.06 234 |
|
PVSNet_BlendedMVS | | | 78.80 208 | 77.84 213 | 81.65 197 | 84.43 241 | 63.41 209 | 79.49 236 | 90.44 139 | 61.70 265 | 75.43 286 | 87.07 232 | 69.11 215 | 91.44 171 | 60.68 263 | 92.24 206 | 90.11 209 |
|
PVSNet_Blended | | | 76.49 233 | 75.40 237 | 79.76 223 | 84.43 241 | 63.41 209 | 75.14 291 | 90.44 139 | 57.36 289 | 75.43 286 | 78.30 320 | 69.11 215 | 91.44 171 | 60.68 263 | 87.70 271 | 84.42 274 |
|
OpenMVS | | 76.72 13 | 81.98 173 | 82.00 168 | 81.93 189 | 84.42 243 | 68.22 174 | 88.50 82 | 89.48 168 | 66.92 227 | 81.80 231 | 91.86 136 | 72.59 196 | 90.16 211 | 71.19 183 | 91.25 222 | 87.40 244 |
|
OpenMVS_ROB | | 70.19 17 | 77.77 220 | 77.46 216 | 78.71 238 | 84.39 244 | 61.15 236 | 81.18 215 | 82.52 247 | 62.45 259 | 83.34 208 | 87.37 225 | 66.20 227 | 88.66 237 | 64.69 235 | 85.02 292 | 86.32 254 |
|
test_yl | | | 78.71 210 | 78.51 208 | 79.32 231 | 84.32 245 | 58.84 263 | 78.38 251 | 85.33 226 | 75.99 126 | 82.49 217 | 86.57 235 | 58.01 269 | 90.02 219 | 62.74 245 | 92.73 197 | 89.10 222 |
|
DCV-MVSNet | | | 78.71 210 | 78.51 208 | 79.32 231 | 84.32 245 | 58.84 263 | 78.38 251 | 85.33 226 | 75.99 126 | 82.49 217 | 86.57 235 | 58.01 269 | 90.02 219 | 62.74 245 | 92.73 197 | 89.10 222 |
|
Regformer-3 | | | 85.06 113 | 84.67 126 | 86.22 104 | 84.27 247 | 73.43 122 | 84.07 146 | 85.26 228 | 80.77 73 | 88.62 119 | 85.48 250 | 80.56 115 | 90.39 205 | 81.99 77 | 91.04 225 | 94.85 63 |
|
Regformer-4 | | | 86.41 90 | 85.71 106 | 88.52 70 | 84.27 247 | 77.57 89 | 84.07 146 | 88.00 191 | 82.82 51 | 89.84 93 | 85.48 250 | 82.06 94 | 92.77 139 | 83.83 60 | 91.04 225 | 95.22 58 |
|
DELS-MVS | | | 81.44 177 | 81.25 176 | 82.03 188 | 84.27 247 | 62.87 217 | 76.47 279 | 92.49 90 | 70.97 189 | 81.64 233 | 83.83 275 | 75.03 164 | 92.70 140 | 74.29 152 | 92.22 208 | 90.51 201 |
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
Gipuma | | | 84.44 126 | 86.33 93 | 78.78 236 | 84.20 250 | 73.57 121 | 89.55 60 | 90.44 139 | 84.24 33 | 84.38 191 | 94.89 44 | 76.35 158 | 80.40 302 | 76.14 138 | 96.80 88 | 82.36 302 |
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
Regformer-1 | | | 86.00 98 | 85.50 110 | 87.49 85 | 84.18 251 | 76.90 101 | 83.52 162 | 87.94 193 | 82.18 57 | 89.19 109 | 85.07 262 | 82.28 90 | 91.89 161 | 82.40 73 | 92.72 199 | 93.69 108 |
|
Regformer-2 | | | 86.74 86 | 86.08 99 | 88.73 67 | 84.18 251 | 79.20 73 | 83.52 162 | 89.33 170 | 83.33 44 | 89.92 91 | 85.07 262 | 83.23 78 | 93.16 127 | 83.39 62 | 92.72 199 | 93.83 100 |
|
MVS_0304 | | | 78.17 213 | 77.23 219 | 80.99 208 | 84.13 253 | 69.07 171 | 81.39 210 | 80.81 260 | 76.28 120 | 67.53 321 | 89.11 200 | 62.87 244 | 86.77 258 | 60.90 262 | 92.01 213 | 87.13 247 |
|
EI-MVSNet-Vis-set | | | 85.12 111 | 84.53 130 | 86.88 89 | 84.01 254 | 72.76 126 | 83.91 152 | 85.18 230 | 80.44 74 | 88.75 116 | 85.49 249 | 80.08 119 | 91.92 159 | 82.02 76 | 90.85 234 | 95.97 37 |
|
IterMVS-SCA-FT | | | 80.64 188 | 79.41 201 | 84.34 141 | 83.93 255 | 69.66 160 | 76.28 281 | 81.09 258 | 72.43 175 | 86.47 159 | 90.19 183 | 60.46 252 | 93.15 129 | 77.45 126 | 86.39 281 | 90.22 205 |
|
MSDG | | | 80.06 202 | 79.99 198 | 80.25 217 | 83.91 256 | 68.04 176 | 77.51 265 | 89.19 171 | 77.65 108 | 81.94 226 | 83.45 280 | 76.37 157 | 86.31 264 | 63.31 243 | 86.59 278 | 86.41 253 |
|
EI-MVSNet-UG-set | | | 85.04 114 | 84.44 132 | 86.85 90 | 83.87 257 | 72.52 133 | 83.82 154 | 85.15 231 | 80.27 78 | 88.75 116 | 85.45 253 | 79.95 122 | 91.90 160 | 81.92 78 | 90.80 235 | 96.13 32 |
|
thres200 | | | 72.34 268 | 71.55 273 | 74.70 278 | 83.48 258 | 51.60 314 | 75.02 292 | 73.71 299 | 70.14 199 | 78.56 264 | 80.57 305 | 46.20 307 | 88.20 242 | 46.99 325 | 89.29 249 | 84.32 275 |
|
USDC | | | 76.63 230 | 76.73 225 | 76.34 269 | 83.46 259 | 57.20 276 | 80.02 227 | 88.04 190 | 52.14 315 | 83.65 204 | 91.25 151 | 63.24 241 | 86.65 260 | 54.66 295 | 94.11 168 | 85.17 266 |
|
HY-MVS | | 64.64 18 | 73.03 262 | 72.47 266 | 74.71 277 | 83.36 260 | 54.19 294 | 82.14 202 | 81.96 252 | 56.76 293 | 69.57 313 | 86.21 243 | 60.03 256 | 84.83 281 | 49.58 315 | 82.65 308 | 85.11 267 |
|
EI-MVSNet | | | 82.61 161 | 82.42 163 | 83.20 167 | 83.25 261 | 63.66 207 | 83.50 165 | 85.07 232 | 76.06 123 | 86.55 153 | 85.10 259 | 73.41 185 | 90.25 206 | 78.15 118 | 90.67 238 | 95.68 43 |
|
CVMVSNet | | | 72.62 265 | 71.41 274 | 76.28 270 | 83.25 261 | 60.34 246 | 83.50 165 | 79.02 268 | 37.77 344 | 76.33 275 | 85.10 259 | 49.60 299 | 87.41 248 | 70.54 191 | 77.54 328 | 81.08 318 |
|
V42 | | | 83.47 151 | 83.37 148 | 83.75 155 | 83.16 263 | 63.33 211 | 81.31 211 | 90.23 152 | 69.51 203 | 90.91 76 | 90.81 169 | 74.16 174 | 92.29 149 | 80.06 95 | 90.22 242 | 95.62 45 |
|
EU-MVSNet | | | 75.12 245 | 74.43 246 | 77.18 258 | 83.11 264 | 59.48 254 | 85.71 122 | 82.43 249 | 39.76 343 | 85.64 172 | 88.76 204 | 44.71 326 | 87.88 244 | 73.86 159 | 85.88 285 | 84.16 277 |
|
ET-MVSNet_ETH3D | | | 75.28 242 | 72.77 260 | 82.81 177 | 83.03 265 | 68.11 175 | 77.09 269 | 76.51 280 | 60.67 272 | 77.60 270 | 80.52 306 | 38.04 339 | 91.15 181 | 70.78 186 | 90.68 237 | 89.17 220 |
|
FMVSNet3 | | | 78.80 208 | 78.55 207 | 79.57 228 | 82.89 266 | 56.89 279 | 81.76 203 | 85.77 221 | 69.04 208 | 86.00 165 | 90.44 178 | 51.75 293 | 90.09 217 | 65.95 225 | 93.34 180 | 91.72 174 |
|
MVS_Test | | | 82.47 164 | 83.22 149 | 80.22 218 | 82.62 267 | 57.75 272 | 82.54 190 | 91.96 103 | 71.16 188 | 82.89 214 | 92.52 122 | 77.41 141 | 90.50 202 | 80.04 96 | 87.84 269 | 92.40 150 |
|
LF4IMVS | | | 82.75 160 | 81.93 169 | 85.19 124 | 82.08 268 | 80.15 64 | 85.53 124 | 88.76 177 | 68.01 215 | 85.58 173 | 87.75 218 | 71.80 204 | 86.85 256 | 74.02 156 | 93.87 173 | 88.58 230 |
|
PVSNet | | 58.17 21 | 66.41 298 | 65.63 300 | 68.75 302 | 81.96 269 | 49.88 325 | 62.19 333 | 72.51 308 | 51.03 321 | 68.04 317 | 75.34 332 | 50.84 295 | 74.77 316 | 45.82 329 | 82.96 304 | 81.60 310 |
|
GA-MVS | | | 75.83 239 | 74.61 242 | 79.48 230 | 81.87 270 | 59.25 256 | 73.42 302 | 82.88 245 | 68.68 211 | 79.75 253 | 81.80 297 | 50.62 296 | 89.46 224 | 66.85 219 | 85.64 286 | 89.72 211 |
|
MS-PatchMatch | | | 70.93 277 | 70.22 280 | 73.06 285 | 81.85 271 | 62.50 223 | 73.82 300 | 77.90 271 | 52.44 312 | 75.92 281 | 81.27 301 | 55.67 284 | 81.75 296 | 55.37 290 | 77.70 326 | 74.94 328 |
|
SCA | | | 73.32 258 | 72.57 264 | 75.58 274 | 81.62 272 | 55.86 284 | 78.89 245 | 71.37 317 | 61.73 263 | 74.93 291 | 83.42 281 | 60.46 252 | 87.01 251 | 58.11 276 | 82.63 310 | 83.88 278 |
|
FMVSNet5 | | | 72.10 270 | 71.69 270 | 73.32 282 | 81.57 273 | 53.02 303 | 76.77 273 | 78.37 270 | 63.31 252 | 76.37 274 | 91.85 137 | 36.68 342 | 78.98 305 | 47.87 322 | 92.45 202 | 87.95 237 |
|
thisisatest0515 | | | 73.00 263 | 70.52 277 | 80.46 214 | 81.45 274 | 59.90 250 | 73.16 304 | 74.31 294 | 57.86 284 | 76.08 280 | 77.78 321 | 37.60 341 | 92.12 153 | 65.00 232 | 91.45 220 | 89.35 216 |
|
eth_miper_zixun_eth | | | 80.84 184 | 80.22 192 | 82.71 178 | 81.41 275 | 60.98 241 | 77.81 259 | 90.14 155 | 67.31 225 | 86.95 148 | 87.24 228 | 64.26 234 | 92.31 147 | 75.23 147 | 91.61 217 | 94.85 63 |
|
CANet_DTU | | | 77.81 219 | 77.05 220 | 80.09 220 | 81.37 276 | 59.90 250 | 83.26 171 | 88.29 185 | 69.16 206 | 67.83 319 | 83.72 276 | 60.93 249 | 89.47 223 | 69.22 202 | 89.70 246 | 90.88 191 |
|
ANet_high | | | 83.17 157 | 85.68 107 | 75.65 273 | 81.24 277 | 45.26 335 | 79.94 228 | 92.91 78 | 83.83 37 | 91.33 68 | 96.88 10 | 80.25 118 | 85.92 269 | 68.89 206 | 95.89 116 | 95.76 41 |
|
new-patchmatchnet | | | 70.10 282 | 73.37 255 | 60.29 325 | 81.23 278 | 16.95 351 | 59.54 335 | 74.62 290 | 62.93 254 | 80.97 239 | 87.93 216 | 62.83 245 | 71.90 321 | 55.24 291 | 95.01 147 | 92.00 165 |
|
test20.03 | | | 73.75 257 | 74.59 244 | 71.22 294 | 81.11 279 | 51.12 318 | 70.15 314 | 72.10 310 | 70.42 194 | 80.28 251 | 91.50 148 | 64.21 235 | 74.72 318 | 46.96 326 | 94.58 159 | 87.82 241 |
|
MVS | | | 73.21 261 | 72.59 263 | 75.06 276 | 80.97 280 | 60.81 243 | 81.64 206 | 85.92 220 | 46.03 334 | 71.68 305 | 77.54 322 | 68.47 218 | 89.77 221 | 55.70 287 | 85.39 287 | 74.60 329 |
|
N_pmnet | | | 70.20 280 | 68.80 288 | 74.38 279 | 80.91 281 | 84.81 35 | 59.12 337 | 76.45 281 | 55.06 298 | 75.31 289 | 82.36 293 | 55.74 283 | 54.82 344 | 47.02 324 | 87.24 274 | 83.52 285 |
|
IterMVS | | | 76.91 227 | 76.34 228 | 78.64 239 | 80.91 281 | 64.03 204 | 76.30 280 | 79.03 267 | 64.88 249 | 83.11 211 | 89.16 198 | 59.90 258 | 84.46 283 | 68.61 210 | 85.15 291 | 87.42 243 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
cl_fuxian | | | 81.64 175 | 81.59 173 | 81.79 196 | 80.86 283 | 59.15 259 | 78.61 250 | 90.18 154 | 68.36 212 | 87.20 138 | 87.11 231 | 69.39 212 | 91.62 166 | 78.16 116 | 94.43 163 | 94.60 69 |
|
RRT_test8_iter05 | | | 78.08 215 | 77.52 215 | 79.75 224 | 80.84 284 | 52.54 307 | 80.61 221 | 88.96 174 | 67.77 222 | 84.62 186 | 89.29 195 | 33.89 345 | 92.10 154 | 77.59 123 | 94.15 167 | 94.62 67 |
|
WTY-MVS | | | 67.91 293 | 68.35 290 | 66.58 310 | 80.82 285 | 48.12 328 | 65.96 327 | 72.60 306 | 53.67 305 | 71.20 307 | 81.68 299 | 58.97 264 | 69.06 328 | 48.57 318 | 81.67 311 | 82.55 298 |
|
IB-MVS | | 62.13 19 | 71.64 273 | 68.97 286 | 79.66 227 | 80.80 286 | 62.26 228 | 73.94 298 | 76.90 276 | 63.27 253 | 68.63 315 | 76.79 327 | 33.83 346 | 91.84 163 | 59.28 270 | 87.26 273 | 84.88 269 |
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
our_test_3 | | | 71.85 271 | 71.59 271 | 72.62 288 | 80.71 287 | 53.78 297 | 69.72 316 | 71.71 316 | 58.80 278 | 78.03 265 | 80.51 307 | 56.61 279 | 78.84 306 | 62.20 249 | 86.04 284 | 85.23 265 |
|
ppachtmachnet_test | | | 74.73 251 | 74.00 249 | 76.90 261 | 80.71 287 | 56.89 279 | 71.53 309 | 78.42 269 | 58.24 281 | 79.32 258 | 82.92 287 | 57.91 272 | 84.26 285 | 65.60 230 | 91.36 221 | 89.56 212 |
|
testgi | | | 72.36 267 | 74.61 242 | 65.59 312 | 80.56 289 | 42.82 341 | 68.29 319 | 73.35 301 | 66.87 228 | 81.84 228 | 89.93 188 | 72.08 201 | 66.92 334 | 46.05 328 | 92.54 201 | 87.01 249 |
|
RRT_MVS | | | 83.25 154 | 81.08 179 | 89.74 51 | 80.55 290 | 79.32 72 | 86.41 113 | 86.69 212 | 72.33 179 | 87.00 146 | 91.08 157 | 44.98 324 | 95.55 33 | 84.47 54 | 96.24 106 | 94.36 81 |
|
D2MVS | | | 76.84 228 | 75.67 236 | 80.34 216 | 80.48 291 | 62.16 229 | 73.50 301 | 84.80 239 | 57.61 287 | 82.24 221 | 87.54 222 | 51.31 294 | 87.65 246 | 70.40 193 | 93.19 186 | 91.23 185 |
|
1314 | | | 73.22 260 | 72.56 265 | 75.20 275 | 80.41 292 | 57.84 270 | 81.64 206 | 85.36 225 | 51.68 318 | 73.10 299 | 76.65 328 | 61.45 248 | 85.19 276 | 63.54 240 | 79.21 322 | 82.59 297 |
|
cl-mvsnet_ | | | 80.42 192 | 80.23 190 | 81.02 206 | 79.99 293 | 59.25 256 | 77.07 270 | 87.02 208 | 67.37 224 | 86.18 162 | 89.21 197 | 63.08 243 | 90.16 211 | 76.31 137 | 95.80 120 | 93.65 110 |
|
cl-mvsnet1 | | | 80.43 191 | 80.23 190 | 81.02 206 | 79.99 293 | 59.25 256 | 77.07 270 | 87.02 208 | 67.38 223 | 86.19 160 | 89.22 196 | 63.09 242 | 90.16 211 | 76.32 136 | 95.80 120 | 93.66 109 |
|
miper_ehance_all_eth | | | 80.34 195 | 80.04 197 | 81.24 202 | 79.82 295 | 58.95 261 | 77.66 261 | 89.66 164 | 65.75 239 | 85.99 168 | 85.11 258 | 68.29 219 | 91.42 173 | 76.03 139 | 92.03 210 | 93.33 118 |
|
CR-MVSNet | | | 74.00 255 | 73.04 258 | 76.85 263 | 79.58 296 | 62.64 220 | 82.58 187 | 76.90 276 | 50.50 326 | 75.72 283 | 92.38 123 | 48.07 302 | 84.07 286 | 68.72 209 | 82.91 306 | 83.85 281 |
|
RPMNet | | | 76.06 237 | 75.79 232 | 76.85 263 | 79.58 296 | 62.64 220 | 82.58 187 | 71.75 314 | 74.80 142 | 75.72 283 | 92.59 117 | 48.69 300 | 84.07 286 | 73.48 163 | 82.91 306 | 83.85 281 |
|
baseline2 | | | 69.77 286 | 66.89 295 | 78.41 244 | 79.51 298 | 58.09 268 | 76.23 282 | 69.57 322 | 57.50 288 | 64.82 332 | 77.45 324 | 46.02 309 | 88.44 238 | 53.08 301 | 77.83 325 | 88.70 229 |
|
UnsupCasMVSNet_bld | | | 69.21 289 | 69.68 283 | 67.82 306 | 79.42 299 | 51.15 317 | 67.82 323 | 75.79 283 | 54.15 302 | 77.47 271 | 85.36 257 | 59.26 263 | 70.64 323 | 48.46 319 | 79.35 320 | 81.66 309 |
|
PatchT | | | 70.52 279 | 72.76 261 | 63.79 317 | 79.38 300 | 33.53 347 | 77.63 262 | 65.37 332 | 73.61 155 | 71.77 304 | 92.79 113 | 44.38 327 | 75.65 315 | 64.53 238 | 85.37 288 | 82.18 304 |
|
Patchmtry | | | 76.56 232 | 77.46 216 | 73.83 281 | 79.37 301 | 46.60 332 | 82.41 192 | 76.90 276 | 73.81 153 | 85.56 174 | 92.38 123 | 48.07 302 | 83.98 288 | 63.36 242 | 95.31 136 | 90.92 190 |
|
mvs_anonymous | | | 78.13 214 | 78.76 205 | 76.23 271 | 79.24 302 | 50.31 323 | 78.69 248 | 84.82 238 | 61.60 266 | 83.09 213 | 92.82 110 | 73.89 178 | 87.01 251 | 68.33 212 | 86.41 280 | 91.37 183 |
|
MVS-HIRNet | | | 61.16 310 | 62.92 306 | 55.87 328 | 79.09 303 | 35.34 346 | 71.83 307 | 57.98 344 | 46.56 332 | 59.05 341 | 91.14 156 | 49.95 298 | 76.43 311 | 38.74 339 | 71.92 336 | 55.84 344 |
|
MDA-MVSNet-bldmvs | | | 77.47 221 | 76.90 223 | 79.16 233 | 79.03 304 | 64.59 197 | 66.58 326 | 75.67 285 | 73.15 167 | 88.86 113 | 88.99 202 | 66.94 224 | 81.23 299 | 64.71 234 | 88.22 265 | 91.64 177 |
|
diffmvs | | | 80.40 193 | 80.48 187 | 80.17 219 | 79.02 305 | 60.04 248 | 77.54 264 | 90.28 151 | 66.65 230 | 82.40 219 | 87.33 227 | 73.50 182 | 87.35 249 | 77.98 119 | 89.62 247 | 93.13 126 |
|
tpm2 | | | 68.45 291 | 66.83 296 | 73.30 283 | 78.93 306 | 48.50 326 | 79.76 230 | 71.76 313 | 47.50 330 | 69.92 312 | 83.60 277 | 42.07 332 | 88.40 239 | 48.44 320 | 79.51 318 | 83.01 295 |
|
tpm | | | 67.95 292 | 68.08 292 | 67.55 307 | 78.74 307 | 43.53 339 | 75.60 286 | 67.10 329 | 54.92 299 | 72.23 302 | 88.10 212 | 42.87 331 | 75.97 313 | 52.21 304 | 80.95 317 | 83.15 293 |
|
MDTV_nov1_ep13 | | | | 68.29 291 | | 78.03 308 | 43.87 338 | 74.12 297 | 72.22 309 | 52.17 313 | 67.02 322 | 85.54 248 | 45.36 319 | 80.85 300 | 55.73 285 | 84.42 298 | |
|
cl-mvsnet2 | | | 78.97 206 | 78.21 211 | 81.24 202 | 77.74 309 | 59.01 260 | 77.46 267 | 87.13 203 | 65.79 236 | 84.32 193 | 85.10 259 | 58.96 265 | 90.88 191 | 75.36 146 | 92.03 210 | 93.84 99 |
|
EPNet_dtu | | | 72.87 264 | 71.33 275 | 77.49 257 | 77.72 310 | 60.55 245 | 82.35 193 | 75.79 283 | 66.49 231 | 58.39 344 | 81.06 303 | 53.68 290 | 85.98 268 | 53.55 299 | 92.97 193 | 85.95 258 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
PatchmatchNet | | | 69.71 287 | 68.83 287 | 72.33 291 | 77.66 311 | 53.60 298 | 79.29 238 | 69.99 321 | 57.66 286 | 72.53 301 | 82.93 286 | 46.45 306 | 80.08 304 | 60.91 261 | 72.09 335 | 83.31 291 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
sss | | | 66.92 295 | 67.26 294 | 65.90 311 | 77.23 312 | 51.10 319 | 64.79 328 | 71.72 315 | 52.12 316 | 70.13 311 | 80.18 309 | 57.96 271 | 65.36 339 | 50.21 311 | 81.01 316 | 81.25 315 |
|
CostFormer | | | 69.98 285 | 68.68 289 | 73.87 280 | 77.14 313 | 50.72 321 | 79.26 239 | 74.51 292 | 51.94 317 | 70.97 309 | 84.75 267 | 45.16 323 | 87.49 247 | 55.16 292 | 79.23 321 | 83.40 288 |
|
tpm cat1 | | | 66.76 296 | 65.21 301 | 71.42 293 | 77.09 314 | 50.62 322 | 78.01 255 | 73.68 300 | 44.89 336 | 68.64 314 | 79.00 315 | 45.51 317 | 82.42 295 | 49.91 313 | 70.15 338 | 81.23 317 |
|
pmmvs5 | | | 70.73 278 | 70.07 281 | 72.72 286 | 77.03 315 | 52.73 304 | 74.14 296 | 75.65 286 | 50.36 327 | 72.17 303 | 85.37 256 | 55.42 286 | 80.67 301 | 52.86 303 | 87.59 272 | 84.77 270 |
|
EPNet | | | 80.37 194 | 78.41 210 | 86.23 103 | 76.75 316 | 73.28 123 | 87.18 97 | 77.45 274 | 76.24 121 | 68.14 316 | 88.93 203 | 65.41 231 | 93.85 96 | 69.47 198 | 96.12 111 | 91.55 181 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
miper_lstm_enhance | | | 76.45 234 | 76.10 230 | 77.51 256 | 76.72 317 | 60.97 242 | 64.69 329 | 85.04 234 | 63.98 251 | 83.20 210 | 88.22 210 | 56.67 278 | 78.79 307 | 73.22 165 | 93.12 187 | 92.78 139 |
|
CHOSEN 280x420 | | | 59.08 314 | 56.52 318 | 66.76 309 | 76.51 318 | 64.39 201 | 49.62 343 | 59.00 341 | 43.86 338 | 55.66 346 | 68.41 339 | 35.55 344 | 68.21 330 | 43.25 332 | 76.78 330 | 67.69 337 |
|
UnsupCasMVSNet_eth | | | 71.63 274 | 72.30 267 | 69.62 297 | 76.47 319 | 52.70 305 | 70.03 315 | 80.97 259 | 59.18 277 | 79.36 257 | 88.21 211 | 60.50 251 | 69.12 327 | 58.33 274 | 77.62 327 | 87.04 248 |
|
test-LLR | | | 67.21 294 | 66.74 297 | 68.63 303 | 76.45 320 | 55.21 289 | 67.89 320 | 67.14 327 | 62.43 260 | 65.08 329 | 72.39 334 | 43.41 328 | 69.37 324 | 61.00 259 | 84.89 293 | 81.31 313 |
|
test-mter | | | 65.00 302 | 63.79 304 | 68.63 303 | 76.45 320 | 55.21 289 | 67.89 320 | 67.14 327 | 50.98 322 | 65.08 329 | 72.39 334 | 28.27 352 | 69.37 324 | 61.00 259 | 84.89 293 | 81.31 313 |
|
miper_enhance_ethall | | | 77.83 217 | 76.93 222 | 80.51 213 | 76.15 322 | 58.01 269 | 75.47 289 | 88.82 175 | 58.05 283 | 83.59 205 | 80.69 304 | 64.41 233 | 91.20 178 | 73.16 171 | 92.03 210 | 92.33 152 |
|
gg-mvs-nofinetune | | | 68.96 290 | 69.11 285 | 68.52 305 | 76.12 323 | 45.32 334 | 83.59 161 | 55.88 345 | 86.68 22 | 64.62 333 | 97.01 7 | 30.36 350 | 83.97 289 | 44.78 330 | 82.94 305 | 76.26 326 |
|
CMPMVS | | 59.41 20 | 75.12 245 | 73.57 252 | 79.77 222 | 75.84 324 | 67.22 179 | 81.21 214 | 82.18 250 | 50.78 323 | 76.50 273 | 87.66 220 | 55.20 287 | 82.99 293 | 62.17 251 | 90.64 241 | 89.09 224 |
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
wuyk23d | | | 75.13 244 | 79.30 202 | 62.63 318 | 75.56 325 | 75.18 114 | 80.89 218 | 73.10 304 | 75.06 141 | 94.76 11 | 95.32 33 | 87.73 37 | 52.85 345 | 34.16 343 | 97.11 77 | 59.85 341 |
|
Patchmatch-test | | | 65.91 300 | 67.38 293 | 61.48 323 | 75.51 326 | 43.21 340 | 68.84 317 | 63.79 334 | 62.48 258 | 72.80 300 | 83.42 281 | 44.89 325 | 59.52 343 | 48.27 321 | 86.45 279 | 81.70 308 |
|
new_pmnet | | | 55.69 316 | 57.66 317 | 49.76 330 | 75.47 327 | 30.59 348 | 59.56 334 | 51.45 348 | 43.62 339 | 62.49 335 | 75.48 331 | 40.96 334 | 49.15 347 | 37.39 341 | 72.52 334 | 69.55 335 |
|
gm-plane-assit | | | | | | 75.42 328 | 44.97 337 | | | 52.17 313 | | 72.36 336 | | 87.90 243 | 54.10 297 | | |
|
MVSTER | | | 77.09 225 | 75.70 235 | 81.25 200 | 75.27 329 | 61.08 237 | 77.49 266 | 85.07 232 | 60.78 270 | 86.55 153 | 88.68 206 | 43.14 330 | 90.25 206 | 73.69 161 | 90.67 238 | 92.42 148 |
|
PVSNet_0 | | 51.08 22 | 56.10 315 | 54.97 319 | 59.48 326 | 75.12 330 | 53.28 302 | 55.16 340 | 61.89 336 | 44.30 337 | 59.16 340 | 62.48 343 | 54.22 289 | 65.91 338 | 35.40 342 | 47.01 345 | 59.25 342 |
|
test0.0.03 1 | | | 64.66 303 | 64.36 303 | 65.57 313 | 75.03 331 | 46.89 331 | 64.69 329 | 61.58 339 | 62.43 260 | 71.18 308 | 77.54 322 | 43.41 328 | 68.47 329 | 40.75 337 | 82.65 308 | 81.35 312 |
|
DWT-MVSNet_test | | | 66.43 297 | 64.37 302 | 72.63 287 | 74.86 332 | 50.86 320 | 76.52 277 | 72.74 305 | 54.06 303 | 65.50 326 | 68.30 340 | 32.13 348 | 84.84 280 | 61.63 256 | 73.59 333 | 82.19 303 |
|
tpmvs | | | 70.16 281 | 69.56 284 | 71.96 292 | 74.71 333 | 48.13 327 | 79.63 231 | 75.45 288 | 65.02 248 | 70.26 310 | 81.88 296 | 45.34 320 | 85.68 272 | 58.34 273 | 75.39 331 | 82.08 305 |
|
MDA-MVSNet_test_wron | | | 70.05 284 | 70.44 278 | 68.88 301 | 73.84 334 | 53.47 299 | 58.93 339 | 67.28 325 | 58.43 279 | 87.09 143 | 85.40 254 | 59.80 260 | 67.25 332 | 59.66 268 | 83.54 301 | 85.92 259 |
|
YYNet1 | | | 70.06 283 | 70.44 278 | 68.90 300 | 73.76 335 | 53.42 301 | 58.99 338 | 67.20 326 | 58.42 280 | 87.10 142 | 85.39 255 | 59.82 259 | 67.32 331 | 59.79 267 | 83.50 302 | 85.96 257 |
|
GG-mvs-BLEND | | | | | 67.16 308 | 73.36 336 | 46.54 333 | 84.15 145 | 55.04 346 | | 58.64 343 | 61.95 344 | 29.93 351 | 83.87 290 | 38.71 340 | 76.92 329 | 71.07 333 |
|
JIA-IIPM | | | 69.41 288 | 66.64 299 | 77.70 255 | 73.19 337 | 71.24 150 | 75.67 285 | 65.56 331 | 70.42 194 | 65.18 328 | 92.97 105 | 33.64 347 | 83.06 292 | 53.52 300 | 69.61 341 | 78.79 323 |
|
ADS-MVSNet2 | | | 65.87 301 | 63.64 305 | 72.55 289 | 73.16 338 | 56.92 278 | 67.10 324 | 74.81 289 | 49.74 328 | 66.04 324 | 82.97 284 | 46.71 304 | 77.26 309 | 42.29 333 | 69.96 339 | 83.46 286 |
|
ADS-MVSNet | | | 61.90 306 | 62.19 308 | 61.03 324 | 73.16 338 | 36.42 345 | 67.10 324 | 61.75 337 | 49.74 328 | 66.04 324 | 82.97 284 | 46.71 304 | 63.21 341 | 42.29 333 | 69.96 339 | 83.46 286 |
|
DSMNet-mixed | | | 60.98 312 | 61.61 310 | 59.09 327 | 72.88 340 | 45.05 336 | 74.70 294 | 46.61 350 | 26.20 346 | 65.34 327 | 90.32 180 | 55.46 285 | 63.12 342 | 41.72 335 | 81.30 315 | 69.09 336 |
|
tpmrst | | | 66.28 299 | 66.69 298 | 65.05 315 | 72.82 341 | 39.33 342 | 78.20 254 | 70.69 319 | 53.16 308 | 67.88 318 | 80.36 308 | 48.18 301 | 74.75 317 | 58.13 275 | 70.79 337 | 81.08 318 |
|
TESTMET0.1,1 | | | 61.29 309 | 60.32 313 | 64.19 316 | 72.06 342 | 51.30 315 | 67.89 320 | 62.09 335 | 45.27 335 | 60.65 338 | 69.01 337 | 27.93 353 | 64.74 340 | 56.31 283 | 81.65 313 | 76.53 325 |
|
dp | | | 60.70 313 | 60.29 314 | 61.92 321 | 72.04 343 | 38.67 344 | 70.83 310 | 64.08 333 | 51.28 320 | 60.75 337 | 77.28 325 | 36.59 343 | 71.58 322 | 47.41 323 | 62.34 344 | 75.52 327 |
|
pmmvs3 | | | 62.47 304 | 60.02 315 | 69.80 296 | 71.58 344 | 64.00 205 | 70.52 312 | 58.44 343 | 39.77 342 | 66.05 323 | 75.84 330 | 27.10 354 | 72.28 319 | 46.15 327 | 84.77 297 | 73.11 330 |
|
EPMVS | | | 62.47 304 | 62.63 307 | 62.01 319 | 70.63 345 | 38.74 343 | 74.76 293 | 52.86 347 | 53.91 304 | 67.71 320 | 80.01 310 | 39.40 336 | 66.60 335 | 55.54 289 | 68.81 342 | 80.68 322 |
|
E-PMN | | | 61.59 308 | 61.62 309 | 61.49 322 | 66.81 346 | 55.40 287 | 53.77 341 | 60.34 340 | 66.80 229 | 58.90 342 | 65.50 341 | 40.48 335 | 66.12 337 | 55.72 286 | 86.25 282 | 62.95 339 |
|
EMVS | | | 61.10 311 | 60.81 311 | 61.99 320 | 65.96 347 | 55.86 284 | 53.10 342 | 58.97 342 | 67.06 226 | 56.89 345 | 63.33 342 | 40.98 333 | 67.03 333 | 54.79 294 | 86.18 283 | 63.08 338 |
|
PMMVS | | | 61.65 307 | 60.38 312 | 65.47 314 | 65.40 348 | 69.26 165 | 63.97 331 | 61.73 338 | 36.80 345 | 60.11 339 | 68.43 338 | 59.42 261 | 66.35 336 | 48.97 317 | 78.57 324 | 60.81 340 |
|
PMMVS2 | | | 55.64 317 | 59.27 316 | 44.74 331 | 64.30 349 | 12.32 352 | 40.60 344 | 49.79 349 | 53.19 307 | 65.06 331 | 84.81 266 | 53.60 291 | 49.76 346 | 32.68 345 | 89.41 248 | 72.15 331 |
|
MVE | | 40.22 23 | 51.82 318 | 50.47 320 | 55.87 328 | 62.66 350 | 51.91 311 | 31.61 346 | 39.28 351 | 40.65 341 | 50.76 347 | 74.98 333 | 56.24 282 | 44.67 348 | 33.94 344 | 64.11 343 | 71.04 334 |
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
DeepMVS_CX | | | | | 24.13 332 | 32.95 351 | 29.49 349 | | 21.63 354 | 12.07 347 | 37.95 348 | 45.07 345 | 30.84 349 | 19.21 349 | 17.94 347 | 33.06 347 | 23.69 345 |
|
tmp_tt | | | 20.25 320 | 24.50 322 | 7.49 333 | 4.47 352 | 8.70 353 | 34.17 345 | 25.16 353 | 1.00 348 | 32.43 349 | 18.49 346 | 39.37 337 | 9.21 350 | 21.64 346 | 43.75 346 | 4.57 346 |
|
testmvs | | | 5.91 324 | 7.65 326 | 0.72 335 | 1.20 353 | 0.37 355 | 59.14 336 | 0.67 356 | 0.49 350 | 1.11 350 | 2.76 350 | 0.94 356 | 0.24 352 | 1.02 349 | 1.47 348 | 1.55 348 |
|
test123 | | | 6.27 323 | 8.08 325 | 0.84 334 | 1.11 354 | 0.57 354 | 62.90 332 | 0.82 355 | 0.54 349 | 1.07 351 | 2.75 351 | 1.26 355 | 0.30 351 | 1.04 348 | 1.26 349 | 1.66 347 |
|
uanet_test | | | 0.00 325 | 0.00 327 | 0.00 336 | 0.00 355 | 0.00 356 | 0.00 347 | 0.00 357 | 0.00 351 | 0.00 352 | 0.00 352 | 0.00 357 | 0.00 353 | 0.00 350 | 0.00 350 | 0.00 349 |
|
cdsmvs_eth3d_5k | | | 20.81 319 | 27.75 321 | 0.00 336 | 0.00 355 | 0.00 356 | 0.00 347 | 85.44 224 | 0.00 351 | 0.00 352 | 82.82 288 | 81.46 105 | 0.00 353 | 0.00 350 | 0.00 350 | 0.00 349 |
|
pcd_1.5k_mvsjas | | | 6.41 322 | 8.55 324 | 0.00 336 | 0.00 355 | 0.00 356 | 0.00 347 | 0.00 357 | 0.00 351 | 0.00 352 | 0.00 352 | 76.94 149 | 0.00 353 | 0.00 350 | 0.00 350 | 0.00 349 |
|
sosnet-low-res | | | 0.00 325 | 0.00 327 | 0.00 336 | 0.00 355 | 0.00 356 | 0.00 347 | 0.00 357 | 0.00 351 | 0.00 352 | 0.00 352 | 0.00 357 | 0.00 353 | 0.00 350 | 0.00 350 | 0.00 349 |
|
sosnet | | | 0.00 325 | 0.00 327 | 0.00 336 | 0.00 355 | 0.00 356 | 0.00 347 | 0.00 357 | 0.00 351 | 0.00 352 | 0.00 352 | 0.00 357 | 0.00 353 | 0.00 350 | 0.00 350 | 0.00 349 |
|
uncertanet | | | 0.00 325 | 0.00 327 | 0.00 336 | 0.00 355 | 0.00 356 | 0.00 347 | 0.00 357 | 0.00 351 | 0.00 352 | 0.00 352 | 0.00 357 | 0.00 353 | 0.00 350 | 0.00 350 | 0.00 349 |
|
Regformer | | | 0.00 325 | 0.00 327 | 0.00 336 | 0.00 355 | 0.00 356 | 0.00 347 | 0.00 357 | 0.00 351 | 0.00 352 | 0.00 352 | 0.00 357 | 0.00 353 | 0.00 350 | 0.00 350 | 0.00 349 |
|
ab-mvs-re | | | 6.65 321 | 8.87 323 | 0.00 336 | 0.00 355 | 0.00 356 | 0.00 347 | 0.00 357 | 0.00 351 | 0.00 352 | 79.80 312 | 0.00 357 | 0.00 353 | 0.00 350 | 0.00 350 | 0.00 349 |
|
uanet | | | 0.00 325 | 0.00 327 | 0.00 336 | 0.00 355 | 0.00 356 | 0.00 347 | 0.00 357 | 0.00 351 | 0.00 352 | 0.00 352 | 0.00 357 | 0.00 353 | 0.00 350 | 0.00 350 | 0.00 349 |
|
test_241102_TWO | | | | | | | | | 93.71 44 | 83.77 38 | 93.49 32 | 94.27 67 | 89.27 20 | 95.84 18 | 86.03 38 | 97.82 49 | 92.04 163 |
|
test_0728_THIRD | | | | | | | | | | 85.33 27 | 93.75 27 | 94.65 52 | 87.44 40 | 95.78 22 | 87.41 19 | 98.21 29 | 92.98 131 |
|
GSMVS | | | | | | | | | | | | | | | | | 83.88 278 |
|
test_part1 | | | | | 0.00 336 | | 0.00 356 | 0.00 347 | 93.93 34 | | | | 0.00 357 | 0.00 353 | 0.00 350 | 0.00 350 | 0.00 349 |
|
sam_mvs1 | | | | | | | | | | | | | 46.11 308 | | | | 83.88 278 |
|
sam_mvs | | | | | | | | | | | | | 45.92 313 | | | | |
|
MTGPA | | | | | | | | | 91.81 107 | | | | | | | | |
|
test_post1 | | | | | | | | 78.85 247 | | | | 3.13 348 | 45.19 322 | 80.13 303 | 58.11 276 | | |
|
test_post | | | | | | | | | | | | 3.10 349 | 45.43 318 | 77.22 310 | | | |
|
patchmatchnet-post | | | | | | | | | | | | 81.71 298 | 45.93 312 | 87.01 251 | | | |
|
MTMP | | | | | | | | 90.66 37 | 33.14 352 | | | | | | | | |
|
test9_res | | | | | | | | | | | | | | | 80.83 89 | 96.45 98 | 90.57 198 |
|
agg_prior2 | | | | | | | | | | | | | | | 79.68 100 | 96.16 108 | 90.22 205 |
|
test_prior4 | | | | | | | 78.97 75 | 84.59 136 | | | | | | | | | |
|
test_prior2 | | | | | | | | 83.37 168 | | 75.43 135 | 84.58 187 | 91.57 145 | 81.92 100 | | 79.54 102 | 96.97 80 | |
|
旧先验2 | | | | | | | | 81.73 204 | | 56.88 292 | 86.54 158 | | | 84.90 279 | 72.81 173 | | |
|
新几何2 | | | | | | | | 81.72 205 | | | | | | | | | |
|
无先验 | | | | | | | | 82.81 184 | 85.62 223 | 58.09 282 | | | | 91.41 174 | 67.95 215 | | 84.48 272 |
|
原ACMM2 | | | | | | | | 82.26 198 | | | | | | | | | |
|
testdata2 | | | | | | | | | | | | | | 86.43 263 | 63.52 241 | | |
|
segment_acmp | | | | | | | | | | | | | 81.94 97 | | | | |
|
testdata1 | | | | | | | | 79.62 232 | | 73.95 152 | | | | | | | |
|
plane_prior5 | | | | | | | | | 93.61 47 | | | | | 95.22 49 | 80.78 90 | 95.83 118 | 94.46 76 |
|
plane_prior4 | | | | | | | | | | | | 92.95 106 | | | | | |
|
plane_prior3 | | | | | | | 76.85 102 | | | 77.79 107 | 86.55 153 | | | | | | |
|
plane_prior2 | | | | | | | | 89.45 65 | | 79.44 88 | | | | | | | |
|
plane_prior | | | | | | | 76.42 107 | 87.15 98 | | 75.94 129 | | | | | | 95.03 146 | |
|
n2 | | | | | | | | | 0.00 357 | | | | | | | | |
|
nn | | | | | | | | | 0.00 357 | | | | | | | | |
|
door-mid | | | | | | | | | 74.45 293 | | | | | | | | |
|
test11 | | | | | | | | | 91.46 114 | | | | | | | | |
|
door | | | | | | | | | 72.57 307 | | | | | | | | |
|
HQP5-MVS | | | | | | | 70.66 153 | | | | | | | | | | |
|
BP-MVS | | | | | | | | | | | | | | | 77.30 128 | | |
|
HQP4-MVS | | | | | | | | | | | 80.56 246 | | | 94.61 70 | | | 93.56 115 |
|
HQP3-MVS | | | | | | | | | 92.68 86 | | | | | | | 94.47 161 | |
|
HQP2-MVS | | | | | | | | | | | | | 72.10 199 | | | | |
|
MDTV_nov1_ep13_2view | | | | | | | 27.60 350 | 70.76 311 | | 46.47 333 | 61.27 336 | | 45.20 321 | | 49.18 316 | | 83.75 283 |
|
ACMMP++_ref | | | | | | | | | | | | | | | | 95.74 124 | |
|
ACMMP++ | | | | | | | | | | | | | | | | 97.35 70 | |
|
Test By Simon | | | | | | | | | | | | | 79.09 126 | | | | |
|