PCF-MVS | | 97.20 3 | 96.46 1 | 97.40 3 | 95.83 1 | 95.19 3 | 94.69 1 | 98.87 2 | 93.95 1 | 99.60 17 |
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
DeepPCF-MVS | | 97.16 4 | 96.06 2 | 97.82 1 | 94.90 2 | 95.66 2 | 93.42 2 | 97.64 12 | 93.63 2 | 99.98 2 |
|
DeepC-MVS_fast | | 98.03 2 | 95.36 3 | 97.23 5 | 94.11 4 | 94.46 5 | 91.79 6 | 98.43 6 | 92.11 4 | 100.00 1 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
COLMAP(SR) | | | 95.35 4 | 96.60 10 | 94.52 3 | 93.77 9 | 91.58 7 | 99.00 1 | 92.97 3 | 99.44 18 |
|
ACMP | | 94.49 9 | 95.25 5 | 97.04 7 | 94.06 5 | 94.11 7 | 92.05 3 | 98.46 5 | 91.67 6 | 99.96 5 |
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
PLC |  | 98.06 1 | 95.17 6 | 97.30 4 | 93.74 7 | 94.62 4 | 91.31 8 | 98.84 3 | 91.08 8 | 99.98 2 |
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
ACMM | | 94.44 10 | 94.91 7 | 96.40 12 | 93.91 6 | 92.86 12 | 91.83 5 | 98.19 9 | 91.72 5 | 99.93 8 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
COLMAP(base) | | | 94.85 8 | 97.05 6 | 93.39 8 | 94.15 6 | 90.09 11 | 98.82 4 | 91.24 7 | 99.95 6 |
|
ACMH+ | | 92.61 13 | 94.71 9 | 96.80 9 | 93.32 9 | 93.67 10 | 90.91 10 | 98.30 8 | 90.75 10 | 99.94 7 |
|
DeepC-MVS | | 96.33 6 | 94.48 10 | 96.90 8 | 92.87 11 | 93.82 8 | 91.98 4 | 96.01 15 | 90.63 11 | 99.97 4 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
ACMH | | 92.34 14 | 94.29 11 | 96.26 13 | 92.98 10 | 92.67 13 | 89.72 12 | 98.43 6 | 90.79 9 | 99.84 9 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
TAPA-MVS | | 96.62 5 | 94.08 12 | 97.82 1 | 91.59 14 | 95.80 1 | 87.72 15 | 96.77 13 | 90.27 12 | 99.84 9 |
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
GSE | | | 93.87 13 | 96.59 11 | 92.05 12 | 93.54 11 | 90.92 9 | 97.85 11 | 87.40 15 | 99.64 13 |
|
TAPA-MVS(SR) | | | 93.68 14 | 96.18 14 | 92.02 13 | 92.54 14 | 88.75 14 | 97.96 10 | 89.36 13 | 99.81 11 |
|
LTVRE_ROB | | 88.65 16 | 90.66 15 | 93.76 15 | 88.60 15 | 88.47 15 | 81.84 23 | 96.26 14 | 87.70 14 | 99.04 22 |
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
A-TVSNet + Gipuma |  | | 87.81 16 | 88.95 20 | 87.05 16 | 81.62 18 | 86.96 17 | 94.01 21 | 80.19 17 | 96.28 27 |
|
LPCS | | | 87.72 17 | 92.40 17 | 84.60 20 | 85.20 17 | 81.77 24 | 95.55 16 | 76.49 20 | 99.61 15 |
|
3Dnovator+ | | 95.21 7 | 87.51 18 | 88.61 22 | 86.77 17 | 78.00 22 | 83.53 21 | 95.38 17 | 81.40 16 | 99.21 20 |
|
3Dnovator | | 95.01 8 | 87.29 19 | 88.82 21 | 86.26 18 | 78.00 22 | 83.71 20 | 95.33 18 | 79.75 18 | 99.64 13 |
|
COLMAP_ROB |  | 93.56 12 | 87.14 20 | 92.74 16 | 83.40 21 | 86.26 16 | 85.09 18 | 94.46 19 | 70.65 22 | 99.22 19 |
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
OpenMVS |  | 94.03 11 | 86.65 21 | 88.57 23 | 85.37 19 | 77.47 24 | 83.16 22 | 94.27 20 | 78.66 19 | 99.67 12 |
|
IB-MVS | | 90.59 15 | 85.10 22 | 89.14 19 | 82.40 23 | 79.19 20 | 89.08 13 | 90.21 24 | 67.91 23 | 99.09 21 |
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
BP-MVSNet | | | 85.10 22 | 90.25 18 | 81.67 24 | 80.89 19 | 87.46 16 | 90.48 23 | 67.06 24 | 99.61 15 |
Christian Sormann, Patrick Knöbelreiter, Andreas Kuhn, Mattia Rossi, Thomas Pock, Friedrich Fraundorfer: BP-MVSNet: Belief-Propagation-Layers for Multi-View-Stereo. 3DV 2020 |
CIDER | | | 84.50 24 | 86.79 24 | 82.97 22 | 78.93 21 | 84.00 19 | 92.56 22 | 72.34 21 | 94.66 29 |
Qingshan Xu and Wenbing Tao: Learning Inverse Depth Regression for Multi-View Stereo with Correlation Cost Volume. AAAI 2020 |
MVE |  | 58.81 19 | 76.34 25 | 83.27 25 | 71.73 25 | 72.07 27 | 70.06 28 | 82.62 29 | 62.50 27 | 94.47 30 |
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
hgnet | | | 75.12 26 | 80.94 27 | 71.25 26 | 72.98 25 | 68.38 30 | 81.76 30 | 63.60 25 | 88.91 32 |
|
DPSNet | | | 75.12 26 | 80.94 27 | 71.25 26 | 72.98 25 | 68.38 30 | 81.76 30 | 63.60 25 | 88.91 32 |
|
CasMVSNet(SR_B) | | | 74.43 28 | 79.92 29 | 70.78 28 | 61.70 29 | 78.99 25 | 86.52 25 | 46.82 30 | 98.14 24 |
|
unsupervisedMVS_cas | | | 74.22 29 | 81.75 26 | 69.20 29 | 64.55 28 | 72.19 27 | 86.33 26 | 49.07 29 | 98.95 23 |
|
CasMVSNet(base) | | | 73.02 30 | 79.39 31 | 68.77 30 | 61.41 31 | 77.36 26 | 84.98 28 | 43.98 32 | 97.36 26 |
|
example | | | 70.98 31 | 74.67 32 | 68.52 31 | 55.13 32 | 68.39 29 | 86.05 27 | 51.13 28 | 94.20 31 |
|
CasMVSNet(SR_A) | | | 67.81 32 | 79.92 29 | 59.73 32 | 61.70 29 | 58.67 32 | 73.70 32 | 46.82 30 | 98.14 24 |
|
PMVS |  | 60.14 18 | 53.57 33 | 72.36 33 | 41.04 33 | 49.97 33 | 48.35 33 | 58.32 33 | 16.46 33 | 94.75 28 |
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
CMPMVS |  | 65.66 17 | 16.37 34 | 40.75 34 | 0.12 34 | 0.00 34 | 0.00 34 | 0.34 34 | 0.02 34 | 81.50 34 |
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
dnet | | | 0.00 35 | 0.00 35 | 0.00 35 | 0.00 34 | 0.00 34 | 0.00 35 | 0.00 35 | 0.00 35 |
|