UA-Net | | | 89.02 33 | 91.44 39 | 86.20 28 | 94.88 1 | 89.84 33 | 94.76 29 | 77.45 29 | 85.41 72 | 74.79 103 | 88.83 77 | 88.90 133 | 78.67 40 | 96.06 7 | 95.45 4 | 96.66 3 | 95.58 1 |
|
DTE-MVSNet | | | 88.99 35 | 92.77 12 | 84.59 43 | 93.31 2 | 88.10 48 | 90.96 52 | 83.09 2 | 91.38 14 | 76.21 94 | 96.03 3 | 98.04 9 | 70.78 104 | 95.65 14 | 92.32 33 | 93.18 55 | 87.84 71 |
|
zzz-MVS | | | 90.38 11 | 91.35 41 | 89.25 5 | 93.08 3 | 86.59 64 | 96.45 11 | 79.00 16 | 90.23 28 | 89.30 10 | 85.87 105 | 94.97 65 | 82.54 18 | 95.05 23 | 94.83 7 | 95.14 27 | 91.94 36 |
|
mPP-MVS | | | | | | 93.05 4 | | | | | | | 95.77 44 | | | | | |
|
MP-MVS | | | 90.84 6 | 91.95 34 | 89.55 3 | 92.92 5 | 90.90 19 | 96.56 6 | 79.60 11 | 86.83 60 | 88.75 13 | 89.00 73 | 94.38 78 | 84.01 9 | 94.94 25 | 94.34 11 | 95.45 24 | 93.24 22 |
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
PEN-MVS | | | 88.86 39 | 92.92 9 | 84.11 53 | 92.92 5 | 88.05 50 | 90.83 55 | 82.67 5 | 91.04 18 | 74.83 102 | 95.97 4 | 98.47 4 | 70.38 105 | 95.70 13 | 92.43 31 | 93.05 59 | 88.78 64 |
|
HPM-MVS++ | | | 88.74 40 | 89.54 54 | 87.80 16 | 92.58 7 | 85.69 72 | 95.10 26 | 78.01 23 | 87.08 57 | 87.66 20 | 87.89 84 | 92.07 105 | 80.28 30 | 90.97 70 | 91.41 44 | 93.17 56 | 91.69 38 |
|
PS-CasMVS | | | 89.07 32 | 93.23 7 | 84.21 51 | 92.44 8 | 88.23 47 | 90.54 63 | 82.95 3 | 90.50 25 | 75.31 100 | 95.80 6 | 98.37 7 | 71.16 98 | 96.30 5 | 93.32 22 | 92.88 60 | 90.11 52 |
|
CP-MVSNet | | | 88.71 41 | 92.63 15 | 84.13 52 | 92.39 9 | 88.09 49 | 90.47 68 | 82.86 4 | 88.79 43 | 75.16 101 | 94.87 9 | 97.68 15 | 71.05 100 | 96.16 6 | 93.18 24 | 92.85 61 | 89.64 56 |
|
CP-MVS | | | 91.09 5 | 92.33 25 | 89.65 2 | 92.16 10 | 90.41 27 | 96.46 10 | 80.38 8 | 88.26 46 | 89.17 11 | 87.00 94 | 96.34 31 | 83.95 10 | 95.77 11 | 94.72 8 | 95.81 17 | 93.78 9 |
|
ACMMPR | | | 91.30 4 | 92.88 11 | 89.46 4 | 91.92 11 | 91.61 5 | 96.60 5 | 79.46 14 | 90.08 31 | 88.53 14 | 89.54 65 | 95.57 48 | 84.25 7 | 95.24 20 | 94.27 13 | 95.97 11 | 93.85 7 |
|
WR-MVS_H | | | 88.99 35 | 93.28 5 | 83.99 54 | 91.92 11 | 89.13 39 | 91.95 46 | 83.23 1 | 90.14 30 | 71.92 122 | 95.85 5 | 98.01 11 | 71.83 95 | 95.82 9 | 93.19 23 | 93.07 58 | 90.83 48 |
|
SR-MVS | | | | | | 91.82 13 | | | 80.80 7 | | | | 95.53 50 | | | | | |
|
PGM-MVS | | | 90.42 10 | 91.58 37 | 89.05 6 | 91.77 14 | 91.06 13 | 96.51 7 | 78.94 17 | 85.41 72 | 87.67 19 | 87.02 93 | 95.26 56 | 83.62 12 | 95.01 24 | 93.94 16 | 95.79 19 | 93.40 19 |
|
APD-MVS | | | 89.14 29 | 91.25 44 | 86.67 25 | 91.73 15 | 91.02 15 | 95.50 21 | 77.74 25 | 84.04 83 | 79.47 83 | 91.48 44 | 94.85 67 | 81.14 26 | 92.94 41 | 92.20 36 | 94.47 39 | 92.24 32 |
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
SMA-MVS | | | 90.13 15 | 92.26 27 | 87.64 18 | 91.68 16 | 90.44 26 | 95.22 24 | 77.34 33 | 90.79 22 | 87.80 17 | 90.42 55 | 92.05 107 | 79.05 35 | 93.89 33 | 93.59 19 | 94.77 34 | 94.62 4 |
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
ambc | | | | 88.38 62 | | 91.62 17 | 87.97 51 | 84.48 121 | | 88.64 45 | 87.93 16 | 87.38 88 | 94.82 69 | 74.53 74 | 89.14 84 | 83.86 112 | 85.94 145 | 86.84 76 |
|
TSAR-MVS + MP. | | | 89.67 24 | 92.25 28 | 86.65 26 | 91.53 18 | 90.98 17 | 96.15 14 | 73.30 56 | 87.88 50 | 81.83 67 | 92.92 29 | 95.15 60 | 82.23 19 | 93.58 35 | 92.25 34 | 94.87 31 | 93.01 24 |
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
train_agg | | | 86.67 55 | 87.73 71 | 85.43 35 | 91.51 19 | 82.72 89 | 94.47 31 | 74.22 53 | 81.71 98 | 81.54 71 | 89.20 71 | 92.87 94 | 78.33 42 | 90.12 77 | 88.47 70 | 92.51 69 | 89.04 61 |
|
X-MVS | | | 89.36 28 | 90.73 47 | 87.77 17 | 91.50 20 | 91.23 8 | 96.76 4 | 78.88 18 | 87.29 55 | 87.14 26 | 78.98 139 | 94.53 72 | 76.47 55 | 95.25 19 | 94.28 12 | 95.85 14 | 93.55 15 |
|
HFP-MVS | | | 90.32 13 | 92.37 22 | 87.94 14 | 91.46 21 | 90.91 18 | 95.69 18 | 79.49 12 | 89.94 34 | 83.50 51 | 89.06 72 | 94.44 76 | 81.68 23 | 94.17 31 | 94.19 14 | 95.81 17 | 93.87 6 |
|
ACMM | | 80.67 7 | 90.67 7 | 92.46 19 | 88.57 8 | 91.35 22 | 89.93 31 | 96.34 12 | 77.36 31 | 90.17 29 | 86.88 30 | 87.32 89 | 96.63 24 | 83.32 13 | 95.79 10 | 94.49 10 | 96.19 9 | 92.91 25 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
WR-MVS | | | 89.79 23 | 93.66 4 | 85.27 37 | 91.32 23 | 88.27 45 | 93.49 38 | 79.86 10 | 92.75 9 | 75.37 99 | 96.86 1 | 98.38 6 | 75.10 69 | 95.93 8 | 94.07 15 | 96.46 5 | 89.39 58 |
|
SD-MVS | | | 89.91 18 | 92.23 30 | 87.19 22 | 91.31 24 | 89.79 34 | 94.31 32 | 75.34 47 | 89.26 38 | 81.79 68 | 92.68 31 | 95.08 62 | 83.88 11 | 93.10 39 | 92.69 26 | 96.54 4 | 93.02 23 |
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
XVS | | | | | | 91.28 25 | 91.23 8 | 96.89 2 | | | 87.14 26 | | 94.53 72 | | | | 95.84 15 | |
|
X-MVStestdata | | | | | | 91.28 25 | 91.23 8 | 96.89 2 | | | 87.14 26 | | 94.53 72 | | | | 95.84 15 | |
|
DeepC-MVS | | 83.59 4 | 90.37 12 | 92.56 18 | 87.82 15 | 91.26 27 | 92.33 3 | 94.72 30 | 80.04 9 | 90.01 32 | 84.61 43 | 93.33 22 | 94.22 79 | 80.59 28 | 92.90 44 | 92.52 29 | 95.69 21 | 92.57 27 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
ACMMP | | | 90.63 8 | 92.40 20 | 88.56 9 | 91.24 28 | 91.60 6 | 96.49 9 | 77.53 27 | 87.89 49 | 86.87 31 | 87.24 91 | 96.46 26 | 82.87 16 | 95.59 15 | 94.50 9 | 96.35 6 | 93.51 17 |
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
SteuartSystems-ACMMP | | | 90.00 17 | 91.73 35 | 87.97 13 | 91.21 29 | 90.29 28 | 96.51 7 | 78.00 24 | 86.33 63 | 85.32 41 | 88.23 81 | 94.67 70 | 82.08 21 | 95.13 22 | 93.88 17 | 94.72 36 | 93.59 12 |
Skip Steuart: Steuart Systems R&D Blog. |
ACMMP_NAP | | | 89.86 19 | 91.96 33 | 87.42 20 | 91.00 30 | 90.08 29 | 96.00 16 | 76.61 37 | 89.28 35 | 87.73 18 | 90.04 57 | 91.80 110 | 78.71 38 | 94.36 29 | 93.82 18 | 94.48 38 | 94.32 5 |
|
CPTT-MVS | | | 89.63 25 | 90.52 49 | 88.59 7 | 90.95 31 | 90.74 21 | 95.71 17 | 79.13 15 | 87.70 51 | 85.68 39 | 80.05 134 | 95.74 46 | 84.77 6 | 94.28 30 | 92.68 27 | 95.28 26 | 92.45 31 |
|
LGP-MVS_train | | | 90.56 9 | 92.38 21 | 88.43 10 | 90.88 32 | 91.15 11 | 95.35 22 | 77.65 26 | 86.26 65 | 87.23 24 | 90.45 54 | 97.35 18 | 83.20 14 | 95.44 16 | 93.41 21 | 96.28 8 | 92.63 26 |
|
OPM-MVS | | | 89.82 21 | 92.24 29 | 86.99 23 | 90.86 33 | 89.35 37 | 95.07 27 | 75.91 43 | 91.16 16 | 86.87 31 | 91.07 50 | 97.29 19 | 79.13 34 | 93.32 36 | 91.99 38 | 94.12 41 | 91.49 41 |
|
ACMP | | 80.00 8 | 90.12 16 | 92.30 26 | 87.58 19 | 90.83 34 | 91.10 12 | 94.96 28 | 76.06 41 | 87.47 53 | 85.33 40 | 88.91 76 | 97.65 16 | 82.13 20 | 95.31 17 | 93.44 20 | 96.14 10 | 92.22 33 |
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
NCCC | | | 86.74 54 | 87.97 70 | 85.31 36 | 90.64 35 | 87.25 58 | 93.27 39 | 74.59 49 | 86.50 61 | 83.72 47 | 75.92 164 | 92.39 100 | 77.08 52 | 91.72 53 | 90.68 49 | 92.57 67 | 91.30 43 |
|
MSP-MVS | | | 88.51 42 | 91.36 40 | 85.19 39 | 90.63 36 | 92.01 4 | 95.29 23 | 77.52 28 | 90.48 26 | 80.21 78 | 90.21 56 | 96.08 35 | 76.38 57 | 88.30 93 | 91.42 42 | 91.12 87 | 91.01 45 |
|
UniMVSNet_ETH3D | | | 85.39 64 | 91.12 45 | 78.71 99 | 90.48 37 | 83.72 82 | 81.76 137 | 82.41 6 | 93.84 6 | 64.43 156 | 95.41 7 | 98.76 1 | 63.72 139 | 93.63 34 | 89.74 59 | 89.47 104 | 82.74 110 |
|
APDe-MVS | | | 89.85 20 | 92.91 10 | 86.29 27 | 90.47 38 | 91.34 7 | 96.04 15 | 76.41 40 | 91.11 17 | 78.50 88 | 93.44 21 | 95.82 43 | 81.55 24 | 93.16 38 | 91.90 39 | 94.77 34 | 93.58 14 |
|
PMVS | | 79.51 9 | 90.23 14 | 92.67 14 | 87.39 21 | 90.16 39 | 88.75 41 | 93.64 36 | 75.78 44 | 90.00 33 | 83.70 48 | 92.97 28 | 92.22 102 | 86.13 4 | 97.01 3 | 96.79 2 | 94.94 30 | 90.96 46 |
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
CNVR-MVS | | | 86.93 53 | 88.98 58 | 84.54 44 | 90.11 40 | 87.41 57 | 93.23 40 | 73.47 55 | 86.31 64 | 82.25 62 | 82.96 122 | 92.15 103 | 76.04 60 | 91.69 54 | 90.69 48 | 92.17 73 | 91.64 40 |
|
TSAR-MVS + GP. | | | 85.32 66 | 87.41 75 | 82.89 63 | 90.07 41 | 85.69 72 | 89.07 82 | 72.99 57 | 82.45 91 | 74.52 106 | 85.09 112 | 87.67 139 | 79.24 33 | 91.11 65 | 90.41 51 | 91.45 79 | 89.45 57 |
|
DeepC-MVS_fast | | 81.78 5 | 87.38 51 | 89.64 53 | 84.75 41 | 89.89 42 | 90.70 22 | 92.74 43 | 74.45 50 | 86.02 66 | 82.16 65 | 86.05 103 | 91.99 109 | 75.84 63 | 91.16 64 | 90.44 50 | 93.41 50 | 91.09 44 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
LS3D | | | 89.02 33 | 91.69 36 | 85.91 30 | 89.72 43 | 90.81 20 | 92.56 44 | 71.69 63 | 90.83 21 | 87.24 23 | 89.71 63 | 92.07 105 | 78.37 41 | 94.43 28 | 92.59 28 | 95.86 13 | 91.35 42 |
|
DPE-MVS | | | 89.81 22 | 92.34 24 | 86.86 24 | 89.69 44 | 91.00 16 | 95.53 19 | 76.91 34 | 88.18 47 | 83.43 54 | 93.48 20 | 95.19 57 | 81.07 27 | 92.75 46 | 92.07 37 | 94.55 37 | 93.74 10 |
|
CDPH-MVS | | | 86.66 56 | 88.52 61 | 84.48 45 | 89.61 45 | 88.27 45 | 92.86 42 | 72.69 58 | 80.55 116 | 82.71 56 | 86.92 95 | 93.32 90 | 75.55 65 | 91.00 69 | 89.85 58 | 93.47 48 | 89.71 55 |
|
EPNet | | | 79.36 118 | 79.44 135 | 79.27 98 | 89.51 46 | 77.20 132 | 88.35 89 | 77.35 32 | 68.27 167 | 74.29 107 | 76.31 157 | 79.22 166 | 59.63 151 | 85.02 123 | 85.45 95 | 86.49 137 | 84.61 89 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
TSAR-MVS + ACMM | | | 89.14 29 | 92.11 32 | 85.67 31 | 89.27 47 | 90.61 24 | 90.98 51 | 79.48 13 | 88.86 41 | 79.80 80 | 93.01 27 | 93.53 88 | 83.17 15 | 92.75 46 | 92.45 30 | 91.32 82 | 93.59 12 |
|
HQP-MVS | | | 85.02 68 | 86.41 81 | 83.40 55 | 89.19 48 | 86.59 64 | 91.28 49 | 71.60 64 | 82.79 89 | 83.48 52 | 78.65 143 | 93.54 87 | 72.55 88 | 86.49 107 | 85.89 92 | 92.28 72 | 90.95 47 |
|
AdaColmap | | | 84.15 75 | 85.14 96 | 83.00 60 | 89.08 49 | 87.14 60 | 90.56 62 | 70.90 66 | 82.40 92 | 80.41 74 | 73.82 175 | 84.69 151 | 75.19 68 | 91.58 58 | 89.90 57 | 91.87 76 | 86.48 78 |
|
DVP-MVS | | | 89.40 27 | 92.69 13 | 85.56 34 | 89.01 50 | 89.85 32 | 93.72 35 | 75.42 45 | 92.28 11 | 80.49 73 | 94.36 13 | 94.87 66 | 81.46 25 | 92.49 50 | 91.42 42 | 93.27 52 | 93.54 16 |
|
COLMAP_ROB | | 85.66 2 | 91.85 2 | 95.01 2 | 88.16 12 | 88.98 51 | 92.86 2 | 95.51 20 | 72.17 59 | 94.95 5 | 91.27 3 | 94.11 16 | 97.77 12 | 84.22 8 | 96.49 4 | 95.27 5 | 96.79 2 | 93.60 11 |
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
TDRefinement | | | 93.16 1 | 95.57 1 | 90.36 1 | 88.79 52 | 93.57 1 | 97.27 1 | 78.23 22 | 95.55 2 | 93.00 1 | 93.98 17 | 96.01 39 | 87.53 1 | 97.69 1 | 96.81 1 | 97.33 1 | 95.34 3 |
|
TranMVSNet+NR-MVSNet | | | 85.23 67 | 89.38 55 | 80.39 90 | 88.78 53 | 83.77 81 | 87.40 97 | 76.75 35 | 85.47 70 | 68.99 138 | 95.18 8 | 97.55 17 | 67.13 124 | 91.61 57 | 89.13 67 | 93.26 53 | 82.95 107 |
|
SED-MVS | | | 88.96 37 | 92.37 22 | 84.99 40 | 88.64 54 | 89.65 36 | 95.11 25 | 75.98 42 | 90.73 23 | 80.15 79 | 94.21 15 | 94.51 75 | 76.59 54 | 92.94 41 | 91.17 45 | 93.46 49 | 93.37 21 |
|
ACMH+ | | 79.05 11 | 89.62 26 | 93.08 8 | 85.58 32 | 88.58 55 | 89.26 38 | 92.18 45 | 74.23 52 | 93.55 8 | 82.66 59 | 92.32 36 | 98.35 8 | 80.29 29 | 95.28 18 | 92.34 32 | 95.52 22 | 90.43 50 |
|
MVS_0304 | | | 84.73 72 | 86.19 83 | 83.02 58 | 88.32 56 | 86.71 63 | 91.55 47 | 70.87 67 | 73.79 143 | 82.88 55 | 85.13 111 | 93.35 89 | 72.55 88 | 88.62 87 | 87.69 76 | 91.93 75 | 88.05 70 |
|
DU-MVS | | | 84.88 70 | 88.27 66 | 80.92 79 | 88.30 57 | 83.59 84 | 87.06 102 | 78.35 20 | 80.64 114 | 70.49 130 | 92.67 32 | 96.91 22 | 68.13 117 | 91.79 51 | 89.29 66 | 93.20 54 | 83.02 104 |
|
Baseline_NR-MVSNet | | | 82.79 90 | 86.51 78 | 78.44 103 | 88.30 57 | 75.62 146 | 87.81 92 | 74.97 48 | 81.53 102 | 66.84 151 | 94.71 12 | 96.46 26 | 66.90 125 | 91.79 51 | 83.37 118 | 85.83 147 | 82.09 115 |
|
UniMVSNet_NR-MVSNet | | | 84.62 73 | 88.00 69 | 80.68 85 | 88.18 59 | 83.83 80 | 87.06 102 | 76.47 39 | 81.46 105 | 70.49 130 | 93.24 23 | 95.56 49 | 68.13 117 | 90.43 74 | 88.47 70 | 93.78 46 | 83.02 104 |
|
xxxxxxxxxxxxxcwj | | | 88.03 47 | 91.29 43 | 84.22 49 | 88.17 60 | 87.90 52 | 90.80 56 | 71.80 61 | 89.28 35 | 82.70 57 | 89.90 59 | 97.72 13 | 77.91 45 | 91.69 54 | 90.04 55 | 93.95 44 | 92.47 28 |
|
SF-MVS | | | 87.85 50 | 90.95 46 | 84.22 49 | 88.17 60 | 87.90 52 | 90.80 56 | 71.80 61 | 89.28 35 | 82.70 57 | 89.90 59 | 95.37 54 | 77.91 45 | 91.69 54 | 90.04 55 | 93.95 44 | 92.47 28 |
|
CSCG | | | 88.12 45 | 91.45 38 | 84.23 48 | 88.12 62 | 90.59 25 | 90.57 61 | 68.60 87 | 91.37 15 | 83.45 53 | 89.94 58 | 95.14 61 | 78.71 38 | 91.45 59 | 88.21 74 | 95.96 12 | 93.44 18 |
|
CLD-MVS | | | 82.75 92 | 87.22 76 | 77.54 109 | 88.01 63 | 85.76 71 | 90.23 71 | 54.52 181 | 82.28 94 | 82.11 66 | 88.48 80 | 95.27 55 | 63.95 137 | 89.41 81 | 88.29 72 | 86.45 138 | 81.01 124 |
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
UniMVSNet (Re) | | | 84.95 69 | 88.53 60 | 80.78 81 | 87.82 64 | 84.21 78 | 88.03 90 | 76.50 38 | 81.18 109 | 69.29 136 | 92.63 34 | 96.83 23 | 69.07 113 | 91.23 63 | 89.60 62 | 93.97 43 | 84.00 97 |
|
DPM-MVS | | | 81.42 101 | 82.11 126 | 80.62 86 | 87.54 65 | 85.30 74 | 90.18 73 | 68.96 82 | 81.00 112 | 79.15 85 | 70.45 192 | 83.29 154 | 67.67 121 | 82.81 137 | 83.46 113 | 90.19 93 | 88.48 66 |
|
DeepPCF-MVS | | 81.61 6 | 87.95 48 | 90.29 51 | 85.22 38 | 87.48 66 | 90.01 30 | 93.79 34 | 73.54 54 | 88.93 40 | 83.89 46 | 89.40 67 | 90.84 119 | 80.26 31 | 90.62 73 | 90.19 54 | 92.36 70 | 92.03 35 |
|
CANet | | | 82.84 89 | 84.60 104 | 80.78 81 | 87.30 67 | 85.20 75 | 90.23 71 | 69.00 81 | 72.16 151 | 78.73 87 | 84.49 116 | 90.70 121 | 69.54 110 | 87.65 96 | 86.17 87 | 89.87 98 | 85.84 83 |
|
MCST-MVS | | | 84.79 71 | 86.48 79 | 82.83 64 | 87.30 67 | 87.03 61 | 90.46 69 | 69.33 79 | 83.14 86 | 82.21 64 | 81.69 130 | 92.14 104 | 75.09 70 | 87.27 100 | 84.78 102 | 92.58 65 | 89.30 59 |
|
EIA-MVS | | | 78.57 124 | 77.90 143 | 79.35 96 | 87.24 69 | 80.71 105 | 86.16 109 | 64.03 129 | 62.63 194 | 73.49 113 | 73.60 176 | 76.12 180 | 73.83 80 | 88.49 89 | 84.93 100 | 91.36 81 | 78.78 141 |
|
test_part1 | | | 87.86 49 | 93.26 6 | 81.56 74 | 87.23 70 | 86.76 62 | 90.91 53 | 70.06 71 | 96.50 1 | 76.74 92 | 96.63 2 | 98.62 2 | 69.45 112 | 92.93 43 | 90.92 46 | 94.98 29 | 90.46 49 |
|
OMC-MVS | | | 88.16 43 | 91.34 42 | 84.46 46 | 86.85 71 | 90.63 23 | 93.01 41 | 67.00 100 | 90.35 27 | 87.40 22 | 86.86 96 | 96.35 30 | 77.66 48 | 92.63 48 | 90.84 47 | 94.84 32 | 91.68 39 |
|
3Dnovator+ | | 83.71 3 | 88.13 44 | 90.00 52 | 85.94 29 | 86.82 72 | 91.06 13 | 94.26 33 | 75.39 46 | 88.85 42 | 85.76 38 | 85.74 107 | 86.92 142 | 78.02 43 | 93.03 40 | 92.21 35 | 95.39 25 | 92.21 34 |
|
ETV-MVS | | | 79.01 123 | 77.98 142 | 80.22 91 | 86.69 73 | 79.73 112 | 88.80 85 | 68.27 92 | 63.22 189 | 71.56 124 | 70.25 194 | 73.63 187 | 73.66 82 | 90.30 76 | 86.77 84 | 92.33 71 | 81.95 117 |
|
PHI-MVS | | | 86.37 58 | 88.14 67 | 84.30 47 | 86.65 74 | 87.56 55 | 90.76 58 | 70.16 70 | 82.55 90 | 89.65 7 | 84.89 114 | 92.40 99 | 75.97 61 | 90.88 71 | 89.70 60 | 92.58 65 | 89.03 62 |
|
ACMH | | 78.40 12 | 88.94 38 | 92.62 16 | 84.65 42 | 86.45 75 | 87.16 59 | 91.47 48 | 68.79 85 | 95.49 3 | 89.74 6 | 93.55 19 | 98.50 3 | 77.96 44 | 94.14 32 | 89.57 63 | 93.49 47 | 89.94 54 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
EG-PatchMatch MVS | | | 84.35 74 | 87.55 72 | 80.62 86 | 86.38 76 | 82.24 94 | 86.75 105 | 64.02 130 | 84.24 79 | 78.17 90 | 89.38 68 | 95.03 64 | 78.78 37 | 89.95 79 | 86.33 86 | 89.59 101 | 85.65 85 |
|
IS_MVSNet | | | 81.72 99 | 85.01 97 | 77.90 105 | 86.19 77 | 82.64 91 | 85.56 111 | 70.02 72 | 80.11 119 | 63.52 158 | 87.28 90 | 81.18 161 | 67.26 122 | 91.08 68 | 89.33 65 | 94.82 33 | 83.42 101 |
|
PCF-MVS | | 76.59 14 | 84.11 76 | 85.27 93 | 82.76 65 | 86.12 78 | 88.30 44 | 91.24 50 | 69.10 80 | 82.36 93 | 84.45 44 | 77.56 149 | 90.40 123 | 72.91 87 | 85.88 112 | 83.88 110 | 92.72 63 | 88.53 65 |
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
TSAR-MVS + COLMAP | | | 85.51 62 | 88.36 64 | 82.19 67 | 86.05 79 | 87.69 54 | 90.50 66 | 70.60 69 | 86.40 62 | 82.33 60 | 89.69 64 | 92.52 98 | 74.01 79 | 87.53 97 | 86.84 83 | 89.63 100 | 87.80 72 |
|
EPP-MVSNet | | | 82.76 91 | 86.47 80 | 78.45 102 | 86.00 80 | 84.47 77 | 85.39 113 | 68.42 89 | 84.17 80 | 62.97 160 | 89.26 70 | 76.84 176 | 72.13 93 | 92.56 49 | 90.40 52 | 95.76 20 | 87.56 74 |
|
PLC | | 76.06 15 | 85.38 65 | 87.46 73 | 82.95 62 | 85.79 81 | 88.84 40 | 88.86 84 | 68.70 86 | 87.06 58 | 83.60 49 | 79.02 137 | 90.05 124 | 77.37 51 | 90.88 71 | 89.66 61 | 93.37 51 | 86.74 77 |
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
MSLP-MVS++ | | | 86.29 59 | 89.10 57 | 83.01 59 | 85.71 82 | 89.79 34 | 87.04 104 | 74.39 51 | 85.17 74 | 78.92 86 | 77.59 148 | 93.57 86 | 82.60 17 | 93.23 37 | 91.88 40 | 89.42 105 | 92.46 30 |
|
CS-MVS | | | 79.35 119 | 77.74 144 | 81.22 76 | 85.59 83 | 79.85 109 | 88.78 86 | 66.61 102 | 67.63 168 | 80.41 74 | 67.82 198 | 75.07 185 | 73.27 86 | 88.31 92 | 84.36 106 | 92.63 64 | 81.18 121 |
|
Effi-MVS+-dtu | | | 82.04 97 | 83.39 120 | 80.48 89 | 85.48 84 | 86.57 66 | 88.40 88 | 68.28 91 | 69.04 165 | 73.13 116 | 76.26 159 | 91.11 118 | 74.74 73 | 88.40 90 | 87.76 75 | 92.84 62 | 84.57 91 |
|
v7n | | | 87.11 52 | 90.46 50 | 83.19 57 | 85.22 85 | 83.69 83 | 90.03 75 | 68.20 93 | 91.01 19 | 86.71 34 | 94.80 10 | 98.46 5 | 77.69 47 | 91.10 66 | 85.98 89 | 91.30 83 | 88.19 67 |
|
MAR-MVS | | | 81.98 98 | 82.92 122 | 80.88 80 | 85.18 86 | 85.85 69 | 89.13 81 | 69.52 74 | 71.21 155 | 82.25 62 | 71.28 186 | 88.89 134 | 69.69 107 | 88.71 85 | 86.96 79 | 89.52 102 | 87.57 73 |
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
abl_6 | | | | | 79.30 97 | 84.98 87 | 85.78 70 | 90.50 66 | 66.88 101 | 77.08 132 | 74.02 108 | 73.29 179 | 89.34 128 | 68.94 114 | | | 90.49 90 | 85.98 81 |
|
TAPA-MVS | | 78.00 13 | 85.88 60 | 88.37 63 | 82.96 61 | 84.69 88 | 88.62 42 | 90.62 59 | 64.22 125 | 89.15 39 | 88.05 15 | 78.83 141 | 93.71 83 | 76.20 59 | 90.11 78 | 88.22 73 | 94.00 42 | 89.97 53 |
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
SixPastTwentyTwo | | | 89.14 29 | 92.19 31 | 85.58 32 | 84.62 89 | 82.56 92 | 90.53 64 | 71.93 60 | 91.95 12 | 85.89 36 | 94.22 14 | 97.25 20 | 85.42 5 | 95.73 12 | 91.71 41 | 95.08 28 | 91.89 37 |
|
MVS_111021_HR | | | 83.95 77 | 86.10 85 | 81.44 75 | 84.62 89 | 80.29 107 | 90.51 65 | 68.05 94 | 84.07 82 | 80.38 76 | 84.74 115 | 91.37 115 | 74.23 75 | 90.37 75 | 87.25 78 | 90.86 89 | 84.59 90 |
|
CNLPA | | | 85.50 63 | 88.58 59 | 81.91 69 | 84.55 91 | 87.52 56 | 90.89 54 | 63.56 135 | 88.18 47 | 84.06 45 | 83.85 119 | 91.34 116 | 76.46 56 | 91.27 61 | 89.00 68 | 91.96 74 | 88.88 63 |
|
Effi-MVS+ | | | 82.33 93 | 83.87 114 | 80.52 88 | 84.51 92 | 81.32 100 | 87.53 95 | 68.05 94 | 74.94 141 | 79.67 81 | 82.37 127 | 92.31 101 | 72.21 90 | 85.06 119 | 86.91 81 | 91.18 85 | 84.20 94 |
|
gm-plane-assit | | | 71.56 163 | 69.99 177 | 73.39 133 | 84.43 93 | 73.21 158 | 90.42 70 | 51.36 194 | 84.08 81 | 76.00 96 | 91.30 47 | 37.09 218 | 59.01 153 | 73.65 182 | 70.24 181 | 79.09 174 | 60.37 195 |
|
RPSCF | | | 88.05 46 | 92.61 17 | 82.73 66 | 84.24 94 | 88.40 43 | 90.04 74 | 66.29 105 | 91.46 13 | 82.29 61 | 88.93 75 | 96.01 39 | 79.38 32 | 95.15 21 | 94.90 6 | 94.15 40 | 93.40 19 |
|
FC-MVSNet-train | | | 79.20 121 | 86.29 82 | 70.94 145 | 84.06 95 | 77.67 126 | 85.68 110 | 64.11 127 | 82.90 88 | 52.22 189 | 92.57 35 | 93.69 84 | 49.52 189 | 88.30 93 | 86.93 80 | 90.03 95 | 81.95 117 |
|
v1192 | | | 83.61 79 | 85.23 94 | 81.72 71 | 84.05 96 | 82.15 95 | 89.54 77 | 66.20 106 | 81.38 107 | 86.76 33 | 91.79 41 | 96.03 37 | 74.88 72 | 81.81 145 | 80.92 134 | 88.91 111 | 82.50 112 |
|
v1240 | | | 83.57 80 | 84.94 100 | 81.97 68 | 84.05 96 | 81.27 101 | 89.46 79 | 66.06 108 | 81.31 108 | 87.50 21 | 91.88 40 | 95.46 52 | 76.25 58 | 81.16 150 | 80.51 138 | 88.52 118 | 82.98 106 |
|
test20.03 | | | 69.91 167 | 76.20 158 | 62.58 183 | 84.01 98 | 67.34 178 | 75.67 177 | 65.88 112 | 79.98 120 | 40.28 206 | 82.65 123 | 89.31 129 | 39.63 201 | 77.41 166 | 73.28 171 | 69.98 191 | 63.40 186 |
|
Anonymous202405211 | | | | 84.68 103 | | 83.92 99 | 79.45 114 | 79.03 156 | 67.79 96 | 82.01 96 | | 88.77 79 | 92.58 97 | 55.93 165 | 86.68 105 | 84.26 107 | 88.92 110 | 78.98 139 |
|
NR-MVSNet | | | 82.89 88 | 87.43 74 | 77.59 108 | 83.91 100 | 83.59 84 | 87.10 101 | 78.35 20 | 80.64 114 | 68.85 139 | 92.67 32 | 96.50 25 | 54.19 174 | 87.19 103 | 88.68 69 | 93.16 57 | 82.75 109 |
|
Gipuma | | | 86.47 57 | 89.25 56 | 83.23 56 | 83.88 101 | 78.78 119 | 85.35 114 | 68.42 89 | 92.69 10 | 89.03 12 | 91.94 37 | 96.32 33 | 81.80 22 | 94.45 27 | 86.86 82 | 90.91 88 | 83.69 98 |
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
v1921920 | | | 83.49 81 | 84.94 100 | 81.80 70 | 83.78 102 | 81.20 103 | 89.50 78 | 65.91 111 | 81.64 100 | 87.18 25 | 91.70 42 | 95.39 53 | 75.85 62 | 81.56 148 | 80.27 140 | 88.60 115 | 82.80 108 |
|
v1144 | | | 83.22 84 | 85.01 97 | 81.14 77 | 83.76 103 | 81.60 98 | 88.95 83 | 65.58 115 | 81.89 97 | 85.80 37 | 91.68 43 | 95.84 42 | 74.04 78 | 82.12 142 | 80.56 137 | 88.70 114 | 81.41 120 |
|
Vis-MVSNet (Re-imp) | | | 76.15 138 | 80.84 131 | 70.68 146 | 83.66 104 | 74.80 153 | 81.66 139 | 69.59 73 | 80.48 117 | 46.94 198 | 87.44 87 | 80.63 163 | 53.14 179 | 86.87 104 | 84.56 105 | 89.12 107 | 71.12 166 |
|
v144192 | | | 83.43 82 | 84.97 99 | 81.63 73 | 83.43 105 | 81.23 102 | 89.42 80 | 66.04 110 | 81.45 106 | 86.40 35 | 91.46 45 | 95.70 47 | 75.76 64 | 82.14 141 | 80.23 141 | 88.74 112 | 82.57 111 |
|
TinyColmap | | | 83.79 78 | 86.12 84 | 81.07 78 | 83.42 106 | 81.44 99 | 85.42 112 | 68.55 88 | 88.71 44 | 89.46 8 | 87.60 86 | 92.72 95 | 70.34 106 | 89.29 82 | 81.94 127 | 89.20 106 | 81.12 123 |
|
TransMVSNet (Re) | | | 79.05 122 | 86.66 77 | 70.18 151 | 83.32 107 | 75.99 141 | 77.54 161 | 63.98 131 | 90.68 24 | 55.84 176 | 94.80 10 | 96.06 36 | 53.73 177 | 86.27 109 | 83.22 119 | 86.65 133 | 79.61 137 |
|
v10 | | | 83.17 86 | 85.22 95 | 80.78 81 | 83.26 108 | 82.99 88 | 88.66 87 | 66.49 104 | 79.24 125 | 83.60 49 | 91.46 45 | 95.47 51 | 74.12 76 | 82.60 140 | 80.66 135 | 88.53 117 | 84.11 96 |
|
LTVRE_ROB | | 86.82 1 | 91.55 3 | 94.43 3 | 88.19 11 | 83.19 109 | 86.35 67 | 93.60 37 | 78.79 19 | 95.48 4 | 91.79 2 | 93.08 26 | 97.21 21 | 86.34 3 | 97.06 2 | 96.27 3 | 95.46 23 | 95.56 2 |
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
canonicalmvs | | | 81.22 105 | 86.04 87 | 75.60 117 | 83.17 110 | 83.18 87 | 80.29 146 | 65.82 113 | 85.97 67 | 67.98 146 | 77.74 147 | 91.51 113 | 65.17 133 | 88.62 87 | 86.15 88 | 91.17 86 | 89.09 60 |
|
FPMVS | | | 81.56 100 | 84.04 113 | 78.66 100 | 82.92 111 | 75.96 142 | 86.48 108 | 65.66 114 | 84.67 78 | 71.47 125 | 77.78 146 | 83.22 155 | 77.57 49 | 91.24 62 | 90.21 53 | 87.84 123 | 85.21 87 |
|
DCV-MVSNet | | | 80.04 110 | 85.67 91 | 73.48 132 | 82.91 112 | 81.11 104 | 80.44 145 | 66.06 108 | 85.01 75 | 62.53 163 | 78.84 140 | 94.43 77 | 58.51 155 | 88.66 86 | 85.91 90 | 90.41 91 | 85.73 84 |
|
MVS_111021_LR | | | 83.20 85 | 85.33 92 | 80.73 84 | 82.88 113 | 78.23 123 | 89.61 76 | 65.23 117 | 82.08 95 | 81.19 72 | 85.31 109 | 92.04 108 | 75.22 67 | 89.50 80 | 85.90 91 | 90.24 92 | 84.23 93 |
|
Anonymous20231211 | | | 79.37 117 | 85.78 89 | 71.89 139 | 82.87 114 | 79.66 113 | 78.77 158 | 63.93 133 | 83.36 84 | 59.39 167 | 90.54 52 | 94.66 71 | 56.46 162 | 87.38 98 | 84.12 108 | 89.92 97 | 80.74 125 |
|
v2v482 | | | 82.20 95 | 84.26 108 | 79.81 93 | 82.67 115 | 80.18 108 | 87.67 94 | 63.96 132 | 81.69 99 | 84.73 42 | 91.27 48 | 96.33 32 | 72.05 94 | 81.94 144 | 79.56 144 | 87.79 124 | 78.84 140 |
|
v8 | | | 82.20 95 | 84.56 105 | 79.45 94 | 82.42 116 | 81.65 97 | 87.26 98 | 64.27 124 | 79.36 124 | 81.70 69 | 91.04 51 | 95.75 45 | 73.30 85 | 82.82 136 | 79.18 147 | 87.74 125 | 82.09 115 |
|
MSDG | | | 81.39 103 | 84.23 110 | 78.09 104 | 82.40 117 | 82.47 93 | 85.31 116 | 60.91 156 | 79.73 122 | 80.26 77 | 86.30 99 | 88.27 137 | 69.67 108 | 87.20 102 | 84.98 99 | 89.97 96 | 80.67 126 |
|
Fast-Effi-MVS+ | | | 81.42 101 | 83.82 115 | 78.62 101 | 82.24 118 | 80.62 106 | 87.72 93 | 63.51 136 | 73.01 145 | 74.75 104 | 83.80 120 | 92.70 96 | 73.44 84 | 88.15 95 | 85.26 96 | 90.05 94 | 83.17 102 |
|
PVSNet_Blended_VisFu | | | 83.00 87 | 84.16 111 | 81.65 72 | 82.17 119 | 86.01 68 | 88.03 90 | 71.23 65 | 76.05 136 | 79.54 82 | 83.88 118 | 83.44 152 | 77.49 50 | 87.38 98 | 84.93 100 | 91.41 80 | 87.40 75 |
|
pmmvs6 | | | 80.46 107 | 88.34 65 | 71.26 141 | 81.96 120 | 77.51 127 | 77.54 161 | 68.83 84 | 93.72 7 | 55.92 175 | 93.94 18 | 98.03 10 | 55.94 164 | 89.21 83 | 85.61 93 | 87.36 129 | 80.38 128 |
|
IterMVS-LS | | | 79.79 112 | 82.56 124 | 76.56 114 | 81.83 121 | 77.85 125 | 79.90 150 | 69.42 78 | 78.93 126 | 71.21 126 | 90.47 53 | 85.20 150 | 70.86 103 | 80.54 155 | 80.57 136 | 86.15 140 | 84.36 92 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
CDS-MVSNet | | | 73.07 157 | 77.02 150 | 68.46 161 | 81.62 122 | 72.89 159 | 79.56 154 | 70.78 68 | 69.56 160 | 52.52 186 | 77.37 151 | 81.12 162 | 42.60 197 | 84.20 129 | 83.93 109 | 83.65 160 | 70.07 171 |
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
gg-mvs-nofinetune | | | 72.68 159 | 75.21 165 | 69.73 153 | 81.48 123 | 69.04 173 | 70.48 190 | 76.67 36 | 86.92 59 | 67.80 148 | 88.06 83 | 64.67 195 | 42.12 199 | 77.60 165 | 73.65 170 | 79.81 171 | 66.57 178 |
|
USDC | | | 81.39 103 | 83.07 121 | 79.43 95 | 81.48 123 | 78.95 118 | 82.62 132 | 66.17 107 | 87.45 54 | 90.73 4 | 82.40 126 | 93.65 85 | 66.57 127 | 83.63 132 | 77.97 150 | 89.00 109 | 77.45 148 |
|
casdiffmvs | | | 79.93 111 | 84.11 112 | 75.05 122 | 81.41 125 | 78.99 117 | 82.95 129 | 62.90 143 | 81.53 102 | 68.60 143 | 91.94 37 | 96.03 37 | 65.84 131 | 82.89 135 | 77.07 158 | 88.59 116 | 80.34 132 |
|
tfpnnormal | | | 77.16 130 | 84.26 108 | 68.88 159 | 81.02 126 | 75.02 149 | 76.52 168 | 63.30 138 | 87.29 55 | 52.40 187 | 91.24 49 | 93.97 80 | 54.85 171 | 85.46 116 | 81.08 132 | 85.18 153 | 75.76 153 |
|
thres600view7 | | | 74.34 150 | 78.43 139 | 69.56 155 | 80.47 127 | 76.28 139 | 78.65 159 | 62.56 145 | 77.39 130 | 52.53 185 | 74.03 173 | 76.78 177 | 55.90 166 | 85.06 119 | 85.19 97 | 87.25 130 | 74.29 157 |
|
OpenMVS | | 75.38 16 | 78.44 125 | 81.39 130 | 74.99 125 | 80.46 128 | 79.85 109 | 79.99 148 | 58.31 170 | 77.34 131 | 73.85 110 | 77.19 152 | 82.33 159 | 68.60 116 | 84.67 126 | 81.95 126 | 88.72 113 | 86.40 80 |
|
pm-mvs1 | | | 78.21 126 | 85.68 90 | 69.50 156 | 80.38 129 | 75.73 144 | 76.25 169 | 65.04 118 | 87.59 52 | 54.47 180 | 93.16 25 | 95.99 41 | 54.20 173 | 86.37 108 | 82.98 122 | 86.64 134 | 77.96 146 |
|
v148 | | | 79.33 120 | 82.32 125 | 75.84 116 | 80.14 130 | 75.74 143 | 81.98 136 | 57.06 173 | 81.51 104 | 79.36 84 | 89.42 66 | 96.42 28 | 71.32 97 | 81.54 149 | 75.29 167 | 85.20 152 | 76.32 149 |
|
pmmvs-eth3d | | | 79.64 114 | 82.06 127 | 76.83 111 | 80.05 131 | 72.64 160 | 87.47 96 | 66.59 103 | 80.83 113 | 73.50 112 | 89.32 69 | 93.20 91 | 67.78 119 | 80.78 153 | 81.64 130 | 85.58 150 | 76.01 150 |
|
testgi | | | 68.20 176 | 76.05 159 | 59.04 189 | 79.99 132 | 67.32 179 | 81.16 141 | 51.78 192 | 84.91 76 | 39.36 207 | 73.42 177 | 95.19 57 | 32.79 207 | 76.54 172 | 70.40 180 | 69.14 194 | 64.55 182 |
|
DI_MVS_plusplus_trai | | | 77.64 128 | 79.64 134 | 75.31 120 | 79.87 133 | 76.89 135 | 81.55 140 | 63.64 134 | 76.21 135 | 72.03 121 | 85.59 108 | 82.97 156 | 66.63 126 | 79.27 161 | 77.78 152 | 88.14 121 | 78.76 142 |
|
Fast-Effi-MVS+-dtu | | | 76.92 131 | 77.18 149 | 76.62 113 | 79.55 134 | 79.17 115 | 84.80 118 | 77.40 30 | 64.46 184 | 68.75 141 | 70.81 190 | 86.57 143 | 63.36 144 | 81.74 146 | 81.76 128 | 85.86 146 | 75.78 152 |
|
thres400 | | | 73.13 156 | 76.99 152 | 68.62 160 | 79.46 135 | 74.93 151 | 77.23 163 | 61.23 154 | 75.54 137 | 52.31 188 | 72.20 181 | 77.10 175 | 54.89 169 | 82.92 134 | 82.62 124 | 86.57 136 | 73.66 162 |
|
QAPM | | | 80.43 108 | 84.34 106 | 75.86 115 | 79.40 136 | 82.06 96 | 79.86 151 | 61.94 149 | 83.28 85 | 74.73 105 | 81.74 129 | 85.44 148 | 70.97 101 | 84.99 124 | 84.71 104 | 88.29 119 | 88.14 68 |
|
DELS-MVS | | | 79.71 113 | 83.74 116 | 75.01 124 | 79.31 137 | 82.68 90 | 84.79 119 | 60.06 162 | 75.43 139 | 69.09 137 | 86.13 101 | 89.38 127 | 67.16 123 | 85.12 118 | 83.87 111 | 89.65 99 | 83.57 99 |
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
3Dnovator | | 79.41 10 | 82.21 94 | 86.07 86 | 77.71 106 | 79.31 137 | 84.61 76 | 87.18 99 | 61.02 155 | 85.65 68 | 76.11 95 | 85.07 113 | 85.38 149 | 70.96 102 | 87.22 101 | 86.47 85 | 91.66 77 | 88.12 69 |
|
ET-MVSNet_ETH3D | | | 74.71 148 | 74.19 168 | 75.31 120 | 79.22 139 | 75.29 147 | 82.70 131 | 64.05 128 | 65.45 179 | 70.96 129 | 77.15 153 | 57.70 207 | 65.89 130 | 84.40 128 | 81.65 129 | 89.03 108 | 77.67 147 |
|
test-LLR | | | 62.15 191 | 59.46 207 | 65.29 179 | 79.07 140 | 52.66 203 | 69.46 196 | 62.93 141 | 50.76 211 | 53.81 182 | 63.11 205 | 58.91 203 | 52.87 180 | 66.54 200 | 62.34 193 | 73.59 179 | 61.87 191 |
|
test0.0.03 1 | | | 61.79 193 | 65.33 189 | 57.65 192 | 79.07 140 | 64.09 187 | 68.51 199 | 62.93 141 | 61.59 197 | 33.71 210 | 61.58 207 | 71.58 191 | 33.43 206 | 70.95 190 | 68.68 185 | 68.26 196 | 58.82 197 |
|
baseline1 | | | 69.62 169 | 73.55 172 | 65.02 181 | 78.95 142 | 70.39 166 | 71.38 189 | 62.03 148 | 70.97 156 | 47.95 197 | 78.47 144 | 68.19 193 | 47.77 193 | 79.65 160 | 76.94 160 | 82.05 167 | 70.27 169 |
|
MVS_Test | | | 76.72 133 | 79.40 136 | 73.60 131 | 78.85 143 | 74.99 150 | 79.91 149 | 61.56 151 | 69.67 159 | 72.44 117 | 85.98 104 | 90.78 120 | 63.50 142 | 78.30 163 | 75.74 165 | 85.33 151 | 80.31 133 |
|
FMVSNet1 | | | 78.20 127 | 84.83 102 | 70.46 149 | 78.62 144 | 79.03 116 | 77.90 160 | 67.53 99 | 83.02 87 | 55.10 178 | 87.19 92 | 93.18 92 | 55.65 167 | 85.57 113 | 83.39 115 | 87.98 122 | 82.40 113 |
|
GA-MVS | | | 75.01 147 | 76.39 155 | 73.39 133 | 78.37 145 | 75.66 145 | 80.03 147 | 58.40 169 | 70.51 157 | 75.85 97 | 83.24 121 | 76.14 179 | 63.75 138 | 77.28 167 | 76.62 161 | 83.97 159 | 75.30 155 |
|
thres200 | | | 72.41 160 | 76.00 160 | 68.21 163 | 78.28 146 | 76.28 139 | 74.94 179 | 62.56 145 | 72.14 152 | 51.35 193 | 69.59 196 | 76.51 178 | 54.89 169 | 85.06 119 | 80.51 138 | 87.25 130 | 71.92 165 |
|
EPNet_dtu | | | 71.90 162 | 73.03 174 | 70.59 147 | 78.28 146 | 61.64 191 | 82.44 133 | 64.12 126 | 63.26 188 | 69.74 133 | 71.47 184 | 82.41 157 | 51.89 186 | 78.83 162 | 78.01 149 | 77.07 176 | 75.60 154 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
pmmvs4 | | | 75.92 140 | 77.48 148 | 74.10 130 | 78.21 148 | 70.94 164 | 84.06 122 | 64.78 120 | 75.13 140 | 68.47 144 | 84.12 117 | 83.32 153 | 64.74 136 | 75.93 175 | 79.14 148 | 84.31 157 | 73.77 160 |
|
PM-MVS | | | 80.42 109 | 83.63 117 | 76.67 112 | 78.04 149 | 72.37 162 | 87.14 100 | 60.18 161 | 80.13 118 | 71.75 123 | 86.12 102 | 93.92 82 | 77.08 52 | 86.56 106 | 85.12 98 | 85.83 147 | 81.18 121 |
|
thres100view900 | | | 69.86 168 | 72.97 175 | 66.24 172 | 77.97 150 | 72.49 161 | 73.29 183 | 59.12 165 | 66.81 171 | 50.82 194 | 67.30 199 | 75.67 182 | 50.54 188 | 78.24 164 | 79.40 145 | 85.71 149 | 70.88 167 |
|
tfpn200view9 | | | 72.01 161 | 75.40 163 | 68.06 164 | 77.97 150 | 76.44 137 | 77.04 165 | 62.67 144 | 66.81 171 | 50.82 194 | 67.30 199 | 75.67 182 | 52.46 185 | 85.06 119 | 82.64 123 | 87.41 128 | 73.86 159 |
|
Vis-MVSNet | | | 83.32 83 | 88.12 68 | 77.71 106 | 77.91 152 | 83.44 86 | 90.58 60 | 69.49 76 | 81.11 110 | 67.10 150 | 89.85 61 | 91.48 114 | 71.71 96 | 91.34 60 | 89.37 64 | 89.48 103 | 90.26 51 |
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
PatchMatch-RL | | | 76.05 139 | 76.64 153 | 75.36 119 | 77.84 153 | 69.87 170 | 81.09 142 | 63.43 137 | 71.66 153 | 68.34 145 | 71.70 182 | 81.76 160 | 74.98 71 | 84.83 125 | 83.44 114 | 86.45 138 | 73.22 163 |
|
CANet_DTU | | | 75.04 146 | 78.45 138 | 71.07 142 | 77.27 154 | 77.96 124 | 83.88 124 | 58.00 171 | 64.11 185 | 68.67 142 | 75.65 166 | 88.37 136 | 53.92 176 | 82.05 143 | 81.11 131 | 84.67 155 | 79.88 135 |
|
MS-PatchMatch | | | 71.18 166 | 73.99 170 | 67.89 167 | 77.16 155 | 71.76 163 | 77.18 164 | 56.38 175 | 67.35 169 | 55.04 179 | 74.63 171 | 75.70 181 | 62.38 145 | 76.62 170 | 75.97 164 | 79.22 173 | 75.90 151 |
|
new-patchmatchnet | | | 62.59 190 | 73.79 171 | 49.53 204 | 76.98 156 | 53.57 201 | 53.46 212 | 54.64 180 | 85.43 71 | 28.81 211 | 91.94 37 | 96.41 29 | 25.28 209 | 76.80 168 | 53.66 207 | 57.99 205 | 58.69 198 |
|
GBi-Net | | | 73.17 154 | 77.64 145 | 67.95 165 | 76.76 157 | 77.36 129 | 75.77 173 | 64.57 121 | 62.99 191 | 51.83 190 | 76.05 160 | 77.76 172 | 52.73 182 | 85.57 113 | 83.39 115 | 86.04 142 | 80.37 129 |
|
PVSNet_BlendedMVS | | | 76.45 136 | 78.12 140 | 74.49 128 | 76.76 157 | 78.46 120 | 79.65 152 | 63.26 139 | 65.42 180 | 73.15 114 | 75.05 169 | 88.96 131 | 66.51 128 | 82.73 138 | 77.66 153 | 87.61 126 | 78.60 143 |
|
PVSNet_Blended | | | 76.45 136 | 78.12 140 | 74.49 128 | 76.76 157 | 78.46 120 | 79.65 152 | 63.26 139 | 65.42 180 | 73.15 114 | 75.05 169 | 88.96 131 | 66.51 128 | 82.73 138 | 77.66 153 | 87.61 126 | 78.60 143 |
|
test1 | | | 73.17 154 | 77.64 145 | 67.95 165 | 76.76 157 | 77.36 129 | 75.77 173 | 64.57 121 | 62.99 191 | 51.83 190 | 76.05 160 | 77.76 172 | 52.73 182 | 85.57 113 | 83.39 115 | 86.04 142 | 80.37 129 |
|
FMVSNet2 | | | 74.43 149 | 79.70 133 | 68.27 162 | 76.76 157 | 77.36 129 | 75.77 173 | 65.36 116 | 72.28 149 | 52.97 184 | 81.92 128 | 85.61 147 | 52.73 182 | 80.66 154 | 79.73 143 | 86.04 142 | 80.37 129 |
|
IB-MVS | | 71.28 17 | 75.21 145 | 77.00 151 | 73.12 136 | 76.76 157 | 77.45 128 | 83.05 127 | 58.92 167 | 63.01 190 | 64.31 157 | 59.99 208 | 87.57 140 | 68.64 115 | 86.26 110 | 82.34 125 | 87.05 132 | 82.36 114 |
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
thisisatest0515 | | | 81.18 106 | 84.32 107 | 77.52 110 | 76.73 163 | 74.84 152 | 85.06 117 | 61.37 152 | 81.05 111 | 73.95 109 | 88.79 78 | 89.25 130 | 75.49 66 | 85.98 111 | 84.78 102 | 92.53 68 | 85.56 86 |
|
IterMVS-SCA-FT | | | 77.23 129 | 79.18 137 | 74.96 126 | 76.67 164 | 79.85 109 | 75.58 178 | 61.34 153 | 73.10 144 | 73.79 111 | 86.23 100 | 79.61 165 | 79.00 36 | 80.28 157 | 75.50 166 | 83.41 164 | 79.70 136 |
|
FC-MVSNet-test | | | 75.91 141 | 83.59 118 | 66.95 170 | 76.63 165 | 69.07 172 | 85.33 115 | 64.97 119 | 84.87 77 | 41.95 202 | 93.17 24 | 87.04 141 | 47.78 192 | 91.09 67 | 85.56 94 | 85.06 154 | 74.34 156 |
|
Anonymous20231206 | | | 67.28 178 | 73.41 173 | 60.12 188 | 76.45 166 | 63.61 189 | 74.21 181 | 56.52 174 | 76.35 133 | 42.23 201 | 75.81 165 | 90.47 122 | 41.51 200 | 74.52 176 | 69.97 182 | 69.83 192 | 63.17 187 |
|
baseline2 | | | 68.71 174 | 68.34 182 | 69.14 157 | 75.69 167 | 69.70 171 | 76.60 167 | 55.53 178 | 60.13 199 | 62.07 165 | 66.76 201 | 60.35 200 | 60.77 148 | 76.53 173 | 74.03 169 | 84.19 158 | 70.88 167 |
|
diffmvs | | | 76.74 132 | 81.61 129 | 71.06 143 | 75.64 168 | 74.45 155 | 80.68 144 | 57.57 172 | 77.48 129 | 67.62 149 | 88.95 74 | 93.94 81 | 61.98 146 | 79.74 158 | 76.18 162 | 82.85 165 | 80.50 127 |
|
tttt0517 | | | 75.86 142 | 76.23 157 | 75.42 118 | 75.55 169 | 74.06 156 | 82.73 130 | 60.31 158 | 69.24 161 | 70.24 132 | 79.18 136 | 58.79 205 | 72.17 91 | 84.49 127 | 83.08 120 | 91.54 78 | 84.80 88 |
|
thisisatest0530 | | | 75.54 144 | 75.95 161 | 75.05 122 | 75.08 170 | 73.56 157 | 82.15 135 | 60.31 158 | 69.17 162 | 69.32 135 | 79.02 137 | 58.78 206 | 72.17 91 | 83.88 130 | 83.08 120 | 91.30 83 | 84.20 94 |
|
FMVSNet3 | | | 71.40 165 | 75.20 166 | 66.97 169 | 75.00 171 | 76.59 136 | 74.29 180 | 64.57 121 | 62.99 191 | 51.83 190 | 76.05 160 | 77.76 172 | 51.49 187 | 76.58 171 | 77.03 159 | 84.62 156 | 79.43 138 |
|
tpm cat1 | | | 64.79 185 | 62.74 198 | 67.17 168 | 74.61 172 | 65.91 183 | 76.18 170 | 59.32 164 | 64.88 183 | 66.41 153 | 71.21 187 | 53.56 215 | 59.17 152 | 61.53 206 | 58.16 201 | 67.33 197 | 63.95 183 |
|
UGNet | | | 79.62 115 | 85.91 88 | 72.28 138 | 73.52 173 | 83.91 79 | 86.64 106 | 69.51 75 | 79.85 121 | 62.57 162 | 85.82 106 | 89.63 125 | 53.18 178 | 88.39 91 | 87.35 77 | 88.28 120 | 86.43 79 |
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
our_test_3 | | | | | | 73.27 174 | 70.91 165 | 83.26 125 | | | | | | | | | | |
|
HyFIR lowres test | | | 73.29 153 | 74.14 169 | 72.30 137 | 73.08 175 | 78.33 122 | 83.12 126 | 62.41 147 | 63.81 186 | 62.13 164 | 76.67 156 | 78.50 169 | 71.09 99 | 74.13 179 | 77.47 156 | 81.98 168 | 70.10 170 |
|
MIMVSNet1 | | | 73.40 152 | 81.85 128 | 63.55 182 | 72.90 176 | 64.37 186 | 84.58 120 | 53.60 186 | 90.84 20 | 53.92 181 | 87.75 85 | 96.10 34 | 45.31 195 | 85.37 117 | 79.32 146 | 70.98 190 | 69.18 175 |
|
CostFormer | | | 66.81 180 | 66.94 185 | 66.67 171 | 72.79 177 | 68.25 175 | 79.55 155 | 55.57 177 | 65.52 178 | 62.77 161 | 76.98 154 | 60.09 201 | 56.73 161 | 65.69 202 | 62.35 192 | 72.59 182 | 69.71 172 |
|
CR-MVSNet | | | 69.56 170 | 68.34 182 | 70.99 144 | 72.78 178 | 67.63 176 | 64.47 202 | 67.74 97 | 59.93 200 | 72.30 118 | 80.10 132 | 56.77 209 | 65.04 134 | 71.64 187 | 72.91 173 | 83.61 162 | 69.40 173 |
|
CVMVSNet | | | 75.65 143 | 77.62 147 | 73.35 135 | 71.95 179 | 69.89 169 | 83.04 128 | 60.84 157 | 69.12 163 | 68.76 140 | 79.92 135 | 78.93 168 | 73.64 83 | 81.02 151 | 81.01 133 | 81.86 169 | 83.43 100 |
|
IterMVS | | | 73.62 151 | 76.53 154 | 70.23 150 | 71.83 180 | 77.18 133 | 80.69 143 | 53.22 188 | 72.23 150 | 66.62 152 | 85.21 110 | 78.96 167 | 69.54 110 | 76.28 174 | 71.63 177 | 79.45 172 | 74.25 158 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
RPMNet | | | 67.02 179 | 63.99 193 | 70.56 148 | 71.55 181 | 67.63 176 | 75.81 171 | 69.44 77 | 59.93 200 | 63.24 159 | 64.32 203 | 47.51 217 | 59.68 150 | 70.37 191 | 69.64 183 | 83.64 161 | 68.49 176 |
|
dps | | | 65.14 182 | 64.50 191 | 65.89 177 | 71.41 182 | 65.81 184 | 71.44 188 | 61.59 150 | 58.56 203 | 61.43 166 | 75.45 167 | 52.70 216 | 58.06 157 | 69.57 193 | 64.65 190 | 71.39 187 | 64.77 181 |
|
MDTV_nov1_ep13_2view | | | 72.96 158 | 75.59 162 | 69.88 152 | 71.15 183 | 64.86 185 | 82.31 134 | 54.45 182 | 76.30 134 | 78.32 89 | 86.52 97 | 91.58 111 | 61.35 147 | 76.80 168 | 66.83 188 | 71.70 183 | 66.26 179 |
|
TAMVS | | | 63.02 186 | 69.30 179 | 55.70 196 | 70.12 184 | 56.89 197 | 69.63 194 | 45.13 199 | 70.23 158 | 38.00 208 | 77.79 145 | 75.15 184 | 42.60 197 | 74.48 177 | 72.81 175 | 68.70 195 | 57.75 201 |
|
tpm | | | 62.79 188 | 63.25 195 | 62.26 186 | 70.09 185 | 53.78 200 | 71.65 187 | 47.31 198 | 65.72 177 | 76.70 93 | 80.62 131 | 56.40 212 | 48.11 191 | 64.20 204 | 58.54 199 | 59.70 203 | 63.47 185 |
|
V42 | | | 79.59 116 | 83.59 118 | 74.93 127 | 69.61 186 | 77.05 134 | 86.59 107 | 55.84 176 | 78.42 128 | 77.29 91 | 89.84 62 | 95.08 62 | 74.12 76 | 83.05 133 | 80.11 142 | 86.12 141 | 81.59 119 |
|
PatchmatchNet | | | 64.81 184 | 63.74 194 | 66.06 176 | 69.21 187 | 58.62 195 | 73.16 184 | 60.01 163 | 65.92 175 | 66.19 154 | 76.27 158 | 59.09 202 | 60.45 149 | 66.58 199 | 61.47 198 | 67.33 197 | 58.24 199 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
CHOSEN 1792x2688 | | | 68.80 173 | 71.09 176 | 66.13 174 | 69.11 188 | 68.89 174 | 78.98 157 | 54.68 179 | 61.63 196 | 56.69 172 | 71.56 183 | 78.39 170 | 67.69 120 | 72.13 186 | 72.01 176 | 69.63 193 | 73.02 164 |
|
MIMVSNet | | | 63.02 186 | 69.02 180 | 56.01 194 | 68.20 189 | 59.26 194 | 70.01 193 | 53.79 185 | 71.56 154 | 41.26 205 | 71.38 185 | 82.38 158 | 36.38 203 | 71.43 189 | 67.32 187 | 66.45 199 | 59.83 196 |
|
CMPMVS | | 55.74 18 | 71.56 163 | 76.26 156 | 66.08 175 | 68.11 190 | 63.91 188 | 63.17 204 | 50.52 196 | 68.79 166 | 75.49 98 | 70.78 191 | 85.67 146 | 63.54 141 | 81.58 147 | 77.20 157 | 75.63 177 | 85.86 82 |
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
SCA | | | 68.54 175 | 67.52 184 | 69.73 153 | 67.79 191 | 75.04 148 | 76.96 166 | 68.94 83 | 66.41 173 | 67.86 147 | 74.03 173 | 60.96 198 | 65.55 132 | 68.99 194 | 65.67 189 | 71.30 188 | 61.54 194 |
|
EU-MVSNet | | | 76.48 135 | 80.53 132 | 71.75 140 | 67.62 192 | 70.30 167 | 81.74 138 | 54.06 184 | 75.47 138 | 71.01 128 | 80.10 132 | 93.17 93 | 73.67 81 | 83.73 131 | 77.85 151 | 82.40 166 | 83.07 103 |
|
tpmrst | | | 59.42 195 | 60.02 205 | 58.71 190 | 67.56 193 | 53.10 202 | 66.99 200 | 51.88 191 | 63.80 187 | 57.68 170 | 76.73 155 | 56.49 211 | 48.73 190 | 56.47 210 | 55.55 203 | 59.43 204 | 58.02 200 |
|
pmmvs5 | | | 68.91 172 | 74.35 167 | 62.56 184 | 67.45 194 | 66.78 180 | 71.70 186 | 51.47 193 | 67.17 170 | 56.25 174 | 82.41 125 | 88.59 135 | 47.21 194 | 73.21 185 | 74.23 168 | 81.30 170 | 68.03 177 |
|
MDTV_nov1_ep13 | | | 64.96 183 | 64.77 190 | 65.18 180 | 67.08 195 | 62.46 190 | 75.80 172 | 51.10 195 | 62.27 195 | 69.74 133 | 74.12 172 | 62.65 196 | 55.64 168 | 68.19 196 | 62.16 196 | 71.70 183 | 61.57 193 |
|
E-PMN | | | 59.07 197 | 62.79 197 | 54.72 197 | 67.01 196 | 47.81 209 | 60.44 207 | 43.40 200 | 72.95 146 | 44.63 200 | 70.42 193 | 73.17 188 | 58.73 154 | 80.97 152 | 51.98 208 | 54.14 208 | 42.26 210 |
|
baseline | | | 69.33 171 | 75.37 164 | 62.28 185 | 66.54 197 | 66.67 181 | 73.95 182 | 48.07 197 | 66.10 174 | 59.26 168 | 82.45 124 | 86.30 144 | 54.44 172 | 74.42 178 | 73.25 172 | 71.42 186 | 78.43 145 |
|
N_pmnet | | | 54.95 204 | 65.90 187 | 42.18 205 | 66.37 198 | 43.86 212 | 57.92 209 | 39.79 204 | 79.54 123 | 17.24 215 | 86.31 98 | 87.91 138 | 25.44 208 | 64.68 203 | 51.76 209 | 46.33 211 | 47.23 208 |
|
MVSTER | | | 68.08 177 | 69.73 178 | 66.16 173 | 66.33 199 | 70.06 168 | 75.71 176 | 52.36 190 | 55.18 208 | 58.64 169 | 70.23 195 | 56.72 210 | 57.34 159 | 79.68 159 | 76.03 163 | 86.61 135 | 80.20 134 |
|
EMVS | | | 58.97 198 | 62.63 199 | 54.70 198 | 66.26 200 | 48.71 207 | 61.74 205 | 42.71 201 | 72.80 148 | 46.00 199 | 73.01 180 | 71.66 189 | 57.91 158 | 80.41 156 | 50.68 210 | 53.55 209 | 41.11 211 |
|
anonymousdsp | | | 85.62 61 | 90.53 48 | 79.88 92 | 64.64 201 | 76.35 138 | 96.28 13 | 53.53 187 | 85.63 69 | 81.59 70 | 92.81 30 | 97.71 14 | 86.88 2 | 94.56 26 | 92.83 25 | 96.35 6 | 93.84 8 |
|
EPMVS | | | 56.62 201 | 59.77 206 | 52.94 201 | 62.41 202 | 50.55 206 | 60.66 206 | 52.83 189 | 65.15 182 | 41.80 203 | 77.46 150 | 57.28 208 | 42.68 196 | 59.81 208 | 54.82 204 | 57.23 206 | 53.35 204 |
|
FMVSNet5 | | | 56.37 202 | 60.14 204 | 51.98 203 | 60.83 203 | 59.58 193 | 66.85 201 | 42.37 202 | 52.68 210 | 41.33 204 | 47.09 211 | 54.68 213 | 35.28 204 | 73.88 180 | 70.77 179 | 65.24 200 | 62.26 190 |
|
ADS-MVSNet | | | 56.89 200 | 61.09 201 | 52.00 202 | 59.48 204 | 48.10 208 | 58.02 208 | 54.37 183 | 72.82 147 | 49.19 196 | 75.32 168 | 65.97 194 | 37.96 202 | 59.34 209 | 54.66 205 | 52.99 210 | 51.42 206 |
|
new_pmnet | | | 52.29 205 | 63.16 196 | 39.61 207 | 58.89 205 | 44.70 211 | 48.78 214 | 34.73 207 | 65.88 176 | 17.85 214 | 73.42 177 | 80.00 164 | 23.06 210 | 67.00 198 | 62.28 195 | 54.36 207 | 48.81 207 |
|
MVS-HIRNet | | | 59.74 194 | 58.74 210 | 60.92 187 | 57.74 206 | 45.81 210 | 56.02 210 | 58.69 168 | 55.69 206 | 65.17 155 | 70.86 189 | 71.66 189 | 56.75 160 | 61.11 207 | 53.74 206 | 71.17 189 | 52.28 205 |
|
PatchT | | | 66.25 181 | 66.76 186 | 65.67 178 | 55.87 207 | 60.75 192 | 70.17 191 | 59.00 166 | 59.80 202 | 72.30 118 | 78.68 142 | 54.12 214 | 65.04 134 | 71.64 187 | 72.91 173 | 71.63 185 | 69.40 173 |
|
test-mter | | | 59.39 196 | 61.59 200 | 56.82 193 | 53.21 208 | 54.82 199 | 73.12 185 | 26.57 211 | 53.19 209 | 56.31 173 | 64.71 202 | 60.47 199 | 56.36 163 | 68.69 195 | 64.27 191 | 75.38 178 | 65.00 180 |
|
CHOSEN 280x420 | | | 56.32 203 | 58.85 209 | 53.36 200 | 51.63 209 | 39.91 213 | 69.12 198 | 38.61 205 | 56.29 205 | 36.79 209 | 48.84 210 | 62.59 197 | 63.39 143 | 73.61 183 | 67.66 186 | 60.61 201 | 63.07 188 |
|
TESTMET0.1,1 | | | 57.21 199 | 59.46 207 | 54.60 199 | 50.95 210 | 52.66 203 | 69.46 196 | 26.91 210 | 50.76 211 | 53.81 182 | 63.11 205 | 58.91 203 | 52.87 180 | 66.54 200 | 62.34 193 | 73.59 179 | 61.87 191 |
|
pmmvs3 | | | 62.72 189 | 68.71 181 | 55.74 195 | 50.74 211 | 57.10 196 | 70.05 192 | 28.82 209 | 61.57 198 | 57.39 171 | 71.19 188 | 85.73 145 | 53.96 175 | 73.36 184 | 69.43 184 | 73.47 181 | 62.55 189 |
|
MDA-MVSNet-bldmvs | | | 76.51 134 | 82.87 123 | 69.09 158 | 50.71 212 | 74.72 154 | 84.05 123 | 60.27 160 | 81.62 101 | 71.16 127 | 88.21 82 | 91.58 111 | 69.62 109 | 92.78 45 | 77.48 155 | 78.75 175 | 73.69 161 |
|
PMMVS | | | 61.98 192 | 65.61 188 | 57.74 191 | 45.03 213 | 51.76 205 | 69.54 195 | 35.05 206 | 55.49 207 | 55.32 177 | 68.23 197 | 78.39 170 | 58.09 156 | 70.21 192 | 71.56 178 | 83.42 163 | 63.66 184 |
|
PMMVS2 | | | 48.13 207 | 64.06 192 | 29.55 208 | 44.06 214 | 36.69 214 | 51.95 213 | 29.97 208 | 74.75 142 | 8.90 217 | 76.02 163 | 91.24 117 | 7.53 211 | 73.78 181 | 55.91 202 | 34.87 213 | 40.01 212 |
|
MVE | | 41.12 19 | 51.80 206 | 60.92 202 | 41.16 206 | 35.21 215 | 34.14 215 | 48.45 215 | 41.39 203 | 69.11 164 | 19.53 213 | 63.33 204 | 73.80 186 | 63.56 140 | 67.19 197 | 61.51 197 | 38.85 212 | 57.38 202 |
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
tmp_tt | | | | | 13.54 210 | 16.73 216 | 6.42 217 | 8.49 217 | 2.36 213 | 28.69 214 | 27.44 212 | 18.40 213 | 13.51 220 | 3.70 212 | 33.23 211 | 36.26 211 | 22.54 215 | |
|
test123 | | | 1.06 209 | 1.41 211 | 0.64 211 | 0.39 217 | 0.48 218 | 0.52 220 | 0.25 215 | 1.11 216 | 1.37 219 | 2.01 215 | 1.98 221 | 0.87 213 | 1.43 213 | 1.27 212 | 0.46 217 | 1.62 214 |
|
testmvs | | | 0.93 210 | 1.37 212 | 0.41 212 | 0.36 218 | 0.36 219 | 0.62 219 | 0.39 214 | 1.48 215 | 0.18 220 | 2.41 214 | 1.31 222 | 0.41 214 | 1.25 214 | 1.08 213 | 0.48 216 | 1.68 213 |
|
GG-mvs-BLEND | | | 41.63 208 | 60.36 203 | 19.78 209 | 0.14 219 | 66.04 182 | 55.66 211 | 0.17 216 | 57.64 204 | 2.42 218 | 51.82 209 | 69.42 192 | 0.28 215 | 64.11 205 | 58.29 200 | 60.02 202 | 55.18 203 |
|
uanet_test | | | 0.00 211 | 0.00 213 | 0.00 213 | 0.00 220 | 0.00 220 | 0.00 221 | 0.00 217 | 0.00 217 | 0.00 221 | 0.00 216 | 0.00 223 | 0.00 216 | 0.00 215 | 0.00 214 | 0.00 218 | 0.00 215 |
|
sosnet-low-res | | | 0.00 211 | 0.00 213 | 0.00 213 | 0.00 220 | 0.00 220 | 0.00 221 | 0.00 217 | 0.00 217 | 0.00 221 | 0.00 216 | 0.00 223 | 0.00 216 | 0.00 215 | 0.00 214 | 0.00 218 | 0.00 215 |
|
sosnet | | | 0.00 211 | 0.00 213 | 0.00 213 | 0.00 220 | 0.00 220 | 0.00 221 | 0.00 217 | 0.00 217 | 0.00 221 | 0.00 216 | 0.00 223 | 0.00 216 | 0.00 215 | 0.00 214 | 0.00 218 | 0.00 215 |
|
RE-MVS-def | | | | | | | | | | | 87.10 29 | | | | | | | |
|
9.14 | | | | | | | | | | | | | 89.43 126 | | | | | |
|
MTAPA | | | | | | | | | | | 89.37 9 | | 94.85 67 | | | | | |
|
MTMP | | | | | | | | | | | 90.54 5 | | 95.16 59 | | | | | |
|
Patchmatch-RL test | | | | | | | | 4.13 218 | | | | | | | | | | |
|
NP-MVS | | | | | | | | | | 78.65 127 | | | | | | | | |
|
Patchmtry | | | | | | | 56.88 198 | 64.47 202 | 67.74 97 | | 72.30 118 | | | | | | | |
|
DeepMVS_CX | | | | | | | 17.78 216 | 20.40 216 | 6.69 212 | 31.41 213 | 9.80 216 | 38.61 212 | 34.88 219 | 33.78 205 | 28.41 212 | | 23.59 214 | 45.77 209 |
|