DeepPCF-MVS | | 86.71 1 | 75.56 1 | 75.59 1 | 75.55 3 | 74.79 2 | 77.01 1 | 84.87 3 | 64.76 3 | 76.39 1 |
|
COLMAP(SR) | | | 74.52 2 | 70.25 7 | 77.38 1 | 72.76 4 | 72.54 8 | 88.95 1 | 70.64 1 | 67.74 13 |
|
PCF-MVS | | 82.38 4 | 74.21 3 | 71.14 6 | 76.26 2 | 72.95 3 | 75.68 2 | 86.62 2 | 66.49 2 | 69.34 10 |
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
DeepC-MVS_fast | | 86.59 2 | 73.32 4 | 72.00 4 | 74.20 4 | 71.55 6 | 74.06 5 | 84.63 5 | 63.92 4 | 72.44 4 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
ACMP | | 79.58 9 | 72.70 5 | 72.00 4 | 73.16 5 | 71.36 7 | 75.34 3 | 82.56 11 | 61.58 5 | 72.64 3 |
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
DeepC-MVS | | 84.14 3 | 72.02 6 | 72.53 3 | 71.68 9 | 72.70 5 | 74.89 4 | 81.64 13 | 58.50 10 | 72.36 5 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
ACMH+ | | 72.14 13 | 71.51 7 | 70.05 9 | 72.49 6 | 69.87 9 | 73.36 6 | 83.87 7 | 60.23 7 | 70.23 8 |
|
PLC |  | 81.02 6 | 71.17 8 | 70.25 7 | 71.79 8 | 69.95 8 | 70.68 11 | 84.71 4 | 59.97 9 | 70.56 7 |
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
TAPA-MVS | | 80.99 7 | 70.99 9 | 75.47 2 | 68.01 14 | 79.31 1 | 66.60 17 | 80.76 14 | 56.68 11 | 71.63 6 |
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
ACMM | | 78.09 10 | 70.74 10 | 68.97 11 | 71.91 7 | 64.11 13 | 72.53 9 | 82.64 10 | 60.58 6 | 73.84 2 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
COLMAP(base) | | | 70.50 11 | 69.79 10 | 70.97 10 | 69.37 10 | 68.30 15 | 84.56 6 | 60.04 8 | 70.21 9 |
|
GSE | | | 68.46 12 | 68.46 12 | 68.45 13 | 68.49 11 | 68.47 13 | 82.85 9 | 54.04 14 | 68.42 12 |
|
TAPA-MVS(SR) | | | 68.09 13 | 66.03 13 | 69.47 11 | 65.58 12 | 69.51 12 | 82.49 12 | 56.41 12 | 66.48 16 |
|
ACMH | | 71.22 14 | 67.50 14 | 65.13 14 | 69.07 12 | 61.81 15 | 68.46 14 | 82.90 8 | 55.85 13 | 68.45 11 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
A-TVSNet + Gipuma |  | | 63.85 15 | 60.37 18 | 66.18 15 | 61.29 16 | 67.86 16 | 80.67 15 | 50.01 15 | 59.45 23 |
|
BP-MVSNet | | | 63.84 16 | 64.88 15 | 63.14 17 | 63.04 14 | 72.63 7 | 75.71 23 | 41.09 21 | 66.71 15 |
Christian Sormann, Patrick Knöbelreiter, Andreas Kuhn, Mattia Rossi, Thomas Pock, Friedrich Fraundorfer: BP-MVSNet: Belief-Propagation-Layers for Multi-View-Stereo. 3DV 2020 |
IB-MVS | | 74.10 12 | 62.63 17 | 61.42 16 | 63.45 16 | 56.43 18 | 72.44 10 | 76.01 21 | 41.89 20 | 66.40 17 |
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
3Dnovator+ | | 81.14 5 | 61.76 18 | 60.65 17 | 62.50 18 | 55.47 19 | 65.67 18 | 79.28 16 | 42.55 18 | 65.84 18 |
|
3Dnovator | | 80.58 8 | 60.77 19 | 60.30 19 | 61.08 20 | 53.83 22 | 64.91 19 | 77.54 19 | 40.78 22 | 66.77 14 |
|
LPCS | | | 60.42 20 | 59.85 21 | 60.80 21 | 53.87 21 | 58.18 23 | 78.22 17 | 46.01 17 | 65.83 19 |
|
LTVRE_ROB | | 63.07 16 | 59.37 21 | 60.22 20 | 58.80 23 | 55.01 20 | 57.68 24 | 71.12 24 | 47.61 16 | 65.43 20 |
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
OpenMVS |  | 77.91 11 | 59.23 22 | 59.17 22 | 59.28 22 | 53.66 23 | 63.31 21 | 75.83 22 | 38.70 23 | 64.69 21 |
|
CIDER | | | 58.94 23 | 55.33 24 | 61.34 19 | 58.29 17 | 64.08 20 | 77.68 18 | 42.26 19 | 52.38 31 |
Qingshan Xu and Wenbing Tao: Learning Inverse Depth Regression for Multi-View Stereo with Correlation Cost Volume. AAAI 2020 |
COLMAP_ROB |  | 66.31 15 | 56.93 24 | 57.55 23 | 56.51 24 | 53.13 24 | 58.44 22 | 76.99 20 | 34.10 24 | 61.97 22 |
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
CasMVSNet(SR_B) | | | 50.41 25 | 49.65 25 | 50.92 25 | 40.21 25 | 57.58 25 | 68.72 25 | 26.45 25 | 59.09 25 |
|
CasMVSNet(base) | | | 48.92 26 | 49.64 27 | 48.44 26 | 39.87 27 | 54.66 26 | 66.45 26 | 24.20 27 | 59.42 24 |
|
unsupervisedMVS_cas | | | 45.37 27 | 48.59 28 | 43.22 27 | 39.10 28 | 44.79 27 | 61.57 27 | 23.30 28 | 58.08 27 |
|
CasMVSNet(SR_A) | | | 40.58 28 | 49.65 25 | 34.53 28 | 40.21 25 | 27.33 29 | 49.81 28 | 26.45 25 | 59.09 25 |
|
MVE |  | 25.07 19 | 35.01 29 | 43.85 29 | 29.12 29 | 32.82 29 | 28.76 28 | 38.03 32 | 20.55 29 | 54.88 30 |
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
example | | | 30.14 30 | 36.56 30 | 25.86 30 | 16.24 32 | 14.08 31 | 45.65 29 | 17.85 30 | 56.87 29 |
|
hgnet | | | 28.34 31 | 35.56 31 | 23.53 31 | 25.58 30 | 14.06 32 | 41.95 30 | 14.58 31 | 45.54 32 |
|
DPSNet | | | 28.34 31 | 35.56 31 | 23.53 31 | 25.58 30 | 14.06 32 | 41.95 30 | 14.58 31 | 45.54 32 |
|
PMVS |  | 36.83 18 | 26.97 33 | 35.46 33 | 21.31 33 | 13.72 33 | 21.30 30 | 35.44 33 | 7.19 33 | 57.21 28 |
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
CMPMVS |  | 50.59 17 | 8.59 34 | 21.41 34 | 0.05 34 | 0.00 34 | 0.00 34 | 0.15 34 | 0.00 34 | 42.82 34 |
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
dnet | | | 0.00 35 | 0.00 35 | 0.00 35 | 0.00 34 | 0.00 34 | 0.00 35 | 0.00 34 | 0.00 35 |
|