This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorcourty.delive.electrofacadekickermeadowofficepipesplaygr.reliefrelief.terraceterrai.
sort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
UA-Net98.66 1798.60 2398.73 1599.83 199.28 1098.56 7499.24 896.04 4297.12 7198.44 7898.95 5298.17 2999.15 2599.00 2399.48 1899.33 4
DTE-MVSNet99.03 798.88 1399.21 699.66 299.59 399.62 599.34 696.92 2498.52 1999.36 3098.98 4798.57 1399.49 1099.23 1399.56 1098.55 26
PS-CasMVS99.08 598.90 1299.28 399.65 399.56 599.59 699.39 396.36 3698.83 1499.46 2299.09 3598.62 1099.51 899.36 999.63 498.97 8
PEN-MVS99.08 598.95 999.23 599.65 399.59 399.64 299.34 696.68 2898.65 1799.43 2499.33 1798.47 1799.50 999.32 1099.60 698.79 12
CP-MVSNet98.91 1298.61 2099.25 499.63 599.50 799.55 1099.36 595.53 6798.77 1699.11 4398.64 7998.57 1399.42 1299.28 1299.61 598.78 13
zzz-MVS98.14 3497.78 5398.55 2599.58 698.58 6098.98 3998.48 3095.98 4797.39 5794.73 15999.27 2497.98 3898.81 3798.64 4598.90 5898.46 31
ACMMPR98.31 2498.07 3998.60 2399.58 698.83 3499.09 2898.48 3096.25 3897.03 7596.81 11699.09 3598.39 2098.55 5698.45 5199.01 4598.53 29
mPP-MVS99.58 698.98 47
MP-MVScopyleft97.98 4897.53 6598.50 2799.56 998.58 6098.97 4098.39 4193.49 12797.14 6896.08 13599.23 3098.06 3298.50 6198.38 5698.90 5898.44 33
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
WR-MVS_H98.97 1098.82 1599.14 899.56 999.56 599.54 1199.42 296.07 4198.37 2499.34 3299.09 3598.43 1899.45 1199.41 699.53 1198.86 11
UniMVSNet_ETH3D98.93 1199.20 498.63 2299.54 1199.33 898.73 6599.37 498.87 697.86 3899.27 3699.78 296.59 8799.52 799.40 799.67 398.21 43
PGM-MVS97.82 5797.25 7598.48 3099.54 1198.75 4999.02 3298.35 4592.41 14396.84 8595.39 14598.99 4698.24 2398.43 6398.34 5998.90 5898.41 34
WR-MVS99.22 399.15 699.30 299.54 1199.62 199.63 499.45 197.75 1598.47 2299.71 699.05 4298.88 499.54 699.49 399.81 198.87 10
SteuartSystems-ACMMP98.06 4097.78 5398.39 3599.54 1198.79 4098.94 4498.42 3693.98 12095.85 12596.66 12299.25 2898.61 1198.71 4698.38 5698.97 5098.67 20
Skip Steuart: Steuart Systems R&D Blog.
SixPastTwentyTwo99.25 299.20 499.32 199.53 1599.32 999.64 299.19 1098.05 1199.19 699.74 498.96 5199.03 299.69 399.58 299.32 2799.06 7
ACMMPcopyleft97.99 4697.60 6198.45 3299.53 1598.83 3499.13 2798.30 4794.57 10196.39 10895.32 14698.95 5298.37 2198.61 5398.47 4799.00 4698.45 32
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
ACMM94.29 1198.12 3797.71 5798.59 2499.51 1798.58 6099.24 2198.25 5296.22 4096.90 7995.01 15298.89 5798.52 1698.66 4998.32 6299.13 3898.28 41
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
X-MVS97.60 6597.00 9298.29 3899.50 1898.76 4598.90 4798.37 4394.67 9896.40 10491.47 19898.78 6997.60 5398.55 5698.50 4698.96 5298.29 38
XVS99.48 1998.76 4599.22 2396.40 10498.78 6998.94 55
X-MVStestdata99.48 1998.76 4599.22 2396.40 10498.78 6998.94 55
CP-MVS98.00 4497.57 6298.50 2799.47 2198.56 6398.91 4698.38 4294.71 9597.01 7695.20 14899.06 3998.20 2498.61 5398.46 4899.02 4398.40 35
APDe-MVS98.29 2598.42 2798.14 4299.45 2298.90 2799.18 2598.30 4795.96 4995.13 15198.79 6299.25 2897.92 3998.80 3898.71 3798.85 6598.54 27
LGP-MVS_train97.96 5197.53 6598.45 3299.45 2298.64 5699.09 2898.27 5092.99 13996.04 12096.57 12399.29 2098.66 898.73 4298.42 5399.19 3398.09 46
SMA-MVScopyleft98.13 3698.22 3298.02 5899.44 2498.73 5198.24 9097.87 8795.22 7596.76 8698.66 7199.35 1697.03 7298.53 5998.39 5598.80 6798.69 17
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
ACMP94.03 1297.97 5097.61 6098.39 3599.43 2598.51 6798.97 4098.06 7194.63 9996.10 11796.12 13499.20 3298.63 998.68 4798.20 6999.14 3597.93 54
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
MIMVSNet198.22 3098.51 2497.87 6699.40 2698.82 3899.31 1898.53 2897.39 1996.59 9599.31 3499.23 3094.76 13498.93 3398.67 4098.63 7297.25 93
DeepC-MVS96.08 598.58 1898.49 2598.68 1999.37 2798.52 6699.01 3698.17 6497.17 2298.25 2799.56 1699.62 698.29 2298.40 6498.09 7298.97 5098.08 47
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
HFP-MVS98.17 3198.02 4098.35 3799.36 2898.62 5798.79 5898.46 3496.24 3996.53 9797.13 11398.98 4798.02 3498.20 7298.42 5398.95 5498.54 27
MSP-MVS97.67 6097.88 4697.43 9499.34 2998.99 2498.87 5198.12 6795.63 5994.16 17697.45 10299.50 996.44 9596.35 13298.70 3897.65 13198.57 25
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
ACMMP_NAP98.12 3798.08 3898.18 4199.34 2998.74 5098.97 4098.00 7895.13 7996.90 7997.54 10199.27 2497.18 6698.72 4498.45 5198.68 7198.69 17
SR-MVS99.33 3198.40 3798.90 55
TranMVSNet+NR-MVSNet98.45 1998.22 3298.72 1699.32 3299.06 1898.99 3798.89 1695.52 6897.53 5099.42 2698.83 6398.01 3598.55 5698.34 5999.57 997.80 60
APD-MVScopyleft97.47 8097.16 8197.84 6999.32 3298.39 7298.47 8198.21 5692.08 14895.23 14896.68 12198.90 5596.99 7498.20 7298.21 6698.80 6797.67 68
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
DU-MVS98.23 2797.74 5698.81 1299.23 3498.77 4298.76 5998.88 1794.10 11698.50 2098.87 5798.32 9897.99 3698.40 6498.08 7599.49 1797.64 70
Baseline_NR-MVSNet98.17 3197.90 4598.48 3099.23 3498.59 5898.83 5598.73 2593.97 12196.95 7899.66 898.23 10397.90 4098.40 6499.06 1899.25 3197.42 85
CPTT-MVS97.08 9796.25 11598.05 5499.21 3698.30 7598.54 7597.98 7994.28 11295.89 12489.57 20798.54 8698.18 2897.82 8297.32 9798.54 8097.91 56
LS3D97.93 5397.80 5098.08 4999.20 3798.77 4298.89 4897.92 8396.59 3196.99 7796.71 12097.14 13796.39 9699.04 2798.96 2499.10 4297.39 86
test20.0396.08 12896.80 10495.25 17099.19 3897.58 12297.24 14697.56 10394.95 8891.91 19998.58 7398.03 11087.88 19997.43 9996.94 10797.69 12894.05 167
HPM-MVS++copyleft97.56 6797.11 8798.09 4599.18 3997.95 10398.57 7298.20 5894.08 11897.25 6595.96 13998.81 6697.13 6797.51 9797.30 9998.21 10398.15 45
DVP-MVS++98.44 2198.92 1197.88 6599.17 4099.00 2398.89 4898.26 5197.54 1896.05 11999.35 3199.76 396.34 9798.79 3998.65 4298.56 7999.35 3
DVP-MVScopyleft98.27 2698.61 2097.87 6699.17 4099.03 2199.07 3098.17 6496.75 2794.35 17098.92 5199.58 897.86 4298.67 4898.70 3898.63 7298.63 21
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
LTVRE_ROB97.71 199.33 199.47 299.16 799.16 4299.11 1499.39 1399.16 1199.26 399.22 599.51 1999.75 498.54 1599.71 299.47 499.52 1399.46 1
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
MVS_030497.18 9496.84 10197.58 8399.15 4398.19 8098.11 9697.81 9292.36 14598.06 3297.43 10399.06 3994.24 14396.80 12196.54 12098.12 10997.52 79
UniMVSNet (Re)98.23 2797.85 4898.67 2099.15 4398.87 2998.74 6298.84 1994.27 11497.94 3699.01 4598.39 9497.82 4398.35 6998.29 6499.51 1697.78 61
PVSNet_Blended_VisFu97.44 8197.14 8397.79 7499.15 4398.44 7098.32 8697.66 9793.74 12697.73 4398.79 6296.93 14295.64 12197.69 8796.91 10898.25 10197.50 81
gm-plane-assit91.85 18987.91 20096.44 14199.14 4698.25 7799.02 3297.38 12095.57 6398.31 2599.34 3251.00 22988.93 19393.16 18591.57 18995.85 18186.50 206
COLMAP_ROBcopyleft96.84 298.75 1598.82 1598.66 2199.14 4698.79 4099.30 1997.67 9698.33 997.82 4099.20 3999.18 3398.76 699.27 1898.96 2499.29 2998.03 48
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
CDPH-MVS96.68 11395.99 12497.48 9199.13 4897.64 11998.08 9797.46 11190.56 16695.13 15194.87 15798.27 10096.56 9097.09 11196.45 12398.54 8097.08 99
UniMVSNet_NR-MVSNet98.12 3797.56 6398.78 1399.13 4898.89 2898.76 5998.78 2293.81 12498.50 2098.81 6197.64 12497.99 3698.18 7597.92 8099.53 1197.64 70
OPM-MVS98.01 4298.01 4198.00 6099.11 5098.12 8898.68 6697.72 9496.65 3096.68 9198.40 8099.28 2397.44 5698.20 7297.82 8698.40 9397.58 75
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
CSCG98.45 1998.61 2098.26 3999.11 5099.06 1898.17 9397.49 10997.93 1397.37 5998.88 5599.29 2098.10 3098.40 6497.51 8999.32 2799.16 5
CANet96.81 10796.50 11197.17 10699.10 5297.96 10297.86 11397.51 10591.30 15697.75 4197.64 9697.89 11593.39 15696.98 11796.73 11397.40 14196.99 100
v7n99.03 799.03 899.02 999.09 5399.11 1499.57 998.82 2198.21 1099.25 399.84 299.59 798.76 699.23 2098.83 3398.63 7298.40 35
EIA-MVS96.23 12694.85 14997.84 6999.08 5498.21 7897.69 11898.03 7685.68 20898.09 3191.75 19697.07 13895.66 11997.58 9497.72 8798.47 8695.91 136
train_agg96.68 11395.93 12797.56 8599.08 5497.16 14198.44 8497.37 12191.12 16095.18 15095.43 14498.48 9197.36 5996.48 12995.52 14897.95 11997.34 90
ETV-MVS96.54 11995.27 13798.02 5899.07 5697.48 13098.16 9498.19 6087.33 19897.58 4892.67 18695.93 15696.22 10098.49 6298.46 4898.91 5796.50 122
testgi94.81 15696.05 12393.35 19299.06 5796.87 15497.57 12796.70 14895.77 5688.60 21393.19 18398.87 5981.21 21797.03 11596.64 11796.97 16193.99 169
NCCC96.56 11895.68 13097.59 8299.04 5897.54 12797.67 11997.56 10394.84 9196.10 11787.91 21098.09 10796.98 7597.20 10796.80 11298.21 10397.38 89
GeoE97.48 7896.84 10198.22 4099.01 5998.39 7298.85 5498.76 2392.37 14497.53 5097.58 9898.23 10397.11 6897.57 9596.98 10598.10 11196.78 111
SED-MVS98.05 4198.46 2697.57 8499.01 5998.99 2498.82 5798.24 5395.76 5794.70 16298.96 4799.49 1096.19 10398.74 4098.65 4298.46 8798.63 21
ambc96.78 10599.01 5997.11 14695.73 18895.91 5099.25 398.56 7497.17 13597.04 7196.76 12295.22 15496.72 16996.73 113
Gipumacopyleft98.43 2298.15 3598.76 1499.00 6298.29 7697.91 10898.06 7199.02 499.50 196.33 12898.67 7699.22 199.02 2898.02 7798.88 6397.66 69
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
TDRefinement99.00 999.13 798.86 1098.99 6399.05 2099.58 798.29 4998.96 597.96 3599.40 2798.67 7698.87 599.60 499.46 599.46 1998.74 15
3Dnovator+96.20 497.58 6697.14 8398.10 4498.98 6497.85 10898.60 7198.33 4696.41 3497.23 6694.66 16297.26 13396.91 7697.91 7797.87 8298.53 8298.03 48
ACMH+94.90 898.40 2398.71 1898.04 5598.93 6598.84 3399.30 1997.86 8897.78 1494.19 17598.77 6599.39 1498.61 1199.33 1499.07 1699.33 2597.81 59
test_part199.20 499.62 198.72 1698.92 6699.62 199.52 1299.01 1499.39 197.87 3799.74 499.75 497.29 6499.73 199.71 199.69 299.41 2
CNVR-MVS97.03 10096.77 10697.34 9698.89 6797.67 11897.64 12297.17 12994.40 11095.70 13794.02 17298.76 7296.49 9497.78 8497.29 10098.12 10997.47 82
FC-MVSNet-test97.54 6998.26 3096.70 12898.87 6897.79 11698.49 7898.56 2796.04 4290.39 20499.65 998.67 7695.15 12699.23 2099.07 1698.73 7097.39 86
ACMH95.26 798.75 1598.93 1098.54 2698.86 6999.01 2299.58 798.10 6998.67 797.30 6299.18 4099.42 1298.40 1999.19 2298.86 3198.99 4898.19 44
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
Anonymous20240521197.39 6998.85 7098.59 5897.89 11197.93 8294.41 10997.37 10596.99 14093.09 15898.61 5398.46 4899.11 4097.27 91
FC-MVSNet-train97.65 6298.16 3497.05 11198.85 7098.85 3199.34 1498.08 7094.50 10694.41 16899.21 3898.80 6792.66 16498.98 3198.85 3298.96 5297.94 53
EG-PatchMatch MVS97.98 4897.92 4398.04 5598.84 7298.04 9697.90 10996.83 14295.07 8198.79 1599.07 4499.37 1597.88 4198.74 4098.16 7098.01 11596.96 101
DeepC-MVS_fast95.38 697.53 7197.30 7297.79 7498.83 7397.64 11998.18 9197.14 13095.57 6397.83 3997.10 11498.80 6796.53 9297.41 10097.32 9798.24 10297.26 92
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
EPNet94.33 16693.52 16795.27 16898.81 7494.71 18796.77 16298.20 5888.12 19296.53 9792.53 18891.19 18385.25 21395.22 15895.26 15396.09 18097.63 74
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
xxxxxxxxxxxxxcwj97.32 8797.55 6497.05 11198.80 7597.83 10996.02 18297.44 11594.98 8495.74 13197.16 11099.30 1995.72 11397.85 7997.97 7898.60 7597.78 61
SF-MVS97.26 9097.43 6897.05 11198.80 7597.83 10996.02 18297.44 11594.98 8495.74 13197.16 11098.45 9395.72 11397.85 7997.97 7898.60 7597.78 61
test111197.48 7897.20 7897.81 7398.78 7798.85 3198.68 6698.40 3796.68 2894.84 15999.13 4290.32 18997.01 7399.27 1899.05 1999.19 3397.10 98
MCST-MVS96.79 10996.08 12197.62 8198.78 7797.52 12898.01 10397.32 12593.20 13195.84 12693.97 17498.12 10697.34 6196.34 13395.88 14198.45 8897.51 80
DROMVSNet97.63 6496.88 9798.50 2798.74 7999.16 1299.33 1698.83 2088.77 18396.62 9396.48 12597.75 11798.19 2699.00 2998.76 3599.29 2998.27 42
HQP-MVS95.97 13295.01 14697.08 10898.72 8097.19 13997.07 15296.69 14991.49 15395.77 13092.19 19297.93 11396.15 10594.66 16494.16 16698.10 11197.45 83
CS-MVS97.89 5497.44 6798.42 3498.71 8199.22 1199.34 1498.21 5691.60 15296.62 9396.73 11998.69 7598.20 2498.65 5099.18 1599.44 2097.99 51
EPP-MVSNet97.29 8896.88 9797.76 7698.70 8299.10 1698.92 4598.36 4495.12 8093.36 19097.39 10491.00 18797.65 5098.72 4498.91 2799.58 897.92 55
AdaColmapbinary95.85 13594.65 15297.26 10098.70 8297.20 13897.33 14097.30 12691.28 15895.90 12388.16 20996.17 15296.60 8697.34 10296.82 11097.71 12595.60 146
CLD-MVS96.73 11296.92 9696.51 13798.70 8297.57 12497.64 12292.07 20593.10 13796.31 10998.29 8299.02 4495.99 10997.20 10796.47 12298.37 9596.81 110
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
anonymousdsp98.85 1398.88 1398.83 1198.69 8598.20 7999.68 197.35 12497.09 2398.98 1099.86 199.43 1198.94 399.28 1599.19 1499.33 2599.08 6
PMVScopyleft90.51 1797.77 5997.98 4297.53 8898.68 8698.14 8797.67 11997.03 13496.43 3298.38 2398.72 6897.03 13994.44 13999.37 1399.30 1198.98 4996.86 108
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
test250694.29 16791.43 18997.64 8098.66 8798.83 3498.50 7698.40 3796.04 4294.45 16794.88 15655.05 22896.70 8199.28 1599.04 2199.14 3596.87 107
ECVR-MVScopyleft97.40 8497.11 8797.73 7898.66 8798.83 3498.50 7698.40 3796.04 4295.00 15798.95 4991.07 18696.70 8199.28 1599.04 2199.14 3596.58 116
CS-MVS-test97.94 5297.27 7398.71 1898.66 8799.07 1799.33 1699.05 1291.33 15597.64 4696.30 13198.52 8798.19 2698.83 3698.96 2499.40 2197.90 57
DPE-MVScopyleft97.99 4698.12 3697.84 6998.65 9098.86 3098.86 5298.05 7494.18 11595.49 14498.90 5399.33 1797.11 6898.53 5998.65 4298.86 6498.39 37
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
Effi-MVS+96.46 12095.28 13697.85 6898.64 9197.16 14197.15 15198.75 2490.27 17098.03 3393.93 17596.21 15196.55 9196.34 13396.69 11597.97 11896.33 125
Fast-Effi-MVS+96.80 10895.92 12897.84 6998.57 9297.46 13198.06 9898.24 5389.64 17897.57 4996.45 12697.35 13196.73 8097.22 10696.64 11797.86 12196.65 114
Effi-MVS+-dtu95.94 13395.08 14396.94 11898.54 9397.38 13296.66 16797.89 8588.68 18495.92 12292.90 18597.28 13294.18 14596.68 12696.13 13398.45 8896.51 121
thisisatest051597.82 5797.67 5897.99 6198.49 9498.07 9298.48 7998.06 7195.35 7397.74 4298.83 6097.61 12596.74 7997.53 9698.30 6398.43 9298.01 50
TSAR-MVS + MP.98.15 3398.23 3198.06 5398.47 9598.16 8599.23 2296.87 13995.58 6296.72 8798.41 7999.06 3998.05 3398.99 3098.90 2899.00 4698.51 30
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
IS_MVSNet96.62 11796.48 11396.78 12698.46 9698.68 5598.61 7098.24 5392.23 14689.63 20895.90 14094.40 16896.23 9998.65 5098.77 3499.52 1396.76 112
MVS_111021_HR97.27 8997.11 8797.46 9398.46 9697.82 11397.50 13096.86 14094.97 8697.13 7096.99 11598.39 9496.82 7897.65 9297.38 9298.02 11496.56 119
PCF-MVS92.69 1495.98 13195.05 14497.06 11098.43 9897.56 12597.76 11596.65 15189.95 17595.70 13796.18 13398.48 9195.74 11293.64 17893.35 17998.09 11396.18 128
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
DCV-MVSNet97.56 6797.63 5997.47 9298.41 9999.12 1398.63 6998.57 2695.71 5895.60 14193.79 17798.01 11294.25 14299.16 2498.88 3099.35 2398.74 15
EPNet_dtu93.45 17992.51 17994.55 18298.39 10091.67 20695.46 19697.50 10786.56 20397.38 5893.52 17894.20 17185.82 20893.31 18392.53 18492.72 19795.76 142
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
canonicalmvs97.11 9596.88 9797.38 9598.34 10198.72 5397.52 12997.94 8195.60 6095.01 15694.58 16394.50 16796.59 8797.84 8198.03 7698.90 5898.91 9
SD-MVS97.84 5597.78 5397.90 6398.33 10298.06 9397.95 10597.80 9396.03 4696.72 8797.57 9999.18 3397.50 5497.88 7897.08 10299.11 4098.68 19
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
NR-MVSNet98.00 4497.88 4698.13 4398.33 10298.77 4298.83 5598.88 1794.10 11697.46 5598.87 5798.58 8495.78 11199.13 2698.16 7099.52 1397.53 78
tfpnnormal97.66 6197.79 5197.52 9098.32 10498.53 6598.45 8297.69 9597.59 1796.12 11697.79 9496.70 14395.69 11698.35 6998.34 5998.85 6597.22 96
pmmvs698.77 1499.35 398.09 4598.32 10498.92 2698.57 7299.03 1399.36 296.86 8499.77 399.86 196.20 10299.56 599.39 899.59 798.61 23
Anonymous2023120695.69 13995.68 13095.70 15798.32 10496.95 15097.37 13796.65 15193.33 12993.61 18498.70 7098.03 11091.04 17395.07 16094.59 16497.20 15093.09 178
Anonymous2023121197.49 7697.91 4497.00 11598.31 10798.72 5398.27 8897.84 9094.76 9494.77 16198.14 8798.38 9693.60 15298.96 3298.66 4199.22 3297.77 64
v119297.52 7297.03 9198.09 4598.31 10798.01 9898.96 4397.25 12795.22 7598.89 1299.64 1098.83 6397.68 4995.63 14995.91 13997.47 13695.97 135
v114497.51 7397.05 9098.04 5598.26 10997.98 10098.88 5097.42 11895.38 7298.56 1899.59 1599.01 4597.65 5095.77 14696.06 13697.47 13695.56 147
v124097.43 8396.87 10098.09 4598.25 11097.92 10799.02 3297.06 13294.77 9399.09 899.68 798.51 8997.78 4495.25 15795.81 14297.32 14696.13 130
TSAR-MVS + ACMM97.54 6997.79 5197.26 10098.23 11198.10 9197.71 11797.88 8695.97 4895.57 14398.71 6998.57 8597.36 5997.74 8596.81 11196.83 16598.59 24
RPSCF97.83 5698.27 2997.31 9998.23 11198.06 9397.44 13495.79 17296.90 2595.81 12798.76 6698.61 8397.70 4898.90 3598.36 5898.90 5898.29 38
TransMVSNet (Re)98.23 2798.72 1797.66 7998.22 11398.73 5198.66 6898.03 7698.60 896.40 10499.60 1398.24 10195.26 12499.19 2299.05 1999.36 2297.64 70
TSAR-MVS + GP.97.26 9097.33 7197.18 10598.21 11498.06 9396.38 17397.66 9793.92 12395.23 14898.48 7698.33 9797.41 5797.63 9397.35 9398.18 10597.57 76
v192192097.50 7597.00 9298.07 5198.20 11597.94 10699.03 3197.06 13295.29 7499.01 999.62 1298.73 7497.74 4695.52 15295.78 14497.39 14296.12 131
DPM-MVS94.86 15493.90 16395.99 14998.19 11696.52 16096.29 17895.95 16393.11 13594.61 16588.17 20896.44 14893.77 15193.33 18193.54 17797.11 15496.22 127
v2v48297.33 8696.84 10197.90 6398.19 11697.83 10998.74 6297.44 11595.42 7198.23 2999.46 2298.84 6297.46 5595.51 15396.10 13497.36 14494.72 156
thres600view794.34 16492.31 18196.70 12898.19 11698.12 8897.85 11497.45 11391.49 15393.98 17984.27 21382.02 20394.24 14397.04 11298.76 3598.49 8494.47 161
tttt051794.81 15693.04 17396.88 12398.15 11997.37 13396.99 15597.36 12289.51 17995.74 13194.89 15577.53 21494.89 13096.94 11897.35 9398.17 10697.70 67
PHI-MVS97.44 8197.17 8097.74 7798.14 12098.41 7198.03 10197.50 10792.07 14998.01 3497.33 10798.62 8296.02 10798.34 7198.21 6698.76 6997.24 95
3Dnovator96.31 397.22 9397.19 7997.25 10398.14 12097.95 10398.03 10196.77 14596.42 3397.14 6895.11 14997.59 12695.14 12897.79 8397.72 8798.26 9997.76 66
PLCcopyleft92.55 1596.10 12795.36 13396.96 11698.13 12296.88 15296.49 17196.67 15094.07 11995.71 13691.14 20096.09 15396.84 7796.70 12496.58 11997.92 12096.03 132
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
v14419297.49 7696.99 9498.07 5198.11 12397.95 10399.02 3297.21 12894.90 9098.88 1399.53 1898.89 5797.75 4595.59 15095.90 14097.43 13996.16 129
v1097.64 6397.26 7498.08 4998.07 12498.56 6398.86 5298.18 6294.48 10798.24 2899.56 1698.98 4797.72 4796.05 14296.26 12997.42 14096.93 102
CANet_DTU94.96 15294.62 15395.35 16598.03 12596.11 17396.92 15995.60 17688.59 18697.27 6495.27 14796.50 14788.77 19595.53 15195.59 14695.54 18394.78 154
MSLP-MVS++96.66 11596.46 11496.89 12298.02 12697.71 11795.57 19096.96 13594.36 11196.19 11491.37 19998.24 10197.07 7097.69 8797.89 8197.52 13497.95 52
thisisatest053094.81 15693.06 17296.85 12498.01 12797.18 14096.93 15897.36 12289.73 17795.80 12894.98 15377.88 21294.89 13096.73 12397.35 9398.13 10897.54 77
test-LLR89.77 20287.47 20492.45 19998.01 12789.77 21393.25 21595.80 17081.56 21889.19 20992.08 19379.59 20885.77 21191.47 20089.04 20092.69 19888.75 197
test0.0.03 191.17 19491.50 18790.80 20998.01 12795.46 18194.22 20995.80 17086.55 20481.75 22190.83 20387.93 19278.48 21894.51 16894.11 16996.50 17291.08 186
gg-mvs-nofinetune94.13 16993.93 16294.37 18397.99 13095.86 17795.45 19899.22 997.61 1695.10 15399.50 2084.50 19681.73 21695.31 15694.12 16896.71 17090.59 188
v897.51 7397.16 8197.91 6297.99 13098.48 6998.76 5998.17 6494.54 10597.69 4499.48 2198.76 7297.63 5296.10 14196.14 13197.20 15096.64 115
thres40094.04 17291.94 18496.50 13897.98 13297.82 11397.66 12196.96 13590.96 16194.20 17383.24 21482.82 20193.80 14996.50 12898.09 7298.38 9494.15 165
Vis-MVSNet (Re-imp)96.29 12396.50 11196.05 14797.96 13397.83 10997.30 14197.86 8893.14 13388.90 21196.80 11795.28 16095.15 12698.37 6898.25 6599.12 3995.84 137
pm-mvs198.14 3498.66 1997.53 8897.93 13498.49 6898.14 9598.19 6097.95 1296.17 11599.63 1198.85 6095.41 12298.91 3498.89 2999.34 2497.86 58
MAR-MVS95.51 14094.49 15696.71 12797.92 13596.40 16596.72 16498.04 7586.74 20296.72 8792.52 18995.14 16294.02 14796.81 12096.54 12096.85 16297.25 93
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
N_pmnet92.46 18392.38 18092.55 19897.91 13693.47 19297.42 13594.01 20296.40 3588.48 21498.50 7598.07 10988.14 19891.04 20284.30 20589.35 21084.85 209
IterMVS-SCA-FT95.16 14993.95 16196.56 13697.89 13796.69 15896.94 15796.05 16193.06 13897.35 6098.79 6291.45 18295.93 11092.78 18891.00 19295.22 18593.91 170
v14896.99 10296.70 10897.34 9697.89 13797.23 13798.33 8596.96 13595.57 6397.12 7198.99 4699.40 1397.23 6596.22 13895.45 14996.50 17294.02 168
DELS-MVS96.90 10397.24 7696.50 13897.85 13998.18 8197.88 11295.92 16593.48 12895.34 14698.86 5998.94 5494.03 14697.33 10397.04 10398.00 11696.85 109
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
CDS-MVSNet94.91 15395.17 14094.60 18197.85 13996.21 17296.90 16196.39 15490.81 16393.40 18897.24 10894.54 16685.78 20996.25 13696.15 13097.26 14795.01 153
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
OMC-MVS97.23 9297.21 7797.25 10397.85 13997.52 12897.92 10795.77 17395.83 5397.09 7397.86 9298.52 8796.62 8597.51 9796.65 11698.26 9996.57 117
OpenMVScopyleft94.63 995.75 13795.04 14596.58 13497.85 13997.55 12696.71 16596.07 15990.15 17396.47 9990.77 20595.95 15594.41 14097.01 11696.95 10698.00 11696.90 103
MSDG96.27 12496.17 12096.38 14397.85 13996.27 17196.55 17094.41 19994.55 10295.62 14097.56 10097.80 11696.22 10097.17 10996.27 12897.67 13093.60 172
TinyColmap96.64 11696.07 12297.32 9897.84 14496.40 16597.63 12496.25 15695.86 5198.98 1097.94 9096.34 15096.17 10497.30 10495.38 15297.04 15793.24 175
Fast-Effi-MVS+-dtu94.34 16493.26 17195.62 16097.82 14595.97 17695.86 18699.01 1486.88 20093.39 18990.83 20395.46 15990.61 17894.46 16994.68 16297.01 15994.51 159
MIMVSNet93.68 17793.96 16093.35 19297.82 14596.08 17496.34 17498.46 3491.28 15886.67 21894.95 15494.87 16484.39 21494.53 16594.65 16396.45 17491.34 185
HyFIR lowres test95.05 15093.54 16696.81 12597.81 14796.88 15298.18 9197.46 11194.28 11294.98 15896.57 12392.89 17696.15 10590.90 20391.87 18896.28 17791.35 184
FMVSNet197.40 8498.09 3796.60 13297.80 14898.76 4598.26 8998.50 2996.79 2693.13 19299.28 3598.64 7992.90 16297.67 8997.86 8399.02 4397.64 70
MVS_111021_LR96.86 10496.72 10797.03 11497.80 14897.06 14897.04 15395.51 17894.55 10297.47 5397.35 10697.68 12296.66 8397.11 11096.73 11397.69 12896.57 117
abl_696.45 14097.79 15097.28 13597.16 15096.16 15889.92 17695.72 13591.59 19797.16 13694.37 14197.51 13595.49 148
QAPM97.04 9997.14 8396.93 11997.78 15198.02 9797.36 13996.72 14694.68 9796.23 11097.21 10997.68 12295.70 11597.37 10197.24 10197.78 12497.77 64
thres20093.98 17491.90 18596.40 14297.66 15298.12 8897.20 14797.45 11390.16 17293.82 18083.08 21583.74 19993.80 14997.04 11297.48 9198.49 8493.70 171
casdiffmvs97.00 10197.36 7096.59 13397.65 15397.98 10098.06 9896.81 14395.78 5592.77 19899.40 2799.26 2795.65 12096.70 12496.39 12598.59 7795.99 134
V4297.10 9696.97 9597.26 10097.64 15497.60 12198.45 8295.99 16294.44 10897.35 6099.40 2798.63 8197.34 6196.33 13596.38 12696.82 16796.00 133
TAPA-MVS93.96 1396.79 10996.70 10896.90 12197.64 15497.58 12297.54 12894.50 19895.14 7896.64 9296.76 11897.90 11496.63 8495.98 14396.14 13198.45 8897.39 86
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
pmmvs-eth3d96.84 10696.22 11797.56 8597.63 15696.38 16898.74 6296.91 13894.63 9998.26 2699.43 2498.28 9996.58 8994.52 16795.54 14797.24 14894.75 155
baseline193.89 17592.82 17695.14 17297.62 15796.97 14996.12 18096.36 15591.30 15691.53 20094.68 16080.72 20590.80 17695.71 14796.29 12798.44 9194.09 166
USDC96.30 12295.64 13297.07 10997.62 15796.35 17097.17 14995.71 17495.52 6899.17 798.11 8897.46 12895.67 11795.44 15593.60 17597.09 15592.99 179
UGNet96.79 10997.82 4995.58 16197.57 15998.39 7298.48 7997.84 9095.85 5294.68 16397.91 9199.07 3887.12 20397.71 8697.51 8997.80 12298.29 38
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
IterMVS-LS96.35 12195.85 12996.93 11997.53 16098.00 9997.37 13797.97 8095.49 7096.71 9098.94 5093.23 17494.82 13393.15 18695.05 15597.17 15297.12 97
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
thres100view90092.93 18290.89 19195.31 16697.52 16196.82 15796.41 17295.08 18587.65 19493.56 18683.03 21684.12 19791.12 17294.53 16596.91 10898.17 10693.21 176
tfpn200view993.80 17691.75 18696.20 14597.52 16198.15 8697.48 13297.47 11087.65 19493.56 18683.03 21684.12 19792.62 16597.04 11298.09 7298.52 8394.17 164
IterMVS94.48 16193.46 16895.66 15897.52 16196.43 16297.20 14794.73 19492.91 14196.44 10098.75 6791.10 18494.53 13792.10 19490.10 19693.51 19292.84 181
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
new-patchmatchnet94.48 16194.02 15995.02 17597.51 16495.00 18595.68 18994.26 20097.32 2095.73 13499.60 1398.22 10591.30 16994.13 17484.41 20495.65 18289.45 195
CNLPA96.24 12595.97 12596.57 13597.48 16597.10 14796.75 16394.95 19094.92 8996.20 11394.81 15896.61 14596.25 9896.94 11895.64 14597.79 12395.74 143
TSAR-MVS + COLMAP96.05 12995.94 12696.18 14697.46 16696.41 16497.26 14595.83 16994.69 9695.30 14798.31 8196.52 14694.71 13595.48 15494.87 15796.54 17195.33 150
IB-MVS92.44 1693.33 18092.15 18394.70 17897.42 16796.39 16795.57 19094.67 19586.40 20693.59 18578.28 22095.76 15889.59 18995.88 14595.98 13797.39 14296.34 124
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
GA-MVS94.18 16892.98 17495.58 16197.36 16896.42 16396.21 17995.86 16690.29 16995.08 15496.19 13285.37 19592.82 16394.01 17694.14 16796.16 17994.41 163
our_test_397.32 16995.13 18497.59 126
baseline292.06 18689.82 19594.68 18097.32 16995.72 17894.97 20595.08 18584.75 21194.34 17290.68 20677.75 21390.13 18393.38 17993.58 17696.25 17892.90 180
PVSNet_BlendedMVS95.44 14395.09 14195.86 15397.31 17197.13 14396.31 17695.01 18788.55 18796.23 11094.55 16697.75 11792.56 16696.42 13095.44 15097.71 12595.81 138
PVSNet_Blended95.44 14395.09 14195.86 15397.31 17197.13 14396.31 17695.01 18788.55 18796.23 11094.55 16697.75 11792.56 16696.42 13095.44 15097.71 12595.81 138
CHOSEN 1792x268894.98 15194.69 15195.31 16697.27 17395.58 18097.90 10995.56 17795.03 8293.77 18395.65 14299.29 2095.30 12391.51 19991.28 19192.05 20394.50 160
diffmvs95.86 13496.21 11895.44 16497.25 17496.85 15596.99 15595.23 18494.96 8792.82 19798.89 5498.85 6093.52 15494.21 17394.25 16596.84 16495.49 148
MDTV_nov1_ep13_2view94.39 16393.34 16995.63 15997.23 17595.33 18297.76 11596.84 14194.55 10297.47 5398.96 4797.70 12093.88 14892.27 19286.81 20290.56 20587.73 203
DI_MVS_plusplus_trai95.48 14194.51 15496.61 13197.13 17697.30 13498.05 10096.79 14493.75 12595.08 15496.38 12789.76 19194.95 12993.97 17794.82 16197.64 13295.63 145
PM-MVS96.85 10596.62 11097.11 10797.13 17696.51 16198.29 8794.65 19694.84 9198.12 3098.59 7297.20 13497.41 5796.24 13796.41 12497.09 15596.56 119
TAMVS92.46 18393.34 16991.44 20697.03 17893.84 19194.68 20890.60 20890.44 16885.31 21997.14 11293.03 17585.78 20994.34 17093.67 17495.22 18590.93 187
pmmvs495.37 14594.25 15796.67 13097.01 17995.28 18397.60 12596.07 15993.11 13597.29 6398.09 8994.23 17095.21 12591.56 19893.91 17296.82 16793.59 173
MVS_Test95.34 14694.88 14895.89 15296.93 18096.84 15696.66 16797.08 13190.06 17494.02 17797.61 9796.64 14493.59 15392.73 19094.02 17097.03 15896.24 126
Vis-MVSNetpermissive98.01 4298.42 2797.54 8796.89 18198.82 3899.14 2697.59 9996.30 3797.04 7499.26 3798.83 6396.01 10898.73 4298.21 6698.58 7898.75 14
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
MVSTER91.97 18790.31 19393.91 18796.81 18296.91 15194.22 20995.64 17584.98 20992.98 19693.42 17972.56 22186.64 20795.11 15993.89 17397.16 15395.31 151
PatchMatch-RL94.79 15993.75 16596.00 14896.80 18395.00 18595.47 19595.25 18390.68 16595.80 12892.97 18493.64 17295.67 11796.13 14095.81 14296.99 16092.01 182
GBi-Net95.21 14795.35 13495.04 17396.77 18498.18 8197.28 14297.58 10088.43 18990.28 20596.01 13692.43 17790.04 18497.67 8997.86 8398.28 9696.90 103
test195.21 14795.35 13495.04 17396.77 18498.18 8197.28 14297.58 10088.43 18990.28 20596.01 13692.43 17790.04 18497.67 8997.86 8398.28 9696.90 103
FMVSNet295.77 13696.20 11995.27 16896.77 18498.18 8197.28 14297.90 8493.12 13491.37 20198.25 8496.05 15490.04 18494.96 16295.94 13898.28 9696.90 103
pmnet_mix0293.59 17892.65 17794.69 17996.76 18794.16 19097.03 15493.00 20395.79 5496.03 12198.91 5297.69 12192.99 15990.03 20684.10 20692.35 20187.89 202
tpm89.84 20186.81 20893.36 19196.60 18891.92 20495.02 20397.39 11986.79 20196.54 9695.03 15069.70 22487.66 20088.79 20786.19 20386.95 21789.27 196
PatchmatchNetpermissive89.98 19986.23 21294.36 18596.56 18991.90 20596.07 18196.72 14690.18 17196.87 8193.36 18278.06 21191.46 16884.71 21781.40 21488.45 21283.97 214
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
pmmvs595.70 13895.22 13896.26 14496.55 19097.24 13697.50 13094.99 18990.95 16296.87 8198.47 7797.40 12994.45 13892.86 18794.98 15697.23 14994.64 158
MS-PatchMatch94.84 15594.76 15094.94 17696.38 19194.69 18895.90 18594.03 20192.49 14293.81 18195.79 14196.38 14994.54 13694.70 16394.85 15894.97 18794.43 162
baseline94.07 17094.50 15593.57 19096.34 19293.40 19395.56 19392.39 20492.07 14994.00 17898.24 8597.51 12789.19 19091.75 19692.72 18393.96 19195.79 140
SCA91.15 19587.65 20295.23 17196.15 19395.68 17996.68 16698.18 6290.46 16797.21 6792.44 19080.17 20793.51 15586.04 21383.58 20989.68 20985.21 208
CR-MVSNet91.94 18888.50 19895.94 15196.14 19492.08 20195.23 20198.47 3284.30 21396.44 10094.58 16375.57 21592.92 16090.22 20492.22 18596.43 17590.56 189
DeepPCF-MVS94.55 1097.05 9897.13 8696.95 11796.06 19597.12 14598.01 10395.44 17995.18 7797.50 5297.86 9298.08 10897.31 6397.23 10597.00 10497.36 14497.45 83
ET-MVSNet_ETH3D93.18 18190.80 19295.95 15096.05 19696.07 17596.92 15996.51 15389.34 18095.63 13994.08 17172.31 22393.13 15794.33 17194.83 15997.44 13894.65 157
EPMVS89.28 20486.28 21092.79 19796.01 19792.00 20395.83 18795.85 16890.78 16491.00 20394.58 16374.65 21788.93 19385.00 21582.88 21289.09 21184.09 213
MDTV_nov1_ep1390.30 19887.32 20693.78 18896.00 19892.97 19595.46 19695.39 18088.61 18595.41 14594.45 16880.39 20689.87 18786.58 21183.54 21090.56 20584.71 210
RPMNet90.52 19786.27 21195.48 16395.95 19992.08 20195.55 19498.12 6784.30 21395.60 14187.49 21172.78 22091.24 17087.93 20889.34 19796.41 17689.98 192
CostFormer89.06 20685.65 21393.03 19695.88 20092.40 19895.30 20095.86 16686.49 20593.12 19493.40 18174.18 21888.25 19782.99 21881.46 21389.77 20888.66 199
FPMVS94.70 16094.99 14794.37 18395.84 20193.20 19496.00 18491.93 20695.03 8294.64 16494.68 16093.29 17390.95 17498.07 7697.34 9696.85 16293.29 174
E-PMN86.94 21285.10 21489.09 21495.77 20283.54 22289.89 21986.55 21292.18 14787.34 21794.02 17283.42 20089.63 18893.32 18277.11 21885.33 21872.09 219
tpm cat187.19 21182.78 21892.33 20195.66 20390.61 21094.19 21195.27 18286.97 19994.38 16990.91 20269.40 22587.21 20279.57 22177.82 21787.25 21684.18 212
tpmrst87.60 21084.13 21791.66 20595.65 20489.73 21593.77 21294.74 19388.85 18293.35 19195.60 14372.37 22287.40 20181.24 21978.19 21685.02 22082.90 217
FMVSNet589.65 20387.60 20392.04 20295.63 20596.61 15994.82 20794.75 19280.11 22287.72 21677.73 22173.81 21983.81 21595.64 14896.08 13595.49 18493.21 176
ADS-MVSNet89.89 20087.70 20192.43 20095.52 20690.91 20995.57 19095.33 18193.19 13291.21 20293.41 18082.12 20289.05 19186.21 21283.77 20887.92 21384.31 211
EMVS86.63 21384.48 21589.15 21395.51 20783.66 22190.19 21886.14 21491.78 15188.68 21293.83 17681.97 20489.05 19192.76 18976.09 21985.31 21971.28 220
EU-MVSNet96.03 13096.23 11695.80 15595.48 20894.18 18998.99 3791.51 20797.22 2197.66 4599.15 4198.51 8998.08 3195.92 14492.88 18293.09 19595.72 144
FMVSNet394.06 17193.85 16494.31 18695.46 20997.80 11596.34 17497.58 10088.43 18990.28 20596.01 13692.43 17788.67 19691.82 19593.96 17197.53 13396.50 122
test-mter89.16 20588.14 19990.37 21094.79 21091.05 20893.60 21485.26 21681.65 21788.32 21592.22 19179.35 21087.03 20492.28 19190.12 19593.19 19490.29 191
CHOSEN 280x42091.55 19190.27 19493.05 19594.61 21188.01 21896.56 16994.62 19788.04 19394.20 17392.66 18786.60 19390.82 17595.06 16191.89 18787.49 21589.61 194
CVMVSNet94.01 17394.25 15793.73 18994.36 21292.44 19797.45 13388.56 21095.59 6193.06 19598.88 5590.03 19094.84 13294.08 17593.45 17894.09 18995.31 151
MDA-MVSNet-bldmvs95.45 14295.20 13995.74 15694.24 21396.38 16897.93 10694.80 19195.56 6696.87 8198.29 8295.24 16196.50 9398.65 5090.38 19494.09 18991.93 183
TESTMET0.1,188.60 20887.47 20489.93 21194.23 21489.77 21393.25 21584.47 21781.56 21889.19 20992.08 19379.59 20885.77 21191.47 20089.04 20092.69 19888.75 197
dps88.36 20984.32 21693.07 19493.86 21592.29 19994.89 20695.93 16483.50 21593.13 19291.87 19567.79 22690.32 18185.99 21483.22 21190.28 20785.56 207
new_pmnet90.85 19692.26 18289.21 21293.68 21689.05 21693.20 21784.16 21892.99 13984.25 22097.72 9594.60 16586.80 20693.20 18491.30 19093.21 19386.94 205
CMPMVSbinary71.81 1992.34 18592.85 17591.75 20492.70 21790.43 21188.84 22088.56 21085.87 20794.35 17090.98 20195.89 15791.14 17196.14 13994.83 15994.93 18895.78 141
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
PMMVS286.47 21492.62 17879.29 21692.01 21885.63 22093.74 21386.37 21393.95 12254.18 22698.19 8697.39 13058.46 21996.57 12793.07 18090.99 20483.55 216
MVS-HIRNet88.72 20786.49 20991.33 20791.81 21985.66 21987.02 22296.25 15681.48 22094.82 16096.31 13092.14 18090.32 18187.60 20983.82 20787.74 21478.42 218
pmmvs391.20 19391.40 19090.96 20891.71 22091.08 20795.41 19981.34 21987.36 19794.57 16695.02 15194.30 16990.42 17994.28 17289.26 19892.30 20288.49 200
PatchT91.40 19288.54 19794.74 17791.48 22192.18 20097.42 13597.51 10584.96 21096.44 10094.16 17075.47 21692.92 16090.22 20492.22 18592.66 20090.56 189
PMMVS91.67 19091.47 18891.91 20389.43 22288.61 21794.99 20485.67 21587.50 19693.80 18294.42 16994.88 16390.71 17792.26 19392.96 18196.83 16589.65 193
MVEpermissive72.99 1885.37 21589.43 19680.63 21574.43 22371.94 22488.25 22189.81 20993.27 13067.32 22496.32 12991.83 18190.40 18093.36 18090.79 19373.55 22388.49 200
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
tmp_tt45.72 21860.00 22438.74 22545.50 22612.18 22279.58 22368.42 22367.62 22265.04 22722.12 22184.83 21678.72 21566.08 224
test_method61.30 21670.45 21950.62 21722.69 22530.92 22668.31 22525.76 22180.56 22168.71 22282.80 21891.08 18544.64 22080.50 22056.70 22073.64 22270.58 221
testmvs4.99 2186.88 2202.78 2211.73 2262.04 2283.10 2281.71 2237.27 2243.92 22912.18 2236.71 2303.31 2236.94 2225.51 2222.94 2257.51 222
test1234.41 2195.71 2212.88 2201.28 2272.21 2273.09 2291.65 2246.35 2254.98 2288.53 2243.88 2313.46 2225.79 2235.71 2212.85 2267.50 223
GG-mvs-BLEND61.03 21787.02 20730.71 2190.74 22890.01 21278.90 2240.74 22584.56 2129.46 22779.17 21990.69 1881.37 22491.74 19789.13 19993.04 19683.83 215
uanet_test0.00 2200.00 2220.00 2220.00 2290.00 2290.00 2300.00 2260.00 2260.00 2300.00 2250.00 2320.00 2250.00 2240.00 2230.00 2270.00 224
sosnet-low-res0.00 2200.00 2220.00 2220.00 2290.00 2290.00 2300.00 2260.00 2260.00 2300.00 2250.00 2320.00 2250.00 2240.00 2230.00 2270.00 224
sosnet0.00 2200.00 2220.00 2220.00 2290.00 2290.00 2300.00 2260.00 2260.00 2300.00 2250.00 2320.00 2250.00 2240.00 2230.00 2270.00 224
RE-MVS-def99.38 2
9.1496.98 141
MTAPA97.43 5699.27 24
MTMP97.63 4799.03 43
Patchmatch-RL test17.42 227
NP-MVS89.27 181
Patchmtry92.70 19695.23 20198.47 3296.44 100
DeepMVS_CXcopyleft72.99 22380.14 22337.34 22083.46 21660.13 22584.40 21285.48 19486.93 20587.22 21079.61 22187.32 204