CasMVSNet(base) | | | 96.86 1 | 97.08 4 | 96.71 1 | 94.94 4 | 96.87 7 | 99.35 2 | 93.90 3 | 99.23 27 |
|
3Dnovator | | 98.16 3 | 96.86 1 | 97.66 3 | 96.33 2 | 95.41 3 | 98.08 2 | 98.28 5 | 92.64 8 | 99.92 14 |
|
TAPA-MVS(SR) | | | 96.40 3 | 96.92 6 | 96.06 5 | 93.90 7 | 96.96 6 | 96.37 10 | 94.84 1 | 99.93 9 |
|
LTVRE_ROB | | 98.82 1 | 96.38 4 | 96.82 8 | 96.09 4 | 94.05 5 | 96.10 10 | 98.27 6 | 93.90 3 | 99.58 24 |
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
CasMVSNet(SR_A) | | | 96.10 5 | 95.93 11 | 96.22 3 | 92.17 11 | 98.15 1 | 99.96 1 | 90.54 12 | 99.68 22 |
|
LPCS | | | 96.09 6 | 98.11 1 | 94.75 10 | 96.34 1 | 97.33 4 | 94.17 13 | 92.74 7 | 99.88 18 |
|
3Dnovator+ | | 97.85 5 | 95.88 7 | 96.88 7 | 95.21 7 | 93.88 8 | 97.40 3 | 97.50 8 | 90.74 11 | 99.88 18 |
|
IB-MVS | | 95.85 14 | 95.82 8 | 97.77 2 | 94.52 11 | 95.57 2 | 95.96 12 | 98.43 4 | 89.18 15 | 99.98 2 |
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
CasMVSNet(SR_B) | | | 95.73 9 | 95.93 11 | 95.61 6 | 92.17 11 | 97.22 5 | 99.06 3 | 90.54 12 | 99.68 22 |
|
OpenMVS |  | 97.26 9 | 95.64 10 | 96.49 10 | 95.08 8 | 93.05 10 | 96.65 8 | 97.55 7 | 91.04 10 | 99.93 9 |
|
COLMAP_ROB |  | 98.29 2 | 95.50 11 | 96.61 9 | 94.77 9 | 93.26 9 | 96.29 9 | 93.89 14 | 94.12 2 | 99.96 7 |
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
GSE | | | 94.18 12 | 96.96 5 | 92.32 17 | 94.01 6 | 95.62 14 | 92.64 17 | 88.71 17 | 99.91 15 |
|
DeepC-MVS | | 97.88 4 | 94.12 13 | 94.72 18 | 93.72 12 | 89.46 20 | 95.70 13 | 92.08 19 | 93.37 5 | 99.98 2 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
DeepC-MVS_fast | | 97.38 8 | 94.08 14 | 95.44 14 | 93.18 14 | 90.96 14 | 96.08 11 | 93.35 15 | 90.10 14 | 99.91 15 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
BP-MVSNet | | | 94.03 15 | 95.82 13 | 92.83 16 | 91.66 13 | 94.68 19 | 97.07 9 | 86.74 21 | 99.98 2 |
Christian Sormann, Patrick Knöbelreiter, Andreas Kuhn, Mattia Rossi, Thomas Pock, Friedrich Fraundorfer: BP-MVSNet: Belief-Propagation-Layers for Multi-View-Stereo. 3DV 2020 |
ACMH | | 97.81 6 | 93.57 16 | 94.53 19 | 92.93 15 | 89.65 19 | 94.47 20 | 91.41 22 | 92.93 6 | 99.41 25 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
ACMH+ | | 97.53 7 | 92.95 17 | 94.42 20 | 91.97 18 | 90.03 16 | 94.89 18 | 89.44 24 | 91.57 9 | 98.80 29 |
|
DeepPCF-MVS | | 96.68 10 | 92.73 18 | 94.82 16 | 91.34 19 | 89.71 18 | 95.09 17 | 91.64 20 | 87.28 19 | 99.94 8 |
|
TAPA-MVS | | 96.65 12 | 92.52 19 | 91.41 25 | 93.25 13 | 82.91 25 | 95.33 16 | 95.69 12 | 88.74 16 | 99.91 15 |
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
COLMAP(base) | | | 91.59 20 | 94.98 15 | 89.33 22 | 90.60 15 | 93.79 21 | 87.38 25 | 86.81 20 | 99.37 26 |
|
COLMAP(SR) | | | 91.28 21 | 94.79 17 | 88.95 24 | 89.82 17 | 93.12 24 | 89.61 23 | 84.11 25 | 99.75 21 |
|
ACMM | | 96.66 11 | 90.83 22 | 92.20 24 | 89.92 21 | 84.48 24 | 95.50 15 | 86.96 26 | 87.31 18 | 99.93 9 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
CIDER | | | 90.78 23 | 90.81 26 | 90.76 20 | 81.62 26 | 90.33 26 | 95.96 11 | 85.99 23 | 99.99 1 |
Qingshan Xu and Wenbing Tao: Learning Inverse Depth Regression for Multi-View Stereo with Correlation Cost Volume. AAAI 2020 |
ACMP | | 96.54 13 | 90.50 24 | 93.15 22 | 88.73 26 | 86.45 23 | 93.73 22 | 86.14 27 | 86.33 22 | 99.85 20 |
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
PCF-MVS | | 95.58 16 | 90.33 25 | 92.69 23 | 88.76 25 | 86.97 22 | 89.91 27 | 93.01 16 | 83.36 26 | 98.41 30 |
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
PLC |  | 95.63 15 | 90.18 26 | 93.68 21 | 87.85 27 | 88.19 21 | 92.84 25 | 85.16 28 | 85.54 24 | 99.17 28 |
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
A-TVSNet + Gipuma |  | | 88.90 27 | 88.58 27 | 89.11 23 | 77.22 27 | 93.14 23 | 92.46 18 | 81.74 27 | 99.93 9 |
|
unsupervisedMVS_cas | | | 77.57 28 | 84.15 28 | 73.19 28 | 72.58 28 | 75.23 28 | 75.38 31 | 68.96 28 | 95.72 32 |
|
PMVS |  | 92.51 17 | 76.53 29 | 83.02 29 | 72.20 29 | 69.37 29 | 63.55 29 | 91.63 21 | 61.42 29 | 96.68 31 |
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
example | | | 57.16 30 | 65.11 30 | 51.86 30 | 30.29 30 | 42.47 33 | 74.82 32 | 38.29 31 | 99.93 9 |
|
hgnet | | | 56.11 31 | 63.33 31 | 51.29 32 | 26.68 31 | 52.81 31 | 79.14 29 | 21.92 32 | 99.98 2 |
|
DPSNet | | | 56.11 31 | 63.33 31 | 51.29 32 | 26.68 31 | 52.81 31 | 79.14 29 | 21.92 32 | 99.98 2 |
|
MVE |  | 82.47 18 | 54.76 33 | 59.87 33 | 51.35 31 | 24.14 33 | 60.89 30 | 39.49 33 | 53.68 30 | 95.61 33 |
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
CMPMVS |  | 74.71 19 | 18.90 34 | 44.75 34 | 1.66 34 | 0.00 34 | 0.00 34 | 4.97 34 | 0.00 34 | 89.50 34 |
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
dnet | | | 0.00 35 | 0.00 35 | 0.00 35 | 0.00 34 | 0.00 34 | 0.00 35 | 0.00 34 | 0.00 35 |
|