DeepPCF-MVS | | 94.02 3 | 89.05 1 | 90.23 1 | 88.27 3 | 89.26 2 | 86.89 2 | 92.74 10 | 85.18 3 | 91.19 4 |
|
PCF-MVS | | 92.56 4 | 88.94 2 | 87.48 9 | 89.91 1 | 88.72 3 | 87.66 1 | 94.48 2 | 87.58 1 | 86.24 11 |
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
DeepC-MVS_fast | | 95.01 1 | 88.09 3 | 89.19 3 | 87.35 4 | 86.77 5 | 84.38 5 | 93.37 6 | 84.30 4 | 91.61 2 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
PLC |  | 94.37 2 | 87.45 4 | 89.21 2 | 86.27 6 | 87.35 4 | 83.06 10 | 94.02 4 | 81.74 7 | 91.08 5 |
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
ACMP | | 89.80 9 | 87.42 5 | 88.74 5 | 86.54 5 | 85.36 11 | 84.80 3 | 93.00 8 | 81.81 5 | 92.13 1 |
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
COLMAP(SR) | | | 87.37 6 | 86.00 12 | 88.28 2 | 86.18 9 | 83.58 8 | 95.06 1 | 86.20 2 | 85.83 13 |
|
COLMAP(base) | | | 86.74 7 | 88.30 6 | 85.71 9 | 86.67 7 | 81.47 11 | 93.90 5 | 81.75 6 | 89.94 6 |
|
ACMH+ | | 85.62 12 | 86.50 8 | 87.51 8 | 85.83 8 | 85.76 10 | 83.42 9 | 93.18 7 | 80.89 9 | 89.27 7 |
|
ACMM | | 89.40 10 | 86.34 9 | 87.00 10 | 85.90 7 | 82.44 14 | 84.21 6 | 92.42 11 | 81.07 8 | 91.55 3 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
DeepC-MVS | | 92.23 5 | 86.25 10 | 87.94 7 | 85.12 10 | 86.62 8 | 84.79 4 | 90.40 13 | 80.17 10 | 89.27 7 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
GSE | | | 85.65 11 | 86.44 11 | 85.11 11 | 86.70 6 | 83.85 7 | 94.21 3 | 77.29 14 | 86.19 12 |
|
TAPA-MVS | | 92.04 6 | 85.06 12 | 88.77 4 | 82.59 14 | 89.98 1 | 79.94 16 | 90.04 14 | 77.79 12 | 87.55 9 |
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
ACMH | | 85.22 13 | 84.74 13 | 85.17 13 | 84.45 12 | 83.00 13 | 81.47 11 | 92.78 9 | 79.12 11 | 87.34 10 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
TAPA-MVS(SR) | | | 83.90 14 | 84.64 14 | 83.41 13 | 83.56 12 | 80.78 14 | 91.93 12 | 77.53 13 | 85.73 14 |
|
LTVRE_ROB | | 79.45 16 | 78.91 15 | 79.79 15 | 78.32 15 | 77.85 15 | 72.87 23 | 88.04 17 | 74.05 15 | 81.73 21 |
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
A-TVSNet + Gipuma |  | | 77.43 16 | 76.13 22 | 78.30 16 | 74.08 17 | 79.17 17 | 88.00 19 | 67.73 16 | 78.18 26 |
|
3Dnovator+ | | 90.72 7 | 77.00 17 | 76.38 21 | 77.42 17 | 69.12 22 | 75.92 18 | 88.70 15 | 67.64 17 | 83.64 18 |
|
3Dnovator | | 90.31 8 | 76.35 18 | 76.45 20 | 76.29 18 | 68.46 23 | 75.81 19 | 88.03 18 | 65.02 18 | 84.44 15 |
|
LPCS | | | 76.00 19 | 78.18 17 | 74.55 20 | 73.09 19 | 72.23 24 | 88.61 16 | 62.81 20 | 83.26 20 |
|
OpenMVS |  | 88.43 11 | 75.27 20 | 75.74 23 | 74.95 19 | 67.98 24 | 75.09 21 | 86.19 21 | 63.57 19 | 83.50 19 |
|
IB-MVS | | 84.67 14 | 75.14 21 | 77.40 18 | 73.63 21 | 70.37 21 | 81.47 11 | 83.15 24 | 56.25 22 | 84.43 16 |
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
BP-MVSNet | | | 75.04 22 | 78.71 16 | 72.58 24 | 73.17 18 | 80.29 15 | 83.36 23 | 54.11 24 | 84.26 17 |
Christian Sormann, Patrick Knöbelreiter, Andreas Kuhn, Mattia Rossi, Thomas Pock, Friedrich Fraundorfer: BP-MVSNet: Belief-Propagation-Layers for Multi-View-Stereo. 3DV 2020 |
COLMAP_ROB |  | 84.42 15 | 74.49 23 | 77.19 19 | 72.68 23 | 74.12 16 | 75.59 20 | 87.54 20 | 54.91 23 | 80.27 23 |
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
CIDER | | | 72.63 24 | 72.36 24 | 72.81 22 | 71.03 20 | 74.93 22 | 85.49 22 | 58.00 21 | 73.70 30 |
Qingshan Xu and Wenbing Tao: Learning Inverse Depth Regression for Multi-View Stereo with Correlation Cost Volume. AAAI 2020 |
CasMVSNet(SR_B) | | | 62.76 25 | 65.39 26 | 61.01 25 | 52.02 30 | 69.81 25 | 76.97 25 | 36.26 28 | 78.76 24 |
|
CasMVSNet(base) | | | 61.43 26 | 65.07 28 | 59.00 26 | 52.15 29 | 67.44 26 | 75.32 26 | 34.23 32 | 77.99 27 |
|
unsupervisedMVS_cas | | | 60.74 27 | 67.51 25 | 56.23 27 | 54.12 28 | 59.79 27 | 73.38 27 | 35.53 31 | 80.90 22 |
|
MVE |  | 42.40 19 | 59.02 28 | 64.75 29 | 55.21 28 | 57.52 25 | 51.91 28 | 68.01 29 | 45.70 25 | 71.97 31 |
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
hgnet | | | 54.67 29 | 61.19 30 | 50.33 29 | 57.33 26 | 44.19 29 | 66.75 30 | 40.04 26 | 65.05 32 |
|
DPSNet | | | 54.67 29 | 61.19 30 | 50.33 29 | 57.33 26 | 44.19 29 | 66.75 30 | 40.04 26 | 65.05 32 |
|
CasMVSNet(SR_A) | | | 54.35 31 | 65.39 26 | 47.00 32 | 52.02 30 | 43.15 31 | 61.58 32 | 36.26 28 | 78.76 24 |
|
example | | | 52.78 32 | 57.15 32 | 49.87 31 | 40.35 32 | 41.97 32 | 71.61 28 | 36.04 30 | 73.95 29 |
|
PMVS |  | 49.05 18 | 41.70 33 | 55.30 33 | 32.62 33 | 36.28 33 | 37.62 33 | 49.40 33 | 10.85 33 | 74.33 28 |
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
CMPMVS |  | 58.73 17 | 11.81 34 | 29.43 34 | 0.07 34 | 0.00 34 | 0.00 34 | 0.22 34 | 0.00 34 | 58.85 34 |
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
dnet | | | 0.00 35 | 0.00 35 | 0.00 35 | 0.00 34 | 0.00 34 | 0.00 35 | 0.00 34 | 0.00 35 |
|