DeepPCF-MVS | | 91.00 2 | 82.83 1 | 82.88 1 | 82.80 3 | 83.47 2 | 83.05 1 | 89.01 7 | 76.33 3 | 82.28 1 |
|
PCF-MVS | | 88.14 5 | 82.22 2 | 79.13 7 | 84.29 1 | 82.71 3 | 82.99 2 | 91.06 2 | 78.82 2 | 75.55 11 |
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
DeepC-MVS_fast | | 91.53 1 | 81.05 3 | 80.25 3 | 81.58 4 | 80.39 6 | 79.85 5 | 89.20 6 | 75.69 4 | 80.11 4 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
COLMAP(SR) | | | 81.03 4 | 77.51 10 | 83.37 2 | 80.17 7 | 78.54 8 | 92.13 1 | 79.44 1 | 74.86 13 |
|
ACMP | | 85.16 9 | 79.99 5 | 79.52 6 | 80.30 5 | 78.61 11 | 80.63 4 | 88.01 10 | 72.24 5 | 80.43 3 |
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
PLC |  | 89.12 3 | 79.89 6 | 79.79 5 | 79.96 6 | 80.66 4 | 77.86 9 | 89.95 3 | 72.08 6 | 78.91 6 |
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
DeepC-MVS | | 88.77 4 | 79.34 7 | 79.88 4 | 78.99 10 | 80.57 5 | 80.72 3 | 86.11 13 | 70.14 10 | 79.20 5 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
COLMAP(base) | | | 79.08 8 | 78.98 8 | 79.14 9 | 79.98 8 | 75.71 14 | 89.85 4 | 71.87 7 | 77.97 7 |
|
ACMH+ | | 79.09 13 | 79.00 9 | 78.12 9 | 79.59 7 | 78.71 10 | 79.05 6 | 88.75 8 | 70.98 9 | 77.52 9 |
|
ACMM | | 84.23 10 | 78.57 10 | 77.28 12 | 79.43 8 | 73.60 14 | 79.05 6 | 87.78 11 | 71.48 8 | 80.95 2 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
TAPA-MVS | | 87.40 6 | 78.10 11 | 81.51 2 | 75.83 14 | 85.35 1 | 74.74 17 | 85.21 14 | 67.55 12 | 77.67 8 |
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
GSE | | | 77.80 12 | 77.41 11 | 78.06 11 | 79.63 9 | 77.74 10 | 89.70 5 | 66.73 14 | 75.20 12 |
|
ACMH | | 78.51 14 | 76.56 13 | 75.20 13 | 77.46 12 | 74.22 13 | 75.97 13 | 88.16 9 | 68.25 11 | 76.17 10 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
TAPA-MVS(SR) | | | 75.89 14 | 74.54 14 | 76.79 13 | 75.47 12 | 75.59 15 | 87.46 12 | 67.30 13 | 73.60 14 |
|
A-TVSNet + Gipuma |  | | 70.79 15 | 67.70 19 | 72.84 15 | 68.64 16 | 74.99 16 | 84.36 15 | 59.17 16 | 66.77 27 |
|
LTVRE_ROB | | 71.82 16 | 69.74 16 | 70.17 16 | 69.46 17 | 68.92 15 | 66.24 23 | 80.75 22 | 61.39 15 | 71.42 20 |
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
BP-MVSNet | | | 69.05 17 | 71.00 15 | 67.75 21 | 68.57 17 | 76.56 12 | 79.34 23 | 47.33 23 | 73.44 15 |
Christian Sormann, Patrick Knöbelreiter, Andreas Kuhn, Mattia Rossi, Thomas Pock, Friedrich Fraundorfer: BP-MVSNet: Belief-Propagation-Layers for Multi-View-Stereo. 3DV 2020 |
3Dnovator+ | | 86.26 7 | 69.02 18 | 67.67 20 | 69.92 16 | 63.12 22 | 71.61 18 | 84.06 16 | 54.08 18 | 72.22 19 |
|
IB-MVS | | 79.58 12 | 68.52 19 | 68.60 17 | 68.47 19 | 63.91 21 | 77.32 11 | 79.25 24 | 48.85 22 | 73.30 16 |
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
3Dnovator | | 85.78 8 | 68.24 20 | 67.38 21 | 68.81 18 | 61.76 23 | 71.28 19 | 82.77 18 | 52.39 19 | 73.00 17 |
|
LPCS | | | 68.04 21 | 68.23 18 | 67.91 20 | 64.18 20 | 65.39 24 | 83.73 17 | 54.60 17 | 72.29 18 |
|
OpenMVS |  | 83.41 11 | 66.67 22 | 66.09 23 | 67.06 22 | 61.16 24 | 69.96 21 | 80.96 21 | 50.25 20 | 71.03 21 |
|
COLMAP_ROB |  | 75.69 15 | 65.86 23 | 67.10 22 | 65.03 24 | 65.11 19 | 68.18 22 | 82.50 19 | 44.42 24 | 69.09 22 |
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
CIDER | | | 65.64 24 | 63.67 24 | 66.96 23 | 65.77 18 | 70.02 20 | 81.15 20 | 49.71 21 | 61.57 30 |
Qingshan Xu and Wenbing Tao: Learning Inverse Depth Regression for Multi-View Stereo with Correlation Cost Volume. AAAI 2020 |
CasMVSNet(SR_B) | | | 56.03 25 | 56.53 26 | 55.70 25 | 45.83 27 | 63.91 25 | 72.19 25 | 30.99 26 | 67.22 24 |
|
CasMVSNet(base) | | | 54.55 26 | 56.22 28 | 53.43 26 | 45.62 29 | 61.24 26 | 70.29 26 | 28.77 28 | 66.81 26 |
|
unsupervisedMVS_cas | | | 52.40 27 | 57.22 25 | 49.19 27 | 46.80 25 | 52.09 27 | 67.10 27 | 28.38 29 | 67.64 23 |
|
MVE |  | 32.98 19 | 46.94 28 | 53.79 29 | 42.37 28 | 46.12 26 | 38.88 28 | 55.33 31 | 32.90 25 | 61.45 31 |
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
CasMVSNet(SR_A) | | | 46.80 29 | 56.53 26 | 40.31 29 | 45.83 27 | 34.96 29 | 54.99 32 | 30.99 26 | 67.22 24 |
|
hgnet | | | 40.71 30 | 47.74 30 | 36.02 31 | 41.33 30 | 26.31 31 | 55.34 29 | 26.42 31 | 54.15 32 |
|
example | | | 40.71 30 | 45.83 32 | 37.30 30 | 27.41 32 | 25.86 33 | 59.59 28 | 26.44 30 | 64.25 28 |
|
DPSNet | | | 40.71 30 | 47.74 30 | 36.02 31 | 41.33 30 | 26.31 31 | 55.34 29 | 26.42 31 | 54.15 32 |
|
PMVS |  | 42.57 18 | 34.43 33 | 44.83 33 | 27.50 33 | 26.13 33 | 30.12 30 | 43.58 33 | 8.79 33 | 63.52 29 |
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
CMPMVS |  | 54.54 17 | 9.81 34 | 24.45 34 | 0.06 34 | 0.00 34 | 0.00 34 | 0.18 34 | 0.00 34 | 48.89 34 |
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
dnet | | | 0.00 35 | 0.00 35 | 0.00 35 | 0.00 34 | 0.00 34 | 0.00 35 | 0.00 34 | 0.00 35 |
|